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Improving model fairness in image-based
computer-aided diagnosis

Mingquan Lin 1 , Tianhao Li2, Yifan Yang 3, Gregory Holste 4, Ying Ding2,
Sarah H. Van Tassel5, Kyle Kovacs5, George Shih6, Zhangyang Wang4,
Zhiyong Lu3, Fei Wang 1 & Yifan Peng 1

Deep learning has become a popular tool for computer-aided diagnosis using
medical images, sometimes matching or exceeding the performance of clin-
icians. However, these models can also reflect and amplify human bias,
potentially resulting inaccurate missed diagnoses. Despite this concern, the
problem of improving model fairness in medical image classification by deep
learning has yet to be fully studied. To address this issue, we propose an
algorithm that leverages the marginal pairwise equal opportunity to reduce
bias in medical image classification. Our evaluations across four tasks using
four independent large-scale cohorts demonstrate that our proposed algo-
rithm not only improves fairness in individual and intersectional subgroups
but also maintains overall performance. Specifically, the relative change in
pairwise fairness difference between our proposed model and the baseline
model was reduced by over 35%, while the relative change in AUC value was
typically within 1%. By reducing the bias generated by deep learning models,
our proposed approach can potentially alleviate concerns about the fairness
and reliability of image-based computer-aided diagnosis.

Deep learning has been widely used in healthcare and increasingly
demonstrated expert-level performance across various domains1–7.
However, the issue of fairness has emerged in multiple medical
domains and populations8. In deep learning, fairness is defined as
the absence of prejudice or favoritism toward an individual or
group based on their inherent or acquired characteristics9.
Unfortunately, deep learning models biased by race10–13, sex11–15,
and age11–13 have been observed in medical domains. While sig-
nificant efforts have been made to identify deep learning biases,
reducing such biases has been relatively unexplored. Several
methods have been proposed to improve group fairness, but they
often result in a reduction in model performance16–19. In addition,
only a few of thesemethods have been evaluated on relatively large
datasets, which may limit their generalizability to real-world
scenarios.

In this study, we aim to explore the unfairness issue in using deep
learning for image-based computer-aided diagnosis and reduce the
model decision bias in underdiagnosed and overdiagnosed patient12

on the individual and intersectional groups spanning race, sex, age,
and genotype.We conducted a comprehensive and systematic analysis
to evaluate the effectiveness of our proposed model in reducing
unfairness using four publicly available datasets (Fig. 1) designed to
detect: COVID-19 from chest X-rays (CXR); thorax abnormality from
CXR; primary open-angle glaucoma (POAG) from optic discs; and late
age-related macular degeneration (Late AMD) from color fundus
photographs (CFP). Our results suggest that model unfairness is per-
vasive across all large datasets used in image-based diagnosis. Impor-
tantly, our proposed model can potentially mitigate the unfairness for
both individual and intersectional groups,without affecting the overall
performance of the model as measured by the AUC.
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Results
Our study involved training image-based classifiers to detect diseases
and evaluating themodel’s performance on the overall population and
subgroups based on sex, age, race, and genotype. We compared our
proposed model, which was trained using the marginal ranking loss,
with a baseline deep convolutional neural network trained with binary
cross-entropy loss. The detailed pipeline of our proposed model can
be found in the “Methods” section.

We assessed the overall performance of themodels bymeasuring
the area under the curve (AUC) of the binarized model prediction for
the “disease” label (e.g., POAG). To assess the model fairness, we used
the pairwise fairness difference (PFD) metric among all the
subgroups20. Pairwise Fairness for binary classifiers requires that
positively-labeled examples be equally likely to be predicted posi-
tively, regardless of subgroup20. By subtracting the minimum value of
Pairwise Fairness from the maximum, one can obtain the PFD. A large
PFD indicates significant disparities at the levels of individual or
intersectional subgroups and a lack of fairness in the model’s
predictions.

We assessed the proposed and baseline models trained in four
different tasks: MIDRC for COVID-19 detection (CXR, 77,887 images
from 27,799 individuals)21, MIMIC-CXR for thorax abnormality
detection22 (CXR, 212,567 images from 227,827 studies), OHTS for
POAG detection23 (optic disc, 37,399 images from 1636 individuals),
and AREDS for Late AMD detection24 (CFP, 66,060 images from 4566
individuals). Table 1 lists more detailed summary statistics for the
datasets, and the “Methods” section provides the complete descrip-
tion per dataset.

