
Article https://doi.org/10.1038/s41467-023-42016-9

Single-cell allele-specific expression analysis
reveals dynamic and cell-type-specific reg-
ulatory effects

Guanghao Qi 1,2, Benjamin J. Strober 3, Joshua M. Popp1, Rebecca Keener 1,
Hongkai Ji 4 & Alexis Battle 1,5,6

Differential allele-specific expression (ASE) is a powerful tool to study context-
specific cis-regulation of gene expression. Such effects can reflect the inter-
action between genetic or epigenetic factors and a measured context or
condition. Single-cell RNA sequencing (scRNA-seq) allows themeasurement of
ASE at individual-cell resolution, but there is a lack of statistical methods to
analyze such data. We present Differential Allelic Expression using Single-Cell
data (DAESC), a powerfulmethod for differential ASE analysis using scRNA-seq
from multiple individuals, with statistical behavior confirmed through simu-
lation. DAESC accounts for non-independence between cells from the same
individual and incorporates implicit haplotype phasing. Application to data
from 105 induced pluripotent stem cell (iPSC) lines identifies 657 genes
dynamically regulated during endoderm differentiation, with enrichment for
changes in chromatin state. Application to a type-2 diabetes dataset identifies
several differentially regulated genes between patients and controls in pan-
creatic endocrine cells. DAESC is a powerfulmethod for single-cell ASE analysis
and can uncover novel insights on gene regulation.

Allele-specific expression (ASE)measures the expression of one allele of
a gene relative to the other in a diploid individual. ASE is a powerful tool
to study allelic imbalance caused by cis-regulatory genetic variation1–3

and epigenetic alterations such as imprinting4. In particular, hetero-
zygous expression quantitative trait loci (eQTLs) variants in or near a
gene can cause two alleles to be expressed at different levels1,2. Com-
pared to standard eQTL testing, ASE is less susceptible to some con-
founders, including environmental and technical conditions. In
addition, comparison of ASE across conditions (differential ASE) can
reveal context-specific cis-regulatory effects. PreviousASE studies found
that regulatory effects can vary by smoking status5, blood pressure
medication usage5, and stages of CD4+T-cell activation6, amongothers.

ASE has been extensively explored using bulk RNA sequencing,
but this cannot capture heterogeneity across cell types within a tissue.

Recently, single-cell RNA sequencing (scRNA-seq) has enabled the
quantification of ASE at the resolution of individual cells7–10 (Fig. 1a),
often acrossmultiple individuals. In this paper, we focus on identifying
genes that show differential ASE across conditions. Related methods
are only beginning to emerge, and previous approaches are currently
applicable to a limited set of scenarios due to assumptions of the
models11,12. scDALI11 uses a beta-binomialmixed-effectsmodel to detect
differential allelic imbalance across discrete cell types or continuous
cell states. Anothermethod, airpart12, partitions the data into groupsof
genes and cells with similar patterns of allelic imbalance. Airpart also
has a function for differential ASE testing based on a hierarchical
Bayesian model12.

However, scDALI and airpart do not account for some experi-
mental designs that include scRNA-seq data frommultiple individuals.
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One major challenge arising from multiple individuals is how to align
read counts consistently across individuals. In the eQTL setting, for
example, a noncoding eQTL variant that drives ASE is not observed.
Specifically, its expression-increasing allele can be on the haplotype of
either the alternative or the reference allele of the exonic SNP where
ASE is assessed (transcribed SNP or tSNP, Fig. 1b)5,13,14. As a result,
different individuals may have opposite allelic imbalance at the tSNP,
but actually representing a consistent genetic regulatory effect. We
refer to this phenomenon as “haplotype switching” in the rest of the
paper. If not addressed, the allelic imbalance observed across indivi-
dualswill cancel out, leading to diminished signal. This issue also exists
for ASE caused by epigenetic factors. Previous cross-individual ASE
methods for bulk RNA-seq used a majority voting approach, which
treats the lower allelic readcount as the alternative allele read count5,14.
However, this approach is not applicable to single-cell ASE due to low
total read count per cell. The scDALI paper avoided this issue with an
extra step in the preprocessing, by using phased genotype data and
pre-identified eQTLs to align read counts11. This approach is not
applicable to general differential ASE settings where genotypes are not
available or where no significant eQTL has been identified for the gene.
A second challenge arising from scRNA-seq data of multiple indivi-
duals is the sample repeat structure causedbyhavingmultiple cells per
individual. This can cause false positives if all cells are treated as
independent11. scDALI and airpart can account for this structure by
adjusting donor IDs as fixed-effects covariates11,12. However, this
approach is not applicable to comparing ASE between groups of
individuals, e.g., disease cases vs controls, sincedonor IDs are collinear

with the binary variable of disease status, and treating them as fixed
effects could lead to misleading results.

We present Differential Allelic Expression using Single-Cell data
(DAESC), a statistical framework for identifying genes with differential
ASE using scRNA-seq data of multiple individuals applicable to a wide
range of study designs. DAESC accounts for haplotype switching using
latent variables and handles sample repeat structure of single-cell data
using random effects. Simulation studies show the method has robust
type I error and high power for differential ASE testing. Applied to
single-cell ASE data of 105 individuals10, DAESC identifies hundreds of
genes with dynamic ASE during endoderm differentiation. Follow-up
analyses using the RoadmapEpigenomicdata15 show that dynamic ASE
is linked to changes in chromatin state. A second application to a small
dataset8 without genotype information identifies three genes with
differential ASE in pancreatic endocrine cells between type 2 diabetes
(T2D) patients and controls.

Results
Overview of DAESC
DAESC is based on a beta-binomial regression model and can be used
for differential ASE against any independent variable xij , such as cell
type, continuous developmental trajectories, genotype (eQTLs), or
disease status (Fig. 1a). DAESC includes two versions (DAESC-BB and
DAESC-Mix) to be usedunder different scenarios (Fig. 1b). The baseline
model DAESC-BB is a beta-binomial model with individual-specific
random effects (ai) that account for the sample repeat structure
(“Methods”) arising from multiple cells measured per individual

Fig. 1 | Schematic ofDAESC and simulation studies. a Schematic of allele-specific
expression (ASE) measured in bulk tissue and single cells, and three types of dif-
ferential ASE analysis. Pie charts represent the relative expression of two alleles
of the transcribed SNP (tSNP). b DAESC models. DAESC accounts for sample
repeat structure (multiple cells per sample) using random effects ai and implicit
haplotype phasing using latent variables zi. c, d Type I error and power observed in
simulation studies for differential ASE, c along a continuous cell state and d binary
case–control disease status. Type I error and power are computed under nominal

significance threshold P <0.05 (no multiple comparison adjustment). Likelihood
ratio test is used for DAESC-BB and DAESC-Mix and z-test is used for GLMM. All
tests are two-sided. Allele-specific read counts are simulated from beta-binomial
mixture model assuming only one eQTL drives ASE at a tSNP. The linkage dis-
equilibrium between the eQTL and the tSNP is varied to r2 = 0,0:1,0:9, and the
sample size (number of individuals) is varied to N = 10, 50, 100. Source data are
provided as a Source Data file.
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inherent to single-cell data. DAESC-BB can be used generally for dif-
ferential ASE regardless of sample size (number of individuals, N).
When sample size is reasonably large (e.g., N≥ 20), we introduce a full
model DAESC-Mix that accounts for both sample repeat structure and
implicit haplotype phasing (“Methods”). For example, when ASE
measured at a heterozygous tSNP is driven by an eQTL, the expression-
increasing allele of the eQTL variant could be on either haplotype. We
account for this possibility using latent variables zi’s that conduct
implicit phasing, which lead to amixturemodel (Fig. 1b). Specifically, if
the expression-increasing eQTL allele is on the haplotype of the
alternative allele of the tSNP, the model reflects this with zi = 1; if the
eQTL allele is on the haplotype of the reference allele of the tSNP, the
model reflects this with zi = � 1. Although it is possible that the true
model may have moremixture components, especially when the gene
has multiple eQTLs, we use the two-component mixture model to
prevent overfitting and increase computational speed. For both
DAESC-BB and DAESC-Mix, parameter estimation is conducted using a
variational EM algorithm (see “Methods” and SupplementaryNotes for
details). Hypothesis testing for differential ASE (H0 : β1 = 0) is con-
ducted using a likelihood ratio test.

