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The pan-genome and local adaptation of
Arabidopsis thaliana

Minghui Kang 1,2,4, Haolin Wu2,4, Huanhuan Liu 2,4, Wenyu Liu1, Mingjia Zhu1,
Yu Han2, Wei Liu2, Chunlin Chen2, Yan Song2, Luna Tan2, Kangqun Yin2,
Yusen Zhao2, Zhen Yan2, Shangling Lou 1,2 , Yanjun Zan 3 &
Jianquan Liu 1,2

Arabidopsis thaliana serves as a model species for investigating various
aspects of plant biology. However, the contribution of genomic structural
variations (SVs) and their associate genes to the local adaptation of this widely
distribute species remains unclear. Here, we de novo assemble chromosome-
level genomes of 32A. thaliana ecotypes and determine that variable genes
expand the gene pool in different ecotypes and thus assist local adaptation.
We develop a graph-based pan-genome and identify 61,332 SVs that overlap
with 18,883 genes, some of which are highly involved in ecological adaptation
of this species. For instance, we observe a specific 332 bp insertion in the
promoter region of theHPCA1 gene in the Tibet-0 ecotype that enhances gene
expression, thereby promotes adaptation to alpine environments. These
findings augment our understanding of themolecularmechanisms underlying
the local adaptation of A. thaliana across diverse habitats.

Arabidopsis thaliana (2n = 10) (Brassicaceae) has been used as amodel
plant across many studies because of its small genome size, short
generation time, and the large number of seeds produced from each
mother plant. In addition, due to its worldwide distribution covering
habitats with extensive ecological diversity throughout Eurasia, Africa,
and North America, A. thaliana is also ideal species for revealing
molecularmechanismsof ecological adaptation inplants1. In 2000, the
A. thaliana genome, based on the Col-0 ecotype, was the first com-
pletely sequenced and assembled plant genome; this work has greatly
advanced molecular studies2. With the continued advancement of
sequencing technology, four versions of an A. thaliana Col-0 ecotype
telomere-to-telomere (T2T) reference genomes have been published
and updated3–6 Furthermore, the genomes of several other A. thaliana
ecotypes have also been published7.

Population genomic analyzes based on the reference genome and
whole-genome resequencing data of other ecotypes have revealed a
widespread global postglacial expansion of A. thaliana from sparsely
distributed relict ecotypes8. In particular, a large number of genetic

variations were associated with multiple phenotypic changes under-
lying A. thaliana ecological adaptation to varied habitats8. These
genetic variations across ecotypes are mainly comprised of single
nucleotide polymorphisms (SNPs) and short insertions and deletions
(INDELs, often <50bp)9,10. Allelic variations in major genes associated
with ecological phenotypes have also been uncovered through
genome-wide association studies (GWAS)11,12. Beyond SNPs and
INDELs, there are only a few studies on whether variable genes and
large structural variations (SVs, often > 50 bp) contribute to ecological
adaptation13. The SVs are mainly comprised of presence/absence var-
iants, inversions, translocations, and copy number variations. These
SVs may affect gene expression and sometimes can remove existing
genes and produce new genes. Some evidence suggests SVs are
important contributors to phenotypic variation13,14. However, incom-
plete detection of genomic variants may lead to weak linkage dis-
equilibrium (LD), which may have decreased the statistical power of
previous GWAS analyzes that have ultimately failed to identify the
major genetic loci underlying ecological phenotypes15,16. Assembling
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high-quality de novo genomes of multiple ecotypes7,17 and conducting
pan-genome analyzes18,19 of these genomes could reveal SVs and cap-
ture previously missing heritability16. In addition, a graph-based pan-
genome assembly can efficiently integrate genetic variants of all de
novo genomes and identify the major SVs underlying diverse
phenotypes20–22.

In this study, we assemble 32 high-quality genomes of repre-
sentative A. thaliana ecotypes from across their respective distribu-
tions using PacBio-HiFi long-read sequencing. While some A. thaliana
ecotypes may be paraphyletic in origin, most of the Eurasian ecotypes
likely originate from one recent monophyletic expansion23. The
32 select ecotypes include six distinctly districted relict ecotypes, one
from the Qinghai-Tibet Plateau of western China, one from Italy, and
four from Morocco23. The other 26 ecotypes are selected from the
monophyletic Eurasian postglacial expansion lines8 (Supplementary
Table 1). These ecotypes covermostmajor clades and subclades of the
1135 global A. thaliana accessions and are representative of the diverse
habitats occupied by A. thaliana8. We recover highly variable genes
between ecotypes and also many SVs that are involved in the local
adaptation of each ecotype. Our study provides a set of high-quality
genetic resources that improve our understanding of the genomic
diversity and evolution underlying the ecological adaptation of A.
thaliana. Additionally, we provide functional tests to confirm the role
of SVs and variable genes in the formation of special ecological
phenotypes.

Results
Chromosome-level genome assemblies and annotation of 32
ecotypes
In order to obtain the genome diversity across different A. thaliana
ecotypes, we selected 32 representative ecotypes from Europe, Asia,
Africa, and North America (including 6 relict ecotypes) for de novo
genome assemblies (Fig. 1a and Supplementary Table 1). We generated
2.18 − 8.28Gb (approximately 15-60 X) high-fidelity (HiFi) reads for the
32 ecotypes (Supplementary Table 2) which we then assembled into
contigs using hifiasm and anchored onto the five chromosomes using
RagTag with the recently published Col-PEK T2T genome as a
reference6. We produced and downloaded RNA data for these eco-
types (Supplementary Tables 3 and 4) and estimated genome size for
the Col-0 ecotype (Supplementary Fig. 1 and Supplementary Table 5).
The final assembly sizes ranged from 129.4 to 144.9Mb with contig
N50 sizes of 5.91 − 20.3Mb (Supplementary Table 6). The complete-
ness of assemblies was evaluated by Benchmarking Universal Single-
CopyOrthologs (BUSCO)24, with completeness scores of 99.0 to 99.3%
(single-copy and duplicated) in the chromosome-scale assemblies
(Supplementary Fig. 2 and Supplementary Table 6). The evaluations
indicated high contiguity and high completeness of the 32 A. thaliana
genome assemblies.

Combined with transcriptome-based, ab initio, homologous-
protein-based prediction, and gene lift-over using the Araport11 gene
annotation file25, we predicted 27,239 to 28,735 protein-coding genes
in the 32 assembled genomes (Supplementary Table 7). Between 481
and 5189 genes were found to have structural differences between
ecotype genomes relative to the Araport11 reference, with the differ-
ences between relict ecotypes and the Araport11 reference being sig-
nificantly greater than those between non-relict ecotypes and the
reference (Supplementary Fig. 3, 4 and Supplementary Table 8). The
completeness of the gene annotations was also evaluated using
BUSCO, resulting in completeness scores ranging from98.9% to 99.7%,
suggesting high gene annotation quality (Supplementary Fig. 5 and
Supplementary Table 7). Throughout the ecotype genomes, approxi-
mately 92.6% to 94.2% of the genes were functionally annotated
through at least one database in eggnog26 (Supplementary Table 7).

