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Electrophysiological population dynamics
reveal context dependencies during decision
making in human frontal cortex

Wan-Yu Shih1 , Hsiang-Yu Yu2,3,4, Cheng-Chia Lee3,4,5, Chien-Chen Chou2,3,4,
Chien Chen2,3,4, Paul W. Glimcher 6,7 & Shih-Wei Wu 1,4

Evidence from monkeys and humans suggests that the orbitofrontal cortex
(OFC) encodes the subjective value of options under consideration during
choice. Data from non-human primates suggests that these value signals are
context-dependent, representing subjective value in a way influenced by the
decision makers’ recent experience. Using electrodes distributed throughout
cortical and subcortical structures, human epilepsy patients performed an
auction task where they repeatedly reported the subjective values they placed
on snack food items. High-gamma activity in many cortical and subcortical
sites including the OFC positively correlated with subjective value. Other OFC
sites showed signals contextually modulated by the subjective value of pre-
viously offered goods—a context dependency predicted by theory but not
previously observed in humans. These results suggest that value and value-
context signals are simultaneously present but separately represented in
human frontal cortical activity.

Over the course of the last several decades, studies in macaque mon-
keys have come to define the electrophysiological representation of
rewards and reinforcers1–11 (refs. 12–18 for reviews). This research has
revealed that the firing rates of neurons in many brain areas encode a
subjective estimate, the subjective value, of reward magnitude and
type. Based on these extensive recordings, the broad topography of
the network that represents reward-related value has now been well
established in the macaque brain. Similar data are emerging for the
rodent brain19–25, further extending our understanding of these
important electrophysiological signals.

One key feature of this work in animals is that it has revealed the
importance of context in the subjectivization of these reward-related
signals. Very broadly, context can be seen as a general category for
describing the impact of the environment—most notably its spatial and
temporal profiles—on brain activity and behavior. The process that
leads to subsequent changes in behavior and brain activity is often

referred to as adaptation and adaptive coding respectively26–31. Mon-
key parietal cortex, for example, has been shown to encode a kind of
spatial context-dependency where the subjective value of an option
presented in one spatial location impacts the neural value signals
presented in another location32–34. Monkey orbitofrontal cortex (OFC)
and dorsal anterior cingulate cortex (ACC), in contrast, appear to show
a kind of temporal context-dependency, in which the recent history of
rewards influences the electrophysiological representation of cur-
rently available rewards15,17,28,35–37. Closely related work has extended
thesefindings to rodents38. The importance of thesefindings, however,
extends beyond the study of non-human animals because growing
evidence suggests that these subjectivized representations seem to
account for important idiosyncrasies and irrationalities observed in
human choice behavior39–44.

At a neurobiological level, functionalmagnetic resonance imaging
(fMRI) studies in humans have also provided links to animal-based
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studies of the subjective value network to our understanding of the
human brain. While the blood-oxygen-level-dependent (BOLD) signal
measured by fMRI is quite distinct from electrophysiological mea-
surements, many fMRI studies now show clear evidence of a subjective
value network45–47 similar to the one observed electrophysiologically in
animals. Interestingly however, BOLD signal maps of subjective value
in humans do not always agree with the electrophysiological maps
developed in animals. In the parietal and orbitofrontal cortices, for
example, very few studies using fMRI have identified the subjective
value signals so often seen in non-human primate brains (though see
ref. 48 for an important and perhaps explanatory exception).

When considering fMRI data, however, much less information is
available about the role of context in the human neural representation
of reward. Although a large amount of behavioral evidence identifies
both spatial and temporal context-dependency as a critical factor that
shapes both human and animal choice behavior31,49–52, few studies exist
that localize context dependency during decision-making in the
human brain. Most studies to date showed context-dependent neural
responses either when participants experienced an outcome (e.g.,
monetary gain or loss) or were presented with reward-predicting
cues30,53–56. These context-dependent representations were observed
in the standard subjective-value network including the ventromedial
prefrontal cortex (vmPFC), striatum, and/or OFC. However, unlike in
macaques, it is unclear in humans whether and how the OFC partici-
pates in context-dependent valuation during decision-making29,57. For
example, at the time of choice, some brain regions in the subjective-
value network assessed with fMRI would show context-dependent
responses (ventral striatum) while others do not (vmPFC)29. This lack
of clarity may reflect either a limitation of the technology or a species
difference. While there are some examples of context-dependent
responses inhumans, it seems likely that the spatial and temporal scale
at which fMRI operates and the nature of the BOLD signal itself, have
made it extremely difficult to extract clear evidence of either spatial or
temporal context dependency using that technology.

In this report, we sought to achieve three goals aimed at addres-
sing these gaps between our understanding of human and animal
representations of reward and reinforcement. First, and most impor-
tantly, we sought to determine whether human intracranial electro-
physiological signals encoding rewards show a clear and ubiquitous
context dependency, as has been observed in animals. To that end, we
focused the inquiry on temporal context dependency and sought to
gather evidence indicatingwhether ornot the recent history of rewards
influences the electrophysiological representation in reward-encoding
areas of the human brain. Second, we sought to perform this search at
the single electrode (contact) and within-subject levels, which might
allow us to overcome some of the limitations faced by previous region-
of-interest based human intracranial electrophysiology studies.
Although averaging across subjects and electrode contacts has proven
valuable in many previous studies, animal research suggests a limita-
tion to this approach: while the averaged signal may encode a property
like reward value, this representation may be non-uniformly dis-
tributed from micro-site to micro-site. We hypothesized that by ana-
lyzing data at the single contact level, many of the important features
which have never before been examined in humans could be assessed
as theyhavebeen in non-humananimals. Third, by analyzingdata at the
single contact level and transforming all recording sites to a standard
anatomical reference, we hypothesized that itmight also be possible to
assess the spatial distribution of reward network signals at a fine-
grained level of analysis, as is common in animal research but has not
yet been regularly undertaken in human studies.

Here we report the use of stereo electroencephalography (sEEG)
to record neural activity in human epileptic patients (n = 20) per-
forming an incentive compatible valuation task known to induce
temporal context dependency at the behavioral level in humans41.
Building on recent human intracranialwork in decision-making58,59, our

data show neurobiological evidence for temporal context-dependent
value computations in humans. We observe this context dependency
in a number of subregions of the OFC. High-gamma activity
(80–150Hz)—thought to aggregate heterogeneous neuronal activity
near the recording site60,61—represents both the subjective value of the
present reward under consideration and the subjective value of the
reward offered on the previous trial. The same patterns of correlation
also arise in the gamma band (30–80Hz). Our single-contact analysis
reveals that at the level of gamma and high-gamma band signals, sta-
tistically significant single contacts encode either subjective value or
temporal context, with only a few contacts encoding both. In other
brain areas we examined, the hippocampus and insula also carried
these signals at the level of activity averaged across contacts and at the
single contact level. Our single contact mapping data revealed that, as
in monkey data61, high-frequency activity in only about 30% of
recording sites carry statistically significant subjective value signals,
and these sites are found to be distributed throughout each of the
fronto-cortical and subcortical areas we examined. As in monkeys, not
all locations within an area encode subjective value, and the locations
which are not apparently spatially clustered but rather appear dis-
tributed throughout a given subarea.

Context dependency is a ubiquitous feature of a wide array of
cognitive functions, from perception, action, memory, judgment and
inference, to decision-making. Our results paint a novel and detailed
picture of how context-dependent computations might be imple-
mented in human frontal activity. First, by showing subjective value-
related electrophysiological signals in the human brain at both the
population and single-contact level, our findings indicate that value
and context are simultaneously but patchily represented in the OFC,
insula, and hippocampus at the scale of sEEG. These findings are, it
should also be noted, broadly compatible with at least some compu-
tational models for how context dependency arises in the subjective-
value network62. Second, by performing state-space analysis and
revealing the temporal trajectories of OFC population activity in the
low-dimensional value-context space, our results indicate that context
canbe seen as a force that affects decision-related signals in a direction
separable from the current item under consideration. This con-
ceptualization may serve as a general principle of context-dependent
computations underlying a wide array of cognitive functions.

Results
In order to obtainbehavioralmeasures of subjective value at the single-
trial level, the subjects performed a version of the Becker-DeGroot-
Marschak (BDM) auction task—a standard incentive-compatible para-
digmused to elicit subjective value63. On each trial, the subjects saw an
imageof a snack food itempresentedon a computer screen and had to
indicate the maximum amount they were willing to pay for the snack
food item (Fig. 1a). When using the BDMmethod,maximum amount is
a widely-validatedmeasure of the subjective value for the food reward.

Bidding behavior
We found several interesting features in the subjects’willingness-to-pay.
First, across all subjects, the distribution of willingness-to-pay appeared
to be positively skewed (Fig. 1b). About 23% of the trials across all
subjects had zero bids. Second, the willingness-to-pay in a trial was
significantly affected by the willingness-to-pay in the previous trial: the
larger the subjects’bid in a trial, thehigher sheorhe tended tobid in the
next trial (Fig. 1c) even though the order of the different rewards pre-
sented across trials was determined randomly, indicating a temporal
context dependency in bids. For each subject separately, we performed
a linear regression analysis using current bid as data and bid from the
previous trial as the regressor. To examine whether the regression
coefficient is significantly different from0, we performed a one-sample
t test on the regression coefficient (α =0:05, two-tailed). Across all
subjects, the t statistics ranged from −1.72 to 5.37 (Supplementary
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Table 1 for reports on the t statistics). At the single-subject level, 10 out
of 20 subjects showed a significant effect of the previous subjective
value (regression coefficients significantly different from 0 at p<0.05
were marked with * in Fig. 1c). At the group level, the mean regression
coefficient (across subjects) was significantly different from 0 (one-
sample t test, two tailed, t =4:77, p<0:001). Further analysis revealed
that the bid in the trial presented two-trials back did not have a sig-
nificant effect on the current bid (one-sample t test, two-tailed,
t =0:41, p=0:341; see Supplementary Fig. 1 and Supplementary
Table 2). To further examine whether such temporal context depen-
dency can be considered normal, we ran the same task on 35 healthy
subjects from the normal population and found that most subjects (25
out of 35) showed the same temporal context dependency, with the
current bid positively correlatingwith the bid on the previous trial (one-
sample t test, two-tailed, t =3:81, p<0:001; see Supplementary Fig. 2
and Supplementary Table 3; see also ref. 41). Third, we found no

relationship between response time (RT) (how long it took the subjects
to place the bid) and the amount of their willingness-to-pay (Fig. 1d). For
each subject, we performed a linear regression analysis using RT as data
and willingness-to-pay as the regressor. A one-sample t test (α =0:05,
two-tailed) was performed on the regression coefficient of willingness-
to-pay. Across all subjects, the t statistics ranged from −1.63 to 10.20
(Supplementary Table 4 for reports on the t statistics). At the single-
subject level, 4 out of 20 subjects showed significant effect of RT
(regression coefficient significantly different from 0 at p <0.05 were
marked with * in Fig. 1d). At the group level, the mean regression
coefficient of RT was not significantly different from 0 (one sample t
test, two-tailed, t = 1:60,p=0:063). We therefore concluded that there
was no significant relation between RT and willingness-to-pay. The
distributionof individual subjects’dataon thewillingness-to-pay andRT
can be found in the Supplement (Supplementary Figs. 3, 4). Individual
subjects’ scatterplots on the willingness-to-pay of the current trial

Fig. 1 | Experimental design and behavioral results. a Trial sequence of the
Becker-DeGroot-Marschak (BDM) auction task. On each trial, the subjects faced a
snack food item and had to indicate their willingness to pay for that item. Subjects
first pressed the left button on themouse to signal that they were ready to indicate
their willingness-to-pay. Amatrix that indicated possible prices, from0 to 200New
TaiwanDollars (TWD, 1 USD= 30TWD), in 10-dollar increments, would then appear
on the computer screen. The subjects’ task was to use themouse cursor to point to
and click on the number closest to their maximum willingness-to-pay. b The dis-
tribution of willingness-to-pay from all subjects on all food items. c The impact of
the bid offered by the subject on the previous trial on willingness-to-pay on the
current trial. Note that sequential items were selected randomly and in an uncor-
related manner for presentation. For each subject, we regressed their willingness-

to-pay—a measure of subjective value (SV)—in the current trial against the
willingness-to-pay in the previous trial. Here we plot the regression coefficient of
the willingness-to-pay in the previous trial. In the majority of subjects, willingness-
to-pay in the current trial was positively correlated with the willingness-to-pay in
the previous trial. d The relationship between the willingness-to-pay and response
time (RT). For each subject, we regressed their willingness-to-pay against the
response time in the trial.Weplot the regression coefficient of the response time. In
the majority of subjects, there was no relation between willingness-to-pay and
response time. The * symbol indicates p <0.05 (one-sample t test, two-tailed). Error
bars represent ±1 standard error of themean. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-42092-x

Nature Communications |         (2023) 14:7821 3



against that of the previous trial and on the willingness-to-pay against
RT can also be found in the Supplement (Supplementary Figs. 5, 6).