Simulation studies
We first conduct simulations from a beta-binomial mixture model
assuming only one eQTL drives ASE at the tSNP. In the first scenario,
we test differential ASE along a continuous variable representing cell
state (e.g., differentiation stage), we observe that DAESC-BB has well-
controlled type I error across scenarios (Fig. 1c). DAESC-Mix has
slight type I error inflation (averaged 8.5% across scenarios) but less
than a standard generalized linear mixed model (GLMM, averaged
10% across scenarios). If provided with enough computational
resources, the users can choose to conduct permutation tests to
further correct the type I error of DAESC-Mix. See Methods for for-
mulation of the GLMM. When there is no LD between the eQTL and
tSNP (r2 = 0), we observe a substantial power gain by using DAESC-
Mix compared to DAESC-BB and the GLMM. The gain is more pro-
nounced when the sample size is large (N = 50 or 100). This is likely
due to the ability of DAESC-Mix to conduct implicit haplotype
phasing, which was shown to be effective overall (Fisher’s exact test
P value < 0.05 in 36.5% genes tested, Supplementary Fig. 1). When
r2 = 0.1, DAESC-Mix has similar power to the GLMM, and both are
slightly more powerful than DAESC-BB. When the LD between the
eQTL and tSNP is strong (r2 = 0.9), we observe only minimal power
difference across the three methods. Using eQTL data for whole
blood from the GTEx Consortium16 as an example, we show that LD
r2 < 0.1 for most eQTL-tSNP pairs (Supplementary Fig. 2), indicating
that for most genes DAESC-Mix is likely to lead to improved power.
For differential ASE with respect to binary case–control disease sta-
tus, we observe mostly similar patterns as those in the previous
simulation with continuous cell state (Fig. 1d). A notable distinction is
that all methods have more inflated type I error (~10%) when N ≤ 10,
and the GLMM have higher type I error inflation across scenarios.

In addition to GLMM, we compare DAESC with other methods,
including beta-binomial regression implemented by apeglm17 (also
used in airpart12), apeglm with donor IDs adjusted as covariates
(apeglm-adj), EAGLE5, and EAGLE applied to pseudobulk data
(EAGLE-PB). See Methods for details. We observe inflated type I error
for apeglm and EAGLE due to failure to account for the sample repeat
structure (Supplementary Fig. 3). Apeglm-adj used fixed effects to
account for sample repeat structure and have nearly identical per-
formance as DAESC-BB for continuous cell states (Supplementary
Fig. 3). However, it cannot be applied to case–control comparisons
since the case–control variable is colinear with the one-hot encoding
of donor IDs. EAGLE-PB, the pseudobulk-based method for
case–control comparisons, is less powerful than DAESC-BB especially
when r2 = 0.1 and 0.9 (Supplementary Fig. 3). This shows the

advantage of directly analyzing single-cell data over pseudobulk
aggregation. EAGLE-PB assumes independent samples and is not
applicable to the continuous-cell-state simulations shown in Fig. 1c
and Supplementary Fig. 3a. The precision–recall curves show that
DAESC-Mix dominates the othermethods when r2 = 0 and N ≥ 50 with
varying significance thresholds (Supplementary Fig. 4), especially in
the simulations for continuous cell states. In addition, the curves for
the GLMM tend to dip near low recall value (Supplementary Fig. 4),
i.e., when the significant threshold is stringent. This indicates
potential issues with P value calibration. Nevertheless, GLMM
appears to be the most comparable to DAESC-BB considering type I
error and power, and its applicability to both continuous cell state
and case–control comparisons. We use GLMM as the main compar-
ison for the rest of the simulation studies.

Since eQTL studies have found that allelic heterogeneity is
widespread18–21, we also investigate the performance of the methods
when there aremultiple eQTLs driving ASE. Due to the large number of
scenarios for levels of LD across multiple eQTLs and the tSNP, we limit
our investigation to the scenario where no LD exists between the
eQTLs or between the eQTLs and the tSNP. Similar to the previous
scenario, DAESC-BB controls type I error under varying numbers of
eQTLs; DAESC-Mix has slightly inflated type I error in some settings,
but is less inflated than the GLMM (Fig. 2a). This shows that although
having multiple eQTLs introduces extra mixture components into the
true model (“Methods”), it has minimal impact on the type I error
control. Furthermore, we observe a substantial power gain by DAESC-
Mix compared to DAESC-BB or the GLMM (Fig. 2a), which is more
pronounced than when only one eQTL drives ASE (Fig. 1). This gain
exists not only under a large sample size but also under small sample
size (N = 10), although with a smaller margin. In addition, power
increases steadily for DAESC-Mix with increasing number of eQTLs,
showing a larger advantage over DAESC-BB and the GLMM under
allelic heterogeneity (Fig. 2a). Precision–recall curves show that
DAESC-Mix consistently outperforms the other two methods across
different significance thresholds, with DAESC-BB ranking second
(Fig. 2b).When testing differential ASE for binary case–control disease
status, DAESC-Mix remains most powerful when there are multiple
eQTLs per tSNP (Supplementary Fig. 5). In fact, DAESC-BB, the GLMM,
and EAGLE-PB, which do not conduct implicit phasing, do not appear
to have any power to detect differential ASE. In contrast to differential
ASE along continuous cell state (Fig. 2), the power of DAESC-Mix
changes minimally with the number of eQTLs (Supplementary Fig. 5).

Next, we investigate the performance of DAESC under varying
data quality, which is reflected by overdispersion parameter (ϕ) and
sequencing depth. DAESC-BB and DAESC-Mix outperforms GLMM
across varying levels of overdispersion (Supplementary Fig. 6).
Although all methods have lower power under strong overdispersion
(large ϕ, low data quality), the advantage of DAESC of GLMM is also
more pronounced (Supplementary Fig. 6). We also observe that
though DAESC-Mix is developed for large N (e.g., N > 20), it can also
deliver strong performance under small N when the overdispersion is
low (e.g.,N = 6 andϕ=0:5, Supplementary Fig. 6), which is the case for
many mouse datasets with low variance. In addition, we observe
similar relative performance for DAESC-BB, DAESC-Mix, and GLMM
under 50%, 20%, and 10% sequencing depth of other scenarios, though
all methods have lower power (Supplementary Fig. 7).

To evaluate the sensitivity ofDAESC tomodelmisspecification,we
conduct another simulation study using binomial GLMM instead of
beta-binomial (see “Simulation studies”). Theoretically, this scenario
should give more advantage to the GLMMmethod. However, DAESC-
BB and GLMM have nearly identical performance (Supplementary
Fig. 8). DAESC-Mix still leads to substantial power gain when there is
low LD between the eQTL and the tSNP (Supplementary Fig. 8). This
shows that DAESC has robust performance even when the beta-
binomial assumption is violated. We observe that though DAESC is
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computationally intensive due to its EM iterations, it can be easily
handled by amodern computing cluster (see “Methods” for details and
Supplementary Fig. 9 for results). For example, when analyzing a
dataset of 200 individuals and on average 400 cells per individual
(> 2.5 times the size of the endoderm differentiation dataset10 in our
application), DAESC-BB requires 3.3 h to analyze 100 genes and
DAESC-Mix requires 8.6 h (Supplementary Fig. 9).

Dynamic ASE during endoderm differentiation
WeapplyDAESC-BB, DAESC-Mix, and theGLMM to single-cell ASE data
for 30,474 cells from 105 individuals collected by Cuomo et al.10. In
their experiment, induced pluripotent stem cells (iPSCs) underwent
differentiation for three days into mesendoderm and definitive endo-
derm cells (Fig. 3a). To study dynamic regulatory effects along the
differentiation trajectory, we conduct differential ASE analysis along

Fig. 2 | Simulation studies withmultiple eQTL SNPs per gene. a Type I error and
power and b precision–recall curves for differential ASE detection along a con-
tinuous variable observed in simulations. Allele-specific read counts are simulated
from beta-binomial mixture model assuming multiple eQTLs drives ASE of a

transcribed SNP (tSNP). We assume no linkage disequilibrium among the eQTLs
and between the eQTLs and the tSNP. The sample size (number of individuals) is
varied N = 10, 50, 100. Source data are provided as a Source Data file.
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pseudotime (xij), which was estimated and provided by the original
study (Fig. 3b).

DAESC-BB identifies 324 dynamic ASE (D-ASE) genes that vary
along pseudotime and DAESC-Mix identifies 657 D-ASE genes
(FDR < 0.05, Fig. 3c and Supplementary Data 1). Nearly all genes
identified by DAESC-BB are also identified by DAESC-Mix (Fig. 3c).
Since D-ASE can be driven by dynamic cis-regulatory effects, we use
the overlap between our D-ASE genes and dynamic eQTL genes
reported by Cuomo et al.10 as a validation criterion. Among the genes
identified by DAESC-BB, 35.5% were reported by Cuomo et al., while
among those identified by DAESC-Mix 27.5% were reported (Fig. 3d).

