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Overcrowding induces fast colloidal solitons
in a slowly rotating potential landscape

Eric Cereceda-López1,2,6, Alexander P. Antonov 3,6, Artem Ryabov 4 ,
Philipp Maass 3 & Pietro Tierno 1,2,5

Collective particle transport across periodic energy landscapes is ubiquitously
present in many condensed matter systems spanning from vortices in high-
temperature superconductors, frictional atomic sliding, driven skyrmions to
biological and active matter. Here we report the emergence of fast solitons
propagating against a rotating optical landscape. These experimentally
observed solitons are stable cluster waves that originate from a coordinated
particle exchange process which occurs when the number of trapped micro-
particles exceeds the number of potential wells. The size and speed of indi-
vidual solitons rapidly increase with the particle diameter as predicted by
theory and confirmed by numerical simulations. We show that when several
solitons coexist, an effective repulsive interaction can stabilize their propa-
gation along the periodic potential. Our experiments demonstrate a generic
mechanism for cluster-mediated transport with potential applications to
condensed matter systems on different length scales.

The driven motion of particles through periodic structures is inten-
sively studied with the aim to understand and control non-equilibrium
processes in biology, chemistry and physics1–3. Particle–particle and
particle–substrate interactions yield a wide variety of phenomena as
directional locking4–6, stepwise increases of ratchet currents7, dynamic
mode locking8, or pinning-depinning transition with a complex alter-
nation between static and dynamic modes9,10.

In a recent theoretical work11 it was predicted that a collection of
hard spheres driven across a periodic potential could produce solitons
at high densities, i.e., stable propagating cluster waves. The predicted
effect is appealing, since it allows to achieve a net transportation in
dense systems even when single particles cannot surmount the ener-
getic barriers of the potential, thus invoking for an experimental
realization.

Here we experimentally show that in a rotating periodic potential
with a number of particles larger than the number of potential wells,
solitons emerge due to collective effects. In general, solitons are soli-
tarywaves propagatingwithout distortion12. They have been found in a

variety of systems from fermionic superfluids13 and Bose-Einstein
condensate14,15, tomacroscopic cracks16,mechanicalmetamaterials17–19,
and ocean waves20. In our experiments, the solitons are composed of
clusters that continuously break and reform by releasing and accept-
ing particles via a periodic exchange particle process. Solitons are
commonly known from a continuous description of the nonlinear
dynamics of waves, as, e.g., in the Sine-Gordon, Korteweg-De Vries, or
nonlinear Schrödinger equations and others21. In contrast, in our
experiments the solitons emerge from many-body effects and are
observed at the single particle level. Moreover, the colloidal solitons
form despite of negligible inertia in the particlemotion, i.e. in the limit
of fully overdamped Brownian dynamics. They reach a speed much
higher than that of the driving potential and even move against the
driving direction.

Particle transport against an external bias is a rather unusual
effect. It occurs under special circumstances, for example, in the pre-
sence of strong confinement22–24, multi-particle interactions25 or when
the imposed potential is modulated in time26,27. For the soliton
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transport reported here, particlemotion is still in the driving direction,
but the spontaneously forming collective excitations in form of loca-
lized clusters propagate fast against the external bias.

By extending a theoretical model based on a recent prediction11,
we explain the observed speed, growth, and direction ofmotion of the
solitons. We further strengthen our results by complementing them
with Brownian dynamics simulations carried out using experimental
parameters.

The underlying mechanism of soliton formation is generic and
canbe extended to other driven periodic systems under overcrowding
conditions, such as particles flowing through porous media28,29, vor-
tices in high-Tc superconducting heterostructures30–32, frictional
atomic sliding33,34, driven skyrmions35,36 ultracold atoms37,
photonic38–40, and active matter41–45 systems.