Achieving model fairness in individual subpopulations on age,
sex, and race
We find that the proposed model is effective in reducing disparities
across all datasets on age, sex, and race (Fig. 2). We were unable to
summarize race with Late AMD detection because the Black subgroup
in the AREDS dataset has too few members to be studied reli-
ably (<3.7%).

For COVID-19 detection on the MIDRC dataset, our proposed
methods obtained a lower PFD and comparable AUC on age and sex,
while obtaining lower PFD and AUC on race compared to the baseline
model (Fig. 2a). In addition, we observed from Supplementary
Tables 1–3 that male individuals, individuals over 75, and Other races
individuals have lower AUC than their counterparts. This indicates that
individuals in these groups are more likely to be misdiagnosed than
other groups.

DenseNet+
Margnial

ranking loss
Diagnosis

Sex

Race

(a) Overall population

Images

(b) Model training (c) Fairness comparisons

Age

Fig. 1 | The model pipeline. a We used four large-scale publicly available datasets
(MIDRC, MIMIC-CXR, OHTS, and AREDS) with a diverse population to detect
COVID-19 from CXR, thorax disease abnormality from CXR, primary open-angle
glaucoma (POAG) from the optic disc, and late age-related macular degeneration
(Late AMD) from color fundus photographs, respectively. b We trained a deep

learning model with marginal ranking loss using the data specific to each disease.
c We evaluated pairwise fairness across different subgroups, including sex, race,
age, and genotypes, to determine if the model is equally fair for all individuals in
each subgroup.

Table 1 | The characteristics of four datasets: MIDRC21,
AREDS24, OHTS23, and MIMIC-CXR22

Disease (Dataset) Subgroup Attribute Positive Total

%

COVID-19 (MIDRC) No. of
images

39,369 50.55 77,887

Age <75 yrs 34,328 52.38 65,542

> = 75 yrs 5531 44.80 12,345

Sex Male 22,395 51.04 43,880

Female 16,974 49.91 34,007

Race White 14,355 37.33 38,457

Black 21,292 70.20 30,239

Other races 3722 40.50 9191

Thorax abnormality
(MIMIC-CXR)

No. of
images

150,509 69.19 217,536

Age <60yrs 53,564 59.53 89,975

> = 60 yrs 96,945 76.00 127,561

Sex Male 83,823 71.16 117,790

Female 66,686 66.86 99,746

Race Other races 132,455 70.41 188,130

Black 18,054 61.40 29,406

POAG (OHTS) No. of
images

2327 6.22 37,399

Age <60yrs 420 2.58 16,254

> = 60 yrs 1907 9.04 21,085

Sex Male 1303 8.05 16,185

Female 1024 8.71 21,154

Race Other races 1554 5.46 28,460

Black 773 8.71 8879

Late AMD (AREDS) No. of
images

8521 12.90 66,060

Age <65 yrs 276 7.31 3775

65–75 yrs 3013 9.06 33,255

> = 75 yrs 5232 18.02 29,030

Sex Male 3768 13.16 28,623

Female 4753 12.70 37,437

Race Other races 8496 13.31 63,808

Black 25 1.11 2252
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Regarding the thorax abnormality detection on the MIMIC-CXR
dataset, the proposed methods achieved lower PFDs and comparable
AUCs on age and sex, and slightly higher PFD and comparableAUCs on
race compared to the baseline model (Fig. 2b). Supplementary
Tables 4–6 revealed that individuals older than 60, males, and Black
had lower AUC than their counterparts, suggesting that these groups
are more susceptible to thorax abnormality misdiagnosis.

For the POAG detection on the OHTS dataset, our proposed
methods yielded lower PFDs and higher AUCs on age, sex, and race
than the baseline (Fig. 2c). Supplementary Tables 7–9 showed that
individuals younger than 60, female individuals, and Other races
individuals exhibit lower AUC than their counterparts, indicating that
these groups are more prone to POAG misdiagnosis.

Finally, for Late AMD detection on the AREDS dataset, our pro-
posedmethods achieved lower PFDonage and comparable PFDon sex
compared to the baseline (Fig. 2d). It is also worth noting that the
proposed methods achieved higher AUCs than the baseline. In addi-
tion, Supplementary Tables 10–11 showed that individuals younger
than 65 had the lowest AUC among all age ranges, while female indi-
viduals had comparable AUCs to their male counterparts. These find-
ings suggest that individuals younger than 65 are more susceptible to
AMD misdiagnosis.