The GLMM identifies 19% fewer genes than DAESC-Mix (532 vs 657)
and has a similar validation rate (Fig. 3d). Comparing the same
number of top genes (by smallest P values) selected by eachmethod,
DAESC-Mix shows a higher validation rate than DAESC-BB or the
GLMM across varying number of top genes (Fig. 3e). The curve for
GLMM dips sharply in the middle indicating P value mis-calibration.
scDALI finds 274 genes at FDR < 0.05, 77% of which are also found
by DAESC-BB (Supplementary Fig. 10). In addition, dynamic ASE
genes discovered using DAESC-Mix display total expression trends
along pseudotime similar to those of previously discovered dynamic
eQTL genes (Supplementary Fig. 11). This shows that DAESC-Mix

Fig. 3 | Dynamic ASE during endoderm differentiation. UMAP plot colored by
a cell type and b pseudotime. Cell types include induced pluripotent stem cells
(iPSCs), mesendoderm cells (mesendo) and definitive endoderm cells (defendo).
cVenn diagram for the number of dynamic ASE (D-ASE) genes identified by DAESC-
BB and DAESC-Mix. d Proportion of D-ASE genes identified by three methods that
were also dynamic eGenes reported by Cuomo et al. (validation criterion). The
number of D-ASE genes identified by each method are annotated in the par-
entheses. e Proportionof dynamic eGenes reported byCuomo et al. among varying
number of top D-ASE genes identified by threemethods. f Two-sided Fisher’s exact
test P values testing whether DAESC-Mix cluster labels capture haplotype

information between the top tSNP and top eQTL reported by Cuomo et al. Sche-
matics of three haplotype combinations are used as column names of the example
2 × 3 table (from left to right: het1, het2, homo). Green and blue circles are the
reference (ref) and alternative (alt) alleles of the eQTL, respectively; red and pink
rectangles are the alt and ref for the tSNP, respectively.gAnexample (NMUgene)of
mixture clusters capturing haplotype information. Alt: alternative allele read count;
total: total allele-specific read count. Trend curves are generated using ggplot2::-
geom_smooth() and shadings represents 95% confidence bands. Source data are
provided as a Source Data file.
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offers an increase in power without biasing discovery toward parti-
cular trends in expression or technical factors influencing total
expression levels.

We conduct two sensitivity analyses to evaluate the effects of
analysis choices on the results. First, in the main analysis, we remove
SNPs with monoallelic expression to prevent false positives due to
genotyping error. Here we repeat the same analysis with those SNPs
included. We observe that removing SNPs withmonoallelic expression
(alt/total<0.02 or alt/total>0.98 in pseudobulk sample) have minimal
effect ondifferential ASE except a small number of genes (< 1% for both
DAESC-BB and DAESC-Mix) that switches from significant to insignif-
icant, or vice versa (Supplementary Fig. 12). Second, we evaluate
whether additional batch effects may confound the analysis. After
adjusting for the month when the experiment was conducted, the
number of discoveries and the validation rate virtually remain the
same (Supplementary Data 3).

We further use the phased genotype data from Cuomo et al.10 to
validate the ability of DAESC-Mix to conduct implicit haplotype phas-
ing. For 48.4% of the genes that reach significance (FDR <0.05 by
DAESC-Mix), DAESC-Mix learns two haplotype combinations with the
minor haplotype including >10% individuals (Supplementary Fig. 13).
We conduct the validation on the genes that show suggestive evidence
of D-ASE by DAESC-Mix (P <0.05) and have at least one eQTL reported
by Cuomo et al.10. We further restrict to 179 genes that are significant
according to a likelihood ratio test comparing DAESC-Mix to DAESC-
BB (nominal P <0.05). This restriction selects genes for which DAESC-
Mix reports two haplotype combinations (zi = 1 and zi = � 1). Fisher’s
exact test show that for 77 (43%) genes, the mixture labels given by
DAESC-Mix successfully captures the observed haplotype combina-
tions between the gene and the top eQTL (P <0.05, Fig. 3f) according
to phased data. An example was NMU, for which DAESC-Mix reports
highly significant dynamic ASE (p= 1:93× 10�59) and captures the
haplotype combinations well (pf isher = 1:51 × 10

�6). We observe that
allelic fractionsmove in opposite directions along pseudotime for two
clusters of individuals, and combining two groups would severely
diminish the apparent allelic effects (Fig. 3g). For 39 (22%) genes,
mixture labels are not associated with haplotype combinations
(P > 0.5). This could be due to imperfect eQTL calling by the original
study, or limitations of our method. Due to its high power, high vali-
dation rate, and ability to capture haplotype combinations, we choose
DAESC-Mix as the main method of discovery.

Patterns and mechanisms of dynamic ASE
We hypothesize that dynamic ASE during differentiation could be
linked to dynamic changes of chromatin state. To test this hypothesis,
we use the chromatin states learned by ChromHMM22 on the Roadmap
Epigenomics data15 (see “Methods” for details). We recode the chro-
matin states to 0 (inactive) and 1 (active) based on the criteria
described in “Methods”. For each gene, we compute the absolute value
of change in chromatin state (0—inactive, 1—active) at the transcription
start site (TSS) between two endpoints of differentiation: iPSC and
definitive endoderm. The D-ASE genes identified by DAESC-Mix show
an average chromatin state changeof 0.132, while the non-D-ASE genes
show an average change of 0.075 (Fig. 4a). This difference is highly
significant even after adjusting for the read depth of the genes
(p=3:19 × 10�9). The D-ASE genes identified by DAESC-BB and the
GLMMalso show a larger change in chromatin state compared to non-
D-ASE genes, but the difference is smaller, and for the GLMM (Fig. 4a).
In addition, we observe significant correlations between the D-ASE
effect size (log-OR when pseudotime changes from 0 to 1) and the
magnitude of change in chromatin state, with DAESC-Mix showing the
strongest correlation (Fig. 4b).

To further study the pattern of dynamic change in ASE, we com-
pute the average allelic fraction for iPSCs and definitive endoderm
cells using DAESC-Mix estimates (Methods). We find different genes

show allelic imbalance at different stages of differentiation (Fig. 4c).
For example, genes SFRP2 and NMU have minimal allelic imbalance at
the iPSC stage but substantial imbalance at the definitive endoderm
stage. On the contrary, genes VIM and LEPREL1 only show allelic
imbalance in iPSCsbut not definitive endodermcells. For genes IFITM3,
SNHG17 and TRDN the allelic imbalance appears at both stages of dif-
ferentiation but with a different magnitude. Lastly, for genes RAB17
andGATM the allelic fraction switches directions across stages, i.e., the
highly expressed allele for iPSCs becomes the less expressed allele for
definitive endoderm cells. To enable future exploration, we classify the
657 D-ASE genes identified by DAESC-Mix into six categories based on
which differentiation stage shows allelic imbalance (Fig. 4d). See
Methods for the classification criteria. More than half of the genes
show stronger allelic imbalance in definitive endodermcells than iPSCs
(51.6% late and increasing, Fig. 4d), only 15.8% show stronger imbalance
in iPSCs (early and decreasing, Fig. 4d).

As a validation analysis, we examine whether our top 30 D-ASE
genes (Fig. 4c) have previously been reported to exhibit D-ASE, ASE, or
other biological relevance in the literature.Moyerbraileanet al.23 found
that 23 out of the 30 genes have ASE in cell types, including lympho-
blastoid cell lines (LCL), smooth muscle cells (SMC), murine ery-
throleukemia cells, HUVECs, and PBMCs. Fan et al.14 reported 12 out of
30 genes have D-ASE in kidney, M0 macrophage cells, or M1 macro-
phage cells. Expression of some of the genes is tightly regulated in
endodermic tissues. For example, DKK1 was reported to be carefully
regulated during kidney development;24GSTO1was shown to have ASE
in mouse lung, liver, and brain;25 and GNAS is a known imprinted gene
in endodermal tissues such as pituitary26, thyroid gland, and gonads27.
Gene-set enrichment analysis find 121 Gene Ontology (GO) biological
process gene sets enriched in D-ASE genes identified by DAESC-Mix,
including those for the regulation of mesoderm development and cell
development (Supplementary Data 2). In particular, the top 30 D-ASE
genes identified by DAESC-Mix (Fig. 4c) are enriched in 10 GO biolo-
gical processes gene sets (Fig. 4e). Most of the enriched gene sets are
related to development or differentiation, including regulation of
mesoderm development, dopaminergic neuron differentiation, cell
fate specification, mesodermal cell differentiation, mesoderm forma-
tion, and gastrulation (Fig. 4e). This result validates the biological
relevance of the D-ASE genes we discover.