To infer the evolutionary relationships of the 32 genomes, we
clustered the annotatedgenes into gene familieswith the sister species

A. lyrata as an outgroup. We selected 17,183 single-copy gene families
among these 33 genomes to construct a maximum likelihood phylo-
geny. The non-relict ecotypes clustered into one monophyletic clade.
However, the relict ecotypes were paraphyletic with the Tibet-0 eco-
type, which was basal to all other ecotypes (Fig. 1b).

Pan-genome analyzes
We constructed a gene-family-based pan-genome of the 32 ecotypes
by clustering 887,723 genes into 31,318 pan-gene clusters (including
2072 clusters with only one gene) using OrthoFinder with the Markov
clustering algorithm. Pan-genome size increased with the number of
genomes and approached a plateau (newly added gene clusters
number increased by less than 1%with additional added genomes) as n
approached 26 (Fig. 1c). Based on the frequency of occurrence of gene
clusters in each genome, we classified gene clusters into four cate-
gories: 21,545 (68.8%) gene clusters were present in all 32 ecotype
genomes and were defined as core gene clusters; 3743 (12.0%) gene
clusters appeared in 26 to 31 ecotype genomes and were defined as
softcore gene clusters; 3929 (12.6%) gene clusters were found only in 2
to 25 genomes were defined as dispensable gene clusters; and 2101
(6.7%) gene clusters were found only in a single ecotype and were
defined as private gene clusters (Fig. 1d).

Gene ontology (GO) term enrichment analysis revealed that the
core genes were enriched in basic, critical functions such as flower
development, RNA binding, transcription regulation, transport, and
cellular homeostasis, which suggests that the core genes are mainly
involved in maintaining the basic activities of A. thaliana (Fig. 1e).
Variable genes (including softcore, dispensable and private genes)
were enriched in secondary metabolic processes, cell differentiation,
and responses to stresses (Fig. 1f). Private genes were significantly
enriched in response to multiple types of stressors such as endogen-
ous stimuli and light stimuli (Supplementary Fig. 6). Further investi-
gationof the associations between the variable genes in the 32 ecotype
genomes and the 19 BIOCLIM environmental variables27 revealed that
mean diurnal range (BIO2) and temperature annual range (BIO7) were
significantly associated with the presence/absence of variable genes
(Supplementary Fig. 7 and Supplementary Table 9). Functional
enrichment analysis of 215 variable gene families significantly asso-
ciatedwith BIO2 and BIO7 showed that these genes were also enriched
in response to different types of stress (Supplementary Fig. 8). These
results suggest that the variable genes are likely associated with
adaptation to ecotype-specific local environments.

Gene expression analysis showed that the variable genes had
lower expression levels than the core genes. In addition, the non-
synonymous/synonymous substitution ratio (Ka/Ks) analysis indicated
that variable genes had higher pairwise Ka/Ks values than the core
genes (Fig. 1g, h). These results suggest that the function of core genes
is relatively conserved across ecotypes, while variable genes evolve
more rapidly to obtain new functions or adapt to the new environ-
ment, or the difference in Ka/Ks could simply be relaxed selection on
non-core genes.

The transposable elements (TEs) landscape of 32A. thaliana
genomes
We constructed a pan-TE library for the 32A. thaliana genomes using
Repbase and EDTA de novo TE annotation and obtained 780 non-
redundant TE families (Supplementary Table 10). Then, we annotated
TEs in each genome using RepeatMasker and the constructed pan-TE
library. The annotation classified the 780 TE families into three cate-
gories based on their frequency of occurrence in each genome: core
TEs (present in all 32 genomes), variable TEs (present in6-31 genomes),
and rare TEs (present in 1-5 genomes) (Fig. 2a). In all TE families, DNA
transposons (26% of TEs) and long terminal repeat-retrotransposons
(LTRs; 62% of TEs) accounted for the majority of TEs. In addition,
variable TEs were mainly of the LTR type (Fig. 2b, c).
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The TE content also varied between ecotypes, which ranged from
20.34% to 26.44% of each genome (Supplementary Table 6). This
variable content among genomes led to differences in genome size
among ecotypes (Fig. 2d and Supplementary Fig. 9). Among all TE
categories, LTRs and DNA transposons (such as terminal inverted
repeats; TIR) were the two most abundant categories across genomes
(Fig. 2e). Furthermore, we identified the intact LTRs across ecotypes
(Supplementary Table 11) and estimated their insertion times. We
found that most of the intact LTRs across genomes expanded within
the last one million years, though numerous LTRs in non-relict eco-
types originated more recently (Fig. 2f and Supplementary Fig. 10).
This may have led to the emergence of new LTR families and the var-
iance of LTR families between relict and non-relict ecotypes.

To evaluate the effect of TE insertion on gene expression, we
compared the gene expression levels of genes with and without TE
insertion (TE overlapping with gene region). Genes with inserted TEs
displayed lower expression levels (Fig. 2g). GO enrichment analysis
showed that the TE-inserted genes were mainly enriched in cell−cell
signaling, lipid metabolic processes, and response to stressors,
including biotic and external stimuli (Supplementary Fig. 11). For
example, CCR1 (AT1G15950) encodes a cinnamoyl CoA reductase
involved in lignin biosynthesis and cell proliferation in leaves. The ccr1
mutants exhibit increased ferulic acid (FeA) content, which has anti-
oxidant activity and reduces the levels of reactive oxygen species
(ROS) in plants28. Across 32 ecotypes, we found a specific DNA/MULE-
MuDR insertion that occurred in the intron region of CCR1 in only two
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Fig. 1 | Pan-genome of 32A. thaliana ecotypes. a Geographic distribution of
32 selected ecotypes of A. thaliana. The red circles represent non-relict ecotypes
while the blue circles represent relict ecotypes.bPhylogenetic tree of 32A. thaliana
ecotypes withA. lyrata as the outgroup. Bootstrap values (%) are displayed on each
branch. The red branches represent non-relict ecotypes while the blue branches
represent relict ecotypes. c Pan-genome and core genome size simulated by gene
cluster number and pan-genome composition. The upper and lower edges of the
boxes represent the 75% and 25% quartiles, respectively, while the central line
denotes the median, and the whiskers extend to 1.5× the inter-quartile range (IQR).
The sample sizewas set to 1000and the sample repeat was set to 30.dNumber and
percentage of core, softcore, dispensable, and private gene clusters. e Bubble chart

of gene ontology (GO) enrichment analysis for core genes. Significance was tested
by two tailed Fisher’s exact test method. f Bubble chart for the GO enrichment
analysis of variable genes. Significance was tested by two tailed Fisher’s exact test
method. g Expression levels of genes belonging to core (n = 709,766), softcore
(n = 125,555), and dispensable (n = 50,237) gene families. h Pairwise nonsynon-
ymous/synonymous substitution ratios (Ka/Ks) within core (n = 709,766), softcore
(n = 125,555), and dispensable (n = 50,237) genes. The upper and lower edges of the
boxes represent the 75% and 25%quartiles, the central line denotes themedian, and
the whiskers extend to 1.5× IQR in g and h. Source data are provided as a Source
Data file.
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relict ecotypes (Tibet-0 and Meh-0). This insertion reduced the
expression of CCR1, which was confirmed using in vivo dual-luciferase
(Dual-LUC) activity assays (Fig. 2h–j and Supplementary Fig. 12). Both
ecotypes with this insertionmutation occur in arid habitats23,29, andwe
speculate that reduced CCR1 expression may have promoted the
adaptation of both ecotypes to arid habitats through increasing anti-
oxidant activity while reducing ROS.