Results
Soliton observation
Our setup, schematically shown in Fig. 1a, is made of a closed fluidic
cell filled with a water dispersion of spherical polystyrene particles
having a diameter of σ = 4μm46. We confine N of these particles in a
rotating one-dimensional periodic potential which is created by an
infrared laser beam rapidly steered acrossM = 27 equispaced positions
along a circle of radius R. More details can be found in the Methods
section. Once the laser is scanned trough the array of optical traps, it
generates an effective periodic potential along the azimuthal direction
with wavelength λ = 2πR/M, which rotates at a constant angular velo-
city ω, Fig. 1a.

The generated optical potential strongly confines the particles in
the radial direction. Indeed, particle displacements along this direction
have a Gaussian distribution with a mean at the ring radius R = 20μm
and a standard deviation smaller than 0.01 R = 0.2μm, i.e., they are
negligible compared to the particle motion along the ring. Thus, we
consider particle motion to take place in a traveling-wave potential

Uðx,tÞ= U0

2
cos

2π
λ

ðx +ωR tÞ
� �

, ð1Þ

where x =Rφ with φ the azimuthal angle along the ring. A single trap-
ped colloidal particle is dragged clockwise by this translatingwave. For
low ω, it moves at a constant tangential speed ωR. By increasing ω, the
mean speed decreases because the particle looses its synchronized
phase with the moving potential due to the viscous drag47.

The synchronization becomes increasingly restored with larger N
due to an effective potential barrier enhancement by hydrodynamic
interactions48. For N =M the particle motion is fully synchronized with
a mean particle velocity ωR, as demonstrated in the Supplementary
Movie 1.

A different type of collective excitation occurs for N >M. In this
situation of overcrowding, after a short transitory period, the particles
generate localized clusters that stably propagate along the ring with-
out dispersion, Fig. 1b (Supplementary Movie 2). This cluster forma-
tion is not obvious in light of negligible attractive interactions between
the colloidal particles in our experiments.

Let us consider the case of one extra particle, N =M + 1, which
generates a double-occupied trap. The excess particle displaces the
colloids in neighboring traps from the preferred position close to the
potential minimum, forming an extended defect, which appears as an
almost compact cluster composed of particles that are nearly in con-
tact. The defect propagates as a dispersion-free solitary wave, or soli-
ton, along the optical ring.

Surprisingly, it moves counter-clockwise along the ring, i.e.,
backwards against the external driving, and the speed of propagation
is much faster than that of the rotating optical traps. The backward
propagation occurs independent of the sense of rotation of the optical
landscape, whichmeans it is clockwise if the traps are rotated counter-
clockwise and vice versa. It is not caused by the viscous drag only. In
the case of negligible potential barriers, the viscous drag cannot lead
to backwardmotion, but atmost to a vanishing mean displacement of
the particles along the ring.

Soliton stability and propagation
To understand the backwardmovement of a cluster, wemust consider
a wavelike cooperative movement, where the particles forming the
cluster change. Specifically, this change is occurring due to particles

Fig. 1 | Observation of a colloidal soliton. a Schematic showing a ring of radius R
with N colloidal particles of diameter σ trapped by a rotating periodic optical
potential. The potential landscape with M equidistant traps of spacing λ = 2πR/M
and depth U0 is realized using an infrared beam (IR) rapidly steered through a
computer-controlled acousto-optic deflector (AOD). The traps are slowly rotated
clockwise with angular velocity ω. Particles highlighted in red belong to a coun-
terclockwise propagating soliton. Black arrows indicate two particles of the soliton
that occupy the same optical trap. b Optical microscope (first column, scale bar is
10μm for all images) and simulation (second column) images showing a particle
cluster (red) counter-propagating with angular velocity ωsol against the clockwise
moving optical traps. The traps drag individual particles, one dragged particle is