Type 2 diabetes and differential ASE in pancreatic islet cells
We obtain the scRNA-seq data from pancreatic islet samples of four
type 2 diabetes (T2D) patients and six controls8. After preprocessing
(“Methods”), we obtain single-cell ASE data for 2209 cells of 14 cell
types (Fig. 5a, b). To identify genes potentially dysregulated in T2D
patients, we conduct differential ASE analysis between cases and
controls for four major endocrine cell types: alpha, beta, delta, and
gamma cells. Due to the small sample size, we use DAESC-BB as the
method for discovery. We find three genes that show differential ASE
between cases and controls (FDR <0.05, Fig. 5c). Differential ASE of
ARPC1B and SLC37A4 is only found in alpha cells, anddifferential ASEof
REEP5 is found in both alpha and beta cells. SLC37A4 and REEP5 show
stronger allelic imbalance in T2D patients than controls (Fig. 5c),
indicating that these regulatory effects are only present in T2D
patients. ARPC1B, however, shows stronger allelic imbalance in healthy
controls (Fig. 5c), indicating that the regulatory effects are potentially
diminished in T2D patients. Among our hits, previous studies indicate
a potential link between SLC37A4 and T2D. SLC37A4 encodes glucose
6-phosphate translocase, which transports glucose 6-phosphate from
the cytoplasm to the endoplasmic reticulum28,29. rs7127212, which is
51.6 kb from the TSS of SLC37A4, was reported to be associated with
the risk of T2D by a previous study30. Through this analysis, we
demonstrate that DAESC can also detect differential ASE between
case–control disease status, even when the data consist of only a few
individuals.
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Discussion
Differential allele-specific expression is a powerful tool to study
context-specific cis-regulatory effects. Single-cell RNA-seq (scRNA-
seq) has allowed the study of ASE in heterogeneous cell types within a
tissue. However, there is a lack of statistical tools for single-cell dif-
ferential ASE analysis. In this paper, we describe DAESC, a generic
statistical framework for differential ASE detection using scRNA-seq
data from multiple individuals. The method captures sample repeat
structure of multiple cells per individual using random effects, and
DAESC-Mix further refines differential ASE analysis by incorporating
implicit haplotype phasing. Simulation studies show that the method
has well-controlled type I error and high power under a wide range of
scenarios. Application to single-cell ASE data from an endoderm dif-
ferentiation experiment identifies hundreds of genes that are dyna-
mically regulated during differentiation. Dynamic regulatory effects
are linked to changes in chromatin state at the TSS. The D-ASE genes

are enriched inGO terms related todevelopment anddifferentiation. A
second application to single-cell data from pancreatic islets identifies
three genes with differential ASE between T2D patients and controls in
alpha and beta cells, despite the small sample size.

Within the DAESC framework, the full model DAESC-Mix is gen-
erally more powerful than DAESC-BB. However, we recommend using
DAESC-Mix when the number of individuals is reasonably large (e.g.,
N ≥ 20), since the mixture model needs large N to identify different
haplotype combinations. Indeed, simulation studies show that power
gain was more pronounced under large N (Figs. 1 and 2 and Supple-
mentary Figs. 3–5). When the sample size is small (e.g., N<20), the
overall performance between DAESC-Mix and DAESC-BB is less dis-
tinguishable (see precision–recall curves in Supplementary Fig. 4). In
that case,we recommendusingDAESC-BBwhichhas better type I error
control. In our first application, the dataset from endoderm differ-
entiation is comprised of 105 individuals and hence DAESC-Mix is

Fig. 4 | Patterns and mechanisms of dynamic ASE genes during endoderm
differentiation. a Upper row: average change in chromatin state at transcription
start site from iPSC to definitive endoderm cells for D-ASE genes and non-D-ASE
genes; Error bars represent 95% confidence intervals (mean ± 1.96 standard
error). Lower row: distribution of chromatin stage change (possible values: 0, 0.2,
0.4, 0.6, 0.8, 1) among D-ASE genes and non-D-ASE genes. At FDR < 0.05, the
number of D-ASE genes is 324 for DAESC-BB, 657 for DAESC-Mix, and 532 for
GLMM. For each method, the genes that do not reach FDR < 0.05 are considered
non-D-ASE genes (see “Methods” for details). Chromatin states are from
ChromHMM analysis of the Roadmap Epigenomics data and recoded to 0
(inactive) or 1 (active). D is the difference between D-ASE and non-D-ASE genes,
and P values are calculated using linear regression: chromatin state change ~ I (the
gene shows D-ASE) + total read depth of the gene. Here I(.) is the indicator

function. b Upper: correlation between D-ASE effect size (β1) and change of
chromatin state (n = 4102 genes). Error bars represent 95% confidence intervals
(estimated correlation coefficient ± 1.96 standard error). Lower: scatter plot from
which the correlation is derived; trend curves are generated using ggplot2::-
geom_smooth(), and shadings represent 95% confidence bands. c Top 30 genes
identified by DAESC-Mix (smallest P values) and average allelic ratio of iPSCs vs
definitive endoderm cells estimated by DAESC-Mix, computed as
1=ð1 + expð� β0 +β1t

� �ÞÞ where t is the average pseudotime of the cell type. The
dashed line corresponds to allelic ratio=0.5. d Types of D-ASE genes and their
proportions. See “Methods” for details. e Enrichment of top D-ASE 30 genes
identified by DAESC-Mix in Gene Ontology Biological Processes gene sets. Only
gene sets with FDR < 0.05 are shown. Source data are provided as a Source
Data file.
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chosen. In the second application, the pancreatic islet dataset is
comprised of only 10 individuals, and hence DAESC-BB is chosen.

Note that the two-component mixture model used by DAESC-Mix
is a simplifying assumption. When the gene has one eQTL, the true
model should have an extra component corresponding to the indivi-
duals of whom the eQTL is homozygous. When the gene has multiple
eQTLs, the number of true haplotypes grows exponentially. DAESC-
Mix uses a two-component model to prevent overfitting and to
increase computational speed. However, simulation studies show the
performance of DAESC-Mix remains robust when there are multiple
eQTLs (Fig. 2 and Supplementary Fig. 5). This is also due to the lim-
itation of sample size, since the number of individuals in single-cell ASE
datasets are often not enough to robustly fit a mixture model with
many components.More complexmixturemodelsmaybecome viable
as more data are collected, and could be extended from DAESC-Mix.

DAESC has important conceptual and technical differences from
existing methods scDALI11 and airpart12. First, DAESC is designed as a
generic tool for differential ASE analysis with respect to any condition,
regardless of whether the comparison is between cell-types within an
individual or across individuals, and regardless of whether the condi-
tion of interest is continuous or discrete. The random effects that
account for sample repeat structure is an important component that
enables this flexibility. scDALI and airpart focus on differential ASE

across cell types, not across samples or individuals. They allow for
adjustment of donor IDs as fixed effects but cannot be used for dif-
ferential ASE across conditions between individuals (e.g., disease sta-
tus). In contrast, GLMM fitted by lme431 is more comparable to DAESC-
BB than scDALI or airpart. Both GLMM and DAESC use random effects
tomodel sample repeat structure but they account for overdispersion
differently. Therefore, GLMM is used as themain referencemethod for
benchmarking and has similar precision–recall curve to DAESC-BB in
some of the scenarios (Supplementary Fig. 4). Second, DAESC-Mix
conducts implicit haplotype phasing to recover allelic signals hidden
by haplotype switching. Hence DAESC-Mix can be powerful regardless
of whether genotypes are available or eQTLs have been identified,
which is not the case for many datasets. In the scDALI paper11, the
application to scRNA-seq data assigned the alternative haplotype of
the gene based on the alternative allele of the eQTL. This approach is
only possible if genotype data are available and if there is at least one
significant eQTL for the gene. If the gene is regulated bymultiple weak
eQTLs that do not attain genome-wide significance, scDALI does not
have a mechanism to assign alternative haplotypes. However, DAESC-
Mix can still be used and may be able to capture the combined effects
of multiple eQTLs as shown in the simulations (Fig. 2 and Supple-
mentary Fig. 5). Previous methods for bulk RNA-seq have used a
majority voting approach for pseudohaplotypephasing5,14,32. However,

Fig. 5 | Differential ASE between type 2 diabetes patients and controls in pan-
creatic endocrine cells.UMAPcolored by a cell type,b disease status. cGenes that
showdifferential ASEbetween type 2 diabetes and controls in pancreatic endocrine
cell types identified by DAESC-BB (FDR<0.05, likelihood ratio test, two-sided) and

distribution of allelic fraction in each donor. Alt: alternative allele read count; total:
total allele-specific read count. P values in subgraph titles are original P values
without multiple comparison adjustment. Source data are provided as a Source
Data file.
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this approach is not directly applicable to single-cell ASE due to mul-
tiple cells from each individual and low read depth per cell.