We also studied the types and locations of TEs inserted around
genes and their influence on gene expression. TEs tended to be
inserted into variable genes (33.26%, 2561/7701), while the proportion
of TE insertions in core genes were comparatively smaller (15.28%,
3292/21545). DNA transposons were the most frequent type of TE
insertion, followed by the LTR type. Among genes with putative
functional enrichments for habitat adaptation, TEs were more likely to
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insert into the upstream regions of the genes (Supplementary Figs. 11
and 13). The expression level of genes with TE insertion decreased the
most when the insertion was in the coding sequence (CDS) region, and
among TE types, the LTR type had the greatest impact on gene
expression (Supplementary Figs. 14 and 15).

The observed bias in the distribution of TE insertions may be
attributed to two possible reasons: 1) The initial TE insertions may be
random, and their retentions are selecteddue to the regulation of gene
expression with positive adaptive roles. 2) The targeting of TEs could
be influenced by specific chromatin signatures. For example, a pre-
viously published study demonstrated that the histone variant H2A.Z
has a crucial role in the preferential integration of Ty1/Copia retro-
transposons into environmentally responsive genes, while avoiding
essential genes30. These two hypotheses may jointly and non-
exclusively affect the distribution of TE insertions in A. thaliana. In
addition, the type and location preference of TE insertions may be
related to the differential expression of genes in different ecotypes,
which further promotes adaptation to different environments.

Graph-based pan-genome and structural variations (SVs)
identification
To identify structural variations across 32 ecotypes, we constructed a
graph pan-genome by integrating variants from the Minimap2 align-
ment with Col-0 as the reference (Supplementary Fig. 16). The graph
pan-genome comprised a total of 243.27Mb with 468,168 nodes (the
number of fragments of sequences) and 649,692 edges (the connec-
tions between nodes). Among them, 203,747 non-reference nodes
were identified, accounting for 108.90Mb of the map genome. The
new sequences in each ecotype compared with the Col-0 reference
genomevaried from56.58Kb to 8.45Mbandhad 174 to 49,675 specific
edges to connect them to the reference nodes (Supplementary
Table 12). On average, each node spanned 0.52 Kb and was connected
by 1.39 edges. Based on the sequence of the graph genome, we cal-
culated the pan-genome size and core-genome size (Fig. 3a). The pan-
genome size increased with the number of genomes added.

We detected SVs in the graph-based genome using gfatools using
the bubble-popping algorithm. After filtering out all SVs less than
50 bp in length, a total of 61,322 SVs were detected in at least one
genome as compared with the reference genome (Fig. 3b and Sup-
plementary Table 13). The majority (72.96%; 44,741/61,322) of called
SVs were smaller than 500bp (Supplementary Fig. 17). SVs were fur-
ther classified into two types: biallelic (with only one non-reference
path) and multiallelic (with more than one non-reference path). The
biallelic SVs were further divided into insertion, deletion, and diver-
gent types according to the reference paths (including traditional
types of SVs: inversion (divergent), translocation (one insertion and
one deletion) and duplication (one insertion)) (Fig. 3c). Among the
biallelic SVs, the divergent type was the most abundant, with a com-
bined length of 7.51Mb, while the insertion and deletion types had
total lengths of 5.54Mb and 1.09Mb, respectively. In addition, the
multiallelic type was the largest type of the SVs (29.65Mb), which

suggests complex SVs exist between different ecotypes (Fig. 3b and
Supplementary Table 13).

Among detected SVs, more than 13,913 (22.69%) were correlated
with inserted TEs, with the biallelic-insertion type accounting for the
largest proportion of inserted TEs (57.4%) (Supplementary Table 13).
Most SVs with inserted TEs were larger than 500 bp (60.2%, 8376/
13,913), accounting for 50.52%of all SVs above 500bp. In contrast, only
12.38%of SVs below 500bp hadTE insertions. This result suggests that
large SVs likely resulted fromTE transposition. In addition, the number
of SVs was larger in relict ecotypes, and the relict ecotypes had a larger
number of specific SVs than the non-relict ecotypes derived from
postglacial expansion, suggesting distinct differentiations (Supple-
mentary Fig. 18 and Supplementary Table 14). The Tibet-0 ecotype had
the largest number of specific SVs across all analyzed ecotypes. How-
ever, SVs in non-relict ecotypes had larger TE insertion proportions,
which may be related to the more recent TE expansion mentioned
above (Supplementary Table 14).

We next found the intersection of genes annotated in the Col-0
reference genome with the SV regions. We found 7% to 48% of genes
and their promoter region (2 Kb upstream from the transcription start
site (TSS)) are affected by four types of SVs (including 3415 out of 7701
(44.34 %) of variable gene families mentioned above) and the expres-
sion levels of these SV-overlapped genes were significantly decreased
compared to those without SVs (Fig. 3d, e and Supplementary
Table 13). SVs were more likely to occur in the gene flanking region,
and biallelic-divergent SVs affected the largest number of genes
(Supplementary Table 15). In addition, the expression level of genes
with SVs overlapping the CDS region were significantly lower, but the
overlapping SVs type had little effect on gene expression (Supple-
mentary Figs. 19, 20). Functional enrichment analysis showed that SV-
overlapped genes were mainly enriched in secondary metabolic pro-
cesses, enzyme regulator activity, and responses to diverse stressors
(Supplementary Fig. 21). In addition, GO enrichment results for genes
in SV hotspot regions (SV density in the top 5%) showed an enrichment
of genes related to catalytic activity and response to light stimuli
(Fig. 3f and Supplementary Fig. 22). Therefore, the widely distributed
variable SVs (Fig. 3f) and theiroverlappedgenesmaypartly account for
the ecological adaptation of different ecotypes across diverse habitats.