indicated in blue color. Parameters are R = 20μm, M = 27, N =M + 1 = 28, σ =0.86λ,
λ = 4.7μm, ω =0.36 rad s−1 and U0 = 122 kBT. c Sequence of images separated by
0.67 s for σ =0.6λ, demonstrating single particle attachments and detachments to
and from a cluster in course of soliton propagation. Scale bar is 10μm for all
images. d Temporal evolution of the angular particle coordinates φi(t) in the
reference frame corotating with the traps for the completely filled system (N =
M = 27, left) and theovercrowdedsystem (N =M + 1 = 28, right) forwhich images are
given in (b). In the overcrowded system, a soliton emerges ashighlightedby the red
region. See Supplementary Movie 1 and Movie 2. Source data are provided as
a Source Data file.
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detaching from the cluster at its back end and attaching at its front
end, as shown in Fig. 1c. Back and front end refer to the direction of the
cluster motion. However, why do particle stay together without
attractive interactions and why does their cooperative movement
appear as a stable soliton?

To answer these questions, let us view the motion in a frame
corotating with the optical traps, for which we show particle trajec-
tories in Fig. 1d. If the particle number N is equal to the number M of
traps, eachparticle in this frame stays at the bottomof a potential well.
For N =M + 1, coherent particle movements between the wells are
present due to the soliton propagation, see the parts of the particle
trajectories marked in red.

In the corotating frame, the particles are driven by amean flow of
the surrounding fluid that tries to move them clockwise, correspond-
ing to the positive x-direction. The effective force of the flow-driving
follows from a coordinate transformation to the comoving frame:
x0 = x +ωRt, yielding dx0=dt =dx=dt +ωR. This amounts to a constant
drag force F =ωR/μ acting on the particles in the corotating frame,
which locally tilts the periodic potential. For the parameters used in
our experiments, this tilting is always undercritical and the effective
barrier between traps much larger than the thermal energy kBT. This
means that a singleparticle could hardlymove fromoneoptical trap to
the next due to thermal excitation. In the many-particle system with
filling factor one (N =M), where the system is perfectly ordered, the
drag force F does not generate sustainable motion, see Fig. 1d.

In the overcrowded system, propagating clusters of particles can
occur, which are not formed by attractive interactions but are stabi-
lized by the external forces Fextðx0Þ=ωR=μ� ∂Uðx0Þ=∂x0, where
Uðx0Þ= ðU0=2Þ cosð2πx0=λÞ is the potential in the corotating frame. The
condition on the external forces to hold n particles together in an n-
cluster is11

1
i

Xi

j = 1

Fext
j ≥

1
n� i

Xn
j = i+ 1

Fext
j , i= 1, . . . ,n� 1 : ð2Þ

Here, Fext
j = Fextðx0

jÞ is the external force on the jth particle in the
cluster. If inequalities (2) hold, a fragmentation of the cluster is
impossible. This is because for a fragmentation to occur into a left
subcluster of the first i particles and a right subcluster of the (n − i)
remainingparticles, the average force

Pi
j = 1 F

ext
j =i on the left subcluster

would have to be smaller than the average force
Pn

j = i+ 1 F
ext
j =ðn� iÞ on

the right subcluster.
For the particles to stay together in the cluster during its motion,

the inequalities (2) must be obeyed for all points in some interval. If
this interval would span a full period λ, then the cluster would move
without changing its size. However, the soliton dynamics are more
complex, as the size of a cluster changes within λ. This leads to dif-
ferent types of solitons.

Soliton types
As the potential barrier U0 is much larger than kBT, formation and
propagation of solitons can be understood by considering the limit of
vanishing noise. Theoretically, the solitons consist of periodically
repeatingmovements of clusters with different size in this limit11,49, for
which the equations of motions in the corotating frame are

dx0
i

dt
=μFextðx0

iÞ=ωR+
μU0π

λ
sin

2πx0
i

λ

� �
: ð3Þ

Introducing scaled dimensionless coordinates and time, x0
i ! yi = x

0
i=λ,

t→ λ2t/(πμU0), and a dimensionless driving force f = λωR/(πμU0) =
Fλ/(πU0), these equations take the form

dyi
dt

= f + sinð2πyiÞ : ð4Þ

Solving Eq. (4) subject to the force conditions (2) and an initial con-
dition with one double-occupied potential well, we find that after a
transient time, periodic motions of two soliton types appear as limit
cycles: anA type solitongivenby two subintervals of themovements of
an n- and (n + 1)-cluster during one period [n-(n + 1)-soliton], and a B
type soliton given by four subintervals of clustermovements [n-(n + 1)-
(n + 2)-(n + 1)-soliton].

