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Clinical utility of polygenic scores for
cardiometabolic disease in Arabs

Injeong Shim 1,2,3,4,11, Hiroyuki Kuwahara5,6,11, NingNing Chen 5,6,11,
Mais O. Hashem7, Lama AlAbdi 7,8, Mohamed Abouelhoda9, Hong-Hee Won4,
PradeepNatarajan 1,2,3, Patrick T. Ellinor 1,3, Amit V. Khera10, XinGao 5,6,12 ,
Fowzan S. Alkuraya 7,12 & Akl C. Fahed 1,2,3,12

Arabs account for 5% of the world population and have a high burden of
cardiometabolic disease, yet clinical utility of polygenic risk prediction in
Arabs remains understudied. Among 5399 Arab patients, we optimize poly-
genic scores for 10 cardiometabolic traits, achieving a performance that is
better than published scores and on par with performance in European-
ancestry individuals. Odds ratio per standarddeviation (ORper SD) for a type 2
diabetes score was 1.83 (95% CI 1.74–1.92), and each SD of body mass index
(BMI) score was associated with 1.18 kg/m2 difference in BMI. Polygenic scores
associated with disease independent of conventional risk factors, and also
associated with disease severity—OR per SD for coronary artery disease (CAD)
was 1.78 (95% CI 1.66–1.90) for three-vessel CAD and 1.41 (95% CI 1.29–1.53) for
one-vessel CAD. We propose a pragmatic framework leveraging public data as
one way to advance equitable clinical implementation of polygenic scores in
non-European populations.

Polygenic scores can identify individuals at risk of disease, but their use
in clinical practice is limited by the lack of widely accepted standards
and reduced cross-ethnic transferability1–5. Despite many statistical
methods and published scores, there is no clear framework to guide a
newpopulation interested in implementingpolygenic scoresusing this
publicly available data. Cross-ethnic transferability of scores—mostly
derived from individuals of European ancestry—to other populations
who are less represented in genome-wide association studies (GWAS)
also suffers from reduction in performance, but new computational

methods are improving on this limitation for Asian, African, and other
ancestries1–4,6,7.

While the case for clinical utility of polygenic scores—mostly for
cardiometabolic disease and some cancers—has been made in
European-ancestry populations in the U.S. and Europe8–11, it is equally
important to understand whether the prospect of clinical utility is also
relevant to other populations, where genetic ancestry, environmental
factors, and disease epidemiology might differ12. A recent statement
from the American Society of Human Genetics highlighted the
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problemof reducedportability as a key priority area inhumangenetics
research12.

Arabs represent about 5% of the world population and are mas-
sively under-represented in genomic studies worldwide, yet minimal
efforts have been made to date to understand clinical utility of poly-
genic scores in this group13,14. Efforts to understand performance and
potential utility of polygenic scores in Arabs are important for two
reasons. First, Arabs represent a large and diverse ethnic group inha-
biting the Middle East and North Africa, and are present as a diaspora
in the United States and Western Europe13. Arab countries are also
among those with the largest population growth worldwide15. Second,
there is a large burden of cardiometabolic disease among Arabs with
someof the countries in the Arabianpeninsula having the highest rates
of diabetes and obesity worldwide16–24. While conventional risk factors
suchas poordiet, smoking and sedentary lifestyle are highly prevalent,
they incompletely capture excess risk; therefore, it is not clearwhether
genomic risk may contribute and augment risk identification.

Prior genomic studies for cardiometabolic disease in Arabs are
limited due to small (i.e., typically <10,000 participants) genome-wide
association studies, no prior efforts to optimize polygenic scores, and
most studies being conducted on heterogeneous ethnic Arabs of
diverse genetic ancestries25–30. The most comprehensive effort from
the Qatar Biobank recently reported differences in linkage dis-
equilibrium and effect sizes in a GWAS of 45 traits and showed that
European-derived polygenic scores have reduced performance28. The
study population represented the wider Middle Eastern region with
only 37.6% “general” Arabs and 17.3% “Peninsular” Arab, but there was
no analysis of score performance in those subpopulations28. In this
study, we leveraged recent GWAS data and novel multi-ethnic com-
putational methods to optimize polygenic scores for cardiometabolic
disease and define their clinical utility in a cohort of indigenous Arabs
from Saudi Arabia consisting of 5399 patients and 1017 population
reference participants. In using publicly available data, we define a

framework for optimizing polygenic scores that could be transposable
to other populations.

Results
Pragmatic framework for optimizing polygenic scores to a new
population
We propose a pragmatic approach to optimize polygenic scores for a
new population that leverages available public datasets and recent
advances in computational methods (Fig. 1). With the growth of large
genomic datasets, there is an important focus on their dispropor-
tionate enrichment for individuals of European ancestry and an urgent
need for more non-European representation1,14. However, less atten-
tion is paid to smaller subpopulations beyond the continental ances-
tries and populations with different environmental factors, where
portability of polygenic scores might also be limited. Even in the
absence of large genomic datasets from those target subpopulations,
we show that a pragmatic framework consisting of four key steps could
enable successful optimization for indigenous Arabs.

First, multiple scores are derived using public datasets. The target
population genomic data undergoes standard quality control, and
imputation for genotyping array data is performed using publicly
available imputation panels, prioritizing ancestry-specific (if present)
or large and diverse panels. Summary statistics from the largest and
most diverse GWAS for the trait of interest are obtained, and multiple
scores are derived using five scoring methods—a baseline method
(PRSice-2), as well as methods that factor in the genetic architecture
(LDpred2, lassosum2, and PRS-CS) and ancestry (PRS-CSx)6,31–34. Afixed
set of single nucleotide polymorphisms (SNPs) from the target popu-
lation is used to calculate principal components (PCs) of ancestry
which are used to adjust the raw polygenic scores as described
previously7,35.