As an example of SV-overlap influencing adaptation, KNAT3
(AT5G25220) is a class II knotted1-like gene that uses BLH1 to directly
regulates ABI3 expression to modulate seed germination and early
seedling development. The knat3mutants are less sensitive to ABA or
salinity exposure during seed germination with early seedling
development31. In addition, KNAT3 was identified to promote second-
ary cell wall biosynthesis in xylem vessels together with KNAT7. The
knat3 knat7 double mutants had reduced stem tensile and flexural
strength compared with wild-type and single mutants32. Across 32
ecotypes, we revealed an SV in the promoter region of KNAT3 specific
to the relict Tibet-0 ecotype sampled in the high-altitudeQinghai-Tibet
Plateau (Fig. 3g, h and Supplementary Fig. 23). The KNAT3 gene
expression level in Tibet-0 was significantly increased compared with

Fig. 2 | Repetitive sequences of 32 de novo genomes. a Number and percentage
of core, variable, and rare transposable element (TE) families. b Classification of
780pan-TE families. cDistributionof TE types in core, variable, and rareTE families.
d TE length identified in different A. thaliana genomes. e Composition of different
TE types in A. thaliana genomes. Blue rectangles display relict ecotypes while red
rectangles display non-relict ecotypes. f Comparison of peak intact long terminal
repeat-retrotransposons (LTR) insertion times of relict ecotypes (n = 6) and non-
relict (n = 26) ecotypes. Significance was determined using a two tailed Wilcoxon
test with p = 2.2e-3 < 0.05. g Comparison of the expression levels between genes
with (n = 97,922) and without (n = 789,801) TE insertion. Significance was deter-
mined using a two tailed Wilcoxon test with p =0 <0.05. The upper and lower
edges of the boxes represent the 75% and 25% quartiles, the central line denotes the
median, and the whiskers extend to 1.5× inter-quartile range (IQR), and the outliers

are removed in (f) and (g). h The two haplotypes of CCR1 are determined by the
presence or absence of DNA/MULE-MuDR insertion (red bar) in the fourth intron.
HiFi and RNA-seq read mapping supports the gene structure annotation. i The
distributions of the twoCCR1 haplotypes in relict and non-relict ecotypes. jRelative
CCR1 mRNA levels assessed by quantitative RT-PCR. Data are mean± SD from
independent biological replicates (n = 3). Significance was determined using a two
tailed t-test with p = 6.1e-5 < 0.05. k Schematic diagram of reporters of transient
dual-luciferase assay. l Transient dual-luciferase assay in N. benthamiana. LUC:
Firefly Luciferase; REN: Renilla Luciferase; NOS: NOS terminator. Data are mean ±
SD from independent biological replicates (n = 3). Significance was determined
using a two tailed t-test with p = 8.0e-3 < 0.05. Source data are provided as a Source
Data file.
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other ecotypes without this insertion, and in vivo Dual-LUC activity
assays also confirmed this expression effects because of the 566 bp TE
insertion (Fig. 3i–k). The expression level of KNAT3 was regulated by
light as its promoter responded differently to red and far-red light33.
Therefore, the inserted SV in the KNAT3 promoter with increased
expression level in Tibet-0may play an important role in its adaptation
to the strong light radiation of the high-altitude region.

This expression difference because of the biallelic SVs was also
confirmed for two other genes, WH1 (AT1G54260) and HPCA1
(AT5G49760). A 180 bp insertion was identified in the promoter region
of the WH1 gene, which was predominantly present in the relict eco-
types comparedwith the others (Fig. 4a, b and Supplementary Fig. 24).
This insertion was found to be associated with the reduced transcrip-
tional expression ofWH1 and increased resistance to UVB stress in one
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variant (Hap1), for example, the relict high-altitude Tibet-0 ecotype
(Fig. 4c–g). Furthermore, we found a specific 332 bpTE insertion in the
promoter region of HPCA1 in the Tibet-0 ecotype (Fig. 5a, b and Sup-
plementary Fig. 25). This insertion was found to be associated with
increased transcriptional expression of HPCA1, which enhanced the
resistanceof this ecotype to the drought stress in the high-altitude arid
habitat (Fig. 5c–g). These functional tests suggest that the biallelic SVs
play an important role in the local adaptation ofA. thaliana to different
ecoregions.

Structural variants supplement a proportion of the missing
heritability and were associated with the variation of multiple
adaptive traits
To evaluate the power of the graph-based pan-genome in dissecting
the genetic basis of adaptive traits, we detected 67,053 SVs in 1135
ecotypes by mapping Illumina short reads to our graph pan-genome.
After quality control for missing rate and minor allele frequency,
20,326 SVs in 1073 ecotypes were identified as non-randomly dis-
tributed across the five chromosomes (Fig. 6a) and were kept for

Fig. 3 | Characterization of the graph genome across 32 de novo genomes of A.
thaliana. a The graph pan-genome size changes with the increase in number of
genome assemblies. b The bar chart shows the number (red) and length (blue) of
each type of structural variation (SV) separately. c Schematic illustration of diverse
SV types from the graph pan-genome based on the reference genome Col-0. d The
pie chart shows the number of genes affected by SV as a proportion of the overall
number of genes. e Expression levels of SV-overlapped genes (n = 18,883) and non-
SV-overlapped (n = 9852) genes. The upper and lower edges of the boxes represent
the 75% and 25% quartiles, the central line denotes the median, and the whiskers
extend to 1.5× the inter-quartile range (IQR). Significance was determined using a
two tailed Wilcoxon test with p = 2.261196e-28 < 0.05. f SV density along each
chromosomebasedonCol-0 genomeassembly: (50Kbslidingwindowswith a step-
size of 20 Kb in blue). Gray rectangles: centromeres. The dashed red lines indicate

thresholds for SV density values of in the top 5%. g Two haplotypes of KNAT3 are
determined by the presence or absence of DNA/Helitron insertion (red bar) in the
promoter region. HiFi and RNA-seq read mapping supports the gene structure
annotation. TSS: transcription start site. h The distributions of the two haplotypes
ofKNAT3 in relict andnon-relict ecotypes. iRelativeKNAT3mRNA levels as assessed
by quantitative RT-PCR. Data aremean± SD from independent biological replicates
(n = 3). Significance was determined using a two tailed t-test with p =0.0158 < 0.05.
j Schematic diagram of reporters of transient dual-luciferase assay. k Transient
dual-luciferase assay in N. benthamiana. LUC: Firefly Luciferase; REN: Renilla Luci-
ferase; NOS: NOS terminator. Data are mean ± SD from independent biological
replicates (n = 3). The letters ‘a’ and ‘b’ indicate statistically significant differences
by one-way ANOVADuncan’s test (p =0.001926 and 0.006574 < 0.05). Source data
are provided as a Source Data file.
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Fig. 4 | A 180bp insertion of the WH1 promoter in Hap1 contributes to its low
transcriptional expression and resistance to UVB stress. a Two haplotypes of
WH1 are determined by the presence or absence of 180 bp insertion (red bar) in the
promoter region. TSS: transcription start site. b The distributions of the two hap-
lotypes of WH1 in relict and non-relict ecotypes. c WH1 negatively regulates UVB
resistance.d Survival rateswere collected after 4 days recovery. Data aremean ± SD
from independent biological replicates (n = 3), and two tailed t-test was used for
significance statistics. eThe relativemRNA level ofWH1 in twohaplotypes. Data are
mean ± SD from independent biological replicates (n = 3), and two tailed t-test was