The decrease and increase of a cluster size in the sequences is by
detachments and attachments of a single particle to the cluster. Exact
expressions for the position of and times between attachment and
detachment events are derived in Supplementary Discussion 1.
Knowing thesequantities, we can inparticular calculatemeansizes and
mean angular velocities of the solitons.

TypeB solitons occur only in narrow regimesof particles sizes and
driving forces. Typical solitons are of type A. Within one period of the
motion of an A type soliton of core size n, a single particle detaches at
the back end of an (n + 1)-cluster and attaches at the front end of an n-
cluster. Back and front end refer to the direction of cluster motion in
the corotating frame, i.e., to the direction of positive x for f >0.

Figure 2a shows type A solitons observed in the experiments. For
σ = 0.67λ, sequences of 3- and 2-cluster movements occur, corre-
sponding to a 3-2-soliton. For σ =0.76λ, we see the occurrence of a 4-3-
soliton. The clusters in these solitons are not formed by particles that
are exactly in contact, because the noise in the experiments isweakbut
not vanishing. Due to thermal fluctuations, particles cannot stay in
contact during their motion. In our analysis of both experiments and
simulations at finite noise, we identify a cluster as a sequence of
neighboring particles, where the empty gap between two neighboring
particles is smaller than a cutoff-distance 5 × 10−3λ. The number n of
particles in the corresponding sequence gives the cluster size. For
defining the soliton position, we select the pair of particles in the
cluster whose positions are in the sameoptical trap, as shown in Fig. 1a.

Fig. 2 | Soliton types and their observation. a Experimental observation of a 3-2
soliton (σ =0.67λ) and a 4-3 soliton (σ =0.76λ). Images are taken from Supple-
mentary Movie 3 and Movie 4. The scale bar is 10μm for all images. b Alternating
cluster size for the two solitons versus rescaled time t/τ, where τ = λ/vsol is the
soliton’s time period. c Fraction of time traversed by n-clusters versus σ/λ

calculated in the limit of zero noise, represented by both the blue lines and the
color maps. d Power spectra of soliton position versus scaled frequency ντ in
experiments and simulation. Further parameters for all figures are given in Table 1.
Source data are provided as a Source Data file.
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The soliton coordinate is taken to be the center ofmassposition [angle
coordinate φ(t)] of the two particles belonging to that pair.

Figure 2b shows the time intervals of alternating n- and (n + 1)-
cluster motion. The duration of two consecutive time intervals is close
to the average time period λ/vsol = λ/ωsolR, reflecting the underlying
periodicity of the soliton motion. In the presence of noise, the motion
is no longer perfectly periodic in time, but the power spectrum of the
cluster position should still reflect the underlying periodicity by exhi-
biting a peak at a frequency vsol/λ. Indeed, we find this peak in the
spectrum in both experiments [top image in Fig. 2d] and numerical
simulations [bottom image in Fig. 2d]. To filter out the trivial peak at
frequency vsol/L, we have used the relative position of the clusters to
the next potential minimum in the calculation of the spectra.

In Fig. 2c we show the fraction of time a soliton stays in the n-
cluster state in dependence of the particle diameter. These results
have been calculated analytically in the zero-noise limit, see Supple-
mentary Discussion 1. They demonstrate in particular that the clusters
of the solitons become larger with increasing σ, in agreement with the
experimental observations.