Achieving model fairness in individual subpopulations on
genotype
We conducted a similar analysis for two genotype groups associated
with late AMD and summarized the results in Fig. 3. Supplementary
Tables 12–13provide furtherdetails on the reduceddisparities achieved
by our proposed models for these attributes in the AREDS dataset.

Our proposed methods for the Late AMD detection achieved
lower PFD and comparable AUC on CFH and ARMS2 compared to the
baseline (Fig. 3). In addition, SupplementaryTables 12 and 13 show that
individuals with CFH (TT) or ARMS2 (GG) genotypes had the lowest
AUC values, suggesting these groups have a greater likelihood of
receiving AMD misdiagnosis.

Achieving model fairness in intersectional groups
We also investigate intersectional groups, defined as the individuals
belonging to two subpopulations, e.g., female Black individuals
(Fig. 4). We selected two subpopulations with the largest disparity in
pair fairness based on the baseline to form intersectional groups,
namely age–race in COVID-19, thorax abnormality, and POAG detec-
tion, and age-CFH in AMD detection.

For COVID-19 detection, our proposed methods obtained lower
PFD and AUC on the age–sex intersectional group on the MIDRC
dataset (Fig. 4a). Supplementary Table 14 shows that the lowest AUC
valueswere observed for younger, Other races individuals, indicating a
higher likelihood of misclassification.

Regarding the thorax abnormality detection, the proposed
methods achieved a lower PFD and comparable AUC on the age–sex
intersectional group on the MIMIC-CXR dataset (Fig. 4b). Supple-
mentary Table 15 shows that female individuals under the age of 60
had lower AUC than its counterpart, suggesting that this group ismore
prone to thorax abnormality misdiagnosis.

For the POAG detection, our proposedmethods achieved a lower
PFDandcomparableAUCon the age–sex intersectional group than the
baseline on theOHTSdataset (Fig. 4c). SupplementaryTable 16 further
shows that younger female individuals exhibit lower AUC than its
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(d) Late AMD detection on the AREDS

Fig. 2 | AUC and PFD of DenseNet across subgroups of age (left), sex (middle),
and race (right) in the four tasks. a COVID-19 detection on the MIDRC dataset,
b thorax abnormality detection on the MIMIC-CXR dataset, c POAG detection on
the OHTS dataset, and d AMD detection on the AREDS dataset. The results are

averaged over five trained models using different portions of the data for training
(80%) and testing (20%). Standard deviations are also shown. We were unable to
summarize race with AMD detection because the Black subgroup in the AREDS
dataset has too few members to be studied reliably (<3.7%).
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counterpart, indicating that this group is more prone to POAG
misdiagnosis.

Finally, for Late AMD detection, our proposed methods achieved
lower PFD and a comparable AUCon age andCFH intersectional group
compared to the baseline on the AREDS dataset (Fig. 4d). Moreover,
Supplementary Table 17 shows that individuals under the age of 60
with CFH (TT) had the lowest AUC among all age ranges. In contrast,
female individuals had comparable AUCs to their male counterparts.
These findings suggest that individuals under the age of 60 with CFH
(TT) are more likely to have AMD misdiagnosis.

Evaluating the generalizability and efficacy of the model
To demonstrate the generalizability and efficacy of our proposed
method, we applied ResNet-152, another widely used deep learning
model, to two datasets: OHTS and MIDRC. For COVID-19 detection on
the MIDRC dataset, our proposed methods obtained a lower PFD and
comparableAUConage, sex, and racecompared to thebaselinemodel

(Fig. 5a). In addition, we observed from Supplementary Tables 18–20
that individuals over 75, male individuals, and Other races individuals
have lower AUC than their counterparts. This indicates that individuals
in these groups aremore likely to bemisdiagnosed than other groups.

For the POAG detection on the OHTS dataset, our proposed
methods yielded lower PFDs and higher AUCs on age, sex, and race
than the baseline (Fig. 5b). Supplementary Tables 21–23 showed that
individuals younger than 60, female individuals, and Other races
individuals exhibit lower AUC than their counterparts, indicating that
these groups are more prone to POAG misdiagnosis.

