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Reboundeffects undermine carbon footprint
reduction potential of autonomous electric
vehicles

Nuri C. Onat 1 , Jafar Mandouri 1,2, Murat Kucukvar3, Burak Sen 4,
Saddam A. Abbasi 5,6, Wael Alhajyaseen 1,7, Adeeb A. Kutty 1,
Rateb Jabbar 8, Marcello Contestabile9,10 & Abdel Magid Hamouda11

Autonomous vehicles offer greater passenger convenience and improved fuel
efficiency. However, they are likely to increase road transport activity and life
cycle greenhouse emissions, due to several rebound effects. In this study, we
investigate tradeoffs between improved fuel economy and rebound effects
from a life-cycle perspective. Our results show that autonomy introduces an
average 21.2% decrease in operation phase emissions due to improved fuel
economywhilemanufacturingphase emissions can surgeup to 40%. Recycling
efforts can offset this increase, cutting emissions by 6.65 tons of Carbon
dioxide equivalent per vehicle. However, when examining the entire life cycle,
autonomous electric vehicles might emit 8% more greenhouse gas emissions
on average compared to nonautonomous electric vehicles. To address this, we
suggest; (1) cleaner and more efficient manufacturing technologies, (2)
ongoing fuel efficiency improvements in autonomous driving; (3) renewable
energy adoption for charging, and (4) circular economy initiatives targeting
the complete life cycle.

Autonomy and electrification are two major revolutionary technolo-
gies in the transportation sector, particularly for personal private use1.
Internal Combustion Engine vehicles (ICVs) powered by fossil fuels are
conventionally the most prevalent mode of transportation and there-
fore, they contribute significantly to global climate change. Trans-
portation was responsible for emitting 2.9 billion metric tons of
Carbon Dioxide (CO2) emissions in 20192. According to the Inter-
governmental Panel on Climate Change, since 1850, each of the pre-
ceding four decades has been steadily warmer than the previous

decade3. This sets an alarm for the changes our planet is going through
and requires immediate actions to cut emissions by adopting more
environmentally friendly modes of transportation with fewer emis-
sions such as electric vehicles. Depending on the source of electricity
generation, electric vehicles are likely to reducegreenhouse gas (GHG)
emissions compared to ICVs4. Additionally, autonomous vehicle (AV)
technologies are emerging and major technology companies such as
Google and Tesla invest in the testing and implementation of auton-
omous vehicle technologies1. These emerging vehicles use sensors to
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monitor their surroundings, artificial intelligence, and actuators for
vehicle self-control to travel with little or no human interference5.
Autonomous vehicles can enable commuters who are unable to drive,
such as elderly people and those with disabilities to travel with ease.
AVs introduce benefits such as drivingmore efficiently, reducing traffic
congestion due to connected autonomous driving, and hastening the
adoption of alternative fuel vehicles6. AVs have the potential to
decrease GHG emissionsmainly in a couple of ways including reduced
need for parking spaces, as looking for a parking space contributes
significantly to one-third of traffic within urban areas, and because of
the increased traffic, vehicles are forced to stay on the road longer and
use more fuel as a result which emits GHG emissions7. AVs could be
programmed to operate more efficiently compared to human drivers,
as they can drive on themost efficient routes, maintain steady speeds,
and avoid unnecessary accelerations and decelerations8. This would
reduce fuel consumption, and thus reduce GHG emissions. On the
other hand, AVs could lead to an increase in GHG emissions since
passengers could travel more due to easier travel7. It entails reaching
destinations faster because of increasing capacity, fewer accidents,
and cheaper travel, attracting passengers to travel more frequently7.
Furthermore, AVs can encourage people who could not drive to travel
more as they can provide people who have difficulty using traditional
modesof transportationwith access to a newmodeofmobility7. As can
be seen, investigating the AV effect of GHG emissions is not a trivial
task and is associated with high uncertainties7.

Considering the fuel economy benefits introduced by AVs gained
by reducing congestion and lowering the magnitudes and speeds of
the vehicle’s acceleration and deceleration, the total environmental
impacts intuitively should be less than a nonautonomous version of
the same-fuel vehicle9. However, fully autonomous vehicles can also
lead to a substantial increase in road transport activity, which would
shift the balance in the opposite direction10. While it is not an easy task
to predict how the combined effect of electrification and automation
will play out overall, specific use cases have been studied in the lit-
erature that show that autonomous vehicles have the potential to lead
to net GHG emission reductions11,12. However, these studies mainly
compare non-AV fossil-fuel ICVs with electric AVs. In contrast, to
understand If autonomous vehicles can lead to fewer GHG emissions,
we should compare autonomous and nonautonomous versions of a
same-fuel type vehicle, considering rebound effects and also including
a life cycle perspective to the analysis.

Future technology adoption is assumed to follow existing tech-
nological diffusion trajectories in each sector, as evidenced by market
statistics, including an increase in electric vehicle adoption13. In this
study, we focus on electric vehicles, and we compare an autonomous
electric vehicle with a nonautonomous electric vehicle by considering
of different levels of GHG intensity of the electricity used for rechar-
ging, in one case based on natural gas power generation, in the other
based on solar power. The consideration of these two charging sce-
narios also allows us to distinguish the benefits of cleaner electrifica-
tion and autonomy separately. The rebound effect, described in the
literature as a person’s or a system’s reaction to new technology and
the consequences of these reactions on total resource use, is a key
topic to consider in AV adoption14. As stated before, the introduction
of AVs may lead to increased road transport activity thanks to their
improved fuel efficiency and comfort14. Such rebound effect has
repercussions not only on the use phase of the vehicle but also on the
manufacturing and end-use phases, as we will explain further in
“Results”, hence the importance of studying the life cycle impacts of
AVs as well. The rebound effect could have a direct impact on the life
cycle impacts by increasing the energy usage induced by the improved
fuel efficiency due to autonomy14. On the other hand, obscure con-
sequences could be in the formof a change in the public’s preferences
when a new technology is introduced or through improved energy
efficiency leading to manufacturing cost reduction resulting in a

reduction in a product’s price, thus encouraging additional
consumption15.