used for significance statistics. f Schematic diagram of reporters of transient dual-
luciferase assay. LUC: Firefly Luciferase; REN: Renilla Luciferase; NOS: NOS termi-
nator. WH1 promoter fragments (1550 bp) were cloned from Yilong-0 (Hap0) or
Tibet-0 (Hap1) genomic DNA. g Transient dual-luciferase assay in N. benthamiana.
Data are mean ± SD from independent biological replicates (n = 3). The letters ‘a’
and ‘b’ indicate statistically significant differences by one-wayANOVADuncan’s test
(p =0.0074, 0.0030, 0.0107, and 0.0042 < 0.05). Source data are provided as a
Source Data file.
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downstream analysis. Among these SVs, only 3369 (16.57%) were tag-
ged by SNPs (linkage disequilibrium, LD >0.6, Fig. 6b). To evaluate the
role of SVs in the variation of adaptive traits, we estimated their con-
tribution to the variation of 61 traits, including 21 environmental
variables (19 BIOCLIM, global UV-B radiation data34 and SRTM eleva-
tion data fromWorldClim v2.127) in their natural habitat, as well as two
flowering time measurements taken at 10 °C and 16 °C8, and 38
ionomics phenotypes35. SVs were found to explain a larger proportion
of phenotypic variance for 48 (78.69%) of the analyzed traits,
explaining a mean of 57.98% of the phenotypic variations (Fig. 6c and
Supplementary Data 1). This is 1.18% more than the proportion of
variation explained by SNPs and 0.26% less than that what is explained
jointly by SVs and SNPs, indicating that SVs are an important con-
tributor of variation in adaptive traits.

Out of the 61 analyzed variables, flowing time measured at 10 °C
and 11 ionomics phenotypes showed significant associations in SV-
GWAS analyzes that were not detected in SNP-GWAS analysis (Sup-
plementary Figs. 26–36 and Supplementary Data 2). For example, two
SV peaks, one at chromosome 1:4,137,790bp and a second one at
chromosome 5:8,021,689 bp, were associated with the variation of
flowering time measured at 10 °C (Fig. 6d). The first SV was a 77
( + / + )/85 (-/-) bp divergent sequence, where the +/+ genotype
increased the flowering time by 3.17 ± 0.53 days (p = 2.17 × 10−11). The
second SV peak was a 7190bp insertion, where the +/+ genotype
decreased the flowering time by 2.75 ± 0.52 days (p = 8.37 × 10−7)
(Fig. 6e). No association signalswere present in SNP-GWAS around this

SV, though this may be due to a low LD with surrounding SNPs
(Fig. 6d). Taking these results together, the highproportionof variance
explained by SVs and the detection of SV associations with environ-
mental conditions highlighted the value of SV in determining the
genetic basis of adaptive trait evolution.

Discussion
In this study, we assembled high-quality genome sequences of 32
ecotypes in A. thaliana. Our phylogenomic analyzes of these ecotypes
supported the previous hypothesis that A. thaliana experienced a
postglacial expansion that produced many humid ecotypes across
Eurasia and North America7,23. These ecotypes comprise a mono-
phyletic lineage despite their widespread distributions. However, six
paraphyletic, disjunct relict ecotypes were also analyzed, occurring in
Europe, Africa, and Asia. Interestingly, the Tibet-0 ecotype was infer-
red to be the earliest-diverged and a sister to the other ecotypes
(Fig. 1b). This phylogenomic and phylogeographic pattern suggests
that A. thaliana may have expanded its distribution from Europe at
least twice. The first expansion may have extended to the Qinghai-
Tibet Plateau, where a relict ecotype is retained to the present day.
Because of the strong selection pressures from this harsh alpine
environment, this ecotype may have accumulated many specific
mutations that caused it to be clustered as the earliest divergent
ecotype in this analysis.

In addition to the 68.8 % of the pan-gene-families identified as the
core families (21,575 gene families) shared by all ecotypes, the
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f Schematic diagram of reporters of transient dual-luciferase assay. LUC: Firefly
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remaining 9773 gene families (the softcore, dispensable, and private
types) vary greatly between ecotypes (Fig. 1d). These variable gene
families are functionally enriched in stress responses and associated
with climate variables. These findings suggest that gene repertoire
varies greatly between ecotypes and gene birth and loss in each eco-
type provide a likely basis for local adaptation. In addition, the core
genes have lower Ka/Ks ratios than the variable genes across ecotypes
(Fig. 1h) and tend to evolve under strong purifying selection13,36.

A totalof 61,322 SVs that overlapwith 18,883geneswere identified
to vary between ecotypes (Fig. 3b and Supplementary Table 13). These
SVs may affect expression levels of the overlapped genes (Figs. 3e, i
and 4e, l). It should be noted thatmore than 50% of the identified large
SVs (> 500 bp) arise from the inserted TEs. Therefore, it is highly likely
that jumping TEs initially created variable SVs that removed essential
parts of genes, causing a reduction of function that resulted in the
polymorphic repertoire and variable gene number between ecotypes.
These genetic changes likely played an important role in the under-
lying local adaptation of A. thaliana to varied habitats.

Using SVs called from 1135 re-sequenced ecotypes from the A.
thaliana 1001 Genome Project8 and two additional ecotypes, Tibet-0
and Yilong-0, we compared the amount of phenotypic variance
explained by SVs and SNPs and found that SVs are an important source
of phenotypic variation in addition to SNPs37. SVs supplement a pro-
portion of heritability and are associated with the variation in multiple
adaptive traits, highlighting their potential contribution to missing
heritability and local adaptation16. Our assembled genomes, gene
annotations, and SVs thus provide valuable resources for system-
atically exploring the genetic basis underlying how SVs and the dele-
tion and insertion of entire genes contribute to variation in ecological
phenotypes and ecological adaptation.