The results generated by ResNet-152 are consistent with those
generated by DenseNet-201 based on your proposedmethod on these
two datasets, which suggests the generalizability and efficacy of the
proposed method.

We also investigate intersectional groups. For COVID-19 detec-
tion, our proposedmethods obtained lower PFD and comparable AUC
on the age–sex intersectional group on the MIDRC dataset (Fig. 6a).

0.00

0.25

0.50

0.75

1.00

Baseline Proposed

A
U
C

0.0

0.1

0.2

0.3

0.4

0.5

Baseline Proposed

P
F
D

(a) COVID−19 detection in age and race on the MIDRC

0.00

0.25

0.50

0.75

1.00

Baseline Proposed

A
U
C

0.0

0.1

0.2

Baseline Proposed

P
F
D

(b) Thorax abnormality detection in age and sex on the MIMIC−CXR
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(c) POAG detection in age and sex on the OHTS
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(d) Late AMD detection in age and CFH on the AREDS

Fig. 4 | AUC (left) and pair fairness difference (right) of DenseNet across the
intersectional groups in the four tasks. a COVID-19 detection on theMIDRC (age
and race), b Thorax abnormality detection on the MIMIC-CXR (age and sex),
c POAG detection on the OHTS (age and sex), and d Late AMD detection on the

AREDS (age and CFH). The results are averaged over five trained models using
different portions of the data to train (80%) and test (20%). Standard deviations
are shown.
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(b) ARMS2

Fig. 3 | AUC and PDF of DenseNet across subgroups of CHF and ARMS2 associated with late AMD on the AREDS dataset. The results are averaged over five trained
models using different portions of the data to train (80%) and test (20%). Standard deviations are shown. a CHF. b ARMS2.
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Supplementary Table 24 shows that the lowest AUC values were
observed for younger, Other races individuals, indicating a higher
likelihood of misclassification.

For the POAG detection, our proposedmethods achieved a lower
PFDandcomparableAUCon the age–sex intersectional group than the
baseline on the OHTS dataset (Fig. 6b). Supplementary Table 25 fur-
ther shows that younger female individuals exhibit lower AUC than its
counterpart, indicating that this group is more prone to POAG
misdiagnosis.

Discussion
In this study, we introduce an approach to reduce bias towards groups
in deep learning models for image-based computer-aided diagnosis
while preserving the overall performance. To evaluate model fairness,
we employed the Pairwise Fairness metric, considering it superior to
traditional accuracy, sensitivity, and specificity. This choice is rooted in
the context of healthcare and clinical decision-making, where risk
scores play a pivotal role as decision aids in chronic diseaseprevention
(e.g., POAG and AMD) or health resource triage (e.g., COVID-19). The

proposed model is evaluated on four large-scale datasets for four
distinct tasks. In addition, we observed systematic model biases in
subpopulations and intersectional groups in all settings. We highlight
the following observations for further discussion.

The first observation of our study is that our proposed method
effectively improves the fairness of image-based computer-aided
diagnosis across different tasks. Compared to the standard binary
cross-entropy loss, this method offers two benefits. First, the marginal
ranking loss provides a more direct approach to improving Pairwise
Fairness by optimizing predictions with incorrect ranking orders,
which is particularly effective in cases where samples have lower pre-
diction performance. Secondly, updating the model exclusively using
the group with the lowest loss forces the model to learn fairly and
consistently improve the lowest Pairwise Fairness across all groups
with each batch. These two benefits help achieve Pairwise Fairness for
each group and reduce the difference in Pairwise Fairness among all
the groups.

To further verify the effectiveness of our proposed method in
maintaining AUC and reducing PFD, we conducted a quantitative
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(a) COVID−19 detection in intersectional group for age and race on the MIDRC
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(b) POAG detection in intersectional group for age and sex on the OHTS

Fig. 6 | AUC (left) and pair fairness difference (right) of ResNet-152 across the
intersectional groups in the two tasks. a COVID-19 detection on the MIDRC (age
and race), b POAG detection on the OHTS (age and sex). The results are averaged

over five trainedmodels using different portions of the data to train (80%) and test
(20%). Standard deviations are shown.
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(b) POAG detection on the OHTS