Analyzing autonomous electric vehicles from a life cycle per-
spective has received limited attention in the literature16. The rebound
effect associatedwith AVs, although identified in early studies, has also
not been extensively studied since10. According to our literature search
in the Scopus database in Feb. 2022, most of the studies in this area
were published in 2019 and onwards, which implies that this field is
emerging and needs further research and assessment9–12. One paper
accounted for the carbon footprint of autonomous vehicles and con-
cluded that a 100% penetration rate of autonomous vehicles leads to a
decrease in commuting time, as well as an enhancement in the vehi-
cle’s network’s speed in terms of communication between the auton-
omous vehicles and the network17. They came up with a result of an
increase in the carbon footprint of autonomous vehicles when com-
pared to internal combustion engine vehicles, hybrid electric vehicles,
and battery electric vehicles. This increase in the carbon footprint is
explained by the additional manufacturing of lithium-ion batteries as
well as electronic parts used in an autonomous system. This increase in
manufacturing batteries is caused by the additional driving due to
autonomy, necessitating replacing the battery earlier than in the case
of AVs. Furthermore, more capacity is needed to power the additional
electronic systems used by AVs. A shortcoming of their study is their
negligence of the end-of-life potential in saving emissions by recycling
the materials used in the vehicle when being salvaged. While another
paper examined a real-life application of shared autonomous electric
vehicles in Germany18. It is based on utilizing autonomous vehicles to
act as driverless taxis and ride-hailing customers on the same trips.
Their findings proved autonomous vehicles could reduce trip cost per
kilometer by 60% when compared to privately-owned internal com-
bustion engine vehicles by 2025 while utilizing a mix of renewable and
nonrenewable energy resources for electricity generation. They have
determined that autonomous vehicles can reduce commuting time
since commuters will not have to look for a parking space, as well as
congestion due to autonomy. In addition, in terms of energy con-
sumption, using autonomous vehicles fleet provides significant
advantages over identical internal combustion engine vehicles by up
to 67%. Another study explored the use of autonomous vehicles within
university campuses and showed that they could reduce greenhouse
gas emissions by 36% at a 40% penetration level19. As the penetration
level increases, there will be a greater reduction in greenhouse gas
emissions. Automation may have several favorable and unfavorable
effects on on-road vehicles’ energy consumption and greenhouse gas
emissions through changes in road transport demand, vehicle design,
operational characteristics, and fuel choices10. Their findings indicate
that high uncertainty is involved in autonomy’s effect on greenhouse
gas emissions, depending onwhich effects are prioritized, automation
might alter energy use and greenhouse gas emissions from road
transportation by halving them or doubling them10.

A large research gap has been discovered in the literature as stu-
dies failed to account for uncertainties, particularly in the context of
life cycle evaluations for autonomous electric cars. Using Vienna as a
case study, one study explores the potential effects of autonomous
vehicles on urban mobility and the environment20. They concluded
that while AVs may boost safety, efficiency of time use, and accessi-
bility, theymay also result in undesirable trade-offs like more frequent
travel andmoremotorized road traffic. The study also reveals that grid
decarbonization, electrification of the mobility sector, and effective
mass transit are crucial to lowering emissions from Vienna’s trans-
portation system. Furthermore, they determined that the degree to
which these conditions are maintained will regulate the direction of
GHG emission development and that AV mobility is unlikely to play a
significant role. However, the research fails to conduct a thorough
uncertainty-based life cycle evaluation. Furthermore, the range of the
amount of trip increase attributable to the rebound effect, from 8% to
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57%, reflects a high degree of uncertainty. Another study has investi-
gated the life cycle costs and GHG emissions of various electric bus
models for Singapore’s public transportation system21. The research
employed integer linear programs to optimize the trip scheduling
ensuring that the size andmileage of the fleetwere kept to aminimum.
The optimal case highlights that GHG emissions associated with
autonomous electric buses decreased by 47%, while the life cycle cost
decreased by 14% compared to conventional internal combustion
engine buses. One of the study’s shortcomings is that it did not
account for the charging stations’ expenses and emissions, which
could have a substantial impact on the study’s conclusions. To add on,
the study only looked at a small number of routes and neglected other
factors such as passenger safety and comfort. Finally, one study has
conducted a study to assess the environmental effects of Austin,
Texas’s deployment of autonomous taxi (AT) fleets22. The study’s
specific objective was to contrast three updated human-driven vehicle
scenarios with five AT fleet scenarios with the current baseline sce-
nario, which involves human-driven cars. These scenarios vary in terms
of autonomy, powertrain, range, charging type, and vehicle lifetime.
Their conclusions indicated that compared to human-driven vehicle
scenarios, AT fleets consumed less energy and emitted less GHG
emissions. The scenarios for the short-range, electric, and fully
autonomous AT fleets utilized the least amount of energy and gener-
ated the fewest greenhouse gas emissions. It is vital to keep in mind,
though, that the study had some limitations, such as assuming that the
travel demand is constant throughout all the scenarios. Addressing the
gaps in the literature requires a comprehensive approach, particularly
with an emphasis on the rebound effects of AVs from a life cycle
perspective.

Assessing and analyzing the carbon footprint of emerging
autonomous electric vehicle technologies requires thedevelopmentof
integrated novel methodological approaches. As fully autonomous
vehicles are currently being experimented with and on a pilot scale,
quantifying and analyzing the environmental impacts of autonomous
electric vehicles have certain challenges and uncertainties (please see
Supplementary Tables 1–3 for components, purpose, and vehicle
material composition). For instance, there are uncertainties associated
with user behavior and its consequential impacts. How society would
perceive technology and how their travel patterns would change in
response to the improved comfort in driving and fuel efficiency. Glo-
balization increased the complexity of the environmental assessment
of products. For example, geographic location of manufacturing (e.g.,
manufacturing li-ion battery and extraction of rawmaterial), design of
systems, operation/use phase, and value distribution of product/sys-
tem across a global complex supply chain are distributed around the
world. To address these methodological challenges, we employ
interdisciplinary methods drawn from decision science including sys-
tem thinking practices, advanced uncertainty-based life cycle assess-
ment (LCA), environmentally extended multi-regional input–output
(MRIO) analysis, data science, and social sciences surveys. By adopting
a systems thinking approach,we reveal rebound effects and behavioral
aspects influencing the environmental impacts of autonomous electric
vehicles.

In this work, we demonstrate the carbon footprint trade-off
between autonomous and nonautonomous electric vehicles by
developing a comprehensive uncertainty-based life cycle assessment
approach. The fuel efficiency savings due to autonomous driving are
not enough to reduce total life cycle emissions due to the increase in
emissions stemming from rebound effects for both the operation and
manufacturing phases. Autonomous electric vehicles might emit 8%
more greenhouse gas emissions on average in total compared to
nonautonomous electric vehicles. While solar charging can sig-
nificantly reduce emissions for both autonomous andnonautonomous
electric vehicles, further improvement and research are needed to
decrease emissions due to rebound effects. To offset the increased

emissions from rebound effects, several areas of improvements are
suggested; (1) cleaner andmore efficient manufacturing technologies,
(2) further fuel efficiency improvement in autonomous driving; (3)
solar charging, (4) circular economy applications and innovative
businessmodels targeting bothmanufacturing, operation, and end-of-
life phases. We must advance our understanding of the economic,
social, and environmental impacts of emerging technologies such as
autonomous electric vehicles and related global supply chain deci-
sions. The findings of this research can be applied to policy develop-
ment and strategic decision-making, such as understanding the trade-
offs, challenges, risks, and sustainability impacts of adopting emerging
autonomous electric vehicle technologies.