Soliton size and speed
In Fig. 3a we show that the mean cluster size 〈n〉 increases rapidly with
σ/λ, as the perturbation induced by a double-occupied trap spreads
over longer distances. In the experiments (empty symbols), the
wavelength λwas varied according to λ = 2πR/MwithM = 21-27.We can
estimate 〈n〉by the following reasoning: Ann-cluster covers a space nσ.
The remaining (N − n) particles not belonging to the n-cluster are close
to potential minima and thus distributed over the length (N − n)λ. The
two lengths should fill the ring of length Mλ = (N − 1)λ, yielding (N − n)
λ + nσ≃ (N − 1)λ, i.e., nσ≃ (n − 1)λ. As this reasoning can be applied to
any cluster in a soliton mode, we obtain

hni=α 1
1� σ=λ

, ð5Þ

whereα is a prefactor of order unity. In SupplementaryNote 4we show
that this approximate expression indeed captures the result of an
exact calculation of 〈n〉 in the zero-noise limit. The experimental
results for 〈n〉 in Fig. 3a can be well fitted to Eq. (5) with α = 0.83.

Figure 3b shows the normalizedmean angular soliton speedωsol/ω
as a function of the scaled particle diameter σ/λ, where we varied the
potential wavelength λ in the experiments, as in Fig. 3b. The observed
speed raises nonlinearly with σ/λ, reaching a maximum value of
vsol = 34.7μms−1 for λ = 4.65μm, which is about five times higher than
the speed of the optical traps moving in the opposite direction
(ωR = 7.2μms−1). This means that the soliton velocity relative to the
optical traps is almost six times higher.

The soliton mean velocity vsol can be estimated by a scaling
argument in the corotating frame. After the detachment and attach-
ment of a particle, the mean distance moved by the cluster is one
wavelength λ. The timeneeded for anattachment anddetachment is of
the order of themean distance (λ − σ) between twoparticles divided by
the velocityωR. Accordingly, vsol should beproportional to λωR/(λ − σ),
i.e. vsol = βωR/(λ − σ) = βωR 〈n〉, where β is a constant. This scaling
argument is corroborated by an exact calculation of soliton velocities
in the zero-noise limit outlined in Supplementary Discussion 1. In the
laboratory frame, this gives

ωsol =
vsol
R

� ω=
ðβα � 1Þ+ σ=λ

1� σ=λ
ω : ð6Þ

Figure 3b shows that the mean soliton velocity in the experiment can
be well described by Eq. (6) with βexp = 1:02. The simulated data can be
well fitted with βth = 1.31. This value is very close to the one obtained
when fitting Eq. (6) to the the exact analytical calculation in the zero-

noise limit, see Supplementary Discussion 1. The difference between
βexp and βth can be explained by the fact that an ideal traveling
sinusoidal wave is modeled in the simulations, while in the experi-
ments there are always some small deviations from the ideal behavior,
e.g., deviations from the exact sinusoidal form of the potential and
from a purely one-dimensional particle motion. Due to these
imperfections, we have rescaled the simulated soliton velocities in
the corotating frame by the factor βexp=βth. The correspondingly
rescaled simulated data are shown in Fig. 3a.

Many interacting colloidal solitons
We find that the number of solitons present in our system is equal to
the overcrowding, defined as the difference N −M. Figure 4a demon-
strates the increase of the number of solitons with the overcrowding
for two particle diameters. Our observations suggest that solitons tend
to repel each other and propagate at a well-defined mean distance. To
quantify this effect, we analyzed distributions of soliton distances.

For two solitons, the distribution ψ(Δφ) of distances
Δφ(t) = ∣φ2(t) −φ1(t)∣ between the positions φ1(t) and φ2(t) of two soli-
tons is shown in Fig. 4 for experiment (b, c) and simulation (d, e). In
both cases, ψ(Δφ) exhibits several peaks with a Gaussian-like envelope
centered around a mean Δφ ’ π. Such fine structure appears due to
the fact that the solitons have preferential positions close to the