Fig. 5 | AUCandPFDofResNet-152 across subgroups of age (left), sex (middle), and race (right) in the four tasks. aCOVID-19detectionon theMIDRCdataset,b POAG
detection on the OHTS dataset. The results are averaged over five trained models using different portions of the data for training (80%) and testing (20%).
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analysis using relative change metric25 (defined in the section “Eva-
luation metrics”). For PFD, our method outperformed the baseline,
with 15 cases showing a decrease, twelve of which were over 35%
(Table 2). In addition, most of the relative changes in AUC were within
1%, indicating that our method can achieve a comparable AUC to the
baseline. It is worth noting that previous study’s enforcement of group
fairness constraints always led to a reduction in model performance16.
To this end, our results demonstrate that the proposed method not
only maintains AUC but also improves PFD.

Second, the PFD offers several advantages over conventional
fairness metrics, such as equalized odds, demographic parity, and
equal opportunity. Previous studies of model fairness often focus on
analyzing the disparate impact in binary classification settings, i.e.,
whether an individual has a particular condition or not. Therefore,
these studies often emphasized the disparate impact of binarized
metrics such as false negative rates (overdiagnosis rate) and false
positive rates (underdiagnosis rate). However, in clinical practice,
clinicians also need to make decisions about appropriate resource
utilization, and a fairness metric must provide informative rank
orderings of individuals. Pairwise Fairness evaluates the problem of
bipartite ranking, which ranks positively labeled examples above
negative examples between the group and the entire dataset. As a
result, it can better capture how the probability of diagnosis is used in
clinical practice to inform resource utilization. Furthermore, Pairwise
Fairness is scale-invariant, meaning that it only evaluates how well the
examples in groups are ranked without using their absolute scores.
Therefore, it is classification-threshold-invariant and does not need a
threshold to evaluate the model’s performance. These advantages
make PFD a more suitable fairness metric for clinical decision-making
applications.

Third, this study highlights the impact of data imbalance on the
bias of deep-learning models. We observed that prevalent patients are
overrepresented in some subgroups, leading to biased models. For
instance, in the OHTS dataset, the rate of POAG is approximately three
times higher in individuals aged ≥60 than in those aged <60 (9.04% vs.
2.58%), which can bias the model trained on this dataset. Similar phe-
nomena were observed in the subpopulations of age in the thorax
disease detection on the MIMIC-CXR dataset and subpopulations of
race in the COVID-19 detection on the MIDRC dataset. Even when

subgroups have similar prevalence, the sample size can still introduce
bias. For example, the number ofWhite, Black, and other individuals in
theMIDRCdataset are 38,457, 30,239, and9191, respectively. Although
the COVID-19 prevalence is almost the same for the Other races group
and White individuals, the model obtained the lowest AUC value for
the former group, which had the smallest sample size among the racial
subgroups.

Fourth, while data resampling is widely used in pre-processing to
mitigate unfairness on subgroups, it may only sometimes be effective.
For example, in the POAGdetection taskon theOTHSdataset, theAUC
for female individuals was the lowest among indicated subgroups,
despite the comparable number of female and male individuals with
POAG. We have also conducted an experiment by oversampling
examples from the minority class. The results demonstrate that using
an oversampling method can improve model fairness in certain
instances, while the proposed method outperforms the oversampling
approach (Supplementary Tables 1–17). In addition, obtaining a large
number of medical images for biomedical research is often challen-
ging. Generative AI may provide a solution by generating “synthetic”
control images using real patients’ images and their underlying phe-
notypes. These “synthetic” images can then be used to develop mod-
els, potentially leading to faster and less expensive development of
deep learning models for image-based computer-aided diagnostics in
new or rare diseases. However, it is crucial to exercise caution in
generating images and examining models to avoid further disparate
impact.

In addition, we found that model bias is amplified by intersec-
tional attributes compared to individual attributes. The PFD generated
by the baseline for the four datasets was over 0.1, which is higher than
that for single identities. We also discovered that all intersectional
groups were related to the age attribute. This could be due to two
reasons. Firstly, the disease could be age-related, as in the case of
POAG, where older individuals are more susceptible, and those above
60 years of age tend to have higher AUC values. Secondly, disparities
could arise due to data imbalance, where certain groups have smaller
sample sizes than others. For instance, in the MIDRC dataset, indivi-
duals over 75 had a smaller sample size and lower AUCs than their
counterparts.