Second, the target population is split into training and validation
sets. The performance of the different scores for a trait is compared in
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Fig. 1 | Framework for optimizing polygenic scores for a new population. A
pragmatic framework for optimizing polygenic scores for a target population using
publicly accessible datasets andmethods consists of four steps. First, genomic data
is prepared using standard quality control and imputation to obtain multiple
polygenic scores based on available large and diverse GWAS results and various
score derivation methods. The raw scores are adjusted for population structure
using principal components (PCs) of ancestry. Second, a best-performing score is
identified by splitting the dataset into training and validation sets to determine the

best model in the training set and to assess the association between ancestry-
specific optimized scores and traits in the validation set. Third, individual risk
percentile rank is derived from the distribution based on the reference population
of the same ancestry in order to identify individual relative risk levels and study the
interplay between genetic risk and conventional risk factors. Fourth, to validate the
ancestry-specificoptimized scores, ancestry-matched samples canbe identified ina
large biobank dataset using genetic distance.
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the training set, and the best-performing score is selected and repor-
ted in the validation setwhere its associationwith the trait of interest is
reported using regression models.

Third, since apolygenic score is best represented aspercentile, we
propose having a static population reference distribution on which
polygenic score percentiles are defined. In the case of Arabs, we use a
cohort of 1017 unrelated individuals who self-identify with 28 major
clans/tribes in Saudi Arabia and are representative of the general
population (Supplementary Fig. 1)36. All optimized scores are calcu-
lated in this population and used to define percentiles for each score.
Subsequently, percentiles of risk are defined based on the population
reference distribution, and a relative risk is assigned to each percentile
of the score. Downstream analysis enables understanding of the
interplay between the risk associated with genomics and conventional
risk factors.

Fourth, we propose a method for identifying ancestrally matched
individuals to the target sub-population in large biobanks—for exam-
ple, we could identify participants in the UK Biobank who are ances-
trally matched to indigenous Arabs from Saudi Arabia37. We
demonstrate how such a dataset could be used to extend the optimi-
zation of polygenic scores in one country to individuals of a similar
ancestry who are living in other parts of the world such as the United
States or Europe.

European-derived polygenic scores have reduced performance
in Arabs
Most published polygenic scores are derived from datasets with pre-
dominantly individuals of European ancestry. In the Polygenic Score
Catalog, 98.0% (1772 of 1808) published scores were trained in data-
sets that had at least 80% European ancestry distribution38. We first
asked whether the most commonly used polygenic scores for cardio-
metabolic disease have reduced performance in Arabs (Fig. 2).

In the cohortof 5399 indigenousArabs referred for cardiovascular
care and as such a high prevalence of cardiometabolic disease
(Table 1), we computed the most commonly used polygenic score for
coronary artery disease (CAD), type 2 diabetes, cardiomyopathy, and
seven continuous traits—low-density lipoprotein (LDL) cholesterol,
high-density lipoprotein (HDL) cholesterol, triglycerides (TG), systolic
blood pressure (SBP), diastolic blood pressure (DBP), bodymass index
(BMI), and height (Supplementary Table 1). For each of the 10 traits of
interest, we used one-to-one nearest neighbor matching to generate a
cohort of individuals of European ancestry from the UK Biobank of
equal size as the validation dataset of Arabs, with comparable age, sex,
and case-control ratio for categoricalmatching traits ormean value for
continuous matching traits (Methods, Supplementary Table 2).

Comparing the performance of polygenic scores in indigenous
Arabs vs. Europeans from the UK Biobank, we observed a substantial
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Fig. 2 | European-derivedpolygenic scores have reduced performance inArabs.
a Map showing the distribution of Arab populations around the world (created
using the ‘rnaturalearth’ package in R and the cited data sources)13, 57, 58. b Principal
components of ancestryplot showing indigenousArabs (indarkgreen) in this study
compared to 1000 Genomes Project populations (AFR: African (in orange); AMR:
Admixed American (in yellow); EAS: East Asian (in dark blue); EUR: European (in
dark red); SAS: South Asian (in violet)). c Performance of polygenic scores for
coronary artery disease and type 2 diabetes in Arabs from this study vs. a matched
case-control sample of European-ancestry individuals from the UK Biobank (EUR).
The polygenic score for cardiomyopathy (PGS002051) has been derived in the UK
Biobank where it has an inflated estimate of effect size making a comparison to
Arabs inaccurate. N total is the total number of samples in the validation dataset

excludingmissing values for each disease. Odds ratio per standard deviation of the
score is derived from a logistic regression model adjusted for age, sex, array ver-
sion, and first 10 principal components of ancestry. The black boxes indicate the
adjusted odds ratio. The horizontal lines around the black boxes indicate the 95%
confidence intervals. d Performance of polygenic scores for LDL cholesterol (LDL-
C), HDL cholesterol (HDL-C), triglycerides (TG), systolic blood pressure (SBP),
diastolic blood pressure (DBP), body mass index (BMI), and height in Arabs from
this study (dark green) vs. a matched case-control sample of European-ancestry
individuals from the UK Biobank (EUR, dark red). Sample sizes for all traits are
included in Supplementary Table 2. Effect size estimates are derived from linear
regression models adjusted for age, sex, array version, and first 10 principal com-
ponents of ancestry. Error bars represent the standard error.
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decrease in performance for CAD, type 2 diabetes, and the continuous
traits (Fig. 2c, d). Comparing European to Arab, the odds ratio per
standard deviation (OR per SD) for CAD was 1.78 (95% CI 1.69-1.88) vs.
1.41 (95% CI 1.31–1.50), and for type 2 diabetes was 1.82 (95% CI 1.73-
1.91) vs. 1.41 (95% CI 1.32–1.49) (Fig. 2c). The seven cardiometabolic
traits had a mean decrease of performance of 42.9% (95% CI 4.4–81.3),
measured as difference in the effect size of the score on the trait
obtained from a linear regression model (Fig. 2d).