High-gamma activity in the orbitofrontal cortex represents past
and present subjective value
In the OFC, we collected sEEG signals from a total of 166 electrode
contacts in 20 subjects (Fig. 2a). The sEEG preprocessing pipeline can

be found in the Supplement (Supplementary Fig. 7). After data pre-
processing, we performed time-frequency analysis, separately for each
trial, on the preprocessed local field potential (LFP) data in order to
extract the timeseries data of oscillatory power associated with dif-
ferent frequency bands. The resulting timeseries data started from 1 s
before the onset of the food stimulus to 1.5 s after the stimulus onset.
The 1.5 s post-stimulus timewindowwas approximately the average of
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the median RT across all subjects (1.5011 s; Supplementary Fig. 8). We
recognize that if we set a longer time window, we could capture the
dynamics of valuationmore comprehensively in trials with longer RTs.
However, for shorter response-time trials, this would include time
points after the subjects had alreadymade a decision and entered into
the response phase of the trial. Hence, choosing the time window at
this length was an attempt to strike a balance between these opposing
factors.

We subsequently performed General Linear Model (GLM) ana-
lyses on the power timeseries data with the subjective value of the
current trial and the previous trial as two separate regressors. In par-
ticular, we focused on the high-gamma power (80–150Hz) and refer-
red to it as high-gamma activity to be consistent with the literature61.
For all the neural GLM analyses, statistical significance was established
based on a permutation test with threshold-free cluster enhancement
(TFCE) as the test statistic64,65. The TFCE statistic is used to describe
signals that exhibit some spatial or temporal continuitywithout having
to arbitrarily set a threshold for defining clusters of signals. For a given
regressor of interest, we computed the TFCE statistic based on the
z-statistic timeseries of the corresponding regression coefficients and
for each time point separately. To correct for multiple testing across
time points, a familywise error rate at 0.05 was implemented based on
comparing the TFCE statistic at each time point with the null dis-
tributionof themaximum(orminimum)TFCE statistic. SeeGroup-level
permutation test (across electrode contacts) in Methods for details. The
time points that survived multiple-testing correction were marked
with the * symbol (Figs. 2–8).

Across the OFC contacts, we found that high-gamma activity
positively correlated with the current subjective value but negatively
correlated with the previous subjective value (Fig. 2b; permutation
test, one-tailed, p <0.05, familywise error corrected for multiple test-
ing across time points; see Table 1 for reports on the statistics). A
version of these results in the form of the t statistic of the regression
coefficients can be seen in the Supplement (Supplementary Fig. 9).

The subjective-value representations were not only seen at the
group level (across all OFC contacts), but also at the individual-contact
level (Fig. 2c, d). We found that 29% of the OFC contacts (Fig. 2c)
showed significant subjective-value representations (permutation test,
one-tailed, p <0.05, familywise error corrected for multiple testing
across timepoints). See Individual-level permutation test (for individual
electrode contacts) in Methods for details. The scatter plot of the t
statistics (Fig. 2c) according to the most extreme TFCE statistic—for
each contact we plot the t statistic of current subjective value that has
the most extreme TFCE against the t statistic of previous subjective
value that has the most extreme TFCE statistic—revealed that the
majority of significant OFC contacts cluster in the fourth quadrant,
suggesting a positive correlation with the current subjective value and
negative correlation with the previous subjective value. This result is
consistent with the group-level results (Fig. 2b). Among the significant

OFC contacts, 52% significantly represented only the current sub-
jective value, 31% of the contacts represented only the previous sub-
jective value, and 17% represented both the current and previous
subjective value. In other words, a majority of the significant contacts
represented either the current or theprevious subjective value, but not
both. Data from two example contacts are also shown (Fig. 2d): One
contact shows significant positive correlation with the current sub-
jective value and negative correlation with the previous subjective
value. The other contact exhibits only a positive correlation with the
current subjective value.

The presence of the previous subjective-value representation is
consistent with the view that the OFC is sensitive to the temporal
context of experience35. It is also consistent with the results inmonkey
OFC15,28 and with the view that the OFC implements a divisive-
normalization algorithm to compute relative subjective value which
we measure here using a simple linear regression66.

Robustness of subjective-value representations in the OFC
To examine the robustness of the subjective-value representations, we
performed six additional analyses to rule out potential confounds. The
significant results reported below were based on permutation test
(one-tailed) using TFCE statistic as the test statistic (p <0.05, family-
wise error corrected). The detailed statistical summary can be seen in
Supplementary Tables 5 (for high-gamma activity) and 6 (for gamma
activity).

First, we examined whether the results could have been driven by
collinearity between the current andprevious subjective value, since in
most subjects the stated current subjective value positively correlated
with the stated subjective value in the previous trial (Fig. 1c). To
examine this possibility we carried out a regression analysis in two
steps (GLM-2 in Fig. 3b). GLM-2 consisted of two separate regressions
performed in two steps. In the first regression, we regressed high-
gamma activity against only the current subjective value. We did not
include the previous subjective value as regressor. Then, in the second
regression, we used the residuals from the first regression as data and
regressed them against only the previous subjective value. In this
second regression, we did not include the current subjective value as
regressor. We then plotted the regression coefficient of the current
subjective value estimated from thefirst regression, and the regression
coefficient of the previous subjective value estimated from the second
regression (Fig. 3b). The results still indicated that the high-gamma
activity in the OFC positively correlated with the current subjective
value and negatively correlated with the previous subjective value,
consistent with the original model (GLM-1 in Fig. 3a). We also per-
formed this two-step regression analysis in the reversed direction
(regress high-gamma activity against previous subjective value in the
first regression and regress the residuals from the first regression
against the current subjective value in the second regression) and the
results were identical (see Supplementary Fig. 10).

Fig. 2 | High-gamma activity (80–150Hz) in the human OFC represents the
subjective value of food rewards. a Location of OFC electrode contacts mapped
onto a standard reference brain (Montreal-Neurological-Institute, or MNI tem-
plate). We used the toolbox in https://github.com/fahsuanlin/fhlin_toolbox to
generate the brain images.We collected data from a total of 166 electrode contacts
in the OFC from 20 subjects. b Subjective-value representations across OFC con-
tacts. Here we plot the mean time course (averaged across all OFC contacts) of
regression coefficients for the subjective value of the current trial (current SV, in
blue) and the subjective value of the previous trial (previous SV, in green).
c Subjective-value representations from individual OFC contacts. We plot the t
statistic of the current subjective value against that of the previous subjective value
separately for each contact. Each data point represents a single contact. For each
contact, we select the most significant time point according to the threshold-free-
cluster-enhancement (TFCE) statistic, and plot the corresponding t statistic, sepa-
rately for the current subjective value and previous subjective value. Since the t

statistics come from the most significant time points, the data points in the graph
are biased away from zero. Individual contacts that significantly represent the
current subjective value, previous subjective value, or both are shown in blue,
green, and red respectively. Individual contacts that neither represented the cur-
rent nor the previous subjective value are shown in gray. The pie chart shows the
proportions of contacts belonging to each of the categories described above.
d Results from two example OFC contacts. Coordinates are in MNI space. We used
FSL [Smith, S.M. et al. Advances in functional and structural MR image analysis and
implementation as FSL. in NeuroImage 23 (2004)] to generate the brain images.
Colored (blue or green) horizontal lines with the * symbol on top or beneath
indicate the time points with p <0.05 (familywise error corrected) using permu-
tation test (one-tailed) with the threshold-free-cluster-enhancement (TFCE) statis-
tic as the test statistic. Error bands represent ±1 standard error of themean. Source
data are provided as a Source Data file.
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Second, we examined whether subjective-value representations
can be affected by the zero-bid trials, as these trials represented 23%of
the total trials gathered across subjects (Fig. 1b). InGLM-3we therefore
excluded the zero-bid trials and only included the non-zero bid trials in
the analysis (Fig. 3c). The resultswere again consistentwith theoriginal
model. Third, we examined whether RT might somehow interact with
subjective-value in a way that altered the results found in GLM-1.
Therefore, in GLM-4, in addition to the current and previous subjective
value as regressors, we added the subjects’ current-trial RT as a
regressor to themodel. Again, the results (Fig. 3d)were consistentwith
the original model (GLM-1 shown in Fig. 3a). Due to the difference in
scale between the SVs and RT, the vertical axis in Fig. 3d on the left
represents the regression coefficient of the current (blue) andprevious
(green) SV, whereas the vertical axis on the right represents the
regression coefficient of RT. Fourth, we extended the original model
by adding the subjective value obtained two trials previously as a
regressor so as to examine whether the results would be consistent
with the original results and to also examine the impact of the two-
trials back bid on theOFC activity (Fig. 3e). The results were consistent
with the original findings. We found no significant impact of the sub-
jective value in the two-trial back on theOFC activity.While this almost
certainly reflects a power issue, we are unable to conclude from this
result whether or not the impact of previous trials extends back
beyond one previous trial. Fifth, we examined whether the negative
correlation with the previous subjective value could arise from signal
autocorrelation, the deterministic correlation in spectral power
between twosuccessive trials. To address this issuewemodifiedGLM-1
by adding the power on the previous trial as a regressor in addition to

the current and previous subjective value regressors. That is, for each
time point separately, the spectral power of the same time point from
theprevious trial was used as the regressor.We found that thenegative
correlation with previous subjective value remained (Fig. 3f). Due to
the difference in scale between the SVs and spectral power from the
previous trial, the vertical axis on the left in Fig. 3f represents the
regression coefficient of the current (blue) and previous (green) SV,
whereas the vertical axis on the right represents the regression coef-
ficient of power from the previous trial. Sixth, we examined whether
the results on the previous subjective value could be affected by the
length of the inter-trial interval (ITI) that we randomly varied across
trials (1 s, 1.5 s, and 2 s). If signal autocorrelation did have an effect on
the previous-value findings, we expect to observe weaker results on
previous subjective value with shorter ITIs. We implemented GLM-1
separately for each possible ITI and found that the length of ITI did not
affect results on the previous subjective value (Fig. 3g). The negative
correlation with previous subjective value was significant across dif-
ferent ITIs. Further analyses on issues related to signal autocorrelation
can be seen in the Supplement (Supplementary Figs. 11, 12). Finally, we
noticed that the patterns of subjective-value representations were
similar between the high-gamma (80-150Hz) activity (Fig. 3) and the
gamma (30–80Hz) activity (Supplementary Fig. 13) across these dif-
ferent regressions. The t-statistic version of these results (Fig. 3 and
Supplementary Fig. 13) can be seen in the Supplement (Supplementary
Fig. 14). This suggested that activity in a broad frequency range (from
30–150Hz) represented the subjective value of food rewards in a
similar fashion. Together, these robustness checks support the con-
clusions that OFC electrophysiological activity in humans encodes