Our method does have some limitations to consider. First, we
observed modest type I error inflation for DAESC-Mix potentially due
to overfitting. However, the inflation seems acceptable given the
magnitude of power improvement. If provided with enough compu-
tational resources, the users can choose to conduct permutation tests
to further correct type I error. Second, DAESC-Mix is most powerful
when applied to datasets with a large number of individuals, but such
datasets are yet notwidely available. For small datasetswe recommend
using DAESC-BB, which may be conservative but has well-controlled
type I error. In the future, DAESC-Mix will be more widely applicable
with the availability of larger datasets along with cheaper and better
technology for large-scale single-cell profiling. Third, DAESC is not
optimized for integrating information across multiple discrete cell
types into a unified test. scDALI and airpart both havemethods for this
purpose. A future direction is to combine the strengths of DAESC and
scDALI or airpart to incorporate sample repeat structure, implicit
haplotype phasing and integration of information across cell types. A
potential approach is to include cell types within individuals in a nes-
ted mixed model. In addition, DAESC is focused on statistical analysis
post data processing. Given the complexity of ASE data processing,
other factors such as variant calling approaches, quality control
thresholds, sequencing read depth and platform can also have effects
on the results. A comprehensive evaluation of the factors and an
optimized analysis pipeline is an important area of research. Though
this is beyond the scope of the paper, we demonstrate through
simulations that the relative ranks of the methods are robust to the
change of overdispersion and read depth (Supplementary Figs. 6 and
7), which are closely related to data quality. Lastly, DAESC is not spe-
cifically developed for analyzing cancer datasets. In particular, the
implicit phasing in DAESC-Mix assumes every cell from an individual
share the same genotype. This assumption is violated for cancer cells
due tomany somaticmutations. Single-cell ASE analysis in cancer cells
is also an intriguing future direction.

In conclusion, we have developed a statisticalmethod, DAESC, for
efficient detection of differential ASE across any comparison of inter-
est. Given the large volume of single-cell ASE data that are being
generated, DAESC has great potential to facilitate the discovery of
context-specific cis-regulatory effects in a wide range of scenarios.

Methods
DAESC model
We describe the DAESC model for differential ASE analysis using
scRNA-seq data across multiple individuals. For a heterozygous tSNP,
let yij be the alternative allele read count for individual i and cell j, and
nij be the total allele-specific read count. Let xij be the independent
variable, e.g., cell types, cell differentiation time, or disease status of
the individual. Define yi = ðyi1, . . . ,yiJi Þ where Ji is the number of cells
from individual i. DAESC is comprised of two components: a baseline
beta-binomial regression model with individual-specific random
effects (DAESC-BB), and a full beta-binomial mixture model that
incorporates implicit haplotype phasing (DAESC-Mix).

The DAESC-BB model is formulated as follows:

yijjnij ∼BBðnij ,μij ,ϕÞ
log

μij

1�μij

� �
=β0 + β1xij +ai

ai ∼Nð0,σ2
aÞ

ð1Þ

Here BBðnij ,μij ,ϕÞ is a beta-binomial distribution with denominator nij ,
mean proportion μij and overdispersion parameter ϕ. It is equivalent
to yijjnij ∼binomialðnij ,pijÞ, pij ∼beta μij

ϕ ,
1�μij

ϕ

� �
marginalized over pij .

We model log
μij

1�μij

� �
as a linear function of xij . The individual-specific

random effect ai accounts for the sample repeat structure introduced

by having multiple cells from each individual. This model can be used
for any differential ASE analysis but may be conservative in some
scenarios due to unknown causal variants and haplotype information.
For example, when the tSNP is not in strong LD with the causal eQTL,
different individuals may exhibit complementary allelic fractions
which actually reflect the same regulatory effect. Failing to account
for this possibility can lead to diminished ASE signal when aggregated
across individuals.

This issue can be addressed using DAESC-Mix when the sample
size (number of individuals) is sufficiently large. The model is for-
mulated as follows:

yijjnij ∼BBðnij ,μij ,ϕÞ
log

μij

1�μij

� �
= ziðβ0 +β1xijÞ+ai

zi = 2δi � 1,δi ∼Bernoulliðπ0Þ
ai ∼N 0,σ2

a

� �
ð2Þ

This model is an extension of DAESC-BB with the inclusion of an
indicator variable zi. Itmodels the scenariowhereASE is caused by one
eQTL.When zi = 1, the alternative allele of the eQTL and the alternative
allele of the transcribed SNP (tSNP) are on the same haplotype, and the
reference alleles of the two SNPs are on the same haplotype. When
zi = � 1, the alternative allele of the eQTL and the reference allele of
the tSNP are on the same haplotype, and vice versa (Fig. 1). Though it is
possible that the eQTL is homozygous for some individuals, we do not
model this scenario to prevent overfitting and speed up computation.

Though themodels above are described for a heterozygous tSNP,
it can also be applied to gene-level ASE counts generated by aggre-
gating across multiple tSNPs.

Model inference by variational EM
The inference is conducted by a variational EM algorithm33. Here we
describe the algorithm for DAESC-Mix. Details of the derivation and
the algorithm for DAESC-BB can be found in Supplementary Notes.
Denote β= β0,β1

� �T . We treat ai and δi as missing data and the com-
plete data likelihood is

P y1,a1,δ1, . . . , yN ,aN , δN jβ,σ2
a,ϕ,π0

� �
=
Q

iP yi,ai,δi jβ, σ2
a,ϕ,π0

� �
/ Qi π0

Q
j
B

μij1
ϕ + yij ,

1�μij1
ϕ +nij�yij

� �
B

μij1
ϕ ,

1�μij1
ϕ

� �
( )δi

× 1� π0

� �Q
j
B

μij2
ϕ + yij ,

1�μij2
ϕ +nij�yij

� �
B

μij2
ϕ ,

1�μij2
ϕ

� �
( )1�δi

σ2
a

� ��1
2 exp � a2

i
2σ2

a

� �
ð3Þ

Here μij1 =
exp β0 +β1xij +aið Þ

1 + exp β0 +β1xij +aið Þ and μij2 =
exp �ðβ0 +β1xij Þ+aið Þ

1 + exp �ðβ0 +β1xij Þ+aið Þ. The varia-

tional EM iteration goes as follows:

In the E-step, we use variational inference34,35 to approximate the
posterior distribution P ai, δi j yi,βðtÞ, σ

2
a, tð Þ,ϕðtÞ

� �
, where βðtÞ,σ

2
a, tð Þ,ϕðtÞ

are the parameter values at iteration t. We use the mean field
approximation q ai, δi

� �
=q ai

� �
qðδiÞ with a delta method

approximation34. Denote the variational distribution by

q ai

� �
=N âi,ðtÞ, σ̂

2
ai ,ðtÞ

� �
,q δi

� �
=Bernoulli πi,ðtÞ

� �
: ð4Þ

See Supplementary Notes for details of the derivation.
In theM-step, we first update π0 by π0,ðt + 1Þ =

1
N

P
iπi,ðtÞ and update

σ2
a by σ2

a,ðt + 1Þ =
1
N

P
iâ

2
i, tð Þ + σ̂

2
ai,ðtÞ. Update β and ϕ by numerical
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optimization of the following objective function:

Q β,ϕ jβðtÞ,ϕðtÞ
� �

=
X
i

Eq ai ,δið Þ logP yi,ai,δi jβ, σ2
a, tð Þ,ϕ

� �n o
: ð5Þ

Here Eq ai,δið Þf�g is the expectation under variational distribu-
tion q ai,δi

� �
.

After the parameter estimation, we test the null hypothesis H0:
β1 = 0 using likelihood ratio test. Rejecting this null hypothesis indi-
cates that there is differential ASE with respect to the independent
variable xij . Themethod is implemented inRpackageDAESC (seeCode
Availability). Simulation studies and data analyses are conducted using
R/4.0.2.

Simulation studies
We conduct simulation studies using total read counts and parameters
estimated from a real endoderm differentiation dataset10. The dataset
is comprisedof 4102genes and30,474 cells collected from105donors.
See Methods subsection “Single-cell ASE data from endoderm differ-
entiation” for details of the study.We randomly select 3000 genes and
used the real total allele-specific read counts as the total allele-specific
read counts (nij) in our simulations. This setting reflects realistic read
depth and number of cells, but does not affect ASE which depends on
the relative abundance of reference and alternative alleles. We simu-
late the alternative allele read counts assuming that there is only one
eQTL driving ASE

yijjnij ∼BBðnij ,μij ,ϕÞ

log
μij

1� μij

 !
= ziðβ0 +β1xij +β1ηiÞ+ai ð6Þ

ai ∼N 0,σ2
a

� �
,zi ∼ categoricalð �1,1,0½ �,½π1,π2,π3�Þ

In contrast to the DAESC-Mix model, this simulation model
introduces a third possible value of the latent variable zi. Besides two
values −1 and 1 which aremodeled by DAESC-Mix, the third value zi =0
corresponds to the individuals forwhich the eQTL SNP is homozygous.
The haplotype proportions π1,π2,π3 are simulated based on given LD
coefficient (r2) between the eQTL and tSNP (see Supplementary Notes
for details). We vary r2 to 0, 0.1 and 0.9, and simulate 1000 genes for
each value of r2 including 500 null genes and 500 non-null genes.

We include two covariates in the simulation to evaluate the per-
formance of DAESC under two types of D-ASE. The continuous cov-
ariate xij is the real pseudotime provided by the original study;10 the
discrete covariate ηi is a simulated sample-level disease status which
can take values 0 or 1. A randomly chosen half of the individuals are
assigned ηi =0 (control) and the other half are assigned ηi = 1 (case).