Results
Behavioral aspects of rebound effects: insights from the survey
To understand social aspects contributing to the rebound effects, it is
important to analyze user characteristics that are more likely to
increase rebound effects. There are several research efforts assessing
user characteristics of autonomous cars in the literature. Studies show
that people who have a high level of education have more trust in AVs
and aremore likely to be early adopters of AVs23. In addition, educated
individuals have a positive opinion of AVs and are willing to pay more
for them24. When considering the effect of age on AV adoption, with
increasing degrees of automation, elderly adults were less likely to
accept such technology25,26. For our study, based on the survey, 86% of
old adults (46 years or older) are willing to adopt AVs when they
become available, higher than other groups and contradicts the find-
ings of the literature. This could be a result of cultural differences and
public perceptions about such emerging technologies. Aiming to
investigate our survey’s user characteristics, a generalized linearmodel
wasemployed to identify groupsmore likely to face increased rebound
effects when autonomous vehicles are introduced. Findings highlight
households with 3–4 adults aremore likely to increase rebound effects
with a 41% likelihood. We also observe that they are the groupwith the
highest average rebound effect value of 29% compared to 22% and 20%
for households with 1–2 individuals, and 5 and over individuals,
respectively. Total annual traveling distance is an important parameter
that amplifies the impact of rebound effects. For this reason, a gen-
eralized linearmodelwas developed to investigate the categories likely
to be traveling more annually. Those categories were identified to be
full-time andpart-time employees, bachelor’s degreeholders, andnon-
experienced drivers (people with 0 years of driving experience). To
start, Full-time and part-time employees have jobs to attend, unlike
other categories such as others. As for bachelor’s degree holders, they
represent over 62% of the people who travel 30,000 km or more
annually. Furthermore, 54% of bachelor’s degree holders travel
20,000 km or more annually, ranked first among all other degree
holders.

Carbon footprint of autonomous electric vehicles
We consider four scenarios for assessing the carbon footprint of
autonomous vehicles. These Scenarios are as follows: Scenario 1:
Battery electric vehicle—Electricity generated from the natural gas-
fired power plant, Scenario 2: Autonomous battery electric vehicle—
Electricity generated from the natural gas-fired power plant, Scenario
3: Battery electric vehicle— Electricity generated from Photovoltaics,
and Scenario 4: Autonomous battery electric vehicle—Electricity
generated from Photovoltaics. Figure 1 shows the Global Warming
Potential (GWP) of the four scenarios considered. For the case of
electricity generation using natural gas, the average life cycle GWP
for nonautonomous vehicles in Scenario 1 was 31 tCO2-Eq. per vehi-
cle, while for autonomous vehicles in Scenario 2, it totals 34 tCO2-Eq.
per vehicle. Based on those findings, autonomy is expected to
increase life cycle emissions by 8% on average due to increased travel
and manufacturing of autonomous systems. This result is an average
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for the results of the twelve car models examined in this study con-
cerning theirmanufacturing, operation, and end-of-life phases. In the
manufacturing phase, we considered a set of countries that can
manufacture vehicles, batteries, and autonomous systems, as shown
in Supplementary Tables 9 and 10. Out of these manufacturing
combinations, the Chinese and Indian manufacturing sectors have
relatively higher emissions. For Scenario 1 and 2, the average manu-
facturing phase emissions are 15.71 tCO2-Eq. and 21.96 tCO2-Eq. per
vehicle, respectively. Thus, autonomy is likely to increase the man-
ufacturing phase emissions by an average of 40% per vehicle. The
increase in manufacturing phase emissions is due to the combined
effect of manufacturing additional components for the autonomous
system and the rebound effects. Starting with autonomy-purpose
components, their manufacturing processes are expected to emit
between 0.77 and 4.19 tCO2-Eq. with an average of 2.37 tCO2-Eq. per
vehicle. This average increase represents approximately 11% of the
average total manufacturing phase emissions. The rebound effect is
responsible for emitting between 2.06 and 6.63 tCO2-Eq. per vehicle
and an average value of 3.87 tCO2-Eq. per vehicle, representing an
average contribution of 18% of the average total manufacturing
phase emissions. In Scenarios 1 and 2, operation phase emissions are
22.18 tCO2-Eq. and per vehicle 18.47 tCO2-Eq., respectively.

Autonomy improves fuel economy27, and thus, reduces operation
phase emissions by an average of 17%.

In Scenarios 1 and 2, on average, the emission savings of 17% in the
operation phase (3.71 tCO2-Eq.) is not enough to offset an emission
increase of 40% in the manufacturing phase (6.25 tCO2-Eq.), hence
autonomy results in an 8% increase in overall life cycle emissions (2.38
tCO2-Eq.). We observed an increase in total life cycle emissions in ten
manufacturing locations and technology. However, manufacturers
from France and the USA show a decrease in total life cycle emissions.
One reasonable explanation would be that the USA and France might
have more efficient manufacturing technologies, relatively cleaner
energy sources for manufacturing, and more efficient fuel efficiency.
This finding highlights the importance of cleaner and more efficient
manufacturing technologies. Consideration of upstream emissions in
the manufacturing sector is important for the transition to autono-
mous vehicles to better utilize the manufacturing process with lesser
emissions. One of the many ways to achieve this is conformance with
ISO/TR 14067:2018 standard, which includes integrating the environ-
mental aspects into the product’s design and development. Addi-
tionally, material substitution or dematerialization can help reduce
manufacturing-related emissions. This implies using materials that
require less energy or promoting designs that require less material for
manufacturing vehicle parts. An example of this is the increased usage
of plastics and rubber in passenger vehicles over the years28. Further-
more, circular economy applications could offer a great opportunity
for autonomous vehicles to reduce their emissions since their batteries
require some critical metals such as Lithium and Cobalt. Cobalt has
recently faced some supply chain disruptions and is becoming a
challenge for manufacturing lithium-ion batteries as its demand is
anticipated to increase by four times over the next four decades29. The
market for electric passenger light-duty automobiles increased tenfold
between 2011 and 2016, greatly boosting the need for lithium in the
battery sector30. Recycling can offset some of the emissions andwould
decrease manufacturing emissions when compared to mining the
materials all over again31. In the end-of-life phase, autonomous vehicles
have shown average savings in emissions of 6.63 tCO2-Eq. per vehicle
while nonautonomous vehicles averaged a saving of 6.47 tCO2-Eq. per
vehicle.

Scenarios 3 and 4 demonstrate that the utilization of Photo-
voltaics (as an example of renewable energy) significantly reduces
emissions in the operation phase. However, we still observe that
autonomy increased average total life cycle emissions. The average life
cycle GWP emissions for Scenarios 3 and 4 are 13.14 tCO2-Eq. and 19.01
tCO2-Eq. per vehicle, respectively. Using Photovoltaics in electricity
generation results in a drastic decrease of 82.4% and 80% of operation
phase emissions for nonautonomous electric vehicles and autono-
mous electric vehicles, respectively. This has resulted in manufactur-
ing phase emissions surpassing operation phase emissions in all
brands considered. So, in a scenario where we can utilize solar energy
in electric autonomous vehicles, rebound effects in manufacturing
phase emissions become even more important.