Table 1 | Summary of statistical analysis examining the effects of current andprevious subjective value onhigh-gammaactivity

ROI Regressor Cluster size Start time (ms) End time (ms) Maximum or minimum TFCE p value Peak time (ms)

OFC Current SV 117 340 1500 17,237,135 <0.0001 710

OFC Previous SV 77 390 1150 −1,477,123 0.0003 1010

Medial OFC Current SV 65 400 1040 857,411 0.0039 690

Medial OFC Previous SV 78 640 1410 −953,291 0.0003 1020

Central OFC Current SV 118 330 1500 11,840,031 <0.0001 850

Central OFC Previous SV 78 370 1140 −1,090,378 0.0013 890

Lateral OFC Current SV 20 570 760 398,460 0.0357 660

Lateral OFC Current SV 16 1000 1150 403,743 0.0353 1110

Anterior OFC Current SV 136 150 1500 5,448,448 <0.0001 1010

Anterior OFC Previous SV 16 −670 −520 −371,424 0.0442 −570

Anterior OFC Previous SV 61 −320 280 699,254 0.0177 −220

Anterior OFC Previous SV 108 380 1450 −921,352 0.0086 660

Posterior OFC Current SV 75 360 1100 6,125,627 <0.0001 680

Posterior OFC Current SV 20 1310 1500 373,035 0.0298 1480

Posterior OFC Previous SV 80 410 1200 −2,315,647 0.0001 990

Amygdala Current SV 15 560 700 218,651 0.0357 590

Hippocampus Current SV 9 −810 −730 −289,468 0.0455 −770

Hippocampus Current SV 13 −690 −570 −368,070 0.0308 −630

Hippocampus Current SV 29 20 300 −508,621 0.0177 200

Hippocampus Current SV 18 360 530 −332,990 0.0346 450

Hippocampus Previous SV 63 290 910 −1,943,490 0.0003 760

Insula Current SV 36 450 800 439,686 0.0155 630

Insula Previous SV 23 1190 1410 238,403 0.0277 1230

ACC & MCC Previous SV 11 940 1040 −221,955 0.0359 980

PCC Previous SV 19 710 890 −207,341 0.0314 850

Statistical significancewas established based on a permutation test with threshold-free cluster enhancement (TFCE) as the test statistic. Details of the statistical procedure can be found inMethods.
Herecluster size refers to the sizeof temporal cluster, i.e., number of consecutive timepointswhosep value are less than0.05 after familywise error correction formultiple testing across timepoints.
Since TFCEwas calculatedbased on the z statistic, TFCEwouldbepositive for positive effects, andnegative for negative effects. ThemaximumTFCE indicates the strongest positive effectwithin the
temporal cluster, while theminimumTFCE indicates strongest negative effect. Thep valuewas estimatedbased on the null distribution of themaximumTFCE statistic (for positive effects) or the null
distribution of theminimumTFCE statistic (for negative effects) through permutations. The start and end time indicate the start and end time of the temporal cluster. Time at 0 indicates the onset of
food stimulus presentation. The peak time corresponds to the time point with either the maximum or minimum TFCE within the temporal cluster. Source data are provided as a Source Data file.
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both the subjective-value of the currently offered option and the
subjective-value of at least the most recently considered option.

Subjective-value representations in different OFC subregions
We next asked whether patterns of subjective-value representations
differed between the subregions of the human OFC. We examined the
medial-to-lateralOFC (Fig. 4) and the anterior-to-posteriorOFC (Fig. 5).

For medial-to-lateral OFC, three major subregions—the medial (area
14), central (areas 11 and 13), and lateral (area 47/12) OFC—were iden-
tified by consulting the automated anatomical atlas 2 (AAL2)67. In all
three regions, high-gamma activity significantly correlated with the
current subjective value (Fig. 4 in blue; permutation test, one-tailed,
p <0.05, familywise error corrected for multiple testing across time
points; see Table 1 for reports on the statistics). By contrast, not all
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Fig. 3 | Testing the robustness of subjective-value representations in the OFC.
Weperformed seven different General-Linear-Modeling (GLM) analyses to examine
the robustness of subjective-value representations in the OFC. The GLMs were
implemented for the high-gamma activity (80–150Hz). aGLM-1. This is the original
model where brain activity was regressed against the current and the previous
subjective value. The high-gamma graph was identical to that shown in Fig. 2b.
b GLM-2. This analysis was performed in two steps. In the first step, we regressed
brain activity against only the current subjective value. In the second step, we used
the residuals from the first step and regressed them against only the previous
subjective value. c GLM-3. The model was identical to GLM-1 except that we only
included trials where the subjects’ willingness-to-pay were not zero in the analysis.
dGLM-4. Themodel was identical to GLM-1 except that the subjects’ response time

(RT) in the current trial was added as a regressor to themodel. eGLM-5. Themodel
was identical to GLM-1 except that we added the subjective value of the option
encountered two-trials back as a regressor. f GLM-6. The model was identical to
GLM-1 except that we included the spectral power from the previous trial as a
regressor. g Evaluating GLM-1 at different inter-trial intervals (ITIs).We sorted trials
according to the preceding ITI (1 s, 1.5 s, or 2 s) and estimated GLM-1 separately for
each possible ITI. Error bands represent ±1 standard error of the mean. Colored
horizontal lines with the * symbol on top or beneath indicate the time points with
p <0.05 (familywise error corrected) using permutation test (one-tailed) with the
threshold-free-cluster-enhancement (TFCE) statistic as the test statistic. Source
data are provided as a Source Data file.
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b High-gamma activity. Average time course of regression coefficients for the
current subjective value (in blue) and previous subjective value (in green) in the
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corrected) using permutation test (one-tailed) with the threshold-free-cluster-
enhancement (TFCE) statistic as the test statistic. c Subjective-value representa-
tions in individual OFC contacts. Error bands represent ±1 standard error of the
mean. Source data are provided as a Source Data file. We used the toolbox in
https://github.com/fahsuanlin/fhlin_toolbox to generate the brain images.

Article https://doi.org/10.1038/s41467-023-42092-x

Nature Communications |         (2023) 14:7821 8

https://github.com/fahsuanlin/fhlin_toolbox


Fig. 5 | Subjective-value representations in the anterior and posterior OFC.
a Electrode contacts in the anterior (left) and posterior OFC (right). bHigh-gamma
activity. Average time course of regression coefficients for the current subjective
value (in blue) and previous subjective value (in green) in the anterior and posterior
OFC. Colored (blue or green) horizontal lines with the * symbol on top or beneath
indicate the time points with p <0.05 (familywise error corrected) using

permutation test (one-tailed) with the threshold-free-cluster-enhancement (TFCE)
statistic as the test statistic. c Subjective-value representations in individual OFC
contacts. Error bands represent ±1 standard error of the mean. Source data are
provided as a Source Data file. We used the toolbox in https://github.com/
fahsuanlin/fhlin_toolbox to generate the brain images.
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regions showed significant representation of the subjective value
encountered in the previous trial: both the medial and central OFC
significantly and negatively correlated with the previous subjective
value (permutation test, one-tailed, p < 0.05, familywise error cor-
rected for multiple testing across time points; see Table 1 for reports
on the statistics), but not the lateral OFC (Fig. 4 in green). At the
individual-contact level, the majority of contacts that significantly
represented the current subjective value (blue triangles) showed
positive correlation with the current subjective value (permutation
test, one-tailed, p <0.05, familywise error corrected for multiple test-
ing across time points; see Table 1 for reports on the statistics). The
results on the previous subjective value, at the individual-contact level,
were less consistent across the three regions. In the central OFC, sig-
nificant previous-value contacts tended to show a negative correlation
with previous subjective values. In the medial and lateral OFC, this
tendency was less obvious.

For the anterior-to-posterior axis, we focused on electrode con-
tacts in the central and medial OFC because of previous results from
the monkeys61. For each contact in the central and medial OFC, we
simply labeled it as either anterior or posterior OFC. We consulted
AAL267 and elected to use y =35 in theMNI coordinates as the anterior-
posterior boundary. As a result, we identified 17 contacts in the ante-
rior OFC and 115 contacts in the posterior OFC (Fig. 5a). We found that,
similar to the overall results, both the anterior and posterior OFC
positively correlated with the current subjective value, but negatively
correlated with the previous subjective value (Fig. 5b; permutation
test, one-tailed, p <0.05, familywise error corrected for multiple test-
ing across time points; see Table 1 for reports on the statistics). At the
single-contact level (Fig. 5c), the posterior OFC results were similar to
the overall results shown in Fig. 2c (permutation test, one-tailed,
p <0.05, familywise error corrected for multiple testing across time
points; see Table 1 for reports on the statistics), while the anterior OFC
had relatively more statistically significant contacts. This, however,
could simply be due to the fact that there were fewer contacts in the
anterior OFC.

Cross-frequency representations of subjective value
Surprisingly, in theOFC, we not only found significant subjective-value
representations in the high-gamma and gamma activity, but also in the
activity of lower frequencies (Fig. 6) (permutation test, one-tailed,
p <0.05, familywise error corrected for multiple testing across time
points; see Supplementary Tables 7, 8 for reports on the statistics). The
two-dimensional heatmap (Fig. 6a) plots the z statistic of the regres-
sion coefficients (across all electrode contacts across all subjects) in
the time-frequency space for the current subjective value (left graph in
Fig. 6a) and for the previous subjective value (right graph in Fig. 6a).
See Group-level permutation test (across contacts) in the time-frequency
space in Methods for details. The colors in the maps reveal the
encoding directions of subjective value—orange for positive correla-
tion with the subjective value, blue for the negative correlation, and
green for non-significant results. It is evident that, after stimulus onset
(indicated by 0 on the horizontal axis), activity in the gamma and high-
gamma band positively correlated with the current subjective value
(the orange clusters in the left graph, Fig. 6a) but negatively correlated
with the previous subjective value (the blue clusters in the right graph,
Fig. 6a) (permutation test, one-tailed, p <0.05, familywise error cor-
rected for multiple testing across time points; see Supplementary
Table 8 for reports on the statistics). Interestingly, the encoding pat-
terns of subjective value were reversed in the low frequency bands.
Activity in the beta (13–30Hz), alpha (8–12 Hz), and theta (4–7Hz)
bands negatively correlated with the current subjective value (blue
clusters in the left graph, Fig. 6a), but positively correlated with the
previous subjective value (orange clusters in the right graph, Fig. 6a)
(permutation test, one-tailed, p <0.05, familywise error corrected for
multiple testing across time points; see Supplementary Table 8 for

reports on the statistics). These results are further summarized in the
group-level time series plots of the regression coefficients (Fig. 6b,
SupplementaryTable7). At the individual-contact level, scatter plots of
the t statistic according to the most extreme TFCE statistic are plotted
in Fig. 6c. Noticeably, the low-frequency activity significantly repre-
sented a bias on the current subjective value before stimulus onset—
before information about the current food item was revealed. We
found that in the alpha band, these results were associated with two
behavioral patterns: the variability of the bids and the correlation
between the subjects’ stated current subjective value and the subjects’
stated previous subjective value. Asmight be expected, we found that,
in part, such pre-stimulus representations were driven by the subjects
who showed less variability in their bids (Supplementary Fig. 15) and
whose bids were more affected by the bid in the previous trial (Sup-
plementary Fig. 16). In otherwords, themore the subjects relied on the
previous bid, the greater the likelihood of significant pre-stimulus
representations (a form of bias).