To choose realistic values of other parameters, we apply DAESC-
BB to the real data and obtain estimates of β0, β1, σ

2
a and ϕ. We select

the geneswith top 500 largest |β1j as potential values of parameters for
the simulation. For eachof the 3000genes,we randomly select a set of
parameters ðβ0,β1,σ

2
a,ϕÞ from the 500 candidate sets of values. For null

genes we reset β1 = 0. The 500 sets of candidate values are provided in
Supplementary Data 4 distribution of the parameters is visualized in
Supplementary Fig. 14.

We also vary the sample size to N = 10, 50, 100. For D-ASE with
respect to xij , we randomly sample N individuals from the simulated
data forD-ASEwith respect to ηi, we randomly sampleN/2 cases andN/
2 controls. We repeat this procedure 10 times and obtain 5000 simu-
lations for each scenario (combination ofN, r2, differential ASE status).
We observe the minimal variation of type I error and power across 10
replications (Supplementary Fig. 15). For the rest of the simulation
studies, we conduct 400 simulations for each scenario to save
computational time.

To avoid any bias toward the beta-binomial model, we conduct
another simulation using the binomial GLMM. The simulationmodel is
similar to the beta-binomial model except that overdispersion is gen-
erated by a cell-specific random effect (ϵij) instead of the beta dis-
tribution.

yijjnij ∼Binomialðnij ,μijÞ
log

μij

1�μij

� �
= zi β0 +β1xij +β1ηi

� �
+ai + ϵij

ai ∼N 0,σ2
a

� �
, ϵij ∼Nð0, 1Þ, zi ∼ categoricalð �1, 1, 0½ �, ½π1,π2,π3�Þ

ð7Þ

Parameters β0, β1, σ
2
a, π1, π2, π3 are generated using the same

procedure as the beta-binomial simulation.

Simulations with multiple eQTL SNPs per gene
Due to the large number of scenarios for LD among eQTLs and the
tSNP, we conduct this simulation study under a simplified scenario: all
the eQTLs are independent fromeachother and independent from the
tSNP. Similar to the one-eQTL scenario, we simulate the data using
beta-binomial mixture model. Because the number of mixture com-
ponents grow with the number of eQTLs, we simulate the mixture
components indirectly by simulating the genotypes of the eQTLs. The
steps are as follows:

• Randomly choose ðσ2
a,ϕÞ from 500 sets of candidate values

(Supplementary Data 4). Parameters ðσ2
a,ϕÞ are the same across

all mixture components.
• Simulate the minor allele frequency (MAF) of m eQTLs, from

MAF1, MAF2, …, MAFm ∼Uniform½0:1,0:5�.
• Simulate the alleles of eQTLs that resides on the haplotype of the

reference allele of the tSNP for N individuals, denoted by
gik0 ∼bernoulliðMAFkÞ, i= 1, . . . ,N; k = 1, . . . ,m.

• Simulate the alleles of eQTLs that resides on the haplotype
of the alternative allele of the tSNP, denoted by
gik1, i= 1, . . . ,N; k = 1, . . . ,m.

• Draw m pairs of regression coefficients ðβ0,β1Þ from 500 candi-
date sets of values (Supplementary Data 4), denoted by ðβ10,β11Þ,
…, ðβm0,βm1Þ.

• Compute individual-specific ASE effects size as

βASE
i0 =

Pm
k = 1βk0ðgk1 � gk0Þ, βASE

i1 =
Pm

k = 1βk1ðgik1 � gik0Þ.
• Compute μij from logð μij

1�μij
Þ=βASE

i0 +βASE
i1 xij +β

ASE
i1 ηi +ai. For indi-

viduals who have the same set of gik1 � gik0 (k = 1, . . . ,m), βASE
i0

and βASE
i1 are the same and hence the model collapses into the

beta-binomial mixture model.
• Generate yij ∼BBðnij ,μij ,ϕÞ.

We vary the number of eQTLs to m=2,3,4,5,6.

Other methods for comparison
We compare DAESC-BB and DAESC-Mix to other methods: GLMM,
apeglm, apeglm-adj, EAGLE, and EAGLE-PB.

The first method is a generalized linear mixed model (GLMM)
implemented by the lme4 package in R. The GLMM is formulated as
follows:

yijjnij ∼Binomialðnij ,pijÞ
log

pij

1�pij

� �
= β0 + β1xij +ai + ϵij

ai ∼N 0,σ2
a

� �
,ϵij ∼Nð0,σ2

ϵ Þ
ð8Þ

The R formula is cbind(y,n-y) ~ x + (1|subj) + (1|obs), where subj is
the individual ID and obs is the unique ID for each cell. Here ai

accounts for sample repeat structure and ϵij accounts for
overdispersion.
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Apeglm is a fixed-effects beta-binomial regression:

yij jnij ∼BB nij ,μij ,ϕ
� �

, log
μij

1� μij

 !
= β0 + β1xij ð9Þ

This model does not account for the sample repeat structure of
single-cell ASE data. Therefore, we include a variation of apeglm
(apeglm-adj) into the comparison, which further adjusts for donor IDs
as fixed-effects covariates. Note that apeglm-adj can only be used for
differential ASE with respect to a continuous variable but not binary
case–control status, which is colinear with the one-hot encoding of
donor IDs.

EAGLE5 is another method developed for differential ASE analysis
using bulk RNA-seq data. We first apply EAGLE directly to single-cell
ASE data without accounting for the sample-repeat structure. For dif-
ferential ASE across disease status, we further compare with EAGLE
applied to pseudobulk data (EAGLE-PB). We aggregate cells from each
individual into a pseudobulk sample by summing the alternative and
total read counts. We then apply EAGLE to test for differential ASE
using the pseudobulk samples.

Single-cell ASE data from endoderm differentiation
Cuomo et al.10 conducted an endoderm differentiation experiment of
125 inducedpluripotent stemcell (iPSC) lines from theHuman Induced
Pluripotent Stem Cell initiative (HipSci). Gene expression was profiled
at 4 differentiation times points using single-cell RNA-seq (Smart-
seq2). We obtain SNP-level allele-specific read counts for 114 donors
from (https://zenodo.org/record/3625024#.YnJ-ivPMKi4), and restrict
to 105 individuals for which genotype data are available to us. We
remove SNPs with low mappability (ENCODE 75-mer mappability <1),
and thosewithmonoallelic expression to reduce the effect of potential
genotyping error. Monoallelic expression is defined for each SNP in
each individual by ALT/TOTAL < 0.02 or ALT/TOTAL > 0.9820, where
ALT is the sum of alternative allele read counts for all cells from the
individual, and TOTAL is the corresponding sum of total allele-specific
read counts.

Aggregating SNP-level ASE counts to gene-level
Since phased genotype data are needed to aggregate SNP-level ASE
counts to gene-level ASE counts, we impute and phase the genotype
data using the Michigan Imputation Server with the Haplotype Refer-
ence Consortium (HRC) r1.1 data as the reference panel. For each
individual and eachgene,we sum theASE counts across all SNPswithin
the exonic regions of the gene for each haplotype and obtain two
haplotype-specific counts (hap1 count and hap2 count). Coordinates
of exonic regions are provided by GTEx v736 annotation files (hg19)
based on collapsed gene model. After removing the genes which had
non-zero ASE counts in ≤ 20% of the cells, we obtain ASE counts for
4102 genes and 30,474 cells.

For joint analysis across individuals, alternative and reference
haplotypes need to be consistently assigned across individuals. In the
paper by Cuomo et al.10., the haplotype which is on the same chro-
mosome as the alternative allele of the eQTL is assigned as the alter-
native haplotype. However, we would like to conduct ASE analysis
without calling eQTL first, as is the case in many other studies. There-
fore, we assign alternative and reference haplotypes based on the tSNP
which has the highest total allele-specific read count across individuals
(referred to by top tSNP), i.e., the haplotype on the same chromosome
as the alternative allele of the top tSNP is assigned as the alternative
haplotype. For those individuals forwhich the top tSNP is homozygous,
alternative and reference haplotypes were assigned randomly.

Validation of differential ASE genes
The list of dynamic eGenes reported by Cuomo et al.10 can be used to
validate our dynamic ASE findings. Since dynamic ASE is aimed to

capture dynamically regulation of gene expression, dynamic ASE
genes should have substantial overlap with dynamic eGenes. There-
fore, we compare the proportion of significant dynamic ASE (FDR <
0.05) that overlap with dynamic eGenes. To alleviate any doubt that
different validation rates are caused by different numbers of genes
identified by the methods, we create a concordance-on-top plot to
compare the same number of top genes for all methods, which is
varied from 10 to 800.