Arab-optimized polygenic scores on par with European scores
After establishing that currently used polygenic scores have reduced
performance in Arabs, we sought to follow the pragmatic approach to
optimize polygenic scores using entirely public datasets (Fig. 1). For
each trait, we obtained variant effect size from the largest and most
diverseGWAS available (Supplementary Table 3) and computed scores
using five methods—PRSice-2, LDpred2, lassosum2, PRS-CS, and PRS-
CSx (Supplementary Table 4). Scores were adjusted for principal
components of ancestry as described previously7,35.

In the training set (N = 2700), we identified the best performing
score, defined as having the largest area under the curve (AUC) in a
logistic regression model for binary disease classifications or having
the largest adjusted coefficient of determination (adjusted R2) in a
linear regressionmodel for continuous traits (Supplementary Tables 6
and 7). The best-performing score was then tested in a validation set
(N = 2699) (Supplementary Table 8). The number of single nucleotide
polymorphisms for the best-performing scores ranged from 10,440 to
1,069,677 depending on the trait (Table 2). Therewas no single scoring
method that stood out as superior across all traits, but methods using
Bayesian shrinkage or Lasso regression that factor genetic architecture
had higher performance compared to a baseline method such as
PRSice-2 (clumping and thresholding)31–34. Similarly, factoring LD
structure using the new method PRS-CSx performed favorably
(Table 2)6.

Three Arab-optimized scores for CAD, type 2 diabetes, and car-
diomyopathy had marked improvement in performance compared to
a publicly available European score performance in Arabs—OR per SD
was 1.51 (95% CI 1.42–1.61) for CAD, 1.83 (95% CI 1.74–1.92) for type 2
diabetes, and 1.34 (95% CI 1.13–1.64) for cardiomyopathy (Table 2).

Similarly for continuous traits, Arab-optimized scores had an aug-
mented performance compared to a European score for 5 out of 7
traits (Table 2). More importantly, for some traits the Arab-optimized
score performance was on par with known performance of published
scores in individuals of European ancestry suggesting that even within
the limitation of absence of large GWAS and imputation servers for
Arabs, using the pragmatic approach we described might enable
equitable implementation. For example, the optimized score for BMI
derived using PRS-CSx had an effect size of 1.18 kg/m2 per SD and
adjusted R2 of 0.09, a notable augmentation from an effect size of
0.97 kg/m2 per SD and adjusted R2 of 0.11 for the the performance of
the published European-derived score in Arabs (Table 2)39. For some
traits, the augmentation was minimal such as for LDL cholesterol,
whereby the published score is already known to be highly performing
owing to its development from massive GWAS datasets40. Notably for
certain traits, performance was still lower than reported in individuals
of European ancestry such as CAD where the OR per SD was 1.51
compared to estimates above 1.6 for prevalent disease in most
cohorts2,41,42.

Finally, we tested how imputation of genotyping datamight affect
performance of optimized scores. Scores derived using genotyping
array data without imputation had a reduced performance compared
to with imputation, but scores derived from data imputed on TOPMed
vs. 1000G panels did not vary significantly (Supplementary Fig. 2)43,44.

Clinical utility of polygenic scores for cardiometabolic disease
in Arabs
The clinical utility of polygenic scores for cardiometabolic disease
stems from their ability to stratify disease risk in the population. We
defined percentiles of polygenic risk based on the reference popula-
tion (Supplementary Fig. 1) and confirmed that the distribution of
scores in the control is comparable to their distribution in the refer-
ence population (Supplementary Fig. 3). In the Arab case-control
cohort, we see a marked stratification of disease risk by polygenic
scores. The prevalence of CAD ranged from 43.7% in the bottomdecile
to 74.4% in the top decile of the polygenic score. Individuals in the top
decile of polygenic score had 4-fold increased risk of CAD (OR 3.94,
95% CI 3.51–4.36) compared to individuals in the bottom decile
(Fig. 3a). The prevalence of type 2 diabetes ranged from 31.9% in the
bottom decile to 74.9% in the top decile—odds ratio of 8.19 (95% CI
7.76–8.61) comparing top to bottom decile (Fig. 3b). There were also
significant differences in continuous traits by polygenic score—LDL
cholesterol was 108.28 (IQR 85.07–143.36) mg/dL in the bottom decile
compared to 146.09 (IQR 110.49–182.30) mg/dL in the top decile of
polygenic score (p-value = 8.49e-13), and BMI was 26.30 (IQR
23.30–30.30) kg/m2 in the bottom decile compared to 31.20 (IQR
27.07-35.48) kg/m2 in the top decile of polygenic score (p-value =
6.39e-16) (Fig. 3c, d). Similar stratification of risk and measured traits
was seen for cardiomyopathy, HDL cholesterol, triglycerides, systolic
blood pressure, diastolic blood pressure and height (Supplemen-
tary Fig. 4).