Subjective-value representations in other brain regions
We also examined subjective-value representations in several other
subcortical (Fig. 7) and cortical regions (Fig. 8) in which our partici-
pants had had contacts placed. The subcortical regions included the
amygdala, hippocampus, and striatum. At the group-level (middle
graphs in Fig. 7), all of these regions except the striatum showed
significant subjective-value representations (permutation test, one-
tailed, p < 0.05, familywise error corrected for multiple testing across
time points; see Table 1 for reports on the statistics). Both the
amygdala and the hippocampus significantly represented the current
subjective value, while the hippocampus also represented the pre-
vious subjective value. In the hippocampus, at the individual-contact
level, the majority of the significant contacts seemed to cluster in the
fourth quadrant, suggesting a positive correlation with the current
subjective value and a negative correlation with the previous sub-
jective value—a result consistent with our findings in the OFC. In the
amygdala, 90% of the contacts were non-significant, even though the
group-level results indicate significant current-value representation
in the area. To summarize, even though all three subcortical regions
showed evidence for subjective-value representations, only the hip-
pocampus showed significant representations for both the current
and previous subjective value, at the group level and at the level of
individual contacts.

In our analysis of recordings from cortical regions other than the
OFC—including the insula, the ACC and midcingulate cortex (MCC),
posterior cingulate cortex (PCC), and the intraparietal sulcus (IPS)—we
found that, at the group level, all but the IPS significantly represented
the subjective value (Fig. 8) (permutation test, one-tailed, p <0.05,
familywise error corrected for multiple testing across time points; see
Table 1 for reports on the statistics). The insula significantly repre-
sented both the current and the previous subjective value, while the
ACC-MCC, and PCC represented the previous subjective value. At the
individual-contact level, about 85% of contacts in the ACC-MCC, PCC,
and IPS were non-significant, while about 30% of the contacts in the
insula were significant in either representing the current or the pre-
vious subjective value (permutation test, one-tailed, p <0.05, family-
wise error corrected formultiple testing across timepoints; see Table 1
for reports on the statistics). The proportion of significant contacts in
the insula (27%, Fig. 8a) was identical to the OFC (29%, Fig. 2c) and
hippocampus (28%, Fig. 7b). In summary, while there was evidence for
subjective-value representations in these four cortical regions, only the
insula showed prominent representations for both the current and
previous subjective value, as these representations were observed at
the group level and at the level of individual contacts in our valuation
task. The cross-frequency representations of subjective value asso-
ciated with these brain regions, like the ones shown in Fig. 6a for the
OFC, can be seen in the Supplement (Supplementary Figs. 17, 18).
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Fig. 6 | Cross-frequency representations of subjective value. a Time-frequency
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OFC activity trajectories in a low-dimensional value-
context space
To further understand how the OFC as a whole dynamically represents
subjective value and context, we performed two final complementary
analyses, one based on a principal component analysis (PCA) and the
other basedon a regression subspace analysis68,69. In these analyses, we
approached the OFC activity from different electrode contacts as a
single population consisting of high-dimensional data (each contact
serves as a dimension). Through dimensionality reduction, these ana-
lyses allowed us to characterize the dynamics of the high-dimensional
data as temporal trajectories in some low-dimensional space. An
important question we asked is whether and how the axes forming the
low-dimensional space relate to our task variables, namely the sub-
jective value and temporal context. These analyses provided twomajor
compliments to the GLM analyses. First, they serve to validate whether
subjective value and temporal context dominated the electro-
physiological signals in OFC as a population, as is implied by our
regression analyses and by the structure of the task we employed.
Second, they provided alternative visualizations for how subjective
value and temporal context impacted OFC population activity.

For each electrode contact, we first computed the mean high-
gammaactivity timeseries (across all trials) and subtracted it fromeach
individual trials’ timeseries. Second, we sorted trials according to
the subjective value of the current trial (high or low, median spilt) and
the subjective value of the previous trial (high or low, median split).
The medians we used were subject-specific. This resulted in a 2

(current subjective value magnitude) × 2 (previous subjective value
magnitude) design and a total of four conditions. Third, we gathered
the activity timeseries across all OFC contacts according to condition
(Fig. 9a). Each condition is represented by a two-dimensional matrix
where each row represents the timeseries—from 1 s before stimulus
onset to 1.5 s after stimulus onset—of a single OFC electrode contact.
Fourth, we stacked up the four two-dimensionalmatrices (one for each
condition) and performed a single PCA across all conditions. The PCA
allowed us to identify the dimensions in the neural state space that
captured the most variance in the OFC high-gamma activity. Here the
neural state space is aNcontacts -dimensional spacewhereNcontacts is the
number of electrode contacts in the OFC (Ncontacts = 166). This analysis
approach combines two advantages in our dataset — the idiosyncratic
preferences of different individuals and a large number of electrode
contacts across participants. In other words, by using the individual-
specific medians to categorize trials into different conditions, we
preserved the individual-specific preference information in this
population-level, across-subjects analysis.

We then projected the activity timeseries from each of the four
conditions of trials (current subjective value magnitude: high and
low × previous subjective value magnitude: high and low) separately
onto the first principal component (PC-1) and the second principal
component (PC-2) and plotted a temporal trajectory of the population
activity during each of these four conditions of trials (Fig. 9b). Time is
indexed by the darkness of the colors, with the starting time point (1 s
before stimulus onset) being the darkest and the end time point the
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lightest. Each data point in the trajectories represents a 50-ms time
point. We found that each of the four conditions had very unique
trajectories, suggesting that the top two principal components—the
factors that accounted for the most variance in the OFC high-gamma
activity—strongly and orthogonally capture information about current
and previous-trial subjective value. The four activity trajectories start
from a common origin (corresponding to 1 s before stimulus onset)
and then diverge in four different cardinal directions. These directions
revealed that the first principal component appears to capture the
temporal context—subjective value observed in the previous trial
(Fig. 9c), separating high previous subjective value (yellow and cyan)
from low previous subjective value (purple and magenta). The degree
of separation appears to depend on the current subjective value, with
stronger separation between high and low previous subjective values
when the current subjective value was high (cyan and magenta). The
onset of this stronger separation emerged early, right after the sti-
mulus onset (0 s mark). The second principal component appears to
capture information in the population about the magnitude of the

subjective value observed in the current trial (Fig. 9d), separating high
current subjective value (cyan and magenta) from low current sub-
jective value (yellow and purple). The emergence of this separation
also appeared to be early, ~200ms after stimulus onset. Thesepatterns
were consistently observed under different data-smoothing para-
meters (Supplementary Fig. 19). This unbiased PCAanalysis thus seems
to support the notion that, at least when human subjects are per-
forming a valuation task, much of the variability in activity observed in
the OFC encodes the current value and context, with context infor-
mation seeming to have a greater overall impact on the data variance.

Interestingly, the regression subspace analysis adapted from ref.
68 revealed a similar pattern of trajectories (Fig. 9e–g) as those
observed in the PCA (Fig. 9b–d). The regression subspace analysis aims
to reveal OFC population activity in a value-context low-dimensional
subspace that captures the across-trial variance due to the subjective
value of the current trial and the subjective value of the previous trial
(temporal context). The analysis consisted of two steps. First, we
performed PCA on the OFC population activity and used the first 12
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Fig. 8 | Cortical representations for subjective value.High-gamma activity in the
insula, cingulate cortex, and intraparietal sulcus. Conventions are the same as
described in Fig. 2. a Insula. bAnterior cingulate andmidcingulate cortex (ACC and
MCC). c Posterior cingulate cortex (PCC).d Intraparietal sulcus (IPS). Colored (blue
or green) horizontal lines on top or beneath indicate the time points with p <0.05

(familywise error corrected) using permutation test (one-tailed) with the threshold-
free-cluster-enhancement (TFCE) statistic as the test statistic. Error bands represent
±1 standard error of the mean. Source data and statistics are provided as a Source
Data file. We used the toolbox in https://github.com/fahsuanlin/fhlin_toolbox to
generate the brain images.
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PCs (accounting for 78.59% of the neural variance across electrode
contacts) to construct a denoising matrix (D) used to obtain the
orthogonal axes described next. Second, we projected the population
activity onto two orthogonal axes—the axis of the current subjective
value (horizontal axis) and the previous subjective value (vertical axis)
—that were defined based on the regression coefficients of subjective
value in GLM-1 (see Regression subspace analysis in Methods for
details). The trajectories from the four different conditions again
started at the same origin and quickly established their unique paths
after stimulus onset (Fig. 9e) in amanner similar to the oneobserved in
thefirst two components of the rawPCA. As expected then, the current
subjective value regression axis could easily distinguish the current
subjective value (Fig. 9f), separating high current subjective value
(cyan andmagenta) from the low current subjective value (purple and
yellow). The emergence of this separation appears to begin within
500ms after stimulus onset. The temporal context (previous sub-
jective value) axis couldeasily distinguish theprevious subjectivevalue
(Fig. 9g), separating the high (yellow and cyan) from the low (purple
and magenta) previous subjective values. Finally, we found that these
patterns remained when we varied the number of PCs for D (Supple-
mentary Fig. 20) and when no data smoothing was applied prior to the
PCA (Supplementary Fig. 21).

In summary, these two analyses reveal the dynamics of OFC
activity in representing the subjective value and temporal context and
highlight the fact that context is a major source of organized patterns
of activity in the OFC. At least while subjects are performing valuation
tasks, value and context seem to be the major determinants of activity
patterns in this region.

Discussion
In this study, we used sEEG in human epilepsy patients to investigate
the electrophysiological representation of subjective value and con-
text, in humans—fundamental building blocks in the theory of

decision-making widely studied in non-human animals. Our data show
that, as observed previously in animals, human subjective value signals
show strong evidence of temporal context dependency. Indeed, our
PCA results suggest that context is an even more significant determi-
nant of activity pattern than simple value. Previous work has indicated
that the human OFC represents the subjective value of rewards under
immediate consideration: Gamma (30–80Hz) and high-gamma activ-
ity (80–150Hz) have both been shown to positively correlate with the
subjective value of an offered reward59. We found that these signals
were negatively influenced by the magnitude of rewards offered on
previous trials, a form of temporal context dependency that has been
observed behaviorally in humans and physiologically only in non-
human primates. To our knowledge, no prior study has shown evi-
dence of context-dependency in human electrophysiological signals
encoding subjective value.

An important—and often less explored in previous studies—
dimension of our data analysis was an analysis of signals at the single
contact/electrode level. Many previous human intracranial studies
have been forced to average across electrode contacts in order to
report findings about a region of interest. The high quality of both our
initial signals and thenature ofour analytic pipeline, allowedus toboth
examine single-contact level data and region of interest averages. The
single-contact level data allowed us to examine the local spatial dis-
tribution of both subjective value and context signals, independently,
at the level of cortical subareas. Our data revealed that signals from
many individual contacts in the lateral OFC encode a subjective value
signal that is only weakly influenced by temporal context. In contrast,
subjective value signals influenced by context were more common in
the central and medial subregions of the OFC. In a similar vein, we
found that the hippocampus and insula carried subjective value signals
strongly influenced by temporal context at the single contact level.