Figure 2highlights adetailedbreakdownof life cycle emissions for
Scenarios 1 and 2. Please see Supplementary Fig. 11 for detailed
breakdowns for Scenarios 3 and 4. For the electricity generation using
natural gas, introducing autonomy causes an average life cycle emis-
sions increase of 2.38 tCO2-Eq. per vehicle. In the case of non-
autonomous electric vehicles, the operation phase is the largest
contributor to the life cycle emissions with an average contribution of
71% of total life cycle emissions compared to an average contribution
of 55.2% for autonomous electric vehicles. Electricity consumption is
the main source of emissions in the operation phase. In the manu-
facturing phase, car body manufacturing has the highest share in
emissions. However, rebound effects and autonomous system manu-
facturing combined have emissions share as high as car body manu-
facturing. Increased emissions in the manufacturing phase are due to

Fig. 1 | Global warming potential results. Data are presented as mean values of a
population size of n = 10,000 (Bootstrapping samples) life cycle phase emissions,
while error bars in the form of standard deviations for each scenario are shown to
illustrate the dispersion of data points. The lower and upper bounds for each
scenario are mentioned as follows (Lower bound, Upper bound); Scenario 1:
Manufacturing phase: (8.66, 27.05), Operation phase: (14.69, 26.63), End-of-Life
phase: (−8.32, −2.59); Scenario 2: Manufacturing phase: (11.65, 37.56), Operation
phase: (12.13, 22.08), End-of-Life phase: (−8.56, −2.66); Scenario 3: Manufacturing
phase: (8.66, 27.05),Operationphase: (2.06, 6.68), End-of-Life phase: (−8.32,−2.59);
Scenario 4:Manufacturing phase: (11.65, 37.56), Operation phase: (1.91, 6.5), End-of-
Life phase: (−8.56, −2.66). The Standard Deviation values are as follows; Scenario 1:
Manufacturing phase: 4.55, Operation phase: 3.83, End-of-Life phase: 1.59; Scenario
2: Manufacturing phase: 6.4, Operation phase: 3.15, End-of-Life phase: 1.64; Sce-
nario 3: Manufacturing phase: 4.55, Operation phase: 1.13, End-of-Life phase: 1.59;
Scenario 4:Manufacturing phase: 6.4,Operationphase: 1.12, End-of-Lifephase: 1.64.
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the rebound effect and additional manufacturing of autonomous
system components contributes a combined average of 29% of man-
ufacturing phase emissions. In the end-of-life phase, plastics and alu-
minum are the largest contributors to emissions savingwhen recycled.
Recycling nonautonomous vehicle components offers an average
reduction of emissions of 6.47 tCO2-Eq. per vehicle while autonomous
vehicles present an average saving of 6.61 tCO2-Eq. This slight increase
in savings is due to recycling autonomous system components.

Stochastic results of the carbon footprint analysis
The adoption of emerging technologies has many uncertainties, and
these uncertainties can result in unintended consequences due to the
many unknown factors in manufacturing, operation, and end-of-life
phases. Hence, we employedMonte Carlo Simulation andMultivariate
sensitivity analysis to deal with these uncertainties. We employed a
Monte Carlo simulation to account for various possible outcomes
based on the assumptions of the inputs following probability dis-
tributions. Supplementary Table 12 shows the probability distributions
followed by the inputs of this case study. Figure 3 shows the results of
running 10,000 samples usingMonte Carlo simulation. Both themean
and standard deviation for autonomous vehicles are higher than for
nonautonomous vehicles for both energy sources. We apply a multi-
variate sensitivity analysis to investigate the effect of changing inputs
on the life cycle GWP of autonomous and nonautonomous electric
vehicles. The analysis highlights which outputs are more sensitive to
model input parameters. The input data includesmanufacturing phase
emissions, rebound effect, fuel economy, and end-of-life phase emis-
sions. Figure 4 shows the results of themultivariate sensitivity analysis.
For Scenario 1, At low input change percentiles of less than 30%, the
end-of-life phase emissions are considered the dominant process in
terms of increasing life cycle GWP when compared to other variables.
This is also the same case for Scenario 3 where the end-of-life phase is
also the prevailing phase at such a low input percentile change rate. On
the other hand, for Scenarios 2 and 4 representing autonomous vehi-
cles, fuel economy is the dominant variable for both cases as it induces
the highest change in life cycle GWP among the variables considered.
At higher input percentile change values up to 60%, the fuel efficiency
surpasses end-of-life phase emissions in terms of changing the life
cycle GWP at the greatest amount for Scenario 1, whereas for Scenario
2 in which the rebound effect and fuel economy alternate within this
interval in terms of influence on life cycle GWP when altered. When
considering Scenario 3, the end-of-life emissions remain the most
dominant contributors to life cycleGWPwhen adjusted. This is also the
same case for Scenario 4 at this interval as the rebound effect remains
roughly the highest influencing variable. Finally, at higher input per-
centile change values over 80%, the manufacturing emissions

constitute the highest influencing input on the life cycle GWP of AVs
while between 60% and 80% the fuel efficiency remains dominant for
Scenario 1. As for Scenario 2, the manufacturing phase emissions
become the most influential variable on life cycle GWP for a change
rate of over 60%. This is also the same case for Scenarios 3 and 4where
such behavior is also evident. More detailed information can be found
in Section 3.4 in the Supplementary Information file and Supplemen-
tary Tables 12 and 13.

Discussion
The results indicate that autonomy in road vehicles is anticipated to
increase life cycle greenhouse gas emissions by 8% on average per
vehicle. Although autonomy introduces an average 17% decrease in
operation phase emissions due to improved fuel efficiency, it intro-
duces a 40% increase in manufacturing phase emissions due to the
combined effect of manufacturing autonomous system components
and increased travel. Together, manufacturing autonomous system
components and increased travel is responsible for an average of 18.5%
of the total life cycle emissions on average. This considerable amount
of increase in emissions stems from autonomous driving. Considering
that the goal is to maximize the benefits of autonomous driving in
terms of comfort, safety, energy efficiency, and utilization of infra-
structure while reducing the environmental impacts below levels of
nonautonomous vehicle emissions. This can be achieved by finding
ways to mitigate increased emissions from the rebound effects. For
instance, If the improvement of fuel economy due to autonomous
driving could be above 48% (more than double the current fuel
economy value considered in this study) compared to non-
autonomous driving, the emissions from rebound effects could be
eliminated and there would be no emission increase due to autonomy.
Therefore, the energy efficiency of autonomous driving should be
further improved. Furthermore, the manufacturing emissions of these
technologies could be reduced via improved efficiency of manu-
facturing of critical and emission-intensive technologies such as LIDAR
(Light Detection and Ranging) and RADAR (Radiowaves Detection and
Ranging). The use of renewable energy sources for charging as well as
in the manufacturing of vehicle parts can help reduce GHG emissions
overall. In addition, the use of cleaner and more resource-efficient
manufacturing technologies can significantly reduceGHGemissions as
the results show that a significant portion of the life cycle carbon
emissions of autonomous vehicles originate from their manufacturing
processes. The surge in shared AV services, like ride-sharing and car-
pooling, amplifies vehicle occupancy while curbing the total number
of AVs on the road, thus constraining the rebound effect in indepen-
dent commuting and forestalling potential surges in travel demand32.
Moreover, employing dynamic price mechanisms such as congestion