Interplay of polygenic scores with conventional risk factors
We then asked whether polygenic scores have additive effects to
conventional risk factors which is particularly important in an Arab
population with high prevalence of those risk factors. In the study
population, 2060 (38.3%)werecurrent or former smokers, 2126 (41.5%)
were obese, 4205 (80.6%) had hypertension, 2979 (55.6%) had type 2
diabetes, and 1783 (40.1%) had hypercholesterolemia (Table 1). The
effect of polygenic score on CAD remained unchanged after adjusting
for smoking, obesity, systolic blood pressure, type 2 diabetes, and LDL
cholesterol (Supplementary Table 8). There was also no interaction
between each of these risk factors and the polygenic score for CAD (p-
values for interactions > 0.12). For type 2 diabetes, the effect of poly-
genic score was slightly higher after adjusting for BMI—OR per SD was

Table 1 | Characteristics of study participants

Characteristic Case-control cohort (N = 5399)

Male sex, n (%) 3473 (64.3)

Age, mean (SD) 54.83 (14.82)

Coronary artery disease, n (%) 3491 (65.0)

Type 2 diabetes, n (%) 2979 (55.6)

Cardiomyopathy, n (%) 479 (9.3)

LDL cholesterola, mean (SD) [mg/dL] 135.82 (53.38)

HDL cholesterolb, mean (SD) [mg/dL] 45.20 (13.24)

Triglyceridesc, mean (SD) [mg/dL] 165.73 (111.87)

Systolic blood pressured, mean
(SD) [mmHg]

146.61 (23.92)

Diastolic blood pressured, mean
(SD) [mmHg]

83.06 (13.34)

Body mass index, mean (SD) [kg/m2] 29.31 (6.05)

Height, mean (SD) [m] 1.61 (0.09)

Current or former smoking, n (%) 2060 (38.3)

The number of missing values varies across the characteristics.
aLDL cholesterol levels were adjusted for statin, ezetimibe, and fibrate use.
bHDL cholesterol levels were adjusted for fibrate use.
cTriglycerides levels were adjusted for statin and fibrate use.
dSystolic and diastolic blood pressures were adjusted for antihypertensive medication (ACE
inhibitors, angiotensin receptor blocker, beta blockers, calcium channel blockers, diuretics, and
nitrates) use.
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2.36 (95%CI 1.86-2.85) in BMI-adjustedmodel compared to 1.83 (95%CI
1.77–1.90) in unadjusted model, but the interaction term was not sta-
tistically significant (p-value for interaction =0.39).

We then evaluated whether the effect of the polygenic score is
consistent across different demographic and clinical subgroups of
patients. Genomic risk was strongly associated with the severity of
CAD as evaluated on coronary angiogram. For patients with all three
major coronary arteries with obstructive disease (“three-vessel CAD”),
theORper SDwas 1.78 (95%CI 1.66–1.90) compared to anORper SDof
1.41 (95% CI 1.29–1.53) for patients with only one obstructive vessel
(“one-vessel CAD”) (Fig. 4). There were variations in the effect size of
the polygenic score by age of CAD, sex, and presence of diabetes, but
those were not statistically significant (p-value of interaction terms>
0.05) (Fig. 4). For type 2 diabetes, the effect of the polygenic scorewas
also consistent across different demographic and clinical subgroups of
patients (Supplementary Fig. 5).

Finally, we compared the characteristics of CAD and type 2 dia-
betes patients with high (top quintile) vs. low (bottom quintile) poly-
genic risk (Supplementary Tables 9 and 10). CAD patients with high
polygenic risk (N = 1042) had earlier onset (58.1 vs. 60.3 years,
p =0.001) and more severe disease (37.1% vs. 24.1% with three-vessel
CAD, p = 8.5e-09) despite similar clinical risk factors, compared toCAD
patients with low polygenic risk (N = 441). Among 1042 patients with
CAD and high polygenic risk, there were 545 (52.2%) non-smokers, 636
(58.9%) non-obese, 189 (14.9%) with no hypertension, 338 (32.4%) with
no diabetes, and 626 (53.3%) with normal cholesterol. Type 2 diabetes
patients with high polygenic risk (N = 1008) had earlier onset of dia-
betes (58.5 years vs. 61.0 years, p = 5.2e-04) and were more likely to be

on insulin therapy (42.6% vs. 30.5%, p = 1.2e-04) compared to type 2
diabetes patients with low polygenic risk (N = 321).

Identifying and validating polygenic scores in Arabs living in
the UK
Given the scarcity of Arab cohorts, we apply an approach that uses
principal components of ancestry from the indigenous Arab cohort of
Saudi Arabia to identify an ancestry-matched cohort in the UKBiobank
(Methods, Supplementary Fig. 6). Using a strict definition for genetic
distance, we identified 420 “Arab-matched” participants in the UK
Biobank based only on genetic information. Of note, a self-report of
“Arab” or “Middle Eastern” is not a captured ethnicity in the UK Bio-
bank. Out of the 420 participants we identified based on genetic dis-
tance, 365 or 86.9% reported being of “other ethnic group” or “any
other White/Asian background” (Supplementary Fig. 6).

We tested the performance of both European-derived scores and
ourArab-optimized scores for continuous traits in this “Arab-matched”
cohort in the UK Biobank compared to their performance in 1000
randomly selected groups of European ancestry from the UK Biobank.
European-derived scores had 27% reduced performance in the Arab-
matched cohort compared to the European-ancestry cohort. The
optimized scores from our study improved performance among both
Arab-matched and European ancestry participants in the UK Biobank
for systolic blood pressure, diastolic blood pressure and triglycerides,
but did not result in a significant improvement in performance for the
other traits (Supplementary Fig. 7). Heterogeneity of effect due to
polygenic score selection used for comparison and small sample size
of the Arab-matched cohort is a limitation of this analysis.