Fig. 3 | Soliton size and speed. aMean size 〈n〉 of clusters forming solitons versus
σ/λ forM potential wells and N =M + 1 particles (M = 21-27). Empty blue squares are
experimental data, filled orange disks numerical simulations with corresponding
parameters, and the solid linemarks the theoretically predicted behavior according
to Eq. (5) with α =0.83. b Normalized mean angular velocity �ωsol=ω of solitons as a
function of σ/λ. Empty blue squares are experimental data, filled orange disks
numerical simulations. The solid line marks the theoretically predicted behavior
according to Eq. (6). Further parameters are given in Table 1. Source data are
provided as a Source Data file.
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potentialminima, while other positions are less likely. Accordingly, the
distance distribution shows peaks separated by 2π/M. The localized
envelope points to an effective repulsive soliton-soliton interaction,
which tends to keep the solitonpositions at amaximal distanceπ. Note
that the difference between the experimental (Fig. 4b, c) and simula-
tion data (Fig. 4d, e) is only in the widths of the angle distributions, but
not in themean value, whichdemonstrates thepresence of an effective
soliton–soliton interaction.

For steady states characterized by three propagating solitons,
their position can be ordered at each time t such that
φ1(t) <φ2(t) <φ3(t). Thus we show in Fig. 4c, e the distributionsψ(Δφ12)
andψ(Δφ13) of the distancesΔφ12 =φ2(t) −φ1(t) andΔφ13 =φ3(t) −φ1(t).
Here the envelopes of ψ(Δφ12) and ψ(Δφ13) are centered close to 2π/3
and 4π/3, respectively.

Discussion
We have experimentally observed solitary cluster waves in a highly
crowded system of driven Brownian particles along a periodic poten-
tial. The solitons are robust, their number can be controlled by the
overcrowding, and they propagate against the rotation direction at a
speed up to six times higher than the angular velocity of the rotating
wells. Viewed in a frame comoving with the potential wells, the
experiment realizes particle motion through a periodic potential dri-
ven by a constant drag force. The solitons then move in the force
direction and provide a formidable way to transport matter at the
microscale in confined space.

Cluster-mediated transport realized in our work may appear
similar to the dynamics of kinks and anti-kinks predicted by the
Frenkel-Kontorova (FK) model50, as, for example, seen in
nanotribology33,34 and diffusion of crowdions51,52 and voidions53,54.
In recent experimental realizations on the colloidal length scale,
kinks were produced by sliding electrostatically repulsive micro-
spheres across a static, two-dimensional potential55,56. The
mechanism behind the kink formation in the FK model appears,
however, to be fundamentally different from the mechanism of
soliton formation reported here, which is given by the conditions
in Eq. (2) between the external forces. Due to these conditions,
particles can keep together during cluster propagation. This
mechanism leads to cluster waves that, once excited, are robust
and persist during all experimental time.

Cluster-mediated transport is widespread in many artificial and
biological systems including, for example, microfluidic channels or
vein networks. The rich physics unveiled in an overcrowded single-file
system driven across a periodic potential opens different perspectives
for further research.

Methods
Experimental system
Our colloidal suspension consists of spherical polystyrene particles
having a diameter of σ = 4μm (CML, Molecular Probes, 4% w/v in
water) that are dispersed in deionized water (MilliQ). This suspension
is confined within a fluidic cell, Fig. 1a, which is composed of two
coverslips separated by ≈ 100μmand placed on the stage of a custom-

Fig. 4 | Soliton-soliton interaction. a Number of solitons at different over-
crowdings N −M and two ratios σ/λ. First (second) column are experimental
(simulation) images with solitons highlighted in red color. Supplementary Movie 5
shows one particular case (σ/λ =0.67, N −M = 3). The scale bar is 10 μm for all
images. b–e Distributions ψ of the angle distance Δφ between two (b, d) and three
(c, e) solitons from experiments (b, c) and numerical simulations (d, e). For two
solitons, Δφ =Δφ12(t) = ∣φ2(t) −φ1(t)∣ (yellow lines). For three solitons,
Δφ12(t) =φ2(t) −φ1(t) (yellow lines) and Δφ13(t) =φ3(t) −φ1(t) (blue lines), where the
positions of the solitons are ordered according to φ1(t) <φ2(t) <φ3(t). In the left
graphs, the dashed vertical lines mark the distance Δφ =π and in the right graphs
Δφ = 2π/3 and Δφ = 4π/3. Parameters of the experiments (simulations) are given in
Table 1. Source data are provided as a Source Data file.