Fig. 2 | Breakdown of life cycle emissions. A Scenario 1 life cycle emissions
breakdown. Theoperationphasedominates in termsof emissions, constituting the
most significant portion of the life cycle emissions.B Scenario 2 life cycle emissions
breakdown. The contribution of the operation phase to the overall life cycle

emissions is reduced, closely followedbyemissions from themanufacturingphase.
This breakdown highlights areas for improvement by emphasizing hotspots that
can be strategically addressed to achieve substantial reductions in life cycle
emissions.
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fees dissuades needless or excessive AV utilization, fostering more
eco-friendly transportation alternatives33. Lastly, developing strategies
to transform passenger behavior away from overusing AVs and foster
eco-conscious consumption patterns, while enlightening the public
about the rebound effect. These captivating advertisements strive to
educate people about the intricate consequences of energy-saving
technologies that inadvertently augment energy usage. However, as
seen in our Causal Loop Diagram (CLD) modeling, this is likely to be a
complicated issue that is influenced by other several variables as dis-
cussed earlier. As autonomy is introduced extensively to private
vehicles, it can contribute to a reduction in emissions through
enhanced fuel efficiency as shown in balancing loop 1. However, by
doing sowe anticipate several unintentional effects suchas stimulating
an increase in travel demand (representing the rebound effect) due to
enhanced driving comfort and convenience. This surge in travel
demand results in amplified emissions and an intensified need for
manufacturing vehicle parts, as shown in reinforcing loops 1 and 2. As
can be seen, the high complexity of the rebound effect in autonomous
commuting poses a significant challenge, but harnessing the potential
of autonomy to reduce life cycle emissions necessitates comprehen-
sive strategies and a holistic understanding of the dynamic interac-
tions involved. This paper explores the intricate interactions between
the variables within the life cycle of AVs in the sensitivity sectionwhere

the results offer valuable insights for policy recommendations to
reduce the life cycle carbon emissions of AVs. For scenarios with input
change percentiles below 30%, policies should prioritize addressing
end-of-life phase emissions through recycling, reuse, and responsible
disposal. In scenarios where fuel economy dominates (e.g., Scenarios 2
and 4), policies should focus on enhancing energy efficiency through
lightweight materials, optimized powertrains, and eco-driving prac-
tices. As input change values increase to 60%, policies should continue
to prioritize fuel efficiency improvements and address the rebound
effect in shared mobility as discussed earlier in several mitigations of
this phenomenon. Higher input values require policies targeting
manufacturing emissions reduction through sustainable practices and
low-carbon materials.

In this study, we presented a case for Qatar and rebound effects
might differ regionally. Providing a comprehensive global perspective
of the rebound effect requires further regionalized studies which can
offer amore robust basis for country-specific decision-making in terms
of autonomous vehicle adoption. Additionally, autonomous vehicle
environmental impact assessment using multiple scenarios based on
dynamic electricity prices and improvement in fuel efficiency can
support policy development in the adoption of autonomous electric
vehicles. While Global Climate Change is an urgent issue, other envir-
onmental impact categories as well as more detailed social and eco-
nomic aspects of adopting autonomous electric vehicles should be
studied to provide a more complete sustainability assessment.

Methods
We utilize a range of interdisciplinary approaches rooted in decision
science, such as systems thinking, advanced uncertainty-based LCA,
environmentally extended MRIO analysis, data science techniques,
and conducting a survey. By embracing a system’s thinking perspec-
tive, we uncover how rebound effects and behavioral factors play a
role in shaping the greenhouse gas emissions associated with auton-
omous electric vehicles.

Understanding the rebound effects: causal loop diagramming
Autonomy introduces three main effects: (1) increased replacement
frequency of vehicle parts (battery, tires, etc.) due tomore vehicle use;
(2) increased fuel use associated with more driving due to increased
comfort that comes with autonomy and reduced travel cost per km,
and (3) manufacturing of additional components of the autonomous
system. To explain the dynamics linking these effects together for
autonomous electric vehicles, we provide a CLD model in Fig. 5. The
CLD highlights the interrelations of different variables related to
competing forces (reinforcing and balancing loops) in the carbon
footprint of autonomous vehicles. A reinforcing loop indicates posi-
tive causation, resulting in growth or reduction. Balancing loops indi-
cates negative causation, attempt to move the system to a certain
state, and cause a goal-seeking behavior. In the system’s model, we
have five reinforcing loops (R1-R5), and one balancing loop (B1).

Reinforcing loops 1–5
R1: Autonomy→ (+) Comfort of driving→ (+) Travel demand→ (+)
Emissions →(+) Autonomy. R2: Autonomy→ (+) Comfort of driving→
(+) Travel demand→ (+)Manufacturing of vehicle parts→(+) Emissions
→(+) Autonomy in R1 and R2, Autonomous vehicles are expected to
make driving easier by improved traveling comfort which would
increase the travel demand34,35. If travel demand increases, this would
result in more trips, thus more emissions36. Also, if the travel demand
rises, this will create a need for replacing deteriorated parts due to the
increased traveling, hence more emissions associated with parts
manufacturing processes. The causal loop shows how improvements
in the convenience of AVs can have unintended consequences, like
more pollution, and how new ideas are needed to solve these pro-
blems. R3: Autonomy→ (+) Fuel efficiency→ (+) Travel demand→ (+)

Fig. 3 | Monte Carlo simulation results. A Scenarios 1 and 2. B Scenarios 3 and 4.
This analysis aids in accounting for the various sources of uncertainty within life
cycle emissions of both autonomous and nonautonomous vehicles by considering
numerous samples of 10,000 emissions sample values from the simulations. The
two graphs provide a holistic view of the life cycle emissions of autonomous and
nonautonomous vehicles by highlighting their potential difference and how they
are likely to be as the simulation accounts for various uncertainties within the life
cycle. %95 confidence interval on the mean are as follows: Scenario 1: (28.6, 28.8),
Scenario 2: (36.6, 36.9), Scenario 3: (12.9, 13.1), Scenario 4: (24, 24.3). BEV battery
electric vehicles, A-BEV autonomous battery electric vehicles. The standard
deviation for S1 and S2 in (A) are 5.8 and 5.59, respectively, while for S3 and S4 in (B)
they are 4.75 and 8.19, respectively.
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Emissions →(+) Autonomy. R4: Autonomy→ (+) Fuel efficiency→ (+)
Travel demand→ (+) Manufacturing of vehicle parts → ( + ) Emis-
sions →(+) Autonomy. When autonomy is introduced to vehicles, it is
expected to enhance fuel efficiency as AVs are programmed to travel
the most fuel-efficient routes and drive in the most fuel-efficient
manner9. If there are enhancements to the fuel efficiencyof a vehicle, it
would result in increased travel demand as the cost of traveling per
kilometer basis is reduced encouragingmorepeople to travel37. In case
the demand increases, it is expected that emissions and the need for
replacing the deteriorated parts increase, hence more emissions. R5:
Autonomy→ (+) Manufacturing of vehicle parts→ (+) Emissions→ (+)
Autonomy, If the degree of autonomy increases, it would requiremore
components to be produced since more parts are required for the
autonomous system. If themanufacturing of vehicle parts increases, it
would result in an increase in emissions due to manufacturing
processes.