Table 2 | Performance of optimized polygenic scores for cardiometabolic traits in Arabs

Traits European-derived polygenic scores Arab optimized polygenic scores

Categorical traits PGS Catalog ID Derivation
Method

No. of var-
iants in PRS

OR per SD
(95% CI)

AUC
(95% CI)

Derivation
Method

No. of var-
iants in PRS

OR per SD
(95% CI)

AUC (95% CI)

Coronary artery
disease

PGS000013 LDpred 5,706,928 1.41
(1.31–1.50)

0.7909
(0.7726-
0.8091)

lassosum2 10,440 1.51 (1.42–1.61) 0.7950
(0.7768–0.8132)

Type 2 diabetes PGS000014 LDpred 5,786,938 1.41
(1.32–1.49)

0.7054
(0.6854-
0.7255)

PRS-CS 1,068,166 1.83 (1.74–1.92) 0.7384
(0.7194–0.7574)

Cardiomyopathy PGS002051 LDpred2 621,802 1.01
(0.88–1.16)

0.6277
(0.5890-
0.6665)

LDpred2 1,010,014 1.34 (1.13–1.64) 0.6453
(0.6086–0.6819)

Continuous traits PGS Catalog ID Derivation
Method

No. of var-
iants in PRS

Effect size
per SD (SE)

Adjusted
R-sq

Derivation
Method

No. of var-
iants in PRS

Effect size per
SD (SE)

Adjusted R-sq

LDL Cholesterol
[mg/dL]

PGS000892 PRS-CS 1,068,974 10.06
(1.10)

0.0405 PRS-CSx 1,069,677 9.40
(1.10)

0.0358

HDL Cholesterol
[mg/dL]

PGS002781 PRS-CS 1,112,500 3.49
(0.27)

0.1351 PRS-CSx 1,069,677 3.67
(0.27)

0.1424

Triglyceride
[mg/dL]

PGS002784 Pruning and
Thresholding

12,709 25.19
(2.34)

0.0682 lassosum2 54,623 29.32
(2.31)

0.0857

Systolic blood
pressure [mmHg]

PGS002238 PRS-CS 1,069,203 1.08
(0.45)

0.0961 PRS-CS 1,056,790 3.10
(0.44)

0.1108

Diastolic blood
pressure [mmHg]

PGS002239 PRS-CS 1,069,056 0.71
(0.26)

0.0249 lassosum2 25,857 1.80
(0.26)

0.0397

Body mass index
[kg/m2]

PGS000027 LDpred 2,015,065 0.97
(0.11)

0.0790 PRS-CSx 1,067,771 1.18
(0.11)

0.0919

Height [m] PGS002804 SBayesC 1,054,056 0.027
(0.0013)

0.5299 PRS-CSx 1,067,771 0.026
(0.0013)

0.5202

Performance of European-derived polygenic scores and Arab-optimized polygenic scores for each trait are shown in the validation dataset of Arabs (N = 2699). European-derived polygenic scores
were calculated using scoring files from The Polygenic Score (PGS) Catalog with datasets consisting primarily of European ancestry and not derived from the UK Biobank. Further information about
the scoring files, including their GWAS sources, is included in Supplementary Table 1. Arab-optimized polygenic scores were derived in this study. The number of missing values varies across the
disease or trait. Additional details are shown in Supplementary Table 5. OR per SD and AUC were determined using a logistic regression model adjusted for age, sex, array version, and the first 10
principal components of ancestry. Effect size per SD and adjusted R2 values for continuous traits were determined using a linear regression model with similar covariates. (OR per SD odd ratio per
standard deviation, AUC area under the receiver operating characteristic curve, CI confidence interval, SE standard error).
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Discussion
Wedescribe a pragmatic approach for optimizing polygenic scores for
10 cardiometabolic traits in Arabs and show a strong promise for
clinical utility. This framework leverages publicly available resources—
short of much-needed large GWAS in non-Europeans—and could be
generalizable to other populations to advance equitable clinical
implementation of polygenic scores.

Our findings have three key implications. First, we illustrate how
public resources could be leveraged to study the clinical utility of
polygenic scores in a subpopulation that is distant genetically and
geographically from global datasets (such as indigenous Arabs of
Saudi Arabia), and validate them in ancestry-matched individuals in a
European biobank. The PGS catalog has been an instrumental tool in
making scores available, and variant effect size is becoming increas-
ingly available from large multi-ancestry GWAS38. While those are dis-
proportionately enriched for European ancestries, for certain
cardiometabolic traits they might still include large absolute numbers
of individuals of non-European ancestries. For example a recent lipid
GWAS included 334,944 individuals of non-European ancestries and a
multi-ancestry polygenic score for LDL cholesterol reported in that
study performed favorably across 6 ancestries40. Methods to compute
scores are also improving and becoming more accessible through
online tutorials and user-friendly software31,45. While increasing repre-
sentation in genomic datasets should remain a priority, we demon-
strate that existing resources could be helpful in cross-ancestry
implementation of polygenic scores in the case of Arabs.