Finally, the ability to maintain fairness in the presence of uncer-
tainty regarding which subgroupmay exhibit bias is a key characteristic
of a fairnessmethod. Theproposedmethodperformswell in this regard,
as it not only generates fair results for subgroups but also further
reduces the PFDs even when they are already small. That is demon-
strated by comparing the performance of the baseline and the proposed
model on the OHTS and AREDS datasets. The PFDs for the race
subpopulation in theOHTS dataset and sex subpopulation in the AREDS
dataset are 0.0096 ± 0.0257 vs. 0.0074 ± 0.0072 and 0.0034
± 0.0034 vs. 0.0036 ± 0.0030, respectively. Therefore, the proposed
method is both generalizable and applicable in clinical practice.

One limitation of this study is that it only focused on assessing the
fairness of binarized models, without examining the calibration of
predicted probabilities, which may result in overconfidence or
underconfidence in certain cases. Future investigations should explore
the relationship between calibration and bias in disease prediction and
aim to develop an effective method for reducing calibration bias. In
addition, the proposed method can be extended to continuous attri-
butes besides discrete groups and multi-class settings.

In summary, our study proposed a method that effectively redu-
ces unfairness in subgroups in deep learning-based medical image
classification, while maintaining overall model performance. The
findings revealed evidence of model unfairness in individual and
intersectional subgroups across four different disease diagnoses on
four datasets, indicating the possibility of such disparities being
widespread in other biomedical research. This highlights the impor-
tance of addressing these disparities to ensure equitable treatment for

Table 2 | Relative changes in AUC and PDF between baseline
and the proposed method in four tasks

Disease (Dataset) Subgroups/Intersec-
tional group

Relative change

AUC (%) PFD (%)

COVID-19 (MIDRC) Age −2.00 −40.25

Sex −0.96 −53.79

Race −2.44 −39.73

Age–Race −2.54 −47.69

Thorax abnormality
(MIMIC-CXR)

Age −0.01 −35.74

Sex −0.73 −35.33

Race −1.21 31.70

Age–Sex −0.92 −49.24

POAG (OHTS) Age 1.42 −53.82

Sex 0.72 −35.74

Race 0.34 −43.85

Age–Sex 2.32 −35.10

Late AMD (AREDS) Age 0.02 −25.22

Sex 0.06 5.00

CFH 0.15 −29.06

ARMS2 0.15 −49.73

Age–CFH 0.06 −28.37
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all individuals. The proposed method is shown to be effective in
reducing bias while maintaining overall performance, making it sui-
table for clinical practice, and alleviating concerns about disparities
generated by these models.

Methods
Data acquisition
In this study, we include four independent datasets (Table 1). These
datasets are large and population-based studies, and the research
adhered to the principles outlined in the Declaration of Helsinki. In
addition, all participants provided informed consent upon entry into
the original studies.We useGen 3 version 2022.10 to downloadMIDRC
and do not use any specific software to download the other three
datasets.

The study protocol was approved by the institutional review
board at each clinical center and Weill Cornell Medicine. Due to the
publicly available nature of both datasets used in this study, the
requirement for obtaining written informed consent from all subjects
(patients) was waived by the IRB.

MIDRC21. This dataset is a chest X-ray imaging repository that was
specifically created for COVID-19 diagnosis. The repository is part of
the Medical Imaging and Data Resource Center (MIDRC)21, which is a
collaborative initiative involving multiple institutions and is funded by
the National Institute of Biomedical Imaging and Bioengineering
(NIBIB) under contracts 75N92020C00008and 75N92020C00021 and
hosted at the University of Chicago. MIDRC is co-led by the American
College of Radiology® (ACR®), the Radiological Society of North
America (RSNA), and the American Association of Physicists in Medi-
cine (AAPM).MIDRC accepts images inDICOM format and clinical data
in various formats, including COVID-19-related CT scans, X-rays, MRI,
and Ultrasound, along with similar control cases. However, for this
study, we focused solely on the X-rays. MIDRC collects self-reported
race, sex, and age data from its participants. Supplementary Figure 1
provides an overview of the data selection process. In short, the
dataset used in this study contains 62,219 imaging studies with
demographic information collected up to September 2022. We spe-
cifically collected computed radiography (CR) and digital radiography
(DX) with age, sex, and race information. Table 1 illustrates the
demographic distribution of the imaging studies.