Balancing loop 1
B1: Autonomy→ (+) Fuel efficiency→ (-) Emissions→ (+) Autonomy. The
balancing loop explains how autonomy could reduce emissions. If
autonomy increases, this results in enhanced fuel efficiency in a unit of
distance traveled (e.g., per km), which decreases GHG emissions9.

The CLD explains the mechanism involved in the rebound effects
and reveals potential intervention points to reduce GHG emissions. By
adopting a systems thinking approach, we discover the rebound
effects and behavioral factors that contribute to the environmental
impact of autonomous electric vehicles. To further analyze the
mechanisms explained in the CLD, we develop a behavioral analysis
based on survey data. Our samplewas collected from330 adults based
on a web-based survey questionnaire. The behavioral factors investi-
gated include age, marital status, employment, level of education,
income, number of adults per household, number of cars per house-
hold, and driving experience in years. It is important to note that this

sample may be subject to certain biases that could affect the accuracy
and generalizability of our findings. One potential source of bias in our
survey could be the limited availability of AVs on themarket. Thismay
result in a lack of exposure to these technologies among the popula-
tion, which could lead to a psychological distance and a less nuanced
understanding of their benefits and drawbacks. Through the survey,
we were able to get an understanding of the user characteristics that
are associated with rebound effects. We evaluated the mechanisms
that are outlined in the CLD by developing a comprehensive
uncertainty-based carbon footprint assessment of fully autonomous
electric vehicles from a life cycle perspective.

Please see Section 2.2 in the supplementary information file for
details of the generalized linearmodels developed by using the survey
data, as well as Supplementary Table 6 which summarizes the model’s
results. The survey also allowedus to conduct a behavioral analysis and
to understand user characteristics contributing to the rebound effects
(Please see Supplementary Tables 7 and 8). To account for uncer-
tainties about the location of the manufacturing and assembly of a
potential emerging autonomous electric vehicle parts, we developed
stochastic decision analysis and considered uncertainties associated
geographic location of manufacturing (Supplementary Tables 9–11).
For instance, we vehicle body, li-ion battery, and autonomous parts
(LIDAR, RADAR, etc.) can be manufactured in different countries and
assembled in another country. We investigated countries that can
provide these technologies and analyzed all potential combinations of
these manufacturing scenarios. Details of these calculations are pre-
sented in Section 3 in the Supplementary Information file.

Uncertainty-based life cycle assessment
The life cycle analysis considers all stages of the vehicle’s life cycle,
including its production, operation, and disposal phases by utilizing
environmentally extended MRIO analysis. In addition, we investigate
the possibilities of minimizing carbon emissions by recycling vehicle

Fig. 4 |Multivariate sensitivity analysis results. A Scenario 1.B Scenario 2.C Scenario 3.D Scenario 4. This analysis supplements the results by examining life cycle input
variables and how variating them would impact life cycle emissions of autonomous and nonautonomous vehicles.
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components to mitigate the consequences of rebound effects. Since
we analyze an emerging technology that has not been fully developed,
we use stochastic decision analysis to account for uncertainties asso-
ciated with all life cycle phases. This analysis considers a set of
potential combinations of manufacturing and assembling sedan vehi-
cle bodies, Li-Ion batteries, and autonomous system components in
nine different countries represented by twelve sedanmodels from the
world’s most renowned automobile manufacturers. The results shown
in this study represent an average value of the carbon footprint for
each of the twelve car brands considered. Considering multiple com-
binations aids in assessing the carbon footprint relevant to different
choices within various aspects, such as cost, fuel efficiency, and
environmental impact. Furthermore, cost combinations of vehicle
bodies, Li-Ion batteries, and autonomous system components form a
basis for autonomous vehicles’ costs as shown in Supplementary
Table 14. Similarly, we developed stochastic estimations for the carbon
footprint of operation and end-of-life phases by considering potential
variations in fuel efficiency and end-of-life management processes for
the given twelve sedan brands. Detailed explanations about data col-
lection and the analysis are provided in “Methods” as well as in the
Supplementary Information file.

Estimating environmental impacts across global supply chains is
extremely challenging with traditional process-based LCA approaches.
While process-level LCA approaches areuseful for the quantification of
environmental impacts from a life cycle perspective, they have certain
limitations when estimating emissions embedded in the supply chain
of theprocesses in LCAdue to cut-off criteriawhendefining the system
boundary38. On the other hand, input–output (IO) based LCA approa-
ches are powerful for capturing environmental impacts that are
embedded in complex global supply chains, thus allowing a more
holistic assessment and eliminating truncation errors due to the cut-
off criteria39. However, IO-LCA models introduce some uncertainties
due to data aggregation at a sectorial level. Input–output-based
approaches are likely to yield more accurate results when estimating
environmental impacts40. Therefore, in this research, we developed a
multi-regional input–output-based LCA approach to account for
indirect emissions that are embedded in the complex global supply
chains of the manufacturing, operation, and end-of-life phases. The
manufacturing countries are also affected by this rebound effect. For

example, if autonomy increases vehicle use, more parts will be subject
to depreciation and wearing, and the replacement parts will be man-
ufactured in the country of origin, and they will induce increased
environmental impacts. This impact can be seen as a supply chain-
related impact. It is an indirect effect of increased use due to the
rebound effect. However, this is not only for themanufacturing phase.
This is true for all the supply chain-related (indirect) activities involved
throughout the life cycle phases of autonomous vehicles. Therefore,
we adopted the MRIO-based LCA approach to account for all the
indirect effects (embedded in the global supply chains) of rebound
effects. The functional unit of the analysis is per vehicle. The life cycle
phases and processes involved in the analysis are presented in Fig. 6.

The integrated analysis workflow is presented in Fig. 7. After
developing our hypothesis by adopting a systems thinking approach,
we identified data requirements to analyze and prove the relationships
defined in the CLD. We developed survey questions, collected survey
data, and developed generalized linear models to analyze and under-
stand the user characteristics and for behavioral analysis. After defin-
ing the goal and scopeof the LCA,we constructed a life cycle inventory
and developed the MRIO-based LCA model. We developed stochastic
approaches and used methods such as Bootstrapping, Monte Carlo
Simulation, and multivariate sensitivity analysis. Finally, we presented
our findings using innovative data visualization techniques and pro-
vided insights, recommendations, and future work.

We collected data associated with the entire life cycle stages of an
autonomous electric vehicle, including manufacturing, shipping,
operation, and end-of-life phases in terms of GHG emissions and
material composition. Because we developed an MRIO-based LCA
model, we use producer costs as a proxy to estimate the supply chain-
linked carbon footprint of processes involved in the LCA of autono-
mous electric vehicles. We included processes of transporting vehicle
parts from different manufacturing locations to Qatar. As for the
autonomous system, each component is classified into a suitable
manufacturing process established in themodel. The following Table 1
highlights the characteristics of the twelve car models considered in
this study. For more details, refer to Supplementary Tables 10 and 11.