Methods
Sample selection and sequencing
We selected 32 representative ecotypes of A. thaliana distributed
throughout different continents, including 6 relict ecotypes, 20 of
which had publicly available genome resequencing data from the A.
thaliana 1001 Genome Project8 (Supplementary Table 1). Seeds of the
32 ecotypeswere sowed in a greenhouseatSichuanUniversity until the
seeds germinated. Then, fresh leaves were collected and stored at −80
°C to construct HiFi SMRTbell libraries. The 15 Kb libraries were pre-
pared using the SMRTbell Express Template Prep Kit 2.0 (Pacific
Biosciences, CA, USA) following the manufacturer’s instructions and
sequencedon thePacBio Sequel II platform(PacificBiosciences,Menlo
Park, CA, USA). We used the PacBio SMRT-Analysis package (https://
www.pacb.com) for quality control of the raw polymerase reads and
generated the HiFi reads using SMRTLink 9.0 software with para-
meters --min-passes=3 --min-rq=0.99. The final yield HiFi data of 32
ecotypes ranged from 2.18 Gb to 8.28Gb, with coverage of around 15
to 60 X of the A. thaliana genome (Supplementary Table 2) based on
the k-mer estimate of Col-0 genome size 137.70Mb as reference
(Supplementary Fig. 1 and Supplementary Table 5).

The total RNA of 11A. thaliana ecotypes were extracted from the
leaf tissues for the library construction. These libraries were subse-
quently sequenced on the Illumina HiSeq X Ten platform, which pro-
duced around 6Gb of data for each sample (Supplementary Table 3).
For whole genome resequencing of Tibet-0 and Yilong-0, paired-end
libraries were also constructed and sequenced on the Illumina HiSeq X
Ten platform (Supplementary Table 3). RNA-seq data of the other 26
ecotypes were downloaded from the NCBI SRA database under Bio-
Project PRJNA18792838, PRJEB15161, and PRJNA31990439 (Supplemen-
tary Table 4).
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Fig. 6 | Contribution of structural variants (SVs) to environmental adaptation.
a Genomic distribution of SV from a population of 1,071 worldwide A. thaliana
accessions from the 1001 Genomes Project (https://1001genomes.org/) and two
additional ecotypes, Tibet-0 and Yilong-0. b Number of SVs (y-axis) tagged by
SNPs at a different linkage disequilibrium (LD) cut-off (x-axis). c Distribution of
the proportion of variance (PVE) explained by SNP, SV, and all variants (SV + SNP).
d Top: Manhattan plot of SV-GWAS (orange) and SNP-GWAS (blue) for flowering
time measured at 10 °C under greenhouse conditions. The dashed black lines are
genome-wide significance thresholds for SNP-GWAS (upper, 5.80) and SV-GWAS
(lower, 4.17). Middle: Zoomed in genomic regions where SV-GWAS detects unique

associations, SV Chr1:4,137,790 and SV Chr5:8,021,689. The diamonds represent
the leading variants, and the colors of surrounding variants were highlighted
using their LD with corresponding leading variants. Bottom: LD heatmaps of the
associated regions. Significance was tested by a standard linear mixed model.
e Boxplot illustrating the genotype and phenotype map at two SVs associated
with flower time (FT) (SV:1:4137790 -/-: n = 256; +/+: n = 630; SV:5:8021689 -/-:
n = 327; +/+: n = 559;) The upper and lower edges of the boxes represent the 75%
and 25% quartiles, the central line denotes themedian, and the whiskers extend to
1.5× the inter-quartile range (IQR). Significance was tested by a standard linear
mixed model. Source data are provided as a Source Data file.
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De novo genome assembly of 32 ecotypes
Thegenome size, heterozygosity, and repeat ratioof the referenceCol-
0 genome were estimated based on a 17-bp k-mer frequency analysis
byGenomeScope v2.040with parameter ‘-k 17’ and Jellyfish v2.2.941 with
parameter ‘-m 17 --min-quality=20 --quality-start=33’ using NGS data
download from CRA0045385 in CNCB database. Genomes of the
32 sequenced ecotypes were assembled by hifiasm v 0.1842 using CCS
reads, with parameters ‘-l0’ to disable duplication purging, which may
introducemisassemblies if a species has low heterozygosity. There are
two outputs of raw hifiasm assemblies: the primary assembly (p_ctg)
and the alternate assembly (a_ctg), we selected p_ctg for further
assembly and downstream analyzes. In order to construct 5 pseudo-
chromosomes of each A. thaliana ecotype, we used RagTag v 2.1.043 to
scaffold the contigs based on the recently published telomere-to-
telomere (T2T) genome assembly Col-PEK6. The completeness of each
assembly was estimated using the embryophyta_odb10 database by
BenchmarkingUniversal Single-CopyOrthologs (BUSCO) v.5.0.224 with
default parameters.

Identification and annotation of repetitive elements
To structurally annotate transposable elements (TEs) in the 32
assembled genomes, we used the Extensive De-Novo TE Annotator
(EDTA) v.2.1.044 with parameter ‘--species others --sensitive 1 --step all
--anno 1 --u 7e-9’ to generate the non-redundant de novo TE libraries
and annotated the intact long terminal repeat retrotransposons (LTRs)
for each ecotype. The insertion time of each intact LTR was also pro-
vided by the software. The generated TE libraries and Arabidopsis
repeats in RepBase were further passed into pan-EDTA45 to generate
the pan-TE library. Repeat regions of the 32 genomes were then re-
maskedbyRepeatMasker v 4.1.2-p146 with default parameters using the
pan-TE library. For overlapping repeats, the overlapped regions were
split in the middle. To estimate the repetitive elements continuity of
each assembly, the LTR assembly index (LAI) was calculated by
LTR_retriever v 2.847 using intact LTR datasets.

Prediction of protein-coding genes
In order to obtain high-quality gene structure annotation of each
ecotype, we combined three methods: ab initio, protein homology,
and transcriptome-based annotation. Firstly,we alignedRNA-seq reads
to each genome using HISAT2 v 2.1.148 with parameter ‘--dta’ and
assembled transcripts using StringTie v 2.1.449 with parameter ‘--rf’. The
assembled transcripts were then passed to PASA v.2.3.350 after filtering
by seqclean to generate Open Reading Frames (ORFs). The predicted
complete, multi-exon genes models then had redundant high identity
removed (with an all-to-all identity cut off of 70%) and were subse-
quently and sent to train the Hidden Markov Model for AUGUSTUS v
3.2.351. In order to further support gene annotation by AUGUSTUS, we
also used bam2hints from AUGUSTUS to generate an intron hints file
based on a bam file generated by HISAT2. We used this hints file to
carry out ab initio gene prediction by AUGUSTUS using default para-
meters. For homologous protein prediction, protein sequences of
Araport1125 were downloaded from TAIR (https://www.arabidopsis.
org/) and aligned against each genome using TBLASTN52 with para-
meters ‘-e 1e-5’. After filtering low-quality results, the gene structure
was predicted using GeneWise v 2.4.153. The results of PASA, AUGUS-
TUS, and GeneWise were combined using EvidenceModeler v 1.1.150 to
generate a combined protein-coding gene set. After merging, we fil-
tered out incomplete gene models and gene models overlapping with
repeats if the overlap ratio of CDS region were more than 80%. For
genes with CDS lengths less than 150 bp or less than 750bp and 3 CDS,
we used the Pfam database for validation. If no alignment result was
obtained or the alignment coverage was less than 25%, the genemodel
was filtered out.