Second, we show that polygenic risk is additive to conventional
risk factors even in a population with very high prevalence of car-
diometabolic disease. Saudi Arabia, similar to several Arab Gulf
countries, has an alarming prevalence of obesity, type 2 diabetes,
and other related cardiometabolic disease17,19,20. For example, the
prevalence of type 2 diabetes exceeds 20% and has increased by 95%
between 2009 and 201916. Polygenic scores powerfully stratified
disease in this population, were independent of conventional risk
factors, identified a significant proportion of the population with
high genomic risk without conventional risk factors, and correlated
with disease severity in clinically meaningful ways. We note that
despite a lower relative risk of disease associated with a score in
Arabs compared to Europeans—odds ratio per standard deviation
for CAD is ~1.51 compared to >1.60—the net benefit in terms of
identifying more individuals at risk might still be high in a popula-
tion with high prevalence of disease. This has been shown among
Black individuals in the USA in a recent study whereby the polygenic
score improved the estimation of absolute risk of myocardial
infarction in Black individuals more than in White individuals
despite a weaker association of the score with disease3. The parti-
cularly strong performance of the polygenic score for body mass
index is noteworthy because the very high rate of obesity among
Saudis (half the population) has been largely attributed to lifestyle
changes17. The rapid transition from a nomadic lifestyle with scarce
food to sedentary lifestyle with food abundance is a phenomenon
that has been observed in other ethnicities with exceptionally high
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Fig. 3 | Stratification of cardiometabolic disease by polygenic scores among
Arabs. a, b Prevalence of coronary artery disease and type 2 diabetes in the vali-
dation dataset based on polygenic score decile rank derived from the reference
dataset. c, d Distribution of LDL cholesterol and body mass index in the validation
dataset basedon polygenic score decile groups. After excludingmissing values, the

sample sizes were 2201 for LDL cholesterol and 2553 for body mass index. The
horizontal lines within each boxplot represent the median, the top, and bottom of
each box indicate the interquartile range, and the whiskers reflect the maximum
and minimum values within each group.
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rates of obesity such as Native Americans46. Our finding suggests
that this lifestyle transition-induced obesity has been influenced by
genetic risk factors that varied in their distribution in the local
population.

Third, we live in a global world and self-reported race and ethni-
city is increasingly proving to be an inappropriate form of health-
related measures47–49. Genetic ancestry in the case of polygenic scores
might be a more appropriate measure to advance cross-ancestry
implementation. In this study, we identify Arab-matched individuals in
theUKBiobankwho self-report their race to be a variety of options, yet
have similar genetic ancestry to Arabs from Saudi Arabia and could
benefit from optimized polygenic scores for this population rather
than European polygenic scores. We propose similar approaches be
applied across traits and populations to advance cross-ancestry
implementation of polygenic scores without being limited by a small
number of continental populations.

The study has few limitations that are important to note. First,
this is cross-sectional case-control study without longitudinal fol-
low-up, which limits evaluation of risk longitudinally and population
estimates of clinico-genomic risk. Second, this study is focused on
indigenous Arabs and does not cover Levantine or North African
Arabs, although we note that the study population is closer to those
populations than Europeans suggesting that our findings are rele-
vant especially as we think of genetic distance as a continuous
measure50. Third, factoring LD structure using amethod such as PRS-
CSx did improve performance, which raises the question whether
imputing on an Arab imputation panel could improve polygenic
score performance, but those are not yet publicly available. Fourth,
phenotype quality in this study was obtained in the context of rou-
tine care and as such was of variable quality depending on the trait.
For example, there was a uniquely detailed and accurate CAD phe-
notype from cardiac catheterization data, but cardiomyopathy
phenotype was based on mention in a clinical note by a physician
without additional details.

Methods
Study populations
The study population included a disease cohort of 5399 individuals
referred for cardiology care at the King Faisal Specialist Hospital and
Research Center—a tertiary care hospital in Riyadh—from all five
regions of Saudi Arabia, and a population reference cohort of 1017
individuals not known to have cardiometabolic disease and that are
representative of 28 tribes of indigenous Arabs in Saudi Arabia27,36.
Participants in the disease cohort additionally provided access to the
electronic health records to obtain phenotype data and provided
additional socio-demographic background information obtained by a
clinical research coordinator. All participants provided blood samples
for DNA extraction and genotyping array analyses and informed con-
sent to participate in the study. The study was approved by the insti-
tutional review board (KFSHRC RAC# 2190011). This study was
established through a partnership with Saudi Arabia and included
capacity-building for advancing polygenic score research and
implementation.

Phenotype definitions
Disease status and measured cardiometabolic traits were all collected
in the context of clinical care and extracted manually from the elec-
tronic health record by trained medical personnel. Coronary artery
disease was defined as either presence of any coronary atherosclerosis
on cardiac catheterization or a diagnosis of myocardial infarction.
Obstructive coronary artery disease was defined as at least 70% ste-
nosis in any of the left anterior descending, left circumflex, or right
coronary arteries, or at least 50% in the left main coronary artery.
Coronary artery disease severity was classified by the number of ves-
sels that have obstructive coronary artery disease (1, 2 or 3). Diagnoses
of type 2 diabetes and cardiomyopathy as well as detailed medication
history were curated from the electronic health records. Lipid levels
were measured in the context of clinical care and the first lipid level
measured on referral to the King Faisal Specialist Hospital and
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Fig. 4 | Performance of coronary artery disease polygenic score in different
patient subgroups. In the validation dataset, the effect of the coronary artery
disease (CAD) polygenic score in various clinical subgroups of patients is evaluated.
The association of the score with CAD increased with severity of disease as defined
by invasive coronary angiography. Obstructive CAD is defined as luminal stenosis
of at least 50% in the left main coronary artery or at least 70% in any other coronary
artery. The number of vessels with obstructiveCAD indicates an increasing burden/
severity of disease andmanifested a stronger association with the polygenic score.