Our contact-by-contact data also indicates that even in areas
known to carry robust subjective value signals, only about 30% of the

0

4

-2
-1 -0.5 0 0.5 1 1.5-1 -0.5 0 0.5 1 1.5

0

3

-3

-2 0 2

-2

0

4

2

Current subjective value
Low High

Pr
ev

io
us

 s
ub

je
ct

iv
e 

va
lu

e
Lo

w
H

ig
h

0.5

-0.5

0

C
on

ta
ct

s

Time

b c d

e f g

a

Projections onto PC-1 
(arb. unit)

Pr
oj

ec
tio

ns
 o

nt
o 

PC
-2

 
(a

rb
. u

ni
t)

Low High
Low Low
High High
High Low

Curr Prev

Low High
Low Low
High High
High Low

Curr Prev

-1 -0.5 0 0.5 1 1.5
Time (sec)

0

4

-3Pr
oj

ec
tio

ns
 o

nt
o 

PC
-1

 
(a

rb
. u

ni
t)

-1 -0.5 0 0.5 1 1.5
Time (sec)

0

4

-3Pr
oj

ec
tio

ns
 o

nt
o 

PC
-2

 
(a

rb
. u

ni
t)

-2 0 2 4

-2

0

2

4

Current SV axis 
(arb. unit)

Pr
ev

io
us

 S
V 

ax
is

(a
rb

. u
ni

t)

Time (sec)

C
ur

re
nt

 S
V 

ax
is

 
(a

rb
. u

ni
t)

Time (sec)

Pr
ev

io
us

 S
V 

ax
is

 
(a

rb
. u

ni
t)

Low High
Low Low
High High
High Low

Curr Prev
Low High
Low Low
High High
High Low

Curr Prev

Low High
Low Low
High High
High Low

Curr Prev
Low High
Low Low
High High
High Low

Curr Prev

Fig. 9 | State-space analysis reveals OFC activity trajectories in a low-
dimensional value-context space. a OFC activity sorted by condition. We sorted
all trials fromall contacts into four different conditions according to themagnitude
of the current subjective value (high or low, median split for each subject sepa-
rately) and the previous subjective value (high or low, median spilt for each subject
separately). Each graph summarizes the average OFC activity timeseries of 166
electrode contacts. Each row represents the timeseries—from 1 s before stimulus
onset to 1.5 s after stimulus onset—of a single OFC contact. b–d Principal compo-
nent analysis (PCA) of OFC population activity reveals distinct, value- and context-
specific activity trajectories.bActivity trajectories are plotted and color-codedwith
respect to the four conditions in the space of the first and second principal com-
ponents. Color codes for the four conditions: [current subjective value, previous

subjective value] = [high, low] (magenta), [high, high] (cyan), [low, low] (purple),
[low, high] (yellow). The horizontal and vertical axes represent the projections of
OFC population activity onto the first principal component (PC-1) and the second
principal component (PC-2) respectively. c PC-1 captures the subjective value from
the previous trial. Here, we plot the activity trajectories on the PC-1 axis as a
function of time. d PC-2 captures the subjective value of the current trial. Here we
plot the activity trajectories on the PC-2 axis as a function of time. e–g. Regression
subspace analysis. eActivity trajectories are plotted in the space constructed of the
current SV axis (horizontal axis) and the previous subjective-value axis (vertical
axis). f Activity trajectories on the current SV axis plotted as a function of time.
g Activity trajectories on the previous subjective-value axis plotted as a function of
time. Source data are provided as a Source Data file.
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recording sites carry those signals (in a statistically significant way).
The observed patchy distribution of subjective value signals in the
human agrees well with parallel work in the monkey conducted with
much finer electrodes gathering signals at the single neuron level.

There is now widespread agreement that subjective value repre-
sentations are broadly distributed in the mammalian brain. A series of
influential meta-analysis studies examining fMRI data from human
subjects have focused attention on two key areas: the ventral striatum
and the ventromedial prefrontal cortex. Activity in these two areas is
now widely associated with decision-making and subjective value and
measurements of these areas are now often used as direct tools for
assessing subjective value in humans. Interestingly, however, the focus
on these two human brain areas stands in contrast to extensive elec-
trophysiological work on value representations in non-human pri-
mates and to a lesser extent in rodents. Multiple electrophysiological
studies inanimals have focused interest on theOFCascritical sourceof
subjective value signals in these species. This apparent mismatch
between human and monkey data has been of some significance, and
has raised the question of whether this mismatch reflects a technolo-
gical difference between fMRI and electrophysiology or a species dif-
ference between humans and other mammals.

Recently, a small number of intracranial electrophysiological
studies have begun to address this dichotomy by using electro-
physiological tools to examine subjective value representations in
humans. Studies on value-based decision-making in humans have now
been conducted using electrocorticography (ECoG)58 and sEEG in
human epileptic patients59,70,71. Since the high-frequency components
(the gamma and high-gamma bands) of the sEEG and ECoG signals are
believed to correlate tightly with the single unit activity61,72–77, it should
be possible to use these tools to search for the human analog of
monkey OFC value signals. Lopez-Persem and colleagues59 for exam-
ple, used a region-of-interest approach with sEEG recordings and
showed unambiguous subjective value signals that were the human
homolog of monkey value signals in that same region.

Our observations extend this earlier work from the level of a
regionof interest to the level of a single recording contact. This adds to
a growing literature using sEEG or ECoG in humans that finds
subjective-value representations in the medial (area 14) and central
OFC (areas 11 and 13) in single-unit responses71, in gamma and high-
gamma activity58,59, and in single-unit activity in the amygdala70. It
should, however, be noted that the naming of the subdivisions of OFC
are not consistent across studies. Here we have adopted the monkey-
based convention used by Padoa-Schioppa and Cai78 and Wallis79 in
describing the medial (area 14), central (areas 11 and 13), and lateral
(area 47/12) OFC.

Our current understanding of the subjective valuation of rewards
in humans is based on three different methods for eliciting subjective
value—choice tasks, the BDM auction task where subjects indicate
willingness-to-pay, and liking-rating tasks. At the behavioral level,
earlier work highlighted inconsistencies between BDM task and choice
task80–83. More recently, however, Lopez-Persem and colleagues84 did
find that different elicitations of subjective value (choice, rating, and
effort tasks) tend to produce consistent results. However, at the neural
level, there has been little discussion to date on how these different
elicitation methods might differentially impact the subjective-value
signals measured physiologically.

While we employed the incentive compatible BDM value elicita-
tionmethod to assess a subject’s subjective valuation for food items70,
most other studies have employed either the liking-ratings tasks under
similar conditions59,71 or asked the subjects to choose between differ-
ent monetary lotteries58. We chose the incentive compatible
willingness-to-pay approach presented here for two reasons. First,
unlike the liking-rating approach, with the BDM it is in the subjects’
best interest to provide their true valuation of the rewards and some
research indicates that this yields more accurate estimates of

subjective value at the behavioral level63. Second, compared with
choice tasks that offer two or more options, each trial presents only
one object for evaluation, simplifying the interpretation of neural data
to the representation of a single object. Despite these advantages of
the BDM approach, however, it must be acknowledged that the cog-
nitive andmotivational processes associatedwith eachmethod are not
identical. How might these different elicitation methods impact sub-
jective valuation? It will be important for future investigations to
enrich our understanding of the neural representations for subjective
value by characterizing the similarities and differences between these
different methods as they impact subjective value signals in the brain.

Numerous studies in non-human primates have made it clear that
the subjective value signals in the OFC are strongly influenced by
context. Padoa-Schioppa28, for example, showed that the firing rates of
single OFC neurons in monkeys are strongly influenced by the tem-
poral context. These non-human primate signals appear to be affected
by the range of subjective value experienced in the recent past15,28,85,86.
It remains an open question as to whether the human OFC activity
exhibits this same property. Another important and open question is
how these relative-value signals in OFC contribute to choice behavior.
While studies had begun to show the effects of range on choice
behavior31, the links between OFC relative-value signals and range-
affected choice behavior remain unclear.

Our data show that recently experienced rewards influence the
activity of human subjective value neurons in these same areas. We
found that the reward delivered on the preceding trial effectively
down-adapted the signal observed from the human OFC. This is a
finding compatible with the standard models of this process, both
range adaptationmodels and divisive normalizationmodels, which are
aimed at describing the influence of recent temporal context on OFC
firing rates. We stress that the fact that our linear regression analysis
suggests a subtractive relationship between current and previous
reward should not be interpreted as specifically supporting a sub-
tractive relationship in the neuronal data. Linear regression is con-
strained to always represent divisive relationships as subtractive. Were
the true relationship divisive as in the divisive normalizationmodels, it
would be expected to appear subtractive upon linear regression as
used here. For this reason, wemust be silent about the true formof the
representation.

Although we found context-setting signals—the representations
of previous subjective value—in the OFC and other brain regions, there
are several alternative interpretations of the previous-value repre-
sentations worth discussing. First, it is possible that the previous-value
signals simply reflect the autocorrelation in the neural signals. To
address this issue, we performed additional analyses and found that in
general, signal autocorrelation did not significantly change the
previous-value findings (Fig. 3f, g; Supplementary Figs. 11, 12). Second,
it is possible that the BDMbidding task induces a perceived cost at trial
t and is then considered in trial t + 1.We think thismight be less likely to
occur as we did not realize the auction after each trial and because the
actual paid cost in a BDM auction is determined randomly only at
realization at the end of the experiment. The subjects were told that, at
the end of the experiment, only one trial would be chosen at random
and realized. Such design is an attempt to minimize the impact of
previous decisions and is adopted by many decision-making experi-
ments and neuroeconomic experiments87. Indeed, when reward feed-
back is given after each trial, previous decision outcomes are more
likely to incur a mental cost that would make people to want to break
even (e.g., house money effect88). People are also more likely to max-
imize expected value when reward feedback is given after each trial89.
Finally, we wish to acknowledge that context dependency here can
also be described as “adaptation” or “adaptive coding”. We regard
context dependency as the super category, and spatial and temporal
adaptation as subcategories.We elected to refer to the effectwe sawas
context dependency in this more general sense. In the mid-1980s,
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Ohzawa et al. 26,90 used the formulation ‘adaptation’ in their classic
studies of V1 neurons where neuronal activity adapts to the mean
contrast level of the visual stimulus. This phenomenon was termed
contrast gain control. Because the spatial and temporal scales are the
key factors for determining the mean contrast level, adaptation natu-
rally is affected by both the spatial and temporal context of the
environment91. Following that usage of adaptation, many other labs
whowent on to describe center-surround organizations as relying on a
similar mechanism introduced the notion that the spatial context
terms could in parallel be called spatial adaptation. Indeed, in ourwork
and others context dependency is generally referred to as beingmade
up of spatial and temporal adaptation27,28,31.

Over the last decade there has been increasing interest in aggre-
gating information from large populations of neurons in macaques
and rodents into high dimensional datasets that can then be analyzed
at the population level92–94. Of particular interest has been the extrac-
tion of the temporal trajectories—in low-dimensional space—neuronal
activity takes in these high dimensional data-spaces in valuation and
decision-making tasks. In this reportwe extended those approaches to
the study of human sEEG signals. Our results both validate and extend
this earlier work in non-human primates. Our unbiased PCA revealed
that during our task the population begins each trial at a common
starting point and then evolves toward a representation whose pri-
mary properties are a representation of reward context and current
offer, with the suggestion of context being an even larger signal than
value. Our regression subspace dimensionality reduction analysis68

further confirmed and extended this finding, revealing that OFC
population dynamics formed distinct trajectories according to the
subjective value and context-setting signals. These trajectories serve as
another point of contact withmonkey data, reinforcing the similarities
of these two species in the OFC.

Previous monkey studies have also provided some sense of how
subjective value and context signals are distributed in the monkey
brain.While subjective value signals are observed robustly in areas like
themonkey OFC, it is important to note that not all OFC neurons show
these signals. Estimates from Rich and Wallis61 made in the monkey
suggest that only about 30% of channels in the OFC carry a subjective
value signal. They found that after stimulus onset, the peak percentage
of OFC channels whose high-gamma activity represented expected
reward size was about 20%. After a reward was delivered, the peak
percentage was about 40% in representing the type of reward the
animals received. Interestingly, we observed a similar result: in high-
gamma activity, about 30% of our OFC electrode contacts showed
evidence of either the subjective value signals, or the context setting
signals (subjective value of the previous trial), or both. This seems to
show excellent agreement between humans and monkeys.

Our examination of context dependency, however, does seem to
suggest a difference between humans andmonkeys.We observed that
in some areas, like the central and medial OFC, individual contacts
reflected either subjective value signals or context setting signals. Very
few contacts representedboth the subjective value and context setting
signals. This is an observation that has not been widely reported in the
monkey. While it will be important to confirm these findings, this does
raise the possibility that human context setting signals may be dis-
tinctive in some way. A related point is the intermixing of positive and
negative encoding of subjective value. Our single-contact analysis
showed that, for both the subjective value and temporal context, OFC
contacts showed either positive or negative correlation with these
variables. This is in part consistent with monkey electrophysiology
studies showing intermixed encoding of subjective value in the OFC—
some neurons positively correlated with subjective value, while others
showed negative correlation6. As these positive and negative encoding
neurons are similar in number, multivariate decoding analyses that
take these neurons or populations as data should be able to readout
these intermixed subjective-value signals. Indeed, human fMRI studies

using multivoxel decoding analysis found subjective value signals in
the central OFC48 and context-dependent responses to reward out-
comes in the ventromedial prefrontal cortex30,56. Our single-contact
results further suggested the possibility of decoding subjective value
and context-setting signals in human fMRI with multivoxel decoding
approach.