AREDS24. The Age-Related Eye Disease Studies (AREDS) cohort was a
12-year multi-center prospective study sponsored by the National Eye
Institute (National Institutes of Health) that investigated the clinical
course, prognosis, and risk factors of age-related macular degenera-
tion (AMD). Between 1992 and 1998, 4757 participants aged 55 to 80
years were recruited from 11 retinal specialty clinics in the United
States. The study’s inclusion criteria were wide-ranging, from no AMD
in either eye to late AMD in one eye. The AREDS dataset is publicly
accessible to researchers by request at dbGAP. Comprehensive eye
examinations were performed at baseline and annually by certified
study personnel using a standardized protocol. Certified technicians
captured CFP (field 2, i.e., 30° imaging field centered at the fovea)
using a standardized imaging protocol. ADM is classified into early,
intermediate, and late stages26. Late AMD, the stage characterized by
significant vision loss, can manifest in two forms: geographic atrophy
(GA) and neovascular AMD (NV). In this study, the focus was on late
AMD detection. The ground truth labels were grades previously
assigned to each CFP by human expert graders at the University of
Wisconsin Fundus Photograph Reading Center. The reading center
workflow has been described previously27. The dataset includes
66,060 images from 4566 patients, with additional information on
self-reported sex and age, aswell as two genotypes associatedwith late
AMD, complement factor H (CFH rs1061170) and age-related maculo-
pathy susceptibility 2 (ARMS2 rs10490924). There are 46,244 images

from 2765 patients with CFH and ARMS2. This study did not include
race because the Black subgroup in the AREDS dataset has too few
members to be studied reliably (<3.7%). More details on the sub-
populations are provided in Table 1 and Supplementary Table 26.

OHTS23. Ocular Hypertension Treatment Study (OHTS) is a large
longitudinal clinical trial with 1636 participants and 37,399 images
collected from22 centers in the United States investigating conversion
to primary open-angle glaucoma (POAG) in eyes with elevated
intraocular pressure. Participants were selected according to eligibility
and exclusion criteria23. The eligibility criteria include intraocular
pressure (between 24mm Hg and 32mm Hg in one eye and between
21mmHgand32mmHg in the felloweye) and age (between40and80
years old). The visual field tests were interpreted by the Visual Field
Reading Center, and the optic discs at clinical examination and ste-
reoscopic photographs were interpreted by the Optic Disc Reading
Center. Exclusion criteria included previous intraocular surgery, visual
acuity worse than 20/40 in either eye, and diseases that may cause
optic disc deterioration and visual field loss (such as diabetic retino-
pathy). The gold standard POAG labels were graded by two masked
certified readers at the Optic Disc Reading Center, with disagreements
resolved by a senior reader. The POAG diagnosis was validated in a
quality control sample of 86 eyes (50 normal eyes and 36 with pro-
gression), with test-retest agreement at κ =0.70 (95% confidence
interval [CI], 0.55–0.85. More detailed information on the reading
center workflow can be found in Gorden et al.28.

MIMIC-CXR22, 29. MIMIC-CXR is a large public dataset of 377,110 chest
X-rays associated with 227,827 patients presenting to the Beth Israel
Deaconess Medical Center Emergency Department between 2011 and
2016. Labels were derived from an open-source labeler tool,
CheXpert30. In this study, we only used 212,567 CXR Posterior-Anterior
and Anterior-Posterior images from 227,827 studies. The race and sex
data were self-reported in the MIMIC-CXR dataset, and age was
reported at the time of a patient’s first admission.

Pairwise fairness
To assess the fairness of the model, we used the marginal pairwise
equal opportunity criterion (Pairwise Fairness)20. We deem the pair-
wise fairness is better than traditional accuracy, sensitivity, and spe-
cificity, because, in healthcare and other clinical decision-making
settings, risk scores are used as decision aids for the prevention of
chronic disease (e.g., POAG and AMD)) or triage of health resources
(e.g., COVID-19). Specifically, the criterion measures the “Area under
the ROC Curve (AUC)” for a subgroup by calculating the probability
that the model ranks a randomly selected positive sample from the
subgroup higher than a randomly selected negative example in the
entire data:

Pairwise Fairness : = Pðf xð Þ>f ðx0Þjy>y0,ðx,yÞ 2 G+
i ,ðx0,y0Þ 2 G�Þ ð1Þ

G is the dataset used, Gi is the subgroup in the dataset, f xð Þ is the
output of theAImodelwith input x, and y is the ground truth label of x.