Table 1 | Parameters in the experiments and simulations

Figures M N −M σ/λ U0/kBT

1b, 1d 27 1 0.86 122

1c 19 1 0.60 211

2a, 2b, 2d 21 1 0.67 179

2a, 2b 24 1 0.76 158

2c 22 1 0.6–0.85 176–124

3a, 3b 21 1 0.67 179

22 1 0.70 178

23 1 0.73 165

24 1 0.76 158

25 1 0.80 140

26 1 0.83 128

27 1 0.86 122

4a 21 1–4 0.67 179

24 1–4 0.76 142

4b 25 2 0.8 140

21 3 0.67 179

M is the number of optical traps, N −M is the overcrowding, and U0/kBT is the potential barrier
between optical traps in units of the thermal energy. The wavelength is λ = 2πR/M. Parameters
that are the same in all experiments are R = 20 μm, σ = 4μm, ω = 0.36 rad s−1, and
D = 0.1295μm2 s−1.
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built optical microscope. The particles are left sediment close to the
bottom of the cell due to density mismatch, and float there showing a
small diffusion coefficient D =0.1295μm2 s−1, as measured from the
mean squared displacement in absence of the optical potential. The
system dynamics are visualized by using a Nikon 40 ×microscope
objective (plan Apo) illuminated by a light emitting diode, while video
recording is performed at 60Hz with a complementary metal oxide
camera (Ximea MQ003MG-CM).

We create a rotating one-dimensional periodic potential by pas-
sing an infrared laser beam (Manlight ML5-CW-P/TKS-OTS) through a
pair of acousto-optic deflectors (AA Optoelectronics DTSXY-400-
1064). The beam is characterized by a wavelength 1064μmand power
P = 3W. The AODs have an input frequency in the range from 60 to
90MHz. It is produced via a two-channel radio frequency wave gen-
erator (DDSPA2X-D431b-34) which is addressed by a digital output
card (National Instruments cDAQ NI-9403) with a refresh frequency of
150 kHz. More technical details on the experimental system can be
found in a relatedwork47, which investigates the dynamics of a number
of particles in the low filling regime, N <M,46.

Numerical simulations
In the experiments, the particles perform a Brownian motion in the
time-dependent optical potential generated by the rotating laser
beam. As shown in ref. 47, these dynamics can be described by that of
hard-spheres with diameter σ, where the center of mass position ri of
each particle i moves according to the Langevin equation

dri
dt

= � μ∇Uoptðr i,tÞ+ ζ iðtÞ : ð7Þ

Here Uopt(r, t) is the time-dependent optical potential, μ =D/kBT is the
particle mobility, and ζi(t) are Gaussian white noise processes with
〈ζi(t)〉 =0 and hζ iαðtÞζ jβðt0Þi =2Dδijδαβδðt � t0Þ. Because the particle
confinement in the radial direction is very strong and the radius of
curvature ismuch greater than themean distance between the colloidal
particles, the motion can be restricted to one dimension in a traveling-
wave potentialUðx,tÞ= ðU0=2Þ cosð2πx=λ+MωtÞwith x=Rφ, whereφ is
the azimuthal angle47,57,58. Note that ω is the angular velocity of the
rotation of the optical traps, which implies that the traveling wave has
the frequencyMω forM traps. The impact of hydrodynamic interactions
is effectively tackled by the recently discovered potential barrier
enhancement48 and the condition ∣ri − rj∣ ≥ σ implied by the hard-sphere
interaction is treatedby themethodproposed in ref. 59 andadditionally
by a recently developed cluster algorithm60. The two simulations
methods gave the same results.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. Parts of the originally submitted
manuscript have been incorporated in a doctoral thesis46 available at
http://hdl.handle.net/10803/688857. Source data are provided with
this paper.

Code availability
All computer codes are available from the corresponding authors
upon request.
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