Results from non-human primates also may shed light on how
broad-band sEEG signals might be expected to behave. For example, it
has been suggested that low-frequency activity in the alpha band may
be involved in modulating inputs from task-relevant and task-
irrelevant brain regions95. In studies of reward representations, An
et al. 96 found that in non-human primates, reward expectation
increased single-unit firing rates in the primary motor cortex but
decreased alpha (8–14Hz) oscillatory power. Given that single-unit
firing rates often positively correlate with high-gamma power76, this
finding suggests that the high-frequency power (e.g., high-gamma
activity) in M1 may positively correlate with reward expectation, while
low-frequency power, such as alpha power, negatively correlates with
reward expectation. This is similar to what we found where the
encoding directions for subjective value in the low-frequency activity
were reversals of those in the high-frequency activity.

One potential explanation for the encoding directions of sub-
jective value in the alpha band is the inhibition of the previous sub-
jective value. Increase in alpha oscillations have been shown to reflect
inhibitory activity in circuits associatedwith attention, perception, and
workingmemory97–104. Hence, it is possible that the positive correlation
of alpha activity with the previous subjective value reflects the inhibi-
tion of information about past subjective value when the subjects
evaluate a snack food item in the current trial. Similarly, the negative
correlation of alpha power with the current subjective value may
reflect increased attention to the food item in the current trial. Our
findings also suggest the involvement of alpha oscillations in mod-
ulating visual attention during value-based decision-making105. Pre-
vious fMRI studies found that value signals in the vmPFC are
modulated by visual attention106. An open question, therefore, is to
investigate whether and how alpha oscillations in the OFC, and other
value-related regions, change in a free-choice paradigm where differ-
ent options are simultaneously presented and the subjects are free to
look at these options before making a decision.

Our results were consistent with the view that there is a close
relationship between high-frequency oscillations (30–150Hz) in LFP
and the fMRI BOLD signals. Our results showed the involvement of
gamma (30–80Hz) and high-gamma (80–150Hz) activity in the
representation of subjective value. This frequency range (30–150Hz)
coincides with previous observations that “LFPs were often dominated
by stimulus-induced andusually stimulus-locked fast oscillations in the
range of 30–150Hz”107. Given that BOLD signals have been found to be
better described by the LFP than by multi-unit activity, it is possible
that the gamma and high-gamma findings here would be observed in
BOLD signals in the human OFC had there been the same spatial
resolution or no signal loss due to the susceptibility artifacts in BOLD
signals in this brain region. In brain regions associated with subjective
value representation that do not suffer BOLD signal loss, we would
expect the gamma and high-gamma activity there to represent sub-
jective value. Indeed, we found that many other brain regions also
represented the subjective value in high-gammaactivity. Among them,
the insula and hippocampus stood out because evidence for the past
and present subjective-value representations were found at the group
level (averaged across electrode contacts) and at the level of individual
contacts in those regions.

One limitation of our task design is motor-related confounds.
Although we aimed to minimize motor confounds by temporally
separating the evaluation and the response stages, the subjects could
in principle have prepared their motor responses during the evalua-
tion stage given that the responsematrix was the same throughout the
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experiment. Future investigations could address this issue by not
specifying the motor-response mapping until the response stage. For
example, one can design a visual analog scale for bid value and could
randomly, from trial to trial, vary the presentation of bid value (left-to-
right indicates low-to-high value in half of the trials and high-to-low
value in the other half).

Another important limitation for any sEEG study is the sparse
and heterogeneous coverage of the electrodes. The decision about
where to implant electrodes is, rightfully, an entirely clinical
decision, but as a result the spatial coverage we can achieve is
sparse and heterogeneous, both within and across the subjects.
This limitation poses challenges to both within- and between-
subject (group-level) statistical inference and the interpretation of
null results. On the one hand, null results can signal that a region is
not involved in certain tasks or computations. On the other hand,
the null results could be driven by sparse or inefficient coverage. In
the context of our study, it is insufficient to conclude, for example,
that OFC does not represent subjective value on a particular sub-
ject based on the null results from his or her OFC contacts. It is
possible that his or her OFC contacts are not in the right spot—
regions in the OFC that represent subjective value. One possible
way to address this issue is the development of distributed, ana-
tomically realistic source modeling of LFP data108. Future studies
need to explore this direction and to examine its feasibility and
value in contributing to the interpretations of LFP signals in human
sEEG experiments.

Sparse and heterogeneous coverages also raise two important
questions. First, is it possible that the three regions with the
strongest value signals (OFC, hippocampus, and insula) were also
the regions with the highest number of contacts? We think that
while this is possible, we also saw evidence against this conjecture.
For example, the IPS had 62 contacts, and yet it did not show sig-
nificant correlation with either the current or previous subjective
value at the group level. By contrast, the PCC and amygdala had 31
and 30 contacts respectively, and in these two brain regions we
found significant results on either the current subjective value
(amygdala) or the previous subjective value (PCC). Therefore, it is
not entirely the case that brain regions with more contacts had the
strongest value signals. Second, is it possible that subjects with
more contacts in a given region contribute more heavily to aggre-
gate findings for that region? We think this is less likely to be the
case. For OFC, no single subject contributed to more than 7.23% of
the contacts. The median fraction of contacts contributed by a
single subject was 5.12% (range: from 0.6% to 7.23%). To illustrate, in
Supplementary Fig. 22, we plot the subject-by-subject results in the
OFC and present them in an order according to the number of
electrode contacts from each subject. In summary, we wish to point
out that these remain important questions and need to be more
systematically addressed as sEEG studies mature as a field.

Many of the behaviors in humans and animals are affected by the
context of our recent experience. Characterizing the representations
of context at the computational, algorithmic and neural imple-
mentation levels, therefore, is essential to understanding a wide array
of cognitive functions. Using human intracranial electrophysiology,
we found several distinct features of context-dependent representa-
tions for the subjective valuation of rewards. At the computational
and algorithmic levels, temporal context—recent history of rewards—
was represented in a manner predicted by existing models like
divisive normalization and range adaptation. At the neural imple-
mentation level, we found that the current reward value and the
context were represented by distinct electrode contacts in the OFC,
insula, and hippocampus. These findings suggest that contextual
adaptation is implemented through distinct, large-scale neuronal
populations that separately represent current and past information
about reward value.

Methods
Participants
Twenty patients with drug-resistant epilepsy participated in this study
(9 males; aged 16–51 years; average: 29.2 years). Patients had been
implanted with multi-contact depth electrodes and were undergoing
intracranialmonitoring in order to identify seizure onset regions. Each
patient was implanted with 7–14 electrodes. The decision to implant
the electrodes and their location was driven solely by medical con-
siderations. The study was approved by Taipei Veterans General Hos-
pital Institutional Review Board. To learn more about the patients’
decision-making behavior in relation to the normal population, we
collected behavioral data from 35 healthy subjects in the normal
population not treated for epilepsy (18 males, aged 20–27 years;
average: 22 years) performing the same task. This part of the studywas
approved by National Yang Ming Chiao Tung University Institutional
Review Board. Informed consent was obtained from each participant
before participation.

Behavioral task
The subjects performed a version of the BDMauction task during sEEG
recording. The task was programmed in MATLAB (The MathWorks
Inc.) using the Psychophysics Toolbox Version 3109,110. They were asked
to refrain from eating for at least two hours before the start of the
experiment. Prior to the BDM task, the subjects received 200 New
Taiwan Dollar as an endowment to purchase food items.

The BDM task consisted of 8 blocks of 25 trials each. One hundred
snack food items were introduced and each food item was presented
twice in the experiment. In each trial, a snack food itemwas presented
and the subjects were instructed to bid—his or her maximum will-
ingness-to-pay—for the snack food item. A trial started with a fixation
cross presented in the center of the screen for 1 s. Following the fixa-
tion, a snack food item was presented on the screen until subjects
clicked on the mouse button to signal that she or he was ready to
indicate his or her willingness-to-pay. The subjects could take as long
as they wanted to indicate their readiness. Trials where the RT was
three standard deviation away from the mean RT of the subject were
excluded from further analysis (usually less than 1% of trials), as they
could very well indicate disruptions of the experiment outside of the
experimenters’ control (e.g., visits from clinicians, nurses, and/or
staffs). After making the mouse click, a 1 s fixation period followed.
After the fixation period, the subjects would see a price matrix from 0
to 200 in steps of 10 on the computer screen (Fig. 1a). The subjects’
task was to move the cursor to the price box that reflected the most
she or he was willing to pay for that food item. Subjects could take as
much time as they desired to select one of these boxes with a mouse
click but were encouraged to respond within 2 s. To give the subjects
an idea of time, the boxwhere the cursor was atwould turn bluewithin
2 s after the price matrix box appeared. After 2 s, the box where the
cursor pointed at would turn red. After clicking on the desired price
box, a brief visual feedback on the selected price (willingness-to-pay)
was shown (0.5 s), which was then followed by a variable inter-trial
interval (1, 1.5, or 2 s).

In this task design, a single trial therefore consisted of two stages:
an evaluation stage followed by the response stage. During the eva-
luation stage (when the food item was presented) the subjects were
instructed to take time and think over how much money they were
willing to pay for the food. By contrast, during the response stage
(when the price matrix was shown) the subjects were instructed to
indicate willingness-to-pay as quickly as possible. The reason for
implementing the two-stage design was to temporally localize the
valuation signalswehoped toobserve. Sincevaluationof the food item
and themotor response to indicatewillingness-to-paywere temporally
separated by our task, we hoped that the impact of motor-related
confounds introduced when subjects indicated willingness-to-pay
could effectively be minimized.
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After all trials of the BDM task were complete, one trial was ran-
domly selected and realized according to the rules of the BDMauction.
The rules are as follows. Let x be the bid made by a subject for a food
item. A random integer y is drawn from a discrete uniform distribution
ranging from 10 to 200 with interval of 10. If x ≥ y, the subject would
buy the food item at a price equal to y. If x<y, the subjectwould not get
the food and would keep the endowment. These widely used rules
establish a situation whereby the optimal strategy for the subjects is to
bid exactly the maximum amount that they are willing to pay for the
item. If they underbid for an item, the subjectmay lose the opportunity
to purchase the item later at a still highly desirable price. If they
overbid, they risk being forced to purchase the item at an undesirable
price. Only by stating the exact maximum price at which they would
purchase the item can they achieve the optimal result. The BDM rules
and the consequences were informed to the subjects before the BDM
task so that they knew that the best strategy was to bid exactly what
they are willing to pay for the item.

Electrophysiological recordings
Patients were implantedwith 0.86mmdiameter depth electrodes (Ad-
Tech, Racine, WI, USA) that were arranged into strips with 6, 8, or 10
contacts (2.29mm in contact length) and 4–8mm (most strips: 5mm)
separation. One of the electrode strips was 1.12mm in diameter with
six contacts (2.41mm in contact length) and 5mm separation in
between neighboring contacts. Recordings were obtained simulta-
neously from the scalp and depth electrodes while the patients per-
formed the task. Data was collected using the Natus Quantum system
(Natus Medical Incorporated). Sampling rates were 2048Hz with an
878Hz low-pass filter. During recording, all the electrodes were
referenced to the scalp PFz electrodeor an intracranial contact located
in the white matter. Details on the recording sites—MNI coordinates of
the electrode contacts—presented in the current study can be found in
the Supplementary Tables 9–16.