Comparing DAESC-Mix mixture labels and observed haplotype
combinations
Since phased genotype data are available for this study, we can use
them to validate the ability of DAESC-Mix to capture haplotype com-
binations. For each gene, we obtain a posterior probability (pmix) for
each individual to belong to the first group.We assign the individual to
the first group if pmix > 0.5, or the second group if pmix < 0.5. To
compare with observed haplotype combinations, we first identify the
top eQTL reported by Cuomo et al. for each of the genes above. The
original paper identified eQTL for three cell types separately: iPSC,
mesendoderm cells and definitive endoderm cells. We choose the
SNP that shows the strongest association P value in any of the three
cell types as the top eQTL for the gene. There are three possible
observed haplotype combinations: (1) alteQTL,altgene|refeQTL,refgene,
(2) alteQTL,refgene|refeQTL,altgene, (3) alteQTL,altgene|alteQTL,refgene or
refeQTL,altgene|refeQTL,refgene. Here refeQTL and alteQTL are the reference
and alternative alleles of the top eQTL, respectively; refgene and altgene
are the reference and alternative haplotypes of the gene, respectively.
Alleles or haplotypes on same side of “|” are on the samehaplotype.We
tally the number of individuals in two mixture groups vs. three hap-
lotype combinations into a 2× 3 table (Fig. 3). Finally, we perform
Fisher’s exact test on the 2 × 3 table to test the association between
mixture clusters and observed haplotype combinations.

Dynamic eGene clustering
We explore the total expression trends of (1) previously discovered
dynamic eQTL genes by Cuomo et al.10 and (2) the set of dynamic ASE
genes discovered using DAESC-Mix (Supplementary Data 1). Pseudo-
time smoothing is performed as in Cuomo et al.10, and spectral clus-
tering is performed on pseudotime-smoothed total expression using
Pearson correlation as the affinity metric. In order to maintain a
meaningful comparison with the original analysis, four clusters are
used for both analyses.

Chromatin-state analysis
We download the chromatin states learned by ChromHMM22 for the
Roadmap Epigenomics Project15 (https://egg2.wustl.edu/roadmap/web_
portal/chr_state_learning.html). For each gene, we compare the
chromatin state at the TSS between iPSCs and endoderm cells. We
consider chromatin states ≤ 7 as active, including 1_TssA, 2_TssAFlnk,
3_TxFlnk, 4_Tx, 5_TxWk, 6_EnhG, and 7_Enh, and assign them value 1
to represent active states in general. The remaining states are con-
sidered inactive and assigned value 0. Since there are multiple epige-
nomics for iPSCs (E018-E022, https://docs.google.com/spreadsheets/d/
1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15),
we use the average chromatin states (0 to 1) as the chromatin state for
iPSC. We then compute the absolute difference of chromatin state
between iPSC vs. hESC-derived CD184+ endoderm cultured cells (E011),
which we refer to as chromatin state change.

For three D-ASE methods, DAESC-BB, DAESC-Mix and the GLMM,
we compute the average chromatin state change for D-ASE genes
(FDR <0.05) and non-D-ASE genes (FDR≥0.05), respectively. There
are 324 D-ASE genes and 3,778 non-D-ASE genes identified by DAESC-
BB, 657 D-ASE genes and 3,445 non-D-ASE genes identified by DAESC-
Mix, and 1,995 D-ASE genes and 2,107 non-D-ASE genes identified by
the GLMM. To test the significance of the difference between D-ASE
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and non- D-ASE genes, we use linear regression adjusting for the total
number of allele-specific reads for each gene: chromatin state change
~I(D-ASE) + total read depth of the gene. This adjustment removes the
effect of total expression, which can be a potential confounder. We
also compute the correlation between D-ASE effect size (β1) and
chromatin-state change.

Gene-set enrichment
We conduct gene set enrichment analysis for 657 D-ASE genes identi-
fied by DAESC-Mix using FUMA GWAS37. We only consider Gene
Ontology (GO) biological process pathways38 and use protein-coding
genes as background. Finally, gene sets with FDR-adjusted enrichment
P value < 0.05 are considered as significantly enriched.

Classification of dynamic ASE genes
We classify the D-ASE genes identified by DAESC-Mix based on the
stage of differentiation where allelic imbalance occurs. For each D-ASE
gene, we first compute the average allelic fraction for iPSCs (pipsc) and
definitive endoderms (pdef endo) estimated by DAESC-Mix as
1=ð1 + expð� β0 +β1t

� �ÞÞ, where t is the average pseudotime of the cell
type. See Cuomo et al.10 for the classification of cell types. Genes are
classified into the following categories based on their ASE patterns:

• Increasing: pdef endo<pipsc<0:47 or pdef endo>pipsc>0:53.
• Decreasing: pipsc<pdef endo<0:47 or pipsc>pdef endo>0:53.
• Late: jpipsc � 0:5j<0:03 and jpdef endo � 0:5j>0:03
• Early: jpipsc � 0:5j>0:03 and jpdef endo � 0:5j<0:03
• Switching: pipsc<0:47 and pdef endo>0:53, or pdef endo<0:47

and pipsc>0:53

Other genes are classified as unspecified.

Pancreatic islet data
Segerstolpe et al.8 collected scRNA-seq data from pancreatic islet
samples of four type 2 diabetes (T2D) patients and six controls.
Libraries were prepared using Smart-seq2 protocols and sequencing
was conducted using single-end 43 bp reads. We download raw fastq
files from ArrayExpress and trimmed the reads with trimmomatic
v0.3839. Reads are aligned to hg19 reference genome using STAR
2.7.10a40. Duplicated reads are marked with Picard 2.18.

Before obtaining ASE counts call, we first call genetic variants
from scRNA-seq data using GATK (4.0.0). We follow the GATK best
practices workflow for RNAseq short variant discovery. After further
preprocessing steps (SplitNCigarReads and base recalibration), we
merge the bam files of all cells from each individual into a pseudobulk
bam file per individual. We then call variants using GATK Haploty-
perCaller with the ten pseudobulk bam files as input. We extract bial-
lelic SNPs from the called variants. We then obtain single-cell ASE
counts using GATK ASEReadCounter. We only retain the 2,209 cells
that passed quality in the original paper8 and discard the rest.

For each individual, we remove SNPs with potential genotyping
error. Specifically, we remove SNPs with genotyping read depth ≤10
and genotyping quality ≤15. We further remove the SNPs with mono-
allelic expression, defined by pseudobulk allelic fraction <0.05 or
>0.95. The pseudobulk allelic fraction is defined as
sum of alternative allele counts

sum of total allele�specific counts, where the sums are taken across cells from
the individual. The purpose of this step is to further remove
genotyping error.

To reduce the effect of alignment errors,we remove the SNPswith
ENCODE 40-mer mappability <1. We then aggregate ASE counts from
SNP level to gene level using a pseudo phasing approach used by the
ASEP paper14. This pseudo-phasing approach is performed on four
major endocrine cells: alpha, beta, gamma, and delta cells. We aggre-
gate ASE counts from these four cell types into pseudobulk ASE
counts. If there are multiple heterozygous tSNP within a gene, we sum
the counts for the expression minor allele (the one with lower allele-

specific read count) of all tSNPs as the alternative haplotype read count
for the gene.

For cell-type-specific differential ASE analysis, we only analyze
genes for which ASE counts are available for a reasonably large
number of cells and individuals. For each gene, we first remove
individuals with <3 cells or <5 reads from the cell type. We drop the
gene from D-ASE analysis if there are <50 cells or <2 cases or <2
controls remaining.

URLs
HipSci: https://www.hipsci.org/

ArrayExpress: https://www.ebi.ac.uk/arrayexpress/
ENCODE mappability: https://genome.ucsc.edu/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeMapability
Trimmomatic: http://www.usadellab.org/cms/?page=trimmomatic
STAR: https://github.com/alexdobin/STAR
Picard: https://broadinstitute.github.io/picard/
GATK: https://gatk.broadinstitute.org/hc/en-us
GATK Best Practices Workflows: https://gatk.broadinstitute.org/

hc/en-us/sections/360007226651-Best-Practices-Workflows.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ASE data, cell metadata, and gene expression from endoderm
differentiation are available at https://zenodo.org/record/3625024#.
YnJ-ivPMKi4. HipSci genotype data used in this study are available via
https://www.hipsci.org/lines/#/files?Assay%5B%5D=Genotyping%
20array. The pancreatic islet data are available on ArrayExpress via
accession number E-MTAB-5061. GENCODE hg19 reference genome is
available via https://www.gencodegenes.org/human/release_44lift37.
html. Source data are provided with this paper.

Code availability
The DAESC R package and other analysis scripts are available on
GitHub:41 https://github.com/gqi/DAESC. A step-by-step tutorial of the
analytical pipeline is available at https://github.com/gqi/DAESC/wiki.

References
1. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. &

Lappalainen, T. Tools and best practices for data processing in
allelic expression analysis. Genome Biol. 16, 195 (2015).