As for the model plant, gene numbers starting with ATXG are
widely used in A. thaliana. In order to minimize the difference from

previous gene annotations, weuse Liftoff v 1.6.354 tomap the Araport11
gene annotation onto each genomewith parameter ‘-exclude_partial -a
0.9 -s 0.9 -polish’ and replaced our gene annotation which overlaps
with the Araport11 gene (valid_ORF=True). The final gene set was
named such as col_AT1G01010 (mapped by Araport11) and col00072
(unmapped or newly annotated). The longest transcript of each pre-
dicated gene model was considered as the representative for further
analysis. The completeness of gene annotations was also estimated by
BUSCO using the embryophyta_odb10 database with default
parameters.

For gene functional annotation, eggNOG-mapper v226 was applied
to obtain seed ortholog and functional description, Gene Ontology
(GO) numbers, Enzyme Commission nomenclature (EC) numbers,
Kyoto Encyclopedia of Genes and Genomes (KEGG) numbers, PFAM
numbers and so on.

Phylogenetic analysis
In order to construct phylogenetic relationships among 32 ecotypes of
A. thaliana, protein sequences from A. lyrata were downloaded from
Phytozome v1355 and used as an outgroup. Then we did an all-to-all
blastp with peptide sequences of protein-coding genes annotated
from these 33 genomes by NCBI BLAST v 2.2.30 + 52 with cut-off e-
values of 1e-5 and then input the results into OrthoFinder56 for gene
clustering with parameter ‘-I 1.5’. The single-copy orthologous genes
were further extracted from OrthoFinder results, protein sequences
were aligned by MAFFT v 7.49057 and conserved sites from multiple
sequence alignment were extracted by Gblocks v 0.91b58. The phylo-
genetic tree was constructed by IQ-TREE v 2.0.359 with parameter ‘-m
MFP -B 1000 --bnni’ to automatically find the best model and perform
1000 ultrafast bootstrap analyzes to test the robustness of each
branch.

Construction of the protein-coding gene-based pan-genome
We did an all-to-all blastp with protein sequences of the 32A. thaliana
ecotypes with parameter ‘-e 1e-5’ and input the result file into Ortho-
Finder for gene family construction by setting the inflation factor to
1.5. Finally, we obtained 31,317 non-redundant gene clusters. We then
classified those clusters into 4 categories: core gene clusters that were
conserved in all 32 ecotypes; soft-core gene clusters, which were pre-
sent in 26–31 ecotypes; dispensable gene clusters, whichwere found in
2–25 genomes; and private gene clusters, which contained genes from
only 1 sample (including unassigned genes). The longest encoded
protein was chosen to represent each gene. In order to further simu-
late the number of protein-coding genes in the pan-genome and core
genome, we used PanGP v 1.0.160 with a completely random algorithm
setting sample size to 1000 and sample repeat to 30 based on the
OrthoFinder results.

Identification of environment-associated variable gene families
Environmental data from 1970 to 2000 for the 19 BIOCLIM variables
was downloaded from WorldClim v2.1 (www.worldclim.org)27 with a
spatial resolution of 30 seconds (~1 km2). Principal component analysis
(PCA) of 32A. thaliana ecotypes based on variable gene families was
performed by function rda() in the R package vegan61. Multiple
regression of 19 BIOCLIM variables on selected ordination axes was
performed by function env.fit() in the R package vegan with sig-
nificance determined using 99,999 permutations. Variable gene
families which were significantly associated with BIOCLIM variables
were further identified by logistic modeling using the glm() function
with parameter ‘family = “binomial”’.

Gene expression analysis
We first removed the adaptor sequences and discarded the low-
quality reads using Trimmomatic v 0.3862 with parameter values
‘SE ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3
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SLIDINGWINDOW:4:15 MINLEN:36 TOPHRED33’ for single-end RNA-
seq reads and ‘PE ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15MINLEN:36TOPHRED33’ for paired-
endRNA-seq reads. Then the clean readsweremapped to the reference
genomes using HISAT2. The expression levels of each gene were cal-
culated in FPKM (fragments per kilobase of exon model per million
mapped fragments) using StringTie with the default parameters.

Ka/Ks calculation of different types of pan-genes
Non-synonymous substitution rates (Ka), synonymous substitution
rates (Ks), and Ka/Ks in core, softcore, and dispensable gene clusters
were computed using the KaKs_Calculator v 2.063 with default para-
meters. We conducted amino acid alignment for gene pairs in each
cluster first and then converted the results into the coding sequence
(CDS) alignment using PAL2NAL v 1464. The alignments were further
passed to the KaKs_Calculator to obtain Ka/Ks values.

Construction of the graph-based pan-genome and SVs calling
We used minigraph65 to construct the graph pangenome of the 32
high-quality A. thaliana genome assemblies based on sequence align-
ment using a modifiedminimap2 with the parameter ‘-cxggs’. The Col-
0 genome assembled in this study was set as the reference and the
other 31 genomes were added into the multi-assembly graph succes-
sively. The fragments differing from the reference genome are dis-
played asdifferent paths in the generatedgraphical fragment assembly
(GFA) file. If two ormore paths are connected between two fragments,
they will form bubbles.

The minigraph graph consists of chains of bubbles with the
reference sequences as the backbone. Each bubble in the graph
represents a structural variation. In order to call structural variations
based on bubbles, we used gfatools (https://github.com/lh3/gfatools)
to get the position of each variation. Extracted structural variations
were further classified into biallelic (two paths in a bubble) and mul-
tiallelic (more than two paths in a bubble) types.

To genotype the SVs in the 1135 A. thaliana individuals down-
loaded from the NCBI SRA database under BioProject PRJNA273563.
Tibet-0 and Yilong-0 were sequenced in this study. We mapped the
short reads from each individual to the graph-based pan-genome via
vg toolkit v1.40.0-88-g04775076b20 using default parameters. After
filtering individuals with a missing rate above 0.5 or minor allele fre-
quency (MAF) above 0.05 using Plink v1.90b6.766, a total of 1,073
individualswith 20,326 SVswerepassed. Then these SVswere imputed
using beagle.22Jul22.46e67.

Structural variation gene identification and verification
In order to obtain the actual chromosome position and gene region
overlap of SV in different ecotypes, we conducted a whole-genome
alignment of 32A. thaliana genomes. The 32 HiFi assembled genomes
were aligned to the Col-0 reference genome using Minimap2 v.2.1668

with default parameters; alignments lengths shorter than 1000bp
were discarded. The results show the real positions of each graph
pangenome segment in the different genomes and, in combination
with the gene annotation files, identify the SV genes in the different
ecotypes. In order to verify the corresponding relationship between SV
genes, we used MCScanX69 to perform gene collinearity analysis with
default parameters.