MRI acquisitions
For eachpatient, T1-weighed structuralMRI imageswere collectedon a
1.5 T Signa HDxt scanner (GE Healthcare, Milwaukee, WI, USA) before
and after the surgery for electrode implantation. The MR images were
taken along the axial plane using a fast spoiled gradient-recalled echo
sequence (axial slice thickness = 1mm; TR = 10.02ms, TE = 4.28ms,
TI = 0ms, flip angle = 15°, bandwidth = 31.2 kHz, matrix = 256× 256,
FOV = 256× 256mm).

CT acquisitions
CT images were used in conjunction with T1-weighted MRI images for
transforming the anatomical location of the electrode contacts onto
the standard MNI space. CT images were acquired using Philips Bril-
liance 64 CT scanner with the following parameters: 64 slices, rotation
duration of 1 s with coverage of 16 cm per rotation, 60-kW generator
(512 × 512 matrix), 120 kV, 301mAs, and axial slice thickness of 1mm.

sEEG data analysis
Belowwe describe the sEEGdata analysis pipeline in detail. A summary
of the sEEG data analysis pipeline can be found in the Supplemen-
tary Fig. 7.

sEEG preprocessing
EEG data were preprocessed and analyzed by EEGLAB111 (version
2022.1) and ERPLAB112 (version 9.00) inMATLAB in the following steps.
First, a digital band-pass filter from0.5 Hz to 250Hz and a 60Hz notch
filter were applied to the EEGdata at the single contact level—including
the scalp and the sEEG dataset. Second, the scalp EEG dataset were
separated from the sEEG dataset. Third, the sEEG data for each elec-
trode contact were re-referenced to the average of the two neigh-
boring contacts113. The scalp EEG data were re-referenced to the left

and right mastoid. Fourth, in order to remove eye-movement-related
activity from the sEEG data, we proceeded in two steps, which were
separately applied to both the scalp EEG and sEEG data. First, we
performedPCAon thedata and, by keeping the PCs that explained95%
of data variance, we effectively reduced the dimensions of the data.
Second, we performed ICA using data based on the PCs that explained
95% of data variance. Eye-related activities were first identified by
inspecting the independent components (ICs) of the scalp EEG data.
Once an IC with ocular artifacts was identified, we checked whether
therewas a corresponding IC in the sEEGdata.We note that because of
the first step, the number of ICs identified in the second step would be
greatly reduced compared with directly performing ICA on the raw
sEEG data. And since eye-movement artifacts are mostly likely very
strong artifacts, this approach in principle would not compromise the
ability to identify these ocular artifacts. Rather, it saved us significant
computation time.

The epoch for each trial (trial epoch) started 1.5 s before the onset
of the food stimulus and ended 2 s after stimulus onset, with a pre-
stimulus baseline correctionwhere the average activity of the 1.5-s time
window before the onset of the food stimulus was treated as the
baseline. Trial epochs with interictal spikes were identified through
visual inspection and were excluded from further data analysis. We
referred to the trials with no interictal spikes as the valid trials.

Time-frequency analysis
After preprocessing, a time frequency analysis was performed using a
wavelet transform, estimating spectral power from 4 to 200Hz for
each epoch with full-epoch length single-trial baseline correction114.
After time-frequency analysis, the epoch of the timeseries data started
at 1 s before stimulus presentation and ended at 1.5 s after stimulus
presentation with a 10ms resolution. We note that in our data pre-
processing, the EEGepochswere slightly longer (1.5 s before to 2 s after
onset) so that we can apply time-frequency analysis upon them with-
out zero-padding. For each frequency bin separately, wecomputed the
mean power (averaged across time within the 1-s time window before
the onset of the food stimulus) and used it as the baseline. We then
subtracted baseline from the timeseries data of spectral power. The
timeseries of the power data from the high-gamma (80–150Hz),
gamma (30–80Hz), beta (13–30Hz), alpha (8–12Hz), theta (4–7Hz)
bands for the epoch were further extracted for the GLM analysis
described below (see General linear modeling of brain activity below).
At each frequency band, the corresponding timeseries data had 251
time points (a 2.5-s time window with a 10-ms resolution).

Identifying the anatomical locations of electrode contacts
To identify the anatomical location of electrode contacts across dif-
ferent subjects, we transformed the electrode contact location from
the subject’s native space onto standard Montreal Neurological Insti-
tute (MNI) space. To do that, we used three sets of brain images col-
lected from each subject: the T1-weighted image prior to electrode
implementation (pre-T1), the T1-weighted image after electrode
implementation (post-T1), and the CT image after electrode implan-
tation (post-CT).Our goalwas to transformtheCT image toMNI space.
The reason we used the CT image to identify the electrode contact
coordinates in the standard space was because the CT image, com-
pared with T1-weighted image, suffers less distortion and therefore
allows for more accurate mapping of the contact location. The trans-
formation was performed using SPM12 (Wellcome Trust Center for
Neuroimaging, London, UK; https://www.fil.ion.ucl.ac.uk/spm/) and
proceeded in the following three steps. First, the post-CT image was
aligned to the post-T1 image with 4th degree B-Spline interpolation.
Second, both the post-T1 image and the realigned post-CT image were
aligned with the pre-T1 image, also with 4th degree B-Spline inter-
polation. Finally, the pre-T1, the realigned post-T1 and post-CT images
were transformed to the standard MNI space (1mm isotropic voxel
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size). The location of each contact in MNI space was obtained through
the post-CT images in MNI space.

Identifying the OFC electrode contacts
We used the Harvard-Oxford probabilistic atlas available in FSL115

(version 6, https://fsl.fmrib.ox.ac.uk/fsl) to identify the electrode
contacts in the OFC. An electrode contact was identified as an OFC
contact when the probability of its MNI coordinates being in the OFC
was larger than 1%. In addition, because some contacts were situated at
the borders between the posterior section of the OFC and the anterior
insula, we decided to exclude the contacts that had a higher prob-
ability of being in the insula than being in the OFC.

Visualizing anatomical locations of electrode contacts
To visualize the anatomical location of electrode contacts across dif-
ferent subjects, we used the MNI coordinates of the contacts and
plotted them in the standard MNI brain template. To show the elec-
trode contact location, we used Fa-Hsuan Lin’s toolbox (https://github.
com/fahsuanlin/fhlin_toolbox)108 to generate the brain images shown
in Fig. 2a, Fig. 4a, Fig. 5a; 7a–c; Fig. 8a–d by superimposing the elec-
trode contact location onto the surface-based MNI template that
depicts the gray/whitematter boundary. TheMNI template usedby the
toolbox came fromFreeSurfer116. As a result, some contacts can appear
to be outside of the brain where in fact they are not. We used the
Harvard-Oxford probabilistic atlas to verify that these contacts are in
fact inside the brain. Information about the MNI coordinates of all the
electrode contacts mentioned in the paper are in the Supplement
(Supplementary Tables 9–16). To show the contact location on the
example subject (Fig. 2d), we used FSLeyes in FSL115 (version 6) to
generate the brain images in Fig. 2d.

General linear modeling of brain activity
For each contact, after time-frequency analysis, we obtained for each
trial a time-series data of spectral power at a particular frequencyband.
Hereweusehigh-gammaband (80–150Hz) as anexample andwe refer
to the power of high-gamma as high-gamma activity, as in ref. 61. To
examine subjective-value representations,weperformed the following
GLM analysis. First, we set up a GLM for each time point within the
epoch separately. Here the data—a vector of length Ntrials whereNtrials

is the number of valid trials a subject performed in the BDM task—are
the frequency-specific power obtained from time-frequency analysis
(see sEEG preprocessing for descriptions on valid trials). We imple-
mented five different but similar GLMs. The first GLM (GLM-1) was the
main GLM, and the rest were slightly different versions of GLM-1 in
order to test the robustness of GLM-1’s results on subjective-value
representations (Fig. 3). In GLM-1, we implemented a constant term, a
regressor for the subjective value of the current trial, and a regressor
for the subjective value of the previous trial. In GLM-2, we performed
the analysis in two steps. First, we implemented a model with the
constant term and the current subjective value regressor. Second, we
used the residuals from the first step as data and implemented amodel
with the constant termand the previous subjective value. In GLM-3, we
implemented the samemodel asGLM-1 except thatweonly considered
trials where the subject’s willingness-to-pay was greater than zero
dollars (excluding zero-bid trials). In GLM-4, the subject’s RT was
added as a regressor, along with the constant term, the current sub-
jective value, and the previous subjective value. In GLM-5, we added
the subjective value of the food option encountered two trials back as
a regressor, alongwith the constant term, the current subjective value,
and the previous subjective value. In GLM-6, in addition to the current
and previous subjective value regressors, we added the spectral power
of the previous trial as a regressor. That is, for each time point sepa-
rately, the spectral power of the same time point from the previous
trial was used as the regressor. Finally, to examine whether the length
of the inter-trial interval (ITI; 3 possible ITIs at 1 s, 1.5 s, and 2 s) affected

the current and previous subjective value results, we estimated GLM-1
separately for each ITI (1 s, 1.5 s, 2 s). We used the fitlm function in
MATLAB to perform the GLM analysis.

Group-level permutation test (across electrode contacts)
This analysis was used for Figs. 2b, 3, 4b, 5b, 6b, 7 (middle graphs), and
8 (middle graphs). The data is an Ncontacts ×Ntime matrix of estimated
regression coefficients. Ncontacts denotes the number of electrode
contacts in a region of interest (e.g., OFC), and Ntime denotes the
number of time points within the trial epoch. Using this data, we
computed the timeseries of the t statistic (across electrode contacts).
Hence, the t-statistic timeseries is a 1 ×Ntime matrix. To compute the t
statistic, at each time point we computed the mean regression coef-
ficient (across contacts) and divided it by its standard error. We then
transformed the t statistic to the z statistic. To correct for multiple
comparisons across timepoints, weperformedapermutation testwith
TFCE as the test statistic64,65. In each permutation, we randomly
assigned a label of 1 to half of the contacts and−1 to theother half. Note
that for each permutation, this procedure—assigning one to half of the
contacts and −1 to the other half—was applied to all the time points of
the trial epoch. For each time point separately, we then performed a
linear regression analysis where data is the actual regression coeffi-
cients, and the regressor was the randomly permuted label. This gives
us a t statistic for the regressor at each time point. The t statistic was
transformed to the z statistic, andusing the z statisticwe computed the
TFCE statistic (E = 2, H = 2) for each time point. The TFCE statistic
summarizes the strength of spatially or temporally extended signals,
i.e., spatial or temporal clusters. A major advantage of using the TFCE
statistic is thatwe donot need to specify a cluster-forming threshold in
order to identify spatial or temporal clusters of activation. The TFCE
statistic is defined as the sum of the scores of all supporting sections
underneath the z statistic of a particular time point (temporal cluster)
or spatial location (spatial cluster). The score of each supporting sec-
tion is its height (raised to some power H) multiplied by its extent
(raised to somepower E). The E andHparameters therefore control the
impact of cluster extent and height respectively. The TFCE statistic
therefore is a weighted sum of the entire local clustered signal64. As a
result, after each permutation, we obtained a timeseries of the TFCE
statistic, which we then used to identify the maximum (or minimum)
TFCE statistic. Since the TFCE was computed based on the z statistic,
for positive effects (positive z statistic) we looked for the maximum
TFCE and for negative effects (negative z statistic) we looked for the
minimum TFCE. After 10,000 permutations, we obtained the null
distribution of the maximum (or minimum) TFCE and used it to
determine the critical region (p <0.05, familywise error corrected).
The TFCE statistic at each time point was then evaluated with respect
to the critical region: if the TFCE statistic fell within the critical region,
wewould conclude that it was statistically significant. Otherwise, itwas
assessed as not significant.