2. Castel, S. E. et al. A vast resourceof allelic expressiondata spanning
human tissues. Genome Biol. 21, 234 (2020).

3. Zhabotynsky, V. et al. eQTL mapping using allele-specific count
data is computationally feasible, powerful, and provides individual-
specific estimates of genetic effects. PLOS Genet. 18, e1010076
(2022).

4. Morcos, L. et al. Genome-wide assessment of imprinted expression
in human cells. Genome Biol. 12, R25 (2011).

5. Knowles, D. A. et al. Allele-specific expression reveals interactions
between genetic variation and environment. Nat. Methods 14,
699–702 (2017).

6. Gutierrez-Arcelus, M. et al. Allele-specific expression changes
dynamically during T cell activation in HLA and other autoimmune
loci. Nat. Genet. 52, 247–253 (2020).

7. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-
seq reveals dynamic, random monoallelic gene expression in
mammalian cells. Science 343, 193–196 (2014).

8. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human
pancreatic islets in health and type 2 diabetes. Cell Metab. 24,
593–607 (2016).

Article https://doi.org/10.1038/s41467-023-42016-9

Nature Communications |         (2023) 14:6317 12

https://www.hipsci.org/
https://www.ebi.ac.uk/arrayexpress/
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/alexdobin/STAR
https://broadinstitute.github.io/picard/
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
https://zenodo.org/record/3625024#.YnJ-ivPMKi4
https://zenodo.org/record/3625024#.YnJ-ivPMKi4
https://www.hipsci.org/lines/#/files?Assay%5B%5D=Genotyping%20array
https://www.hipsci.org/lines/#/files?Assay%5B%5D=Genotyping%20array
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-5061
https://www.gencodegenes.org/human/release_44lift37.html
https://www.gencodegenes.org/human/release_44lift37.html
https://github.com/gqi/DAESC
https://github.com/gqi/DAESC/wiki


9. Larsson, A. J. M. et al. Genomic encoding of transcriptional burst
kinetics. Nature 565, 251–254 (2019).

10. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating
iPS cells reveals dynamic genetic effects on gene expression. Nat
Commun 11, 810 (2020).

11. Heinen, T. et al. scDALI: modeling allelic heterogeneity in single
cells reveals context-specific genetic regulation. Genome Biol. 23,
8 (2022).

12. Mu, W. et al. Airpart: interpretable statistical models for analyzing
allelic imbalance in single-cell datasets. Bioinformatics btac212
https://doi.org/10.1093/bioinformatics/btac212 (2022).

13. Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping
cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48,
206–213 (2016).

14. Fan, J. et al. ASEP: Gene-based detection of allele-specific expres-
sion across individuals in a population by RNA sequencing. PLoS
Genet. 16, e1008786 (2020).

15. Kundaje, A. et al. Integrative analysis of 111 reference human epi-
genomes. Nature 518, 317–330 (2015).

16. Consortium, T. Gte. The GTEx Consortium atlas of genetic reg-
ulatory effects across human tissues. Science 369, 1318–1330
(2020).

17. Zitovsky, J. P. & Love, M. I. Fast effect size shrinkage software for
beta-binomial models of allelic imbalance. F1000Res 8, 2024
(2020).

18. Hormozdiari, F. et al. Widespread allelic heterogeneity in complex
traits. Am. J. Hum. Genet. 100, 789–802 (2017).

19. Jansen, R. et al. Conditional eQTL analysis reveals allelic hetero-
geneity of gene expression.Hum.Mol. Genet. 26, 1444–1451 (2017).

20. Lappalainen, T. et al. Transcriptome and genome sequencing
uncovers functional variation in humans. Nature 501,
506–511 (2013).

21. Abell, N. S. et al. Multiple causal variants underlie genetic asso-
ciations in humans. Science 375, 1247–1254 (2022).

22. Ernst, J. & Kellis, M. Chromatin-state discovery and genome anno-
tation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

23. Moyerbrailean, G. A. et al. High-throughput allele-specific expres-
sion across 250 environmental conditions. Genome Res. 26,
1627–1638 (2016).

24. Lieven, O., Knobloch, J. & Rüther, U. The regulation of Dkk1
expression during embryonic development. Dev. Biol. 340,
256–268 (2010).

25. Lu, L., Pandey, A. K., Houseal, M. T. & Mulligan, M. K. The genetic
architecture of murine glutathione transferases. PLoS ONE 11,
e0148230 (2016).

26. Hayward, B. E. et al. Imprinting of the G(s)alpha gene GNAS1
in the pathogenesis of acromegaly. J. Clin. Investig. 107, R31–R36
(2001).

27. Mantovani, G., Ballare, E., Giammona, E., Beck-Peccoz, P. & Spada,
A. The gsalpha gene: predominant maternal origin of transcription
in human thyroid gland and gonads. J. Clin. Endocrinol. Metab. 87,
4736–4740 (2002).

28. SLC37A4 solute carrier family 37 member 4 [Homo sapiens
(human)] - Gene - NCBI https://www.ncbi.nlm.nih.gov/gene?Db=
gene&Cmd=ShowDetailView&TermToSearch=2542 (2009).

29. SLC37A4 gene: MedlinePlus Genetics. https://medlineplus.gov/
genetics/gene/slc37a4/ (2010).

30. Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes
and related vascular outcomes among 1.4 million participants in a
multi-ancestry meta-analysis. Nat. Genet. 52, 680–691 (2020).

31. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-
effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

32. Mayba, O. et al. MBASED: allele-specific expression detection in
cancer tissues and cell lines. Genome Biol. 15, 405 (2014).

33. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. & Saul, L. K. An intro-
duction to variational methods for graphical models. Machine
Learn. 37, 183–233 (1999).

34. Wang, C. & Blei, D. M. Variational inference in nonconjugate mod-
els. J. Mach. Learn. Res. 14, 1005–1031 (2013).

35. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a
review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

36. Aguet, F. et al. Genetic effects on gene expression across human
tissues. Nature 550, 204–213 (2017).

37. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D.
Functional mapping and annotation of genetic associations with
FUMA. Nat. Commun. 8, 1826 (2017).

38. The Gene Ontology Consortium. The Gene Ontology Resource:
20 years and still GOing strong. Nucleic Acids Res. 47,
D330–D338 (2019).

39. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trim-
mer for Illumina sequence data. Bioinformatics 30, 2114–2120
(2014).

40. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics 29, 15–21 (2013).

41. Qi. et al. Single-cell allele-specific expression analysis reveals
dynamic and cell-type-specific regulatory effects. GitHub https://
doi.org/10.5281/zenodo.8329900 (2013).

Acknowledgements
We thank Radhika Jangi for feedback on the manuscript. H.J. is sup-
ported by NIH/NHGRI grants R01HG009518 and R01HG010889. A.B. is
supported by NIH/NIGHMS award R35GM139580 and the Chan Zuck-
erberg Initiative.

Author contributions
G.Q., B.J.S., and A.B. conceived the idea. A.B. supervised the project.
G.Q. developed themethods and conducted the simulation studies and
data analyses. J.M.P. andR.K. conducted part of the functional follow-up
analyses of endoderm differentiation data. H.J. and A.B. provided feed-
back on statistical methods and analyses. G.Q. drafted the manuscript.
G.Q., R.K., and A.B. edited the manuscript. All authors reviewed the
manuscript.

Competing interests
A.B. consults for Third Rock Ventures, Inc, and is a shareholder in
Alphabet, Inc. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42016-9.

Correspondence and requests for materials should be addressed to
Alexis Battle.

Peer review information Nature Communications thanks Kaur Alasoo,
Sammy Jeon and RunminWei for their contribution to the peer review of
this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-42016-9

Nature Communications |         (2023) 14:6317 13

https://doi.org/10.1093/bioinformatics/btac212
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=2542
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=2542
https://medlineplus.gov/genetics/gene/slc37a4/
https://medlineplus.gov/genetics/gene/slc37a4/
https://doi.org/10.5281/zenodo.8329900
https://doi.org/10.5281/zenodo.8329900
https://doi.org/10.1038/s41467-023-42016-9
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42016-9

Nature Communications |         (2023) 14:6317 14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects
	Results
	Overview of DAESC
	Simulation studies
	Dynamic ASE during endoderm differentiation
	Patterns and mechanisms of dynamic ASE
	Type 2 diabetes and differential ASE in pancreatic islet cells

	Discussion
	Methods
	DAESC model
	Model inference by variational EM
	Simulation studies
	Simulations with multiple eQTL SNPs per gene
	Other methods for comparison
	Single-cell ASE data from endoderm differentiation
	Aggregating SNP-level ASE counts to gene-level
	Validation of differential ASE genes
	Comparing DAESC-Mix mixture labels and observed haplotype combinations
	Dynamic eGene clustering
	Chromatin-state analysis
	Gene-set enrichment
	Classification of dynamic ASE genes
	Pancreatic islet data
	URLs
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