In order to confirm the SV genes, we mapped HiFi reads to the
genome using minimap2 to eliminate assembly errors, while the RNA-
seq reads were mapped to the genome using HISAT2 to rule out
incorrect gene structure annotations.

SNP calling
For SNP database construction, the resequencing reads of the 1135
individuals as well as Tibet-0 and Yilong-0 sequencing data were
mapped to the Col-0 reference genome in this study with the bwa-

mem2 algorithm of BWA v0.7.17-r118870 using default parameters. The
resulting BAM files were further filtered using SAMtools v1.3.171 for
non-unique and unmapped reads and Picard tools v1.87 (http://
broadinstitute.github.io/picard/) for duplication. SNP calling was car-
ried out using the Genome Analysis Toolkit (GATK) v4.272 with default
parameters. After filtering via plink with parameters ‘--geno 0.1 --maf
0.03 --mind 0.1’, a total of 2,033,562 SNPs were retained for down-
stream analysis.

Genome-wide association analysis for 61 traits
For each ecotypes, 21 environmental variables (19 BIOCLIM global UV-
B radiation data (https://www.ufz.de/gluv) and SRTM elevation data
from WorldClim v2.1 (www.worldclim.org)), two flowering time traits
measured at 10 °C and 16 °C, and 38 ionomics phenotypes (https://
ffionexplorer.nottingham.ac.uk/ionmap) were used to evaluate the
role of SVs in dissecting the genetic basis of adaptive traits. Down-
loaded phenotypes data were standardized before being subjected to
downstream analysis. We used the standard linear mixed model
implemented in GCTA73 to perform a genome-wide association analy-
sis for SVs and SNPs. The genetic variants were first filtered by
removing alleles with a frequency less than 0.05. A kinship was cal-
culated with the genome-wide marker and was used to account for
confounding with population structure.

Partitioning the phenotypic variance to SVs and SNPs
We used the following mixed linear model (1) to partition the pheno-
typic variance to SVs and SNPs.

Y =μ+Zu+e ð1Þ

Y is a vector of phenotype, e is the normally distributed residual.μ
is the population mean, and u is a random effect vector of polygenic
scores. Z is the corresponding designmatrix obtained from aCholesky
decomposition of the kinship matrix G, estimated using the genome-
widemarkers, excluding thedetectedQTLs usingGCTA73. The Zmatrix
satisfies ZZ’ =G, therefore, u ~Nð0,Iσ2

g Þ. We derived the kinship matrix
G from SV and SNP individually and estimated their heritability by
fitting a linear mixed model with the corresponding kinship as a cov-
ariance structure implemented in the R package hglm74. Variance
explained by kinship is calculated as the interclass correlation (2).

Variance explained by kinship =
σ2
g

σ2
g + σ2

e
ð2Þ

In order to estimate the joint contribution from SVs and SNPs, a
composite model with two random effects was fitted (3).

Y =μ+Z1u1 + Z2u2 + e ð3Þ

Y, μ, and e is the same as described in 1. u1 is a random effect
vector aggregating the effects from all the SNPs while u2 is a random
effect vector aggregating the effects from all the SVs. Z1 and Z2 is the
corresponding design matrix obtained by decomposing the corre-
sponding kinship matrix estimated from SNPs and SVs as described
above. Then, the proportion of variance explained by SNPs and SVs
were estimated as below:

Proportion of variance explained by SNPs =
σ2
u1

σ2
u1 + σ

2
u2 + σ2

e
ð4Þ

Proportion of variance explained by SVs =
σ2
u2

σ2
u1 + σ

2
u2 + σ2

e
ð5Þ
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RT-qPCR for the WH1, HPCA1, CCR1 and KNAT3 genes
Total RNA was isolated using the TRIzol method from Tibet-0 and
Yilong-0 seedlings. Quality and integrity of the extracted RNA were
determined using a NanoDrop 2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA) and 2% agarose gel electrophoresis. We
then used the Hifair®III 1st Strand cDNA Synthesis Kit (Yeasen Biotech
Co., Ltd, Shanghai, China) to reverse-transcribe the quantified RNA
into cDNA. Quantitative Real-time PCR of SV genes was then per-
formed with a Bio-Rad CFX384 Real-Time PCR Detection System (Bio-
Rad, USA) using Hifair UNICON Universal Blue qPCR SYBR Green
Master Mix (Yeasen Biotech Co., Ltd, Shanghai, China) and the primer
sets. Each experiment was independently performed three times. Data
were normalized to EIF4A by 2−ΔΔCT analysis. The primer sequences
used for qRT-PCR analysis are shown in Supplementary Table 16.

In vivo dual-luciferase activity assays
In vivo dual-luciferase activity assays were carried out using tender
Nicotiana benthamiana leaves and the pGreen II 0800-LUC vector
system29. Agrobacterium tumefaciens GV3101 strains harboring the
promoter variants of WH1 (WH1Tipro, WH1Yipro, WH1TiproM,
WH1YiproM), KNAT3 (proKNAT3Ti, proKNAT3Yi, proKNAT3Ti-M) or CCR1
(mini35S:LUC, SV(TE)+mini35S:LUC) were each infiltrated using a syr-
inge into separate N. benthamiana leaves at an OD600 =0.6. The
infiltrated plants were kept in the dark for 2 days and then 1 day under
normal conditions, after which measurements of Firefly Luciferase
(LUC) and Renilla Luciferase (REN) contents were taken using a Dual-
Luciferase® Reporter Assay System kit (Promega, Madison, WI, USA)
according to the manufacturer’s instructions. Three independent
experiments were performed. One-way ANOVA multiple comparisons
(Turkey’s multiple comparison test) or unpaired t test was used in the
statistical analysis. The primer sequences used are shown in Supple-
mentary Data 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data for the PacBio HiFi reads, RNA sequencing
reads, and resequencing Illumina short reads have been deposited in
the Genome Sequence Archive (GSA)75 database at the National
Genomics Data Center, Beijing Institute of Genomics, Chinese Acad-
emy of Sciences/China National Center for Bioinformation under
BioProject PRJCA012695. The genome assembly, genome annotation,
pan-TE library, graph pan-genome, gene family and gene presence/
absence matrices files have been deposited in Figshare [https://
figshare.com/articles/dataset/32_ecotypes_Arabidopsis_thaliana_
genomes_gene_annotation_pan-TE_library_graph_pan-genome_gene_
family_and_gene_presence_absence_matrices_files_/21673895]. Public
RNA-seq data were downloaded from the NCBI SRA database under
BioProject PRJNA187928, PRJEB15161, and PRJNA319904. The rese-
quencing data of a total of 1135 individuals were downloaded from
PRJNA273563. The 19 BIOCLIM and SRTM elevation data used in this
study were download from WorldClim v2.1 (www.worldclim.org). The
global UV-B radiation data was download from gIUV (https://www.ufz.
de/gluv). Source data are provided with this paper.
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