Test of symmetry in the data distribution
An important assumption for the permutation test is the symmetry of
the data distribution65. For the group-level permutation tests descri-
bed above, we had two datasets, one containing the regression coef-
ficients of the current subjective value, and the other for the previous
subjective value. Taking the current subjective value as an example,
the data is an Ncontacts ×Ntime matrix where each element is the
regression coefficient of the current subjective value of a particular
electrode contact at a particular point in time in the trial epoch. Each
time point consists of a distribution of the regression coefficients
across electrode contacts. Our goal was to examine whether this dis-
tribution (Ncontacts × 1 matrix of regression coefficient) was symme-
trical. Therefore, for each time point separately, we computed its
corresponding sample skewness (Pearson median skewness). To test
symmetry, we used the bootstrap method (resampling with
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replacement) so as to obtain the distribution of the sample skewness
anduse it to construct the95%confidence interval of sample skewness.
If the 95% confidence interval did not include 0, we would conclude
that the data distribution was symmetrical.

Taking the OFC high-gamma activity as an example: In order to
obtain the distribution of the sample skewness, first, we resampled
with replacement the OFC contacts (166 in total) 10,000 times. This
gave us, for each resampled dataset, a time series of regression coef-
ficients, separately for the current subjective value and the previous
subjective value, from the 166 resampled contacts. Second, for each
time point separately within the time series, we computed the sample
skewness (Pearson median skewness) of the regression coefficients
across the resampled OFC contacts. Third, with 10,000 resampled
datasets, we obtained, for each time point separately, a distribution of
sample skewness that we used to construct the 95% confidence inter-
val. Finally, using the 95% confidence interval, we were able to test
whether the data distribution was symmetric at each time point
separately. We found that the sample skewness did not differ sig-
nificantly from 0 in the majority of time points, for each brain region,
each frequency band, and for each regressor of interest (current sub-
jective value and previous subjective value). The results are shown in
the supplement (Supplementary Figs. 23–25). We observed a sig-
nificant positive skewness for the current subjective value inOFC high-
gamma activity approximately at 600–700ms after stimulus onset
(left graph, Supplementary Fig. 23a). On the one hand, this does raise
concern for the permutation test regarding the current subjective
value at this particular 100-ms time window. On the other hand, we
also observed that the time window of activity that significantly cor-
related with the current subjective value (from ~400ms to 1500ms
after stimulus onset; Fig. 2b) far extended this 100-msec time window.
In otherwords, the significant current subjective-value representations
included many time points where the skewness was not significantly
different from 0. On this ground, we concluded that the violation of
the symmetry assumption observed here should not change the
overall conclusion that OFC high-gamma activity represented the
current subjective value.

Group-level permutation test (across electrode contacts) in the
time-frequency space
This analysis was used for Fig. 6a. The analysis logic is similar to that
described in Group-level permutation test (across electrode contacts)
described above. The main difference is the dimensionality of the
dataset. Here the dataset included 166 OFC contacts across 20 sub-
jects. In the GLM, we regressed the power against the current and the
previous subjective value for each contact in each time-frequency
point. As a result, for the current subjective value and previous sub-
jective value separately, we obtained information about the regression
coefficient (which we also referred to as the beta value) in a three-
dimensional space (time, frequency, electrode contacts). Let Nf req

denote the number of frequency points (from 4Hz to 200Hz), Ntime

denotes the number of time points within the trial epoch, and Ncontacts

denotes the number of electrodeOFCcontacts. Tocorrect formultiple
testing across time points at the group level (across all contacts), we
performed permutation test with threshold-free cluster enhancement
(TFCE)64,65 as the test statistic. In each permutation, we randomly
assigned a label of 1 to half of the contacts and −1 to the other half. For
each time-frequency point separately, we performed a linear regres-
sion analysis (see General linear modeling of brain activity above)
where data was the actual beta values and the regressor was the ran-
domly permuted label. This would give us the t statistic of the
regressor at each point in the two-dimensional time-frequency space.
The t statisticwas then transformed to the z statistic and based on the z
statistic, we computed the TFCE statistic (E = 1, H = 2) at each point in
the time-frequency space. As a result, we obtained a two-dimensional
map of TFCE and identified the maximum (or minimum) TFCE. Since

the TFCE was computed based on the z statistic, for positive effects
(positive z statistic) we looked for themaximumTFCE and for negative
effects (negative z statistic) we looked for the minimum TFCE. After
1000 permutations, we obtained the null distribution of themaximum
(or minimum) TFCE which we then used to determine whether each
point in the time-frequency space was significant (p < 0.05, familywise
error corrected). For other brain regions, 500 permutations were
performed. The permutations were very computationally intensive
and requiredmuch time. In general, we did not find the results to differ
muchbetween 500and 1000permutations. To save timewe elected to
use 500 permutations for the results shown in the Supplement (Sup-
plementary Figs. 17, 18).

Individual-level permutation test (for individual electrode
contacts)
This analysis was performed for each individual electrode contact
separately andwasused for Figs. 2c, d, 4c, 5c, 6c, 7 (right graphs), and8
(right graphs). At each individual contact, the data is a Ntrials ×Ntime

matrix of brain activity where Ntrials denotes the number of valid trials
and Ntime the number of time points within the trial epoch. Here, brain
activity is referred to as the power of a particular frequency band (e.g.,
high gamma for 80–150Hz) after time-frequency analysis. For each
time point separately, we regressed brain activity (Ntrials × 1 matrix)
against the current subjective value and the previous subjective value
(GLM-1). This gave us a timeseries of regression coefficients for each
regressor (1 ×Ntime matrix) and their corresponding t statistics. To
correct for multiple testing across time points, we performed a per-
mutation test with TFCE64,65. At each permutation, we randomly per-
muted the trial label (Ntrials × 1 matrix) of the design matrix (Ntrials ×2
matrix where the current subjective value and previous subjective
value were the two regressors). Note that for each permutation, the
same permutation was applied to all the time points. We then regres-
sed the data (Ntrials × 1 matrix), for each time point separately, against
thepermuteddesignmatrix. This gaveus a t statistic of the regressor at
each time point. The t statistic was transformed to the z statistic, and
using the z statistic we computed the TFCE statistic (E = 2, H = 2) for
each time point. As a result, we obtained a time series of TFCE statistic
and identified the the most extreme (maximum or minimum) TFCE
across time. Since the TFCE was computed based on the z statistic, for
positive effects (positive z statistic) we looked for the maximum TFCE
and for negative effects (negative z statistic) we looked for the mini-
mum TFCE. After 10,000 permutations, we obtained separately the
null distribution of the maximum and minimum TFCE that we used to
determine the critical region (p <0.05, familywise error corrected). If
the TFCE statistic of a timepoint was inside the critical region, it would
be labeled as statistically significant. Otherwise, it was labeled as not
significant.

State space analysis
To study how the dynamics of high-gamma activity in the OFC as a
whole represented subjective value, we performed two com-
plementary state space analyses, one based on the PCA and the other
based on a regression subspace analysis68. The data preparation for
both analyses was identical and was performed in the following
sequence. For each electrode, we first smoothed the high-gamma
timeseries data for each trial (Gaussian time window= 400ms). We
also performed the same analysis with no smoothing applied, andwith
100ms, 200ms, and 300ms Gaussian time window (Supplementary
Fig. 19). The timeseries data started from 1 s before the onset of the
food stimulus and ended 1.5 s after stimulus onset. Second, we com-
puted the average timeseries (across all trials) and subtracted it from
the timeseries of each trial. Third, we sorted the trials into four con-
ditions according to the magnitude of the subjective value of the
current trial (high or low, median split) and the magnitude of the
subjective value on the previous trial (high or low, median spilt). The
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medians were obtained based on the corresponding subject’s
willingness-to-pay data. The four conditions therefore are [current
subjective value, previous subjective value] = [high, low], [high, high],
[low, low], [low, high]. Fourth, we computed the average timeseries of
each condition. Fifth, for each condition, we organized the average
timeseries data of all electrode contacts as a two-dimensionalmatrix of
sizeNcontacts ×Ntime whereNcontacts is the number of electrode contacts
in the OFC across all subjects (Ncontacts = 166) and Ntime is the number
of time points within the trial epoch (Ntime =251). We denote this
condition-specific matrix Xc: Finally, we collapsed the four two-
dimensional activity matrices (one from each condition) such that the
final dataset for the subsequent analyses (PCA-based analysis and
regression subspace analysis described below) was a two-dimensional
matrix of size 166× 1004 which included all data aggregated together
before the initial PCA was performed. We denote this data matrix X :

PCA-based analysis
Weperformed PCA on the prepared dataset described above using the
pca function in MATLAB. The feature dimensions were the electrode
contacts, and the observations were the time points within the trial
epoch. We then projected the activity matrix of each condition onto
the first two PCs, resulting in four different trajectories (timeseries) in
the PC space. We then plotted the trajectories and color coded them
(Fig. 9b–d).

Regression subspace analysis
Wefirst performed PCAon theprepared dataset to denoise the data. In
the main text, the prepared dataset was the smoothed high-gamma
timeseries data (Gaussian timewindowof 400ms).We also performed
the analysis with no smoothing applied (Supplementary Fig. 21). The
number of PCs (Npc) selected to construct the D was 12. We also per-
formed the same analysis described belowwith number of PCs being 2
and 20 (Supplementary Fig. 20). The D was constructed

D=
XNpc

i= 1

PCiPC
T
i ð1Þ

where PCi is the i-th principal component and is a column vector of
size Ncontacts . The resulting D is a Ncontacts ×Ncontacts matrix. The
denoised data Xpca is obtained according to

Xpca =DX : ð2Þ

Next, we turn our attention to the linear regression analysis (GLM-
1) and their regression coefficients. In GLM-1, we implemented two
task-related regressors, namely the subjective value of the current trial
and the subjective value of the previous trial. The GLMwas performed
on each electrode contact and for each time point within the trial
epoch separately. Let v denote task-related variable. Here, we have two
task related variables, the current and the previous subjective value.
Let βv,t denote the regression vector consisting of regression coeffi-
cient of each contact associatedwith task variable v (current subjective
value or previous subjective value) at time t. βv,t therefore has a length
of Ncontacts. We then applied the D to βv,t to denoise the regression
vector

βpca
v,t =Dβv,t ð3Þ

where βpca
v,t is the denoised regression vector.

For each task variable v, we find the time tmax
v that has the max-

imum L2 norm of βpca
v,t and define the corresponding regression vector

βpca
v,tmax

v
as βmax

v where βmax
v is the time-independent, de-noised regressor

vector for task variable v. We then put βmax
v from different v (current

and previous subjective value) together into a single two-dimensional

matrixβmax where the columns are the v and the rows are the electrode
contacts. βmax therefore has a size of Nv ×Ncontacts where Nv = 2 and
Ncontacts = 166. Finally, we obtain the orthogonal axes of the current
subjective value and the previous subjective value by orthogonalizing
βmax with QR decomposition

βmax =QR ð4Þ

where Q is an orthogonal matrix and R is an upper triangular matrix.
Thefirst two columnsofQ correspond to theorthogonalized regressor
vectors β?

v , which we refer to as the task-related axes of the current
subjective value and the previous subjective value.

To study the representations of the current and previous sub-
jective value in the OFC, we projected the condition-specific data
matrix Xc onto the orthogonal axes

Pv,c =β
?
v
T
Xc

ð5Þ

Where Pv,c is the set of timeseries vectors over all v and conditions.
Here, we have two v, the current and previous subjective value, and
four conditions. Therefore, in the two-dimensional space with the
current and previous subjective value as the task-related axes, we have
four trajectories, which we plotted in Fig. 9e–g.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data and statistics used tomake eachfigure are provided in this
paper. The high-gamma activity data generated in this study have been
deposited in Open Science Framework (https://osf.io/f92yv/?view_
only=95befcd791b9429692fc804a2876918a). The rawdata analyzed in
this study are available upon request made to the corresponding
authors. Source data are provided in this paper.

Code availability
The custom computer code used for the analyses reported in this
study is available at Open Science Framework (https://osf.io/f92yv/?
view_only=95befcd791b9429692fc804a2876918a).
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