The association of the polygenic score with CAD was consistent across multiple
clinical and demographic subgroups. Obesity was defined as body mass index ≥
30kg/m2. The odds ratio was assessed in a logistic regression model with age, sex,
array version, and the first 10 principal components of ancestry as covariates. For
the age and sex subgroups, we excluded those variables from the covariates. P-
values were determined using a two-sided Wald test. The black boxes indicate the
adjusted odds ratio. The horizontal lines around the black boxes indicate the 95%
confidence intervals.
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ResearchCenterwasused. Lipid levels were adjusted for lipid-lowering
medication intake to estimate untreated lipid levels51. Briefly, we esti-
mated that statins reduce LDL cholesterol by 30% and triglycerides by
15%. In addition, we assumed that ezetimibe and fibrate lowered LDL
cholesterol by 20% and 10%, respectively, if used separately. Similarly,
blood pressure measurements, and height and weight measurements
obtained in the context of care during the first visit were used in the
study. Blood pressure was also adjusted for anti-hypertensive medi-
cation intake by adding 15mmHg to the systolic blood pressure and
10mmHg to the diastolic blood pressure52,53.

Genotyping quality control and imputation
Genotyping was performed using Affymetrix AxiomGenome-Wide ASI
Array and array versions na29 and na32 as described in a prior study27.
Out of 6566 samples, quality control excluded 150 samples due to
variant calling missingness > 5%, heterozygosity rate > 5 standard
deviations above the mean, and mismatch between genotypically-
determined and self-reported sex, resulting in 6416 samples consisting
of 5399 patients and 1017 reference samples. Variant-level quality
control was conducted to remove variants with call rate < 98%, minor
allele frequency (MAF) < 0.01, and Hardy–Weinberg equilibrium
P < 1 × 10−6. We performed imputation using both 1000 Genomes
Project Phase 3 and TOPMed version R2 datasets43,44. When the results
were compared, there was no significant difference (Supplementary
Fig. 2), hencedownstream analyseswereperformedwith imputed data
using 1000GenomesProjectPhase3dataset as a referencepanel. After
imputation, the variants with imputation quality scores (INFO) < 0.3
and MAF<0.01 were removed resulting in 8,469,565 variants.

Principal components of ancestry
A static genetic ancestry reference distribution of Arabswas generated
by principal component analysis (PCA) using FlashPCA software54. A
set of variants from the intersection between the Arab genotype data
and the 1000Genomes Project Phase 3was used to performPCA. After
doing quality control on 2481 unrelated individuals from the 1000
Genomes Project Phase 3 (--chr 1-22 --snps-only --maf 0.01 --geno 0.02
--hwe 1e-6 --mind 0.05), we extracted the overlapping variants and
pruned for linkage disequilibrium (--indep-pairwise 1000 50 0.2) using
PLINK 2.0, yielding 177,917 variants55. Then, we performed PCA using
the pruned variants in 1000 Genomes Project Phase 3 and projected
Arab individuals onto the created principal component space.

Polygenic score calculation
Toexamine theperformanceof European-derivedpolygenic scores for
three diseases and seven traits, we downloaded scoring files from the
PGS catalog and computed the scores using PLINK 2.0 (Supplementary
Table 1)38. We prioritized scores that are not derived from the UK
Biobank to enable comparisonofperformanceof those scores in Arabs
to individuals of European ancestry from the UK Biobank. For each of
the 10 traits, we derived a matched cohort of equal size from indivi-
duals of European ancestry in the UK Biobank using the R package
“MatchIt”56. Briefly, this technique uses 1:1 nearest neighbor matching
to generate an equal sized cohort that is as similar to the study
population as possible in terms of age, sex, and case-control ratio for
categorical traits, or mean value for continuous traits.

For Arab-optimized polygenic scores, we selected those with a
large sample size and diverse ethnicities from currently accessible
genome-wide association study (GWAS) results (Supplementary
Table 3). The effect sizes of variants from the GWAS results were
chosen or adjusted to calculate the raw polygenic scores using five
latest approaches including PRSice-2, LDpred2, lassosum2, PRS-CS,
and PRS-CSx (Supplementary Table 4)6,31–34. We utilized an in-sample
LD matrix for PRSice-2, and external LD reference panels constructed
using the 1000 Genomes Project Phase 3 dataset for the remaining
approaches. For LDpred2, lassosum2, and PRS-CS, we used an LD

reference panel built using European samples (N = 503). For PRS-CSx,
we used LD reference panels created from the Arab population of this
study (N = 6416) and five super populations in the 1000 Genomes
Project. The ancestry-adjusted scores were obtained by adjusting the
first 10 principal components in a linear regression model and taking
the difference between the raw and the predicted scores as previously
described7,35. To facilitate interpretation, all scores were normalized.

Identifying best-performing polygenic score
Todetermine theoptimal polygenic scoremodel, the studypopulation
was split into training and validation datasets. Using --thin-indiv-
count < n > in PLINK 2.0, which randomly removes samples until n
samples remain, we defined n = 2700. This resulted in a training
dataset of 2700 samples. The remaining 2699 samples were utilized as
a validation dataset (Supplementary Table 5). Maximum area-under-
curve (AUC) or adjusted R2 of the score evaluated in a regression
modelwith age, sex, array version, andfirst 10principal components in
a training set was used to determine the best model for each trait
(Supplementary Tables 6 and 7).