A list of the components and their detailed description is shown in
Supplementary Table 2. We utilized the GREET model to estimate
material composition in vehicles (Battery, vehicle body for quantifying

Fig. 5 | Causal loopdiagrammodel.Thisfigure represents the causal relationships
between model variables explaining the rebound effects in the context of inte-
grating autonomy into vehicles. There are four reinforcing loops contributing to an

increase in life cycle emissions through increased vehicle travel and maintenance,
while a balancing loop counteracts this effect by reducing life cycle emissions
through enhanced fuel efficiency due to autonomy.
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the impacts of recycling in the end-of-life phase41). GREET model
specifies all materials used in battery electric vehicles and Lithium-Ion
batteries. For the autonomous system components, the material
composition of each component is estimated by breaking it down into
its subcomponents. Then, aggregating materials coming from the
three parts to generate a list of total materials used in autonomous
electric vehicles is shown in Supplementary Table 3. Afterward, we
utilized the MRIO model to account for the mining emissions of each
material relevant to its amount within the vehicle. As for the recycling
process, Due to data absence from the MRIO model for recycling
impacts for the materials used in the vehicles, we have utilized the
literature for Global Warming Potential impacts associated with each
of the materials used (expressed in KgCO2-Eq./ Kg material recycled).
Using the total materials list for each material, we accounted for the
recovery rate to get the actual amount that needs to be recycled, as
within recycling processes therewould be somematerial losses. Lastly,
we have accumulated the total GWP for each material present in the
vehicles, to get the total recycling GWP per vehicle, which would be
subtracted from the totalmining GWPper vehicle to get howmuch the
saving on emissions would be in case of recycling.

In the manufacturing phase, manufacturing of battery electric
vehicles, Lithium-Ion batteries, and autonomous system components
are included. Following is the shipping from their country of origin to
Qatar by sea. In the operation phase, charging, maintenance, and

battery replacement resemble emissions sources. Maintenance is
based on real-world data collected from a public transportation
company in Qatar, which operates electric trucks. The maintenance
costswere scaleddown to accommodate electric vehicles basedon the
proportion of bus price to car price. As for battery replacement, we
assume that electric vehicles will require one battery replacement
during their entire life cycle. This is mainly due to the rebound effect
causing increased annual traveling distances thus having a greater
need for the deteriorating Li-Ion battery. Lastly, for the end-of-life
phase, the savings in emissions due to recycling are quantified by
calculating the difference between emissions associated with mining
the materials and recycling them. For further details about the calcu-
lation steps please see Section 3 in the Supplementary Informationfile.

Multi-regional input–output model
MRIO Modeling is an economic technique that keeps track of money
transfers among the main economic sectors across major economies
in the world. Environmentally extended MRIO modeling allows track-
ing and analyzing resource flows by incorporating information from
the National Footprint Databases and Biocapacity Accounts. MRIO
models allow for tracking of resource flows between a country’s pri-
mary economic sectors and satellite national accounts and breaking
down national Footprint data into more targeted consumption- and
industry-related components42. Global financial transactions between

Fig. 6 | Systemboundary for life cycle assessment of autonomous vehicles.This
illustration provides the scope of the study by highlighting processes within each
phase of the life cycle of autonomous andnonautonomous vehicles, including their

value chain. Source: Authors’ work. The figure is designed by the authors com-
bining copyright-free icons from https://www.flaticon.com. Autodesk Sketchbook,
Adobe PS Suite, and Microsoft PowerPoint are used to design the figure.
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governments and regions canbe capturedusingMRIOmodels because
of this, MRIO analysis can help to analyze how economic activity in
certain sectors and countries can cause environmental impacts with
consideration of global supply chains43. Constructing the MRIOmodel
using Leontief’s equation in Eq. (1) to access implications associated
with a specific sector’s output unit aswell as unintended consequences
of the industry’s international supply networks.

X = ðI � AÞ�1 × y ð1Þ

Where X: Total output column vector (M€); I: identity matrix; A:
Coefficient matrix (M€/M€); y: total demand column vector (M€).

Next, Eq. (2) is used toobtainmultipliers indicating the impact of a
given sector’s input of one million Euros.

B= E × DIAG Xð Þð Þ � 1 ð2Þ

Where B: Matrix of intensities (Per M€); E: Environmental satellite
accounts.

Finally, Eq. (3) is as follows:

r =BLy ð3Þ

Where r: total output of each sector vector; B: intensity matrix per unit
of output; L: total requirements matrix.

In this study, EXIOBASE 3.8.2 is used as the MRIO database44. The
Supply and Use Tables are used to create EXIOBASE’s MRIO datasets,
which comprise national and global input–output tables as well as raw
data from the UN’s System of National Accounts, Comtrade, and
Eurostat databases, all at current prices with a steady product sales
assumption. The environmental impacts considered in this study are
emissions of Carbon dioxide (CO2), Methane (CH4), and Nitrogen
dioxide (N2O). Then, using these emissions,GWP is estimatedbasedon
a 100-year time series as per IPCC’s 6th assessment report45. GWP is a
measure of a greenhouse gas’s ability to trap energy over a given time.
This amount of energy absorbed by a ton of a specific GHG is com-
pared to a ton of CO2’s ability to trap energy.

Surveying
The survey is confirmed to be in full compliance with all relevant
ethical regulations. The study protocol has been reviewed and

approved by the Ethical Committee at Qatar University, approval
number: QU-IRB 1111-E/19. All participants in this survey consented to
the following statement: “This questionnaire aims to investigate the
perception of people about autonomous cars, mainly to understand
the public’s concerns, opinions, and preferences about this emerging
technology. This questionnaire targets individuals who are older than
18 years old and own a Qatari driving license. All given responses will
be treatedwith the utmost confidentiality. The resultswill be only used
for research purposes and no attempt will be made to identify any
individual or organization in any publication. Furthermore, the study is
approved by the Qatar University Institutional Review Board with the
approval number [QU-IRB 1111-E/19]. If you have any questions related
to the ethical compliance of the study, you may contact them at QU-
IRB@qu.edu.qa. The questionnaire will take around 20min to com-
plete. You can withdraw and stop completing the survey at any time
you wish”. We Built a web-based survey questionnaire utilizing the
Qualtrics platform in Arabic and English languages. Information
pamphlets thatweredisseminated through various networking groups
and social media platforms included the questionnaire. In total, 589
respondents filled out the survey. Data is collected from respondents
including socio-economic characteristics, AV-related questions, and
commuting behaviors. Socio-economic characteristics include age,
education, marital status, and employment. Supplementary Table 4
summarizes the demographics of the survey’s respondents while
Supplementary Fig. 1 shows the Covariate variable characteristics of
respondents. AV-related information, including respondents’ back-
ground knowledge of AVs and willingness to switch to AVs when they
are available, was collected. While the implications, benefits, techno-
logical advancements, and technological challenges of autonomous
vehicle cars are frequently discussed, the public’s acceptance and
perception of these vehicles received less attention46. For this purpose,
some questions in this part were about stating opinions about the
potential benefits of autonomous vehicles. The benefits include
reducing congestion on roadways, reducing fuel consumption, redu-
cing travel time, and reducing parking costs. Respondents were asked
to choose one statement to express how confident they are that
autonomous vehicles will bring this benefit. A summary of the per-
ceived benefits of the respondents of autonomous vehicles is shown in
Supplementary Table 7. Similarly, concerns regarding autonomous
vehicles are also addressed. Concerns consist of autonomous system
hacker attacks, accidents between nonautonomous vehicles and

Obtaining data related to life cycle 
inventory and vehicle specific data

Collec�ng data from respondents 
including socio-economic grouping

Construc�ng An MRIO-based GHG 
emission inventory using EXIOBASE 

3.8.2 database 

• Data analysis of the 
survey results by 
iden�fying the inputs 
of the life cycle model.