Defining polygenic score percentiles
To generate a polygenic score reference distribution, 1017 Arabs from
the 28 tribes of Saudi Arabia were selected without consideration of
any disorders36. This reference population had similar genetic ancestry
to the case-control study population (Supplementary Fig. 1), and the
distribution of polygenic scores in the reference population was
similar to the control (Supplementary Fig. 3). Polygenic risk of indivi-
duals in a disease cohort was evaluated relative to a reference popu-
lation using a linear regression model based on the reference dataset.
Residual scores generated from the first 10 principal componentswere
used to estimate the mean and standard deviation of the reference
distribution. The predict function in R was then applied with the
regressionmodel from the reference dataset to derive adjusted scores
for individuals in the disease cohort. The adjusted scores were further
standardized using the mean and standard deviation of the reference
distribution to obtain the percentile ranks7. The percentile distribution
of polygenic scores was assessed for stratification of 10 cardiometa-
bolic diseases and traits.

Studying the interplay of polygenic score with conventional risk
factors
For each polygenic score, we grouped the disease cohort in deciles of
that score defined using the reference population. In each decile, we
identified the proportion of participants with the disease of interest
(e.g. coronary artery disease) or median of the trait (e.g. LDL choles-
terol). To test the interplay of conventional risk factors with CAD and
type 2 diabetes, we used logistic regression models that include con-
ventional risk factors, individually, in groups, and as interaction terms
with the polygenic score. We also compared the characteristics of
individuals with high vs. low genomic risk, defined as top and bottom
quintiles of the population distribution of polygenic scores respec-
tively using Welch’s or Student’s two sample t-test.

Identifying Arab-matched Individuals in the UK Biobank
The UK Biobank is a prospective national biobank study that enrolled
about half a million middle-aged adult participants between 2006 and
2010 and has detailed phenotypic data andwhole-genome genotyping
data imputed centrally37. Analysis of the UK Biobank data was per-
formed using application 31224 and approved by KAUST IRB.We used
principal components of ancestry to identify Arab-matched individuals
in the UK Biobank by defining a genotypic distance from the centroid
of our Arab samples from Saudi Arabia. To this end, we identified
51,916 common SNPs among the UK Biobank (N = 223,901), unrelated
Arab samples (N = 5884), and 1000 Genomes Project samples
(N = 2504), performedPCAon the 1000Genomes Project samples, and

Article https://doi.org/10.1038/s41467-023-41985-1

Nature Communications |         (2023) 14:6535 8



projected the UK Biobank and the unrelated Arab samples onto a
subspace spanned by the top 10 principal components of the 1000
Genomes Project samples. We then computed the squared Mahala-
nobis distance of the UK Biobank samples from the centroid of the
unrelated Arab samples. To find a boundary cutoff to determine Arab-
matched samples, we used the critical value from the chi-squared test
at significance level 0.05 with 10 degrees of freedom.

For Arab-matched individuals (N = 420), we evaluated the dis-
tribution of self-reported ancestry. Participants in the UK Biobank
answered the question “What is your ethnic group?” which had the
following options: “White” (“British”, “Irish”, or “Any other white
background”), “Mixed” (“White and Black Caribbean”, “White and
Black African”, “White and Asian”, or “Any other mixed background”),
“Asian or Asian British” (“Indian”, “Pakistani”, “Bangladeshi”, or “Any
other Asian background”), “Black of Black British” (“Caribbean”, “Afri-
can”, or “Any other Black background”), “Chinese”, “Other Ethnic
Group”, “Do not know”, or “Prefer not to answer”. Notably, there were
no options for Middle Eastern or Arab.

To compare performance of scores in Arab-matched samples to
individuals of European ancestry, we defined a European ancestry
cohort using a genetically defined Caucasian ethnic group reported in
the UK Biobank (field 22006) (N = 223,901). For both Arab-matched
participants (N = 420) and European ancestry cohort (N = 223,901) we
obtained phenotypic data for body mass index (field 21001), height
(field 50), LDL cholesterol (field 30780),HDL cholesterol (field 30760),
triglycerides (field 30870), systolic blood pressure (field 4080), dia-
stolic blood pressure (field 4079) and medication intake history (field
6177) were obtained from the UK Biobank (Supplementary Table 11).
Lipid levels and blood pressure were also adjusted for medication
intake as described in the phenotype definition section. For this
comparison, we randomly selected 1000 subsets of 420 samples from
the European ancestry cohort, computed scores for the Arab-matched
and 1000 European ancestry groups for each trait, and calculated
effect size per SD and adjusted R2 as performance measures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Due to local privacy laws and privileged human information, all
requests for raw genotyping and clinical data are subject to prior
approval from the local IRB. For the raw data for the Arab cohort, the
local IRB can be reached at ORA@kfshrc.edu.sa with an expected
timeframe for response of 2months. Analysis of the UK Biobank data
was performed using application 31224 and approved by King Abdul-
lah University of Science and Technology (KAUST) IRB. The UK Bio-
bank data are available to researcherswith research inquiries following
IRB and UK Biobank approval (https://www.ukbiobank.ac.uk/enable-
your-research/apply-for-access). The GWAS Catalog (https://www.ebi.
ac.uk/gwas/downloads/summary-statistics) contains all GWAS sum-
mary statistics. Ancestry-matched LD reference panels built with 1000
Genomes Project phase 3 samples are available at https://github.com/
getian107/PRScsx. The polygenic scores described in this publication
are available for download from the Polygenic Score Catalog (https://
www.pgscatalog.org) under the publication ID PGP000501 and the
score IDs PGS003866-PGS003891.

Code availability
The manuscript described a pragmatic approach of publicly available
software. Additional code is available upon request from the authors.
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