• Iden�fying the 
distribu�ons followed 
by inputs and their 
rela�onships.

• Employing distribu�ons 
with the MRIO model 
to obtain a 
comprehensive hybrid 
life-cycle assessment 
model. 

• Construc�ng 
propor�on odds model 
to iden�fy groups likely 
undergoing greater 
rebound effect.

• Iden�fy commu�ng 
behaviors of the 

respondents including 
their socio-economic 

differences. 
• U�lizing commu�ng 

behaviors in rebound 
effect quan�fica�on.

Es�ma�ng life-cycle 
greenhouse gas emissions 
relevant to manufacturing, 
opera�on, and end-of-life 
phases with considera�on 
of uncertain parameters of 
the emerging autonomous 

vehicles

Providing insights on the effect of autonomy on life-cycle 
greenhouse gas emissions. Also, insights of which groups of people 

would be likely to be subjected to greater amounts of rebound 
effect.

Fig. 7 | Analysis Workflow. This figure summarizes the methodology developed in this study along with a workflow explaining each methodological step briefly. GHG
greenhouse gas, MRIO multi-regional input–output, GHG Greenhouse gas, MRIO multi-regional input–output.
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autonomous vehicles, increases in maintenance costs for autonomous
vehicles, and autonomous vehicles’ performance in harsh environ-
ments. Summary of the concerns is summarized in Supplementary
Table 8. A full list of the questions answered by respondents is pro-
vided in the Supplementary information in Section 2. Lastly, com-
muting behavior variables include annual traveling distance per adult,
number of cars in the household, and change in annual traveling dis-
tances in the case of autonomous vehicle adoption. The change in
annual traveling distance is explained in Eq. (4) for rebound effect
computation.

RE =
MVM

GATDSA

� �� MVM
GRAATDSA

� �

MVM
GATDSA

� � ð4Þ

Where RE: Rebound effect; MVM: Maximum vehicle milage; GATDSA:
Generated annual traveling distances samples average; GRAATDSA:
Generated rebound-adjusted annual traveling distances samples
average.

Commuting behavior variables are utilized in quantifying total
anticipated traveling distanceswith autonomous vehicles. Equation (5)
highlights calculations for average rebound-adjusted annual traveling
distance:

ARAATD= ATDð ÞAvg × REð ÞAvg ð5Þ

Where ARAATD: Average rebound-adjusted annual traveling distance;
ATD: annual traveling distance; RE: The rebound effect.

Data processing and analysis
The screening process eliminated 9 respondents younger than 18
years, 145 respondents due to omitting their income, 104 respondents
with missing data on how much their travel would increase annually if
they switched to AVs, and one respondent with missing AV back-
ground knowledge data. In total, 330 respondents were used as the
sample. One important variable is the average rebound-adjusted
annual traveling distance, which is obtained fromBootstrapping as the
sample sizewas relatively low. Bootstrapping is a test that uses random
sampling with replacement and falls within the larger category of
resampling techniques. To build the sample distribution for the
desired estimate, sampling with replacement is performed47. This
procedure is explained in Section 2.1 in SI where Supplementary
Figs. 2–10 and Supplementary Table 5 show the results of this proce-
dure. Both average annual traveling distances and rebound-adjusted
annual traveling distances sets are used for quantifying how soon will
we need to replace autonomous vehicles when compared to

nonautonomous vehicles. Since autonomous vehicles are anticipated
to increase traveling, vehicles will deteriorate faster, and users will
have to buy a new car sooner thanwhen compared to nonautonomous
vehicles. This decrease in service life is expressed as a percentage
increase in manufacturing phase emissions, it is also expressed as the
rebound effect used in Eqs. (4) and (5). After obtaining life cycle phase
emissions for the twelve manufacturing location combinations, it is
important tofind thebest-fit distributionof the data. This is doneusing
@Risk software’s distribution fitting feature. Outputs of this process
include the distribution followed by manufacturing phase emissions,
fuel efficiency, rebound effect, and end-of-life phase emissions, which
are shown in Supplementary Table 12. We integrate the distributions
identified in data processing & analysis and run a set of Monte Carlo
simulations to account for potential uncertainties and provide sto-
chastic estimations for the carbon footprint of autonomous electric
vehicles. In addition, a multivariate sensitivity analysis is conducted to
understandhowsensitive the inputparameters suchas reboundeffect,
fuel efficiency, end-of-life phase emissions, andmanufacturing-related
emissions.

Behavioral analysis
To understand the relationship between the rebound effects and
socio-economic characteristics, we conducted a behavioral analysis.
Using the proportional odds model, an investigation is carried out to
identify which groups within different socio-economic factors are
more likely to travel greater distances when autonomous vehicles are
introduced. The proportion odds model is a statistical analysis
approach that models the relationship between an ordinal response
variable and one or more explanatory variables48. In addition, two
more models are constructed to identify groups with a higher like-
lihood of having better background knowledge of autonomous vehi-
cles, as well as identifying groups traveling more on an annual basis
compared to other groups. The three models share the independent
variables including age, marital status, employment, level of educa-
tion, income, number of adults per household, number of cars per
household, and driving experience in years. The results are shown in
Supplementary Table 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Life cycle inventory and vehicle specification data available in the
Supplementary Information File Survey data are available at

Table 1 | Vehicle model specifications

Brand refer-
ence name

Fuel efficiency
(kWh/km)

Battery capa-
city (kWh)

Car body production
cost ($)

Battery production
cost ($)

Total autonomous system produc-
tion cost ($)

China 0.14 53.1 24,671 4906 6108

Japan 1 0.19 71.4 21,482 6598 8784

Japan 2 0.174 62 16,142 5729 8487

India 0.0968 30.2 14,482 2790 5923

Korea 0.186 58 26,210 5359 8668

US 1 0.2 98.7 23,894 9120 7202

US 2 0.17 82 30,893 7577 10,198

Mexico 0.1125 18 21,042 1663 6656

Germany 1 0.182 55 28,170 5082 13,402

Germany 2 0.172 83.9 42,829 7753 10,387

Turkey 0.18 90 26,018 8316 8420

France 0.165 54.7 22,251 5054 8266

This table summarizes the critical specifications for the 12 brands considered in this study. These specifications form the basis of our analysis and could be utilized to produce similar studies.
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https://figshare.com/s/d19a396a3b540d22e88a. Exiobase 3.8.2
data are available at https://zenodo.org/record/5589597. Greet
Model 2 (2022) data are available at https://greet.es.anl.gov/greet/
versions.html. Source data are provided with this paper.

Code availability
Python code is available at the following link https://doi.org/10.5281/
zenodo.8327297.
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