Model development
The pipeline of the proposed model is depicted in Fig. 1. The input
images are passed into a convolutional neural network, which gen-
erates prediction results. The proposed method is not exclusive to
specific deep learning models, and DenseNet-201 showed good per-
formance in classification on OHTS and MIMIC-CXR in our previous
study5, 31. Therefore, we used the DenseNet-20132 pretrained on
ImageNet33 for ARDES, OHTS, andMIMIC-CXRdatasets, andDenseNet-
12132 pretrained on CheXpert3 for the MIDRC dataset in this study. To
demonstrate the generalizability andefficacy of our proposedmethod,
we applied ResNet-15234, another widely used deep learning model, to
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two datasets: OHTS and MIDRC. We replaced the last layer with a new
randomly initialized, fully connected layer with 2 output neurons
(abnormal and normal). To achieve fairness among the subgroups,
instead of using binary cross-entropy loss, we propose a method to
optimize the marginal ranking loss of the group with the lowest Pair-
wise Fairness. In the training procedure, for each batch in an epoch, we
calculated Pairwise Fairness for each subgroup and selected the sub-
groupwith the lowest Pairwise Fairness to calculate themargin ranking
loss:

L=
1
n

X
maxð0,� xp + xn +marginÞ ð2Þ

xp is the prediction of a random sample with a positive ground truth
label for that subgroup. xn is the prediction of a random sample with a
negative ground truth label for thewhole trainingdata.n is the number
of all the possible pairs of xp and xn. margin is the threshold that
determines when the ranking order of xp and xn is considered incor-
rect or very similar. Compared to previous approaches, the proposed
loss function can directly optimize predictions that have incorrect
ranking orders, especially for samples with the lowest Pairwise Fair-
ness. In addition, it can update the model by focusing on the group
that experiences the least Pairwise Fairness loss, thereby improving the
model’s performance on that specific group. This approach
encourages fair learning andpromotes consistent improvement across
all groups.

Evaluation metrics
We reported the average AUC and the difference between the max-
imum and minimum values of the Pairwise Fairness (PFD). We also
used relative change to quantitatively analyze changes in the AUC and
PFD obtained by baseline and the proposed:

Relative change : =
xproposed � xbaseline

xbaseline
ð3Þ

where xbaseline and xproposed are the results obtained by the baseline and
proposed model.

Experimental settings
For theMIDRCdataset, amethod similar to Johnson et al.22 was used to
process the original CXRs. First, each Posterior-Anterior (PA) or
Anterior-Posterior (AP)CXRwas converted fromDICOMto JPG format.
The pixel values were then normalized to [0, 255] and then inverted, if
necessary, to make the air in the CXR white. Histogram equalization
was then applied to enhance the image’s contrast. Finally, the pro-
cessed image was saved as a JPG with a quality factor of 95. For other
datasets, the images were already in JPG format.

All the images were then resized to 224× 224×3. The network
was optimized using the Adam35 optimization algorithm with a
learning rate of 10�4. The batch size is set to 96. To augment the data,
random rotations and flips were applied to the images, with the
rotations between 0

�
and 10

�
and horizontal or vertical flips. The

experiments were performed on an Intel Core i9-9960 X cores pro-
cessor and NVIDIA Quadro RTX 6000 GPU. The proposed model was
trained for 20 epochs and the model with the highest AUC in the
development set was saved. The models were implemented using
PyTorch36.

For the MIDRC, ARDES, and OHTS datasets, the entire dataset
was randomly split at the patient level. One group (20% of the total
subjects) was used as the hold-out test set and the remaining as the
training set. For the MIMIC-CXR dataset, the official release training,
validation, and testing datasets were used. All experiments were
repeated five times to obtain the distribution of the evaluation
metrics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MIDRC dataset used in this study are available in the Medical
Imaging and Data Resource Center database [https://data.midrc.org/
explorer]. The AREDS dataset used in this study are available in the
NCBI dbGAP database under accession code phs000001.v3.p1. The
OHTS data are available under restricted access for patient protection.
Access can be obtained by requesting (https://ohts.wustl.edu/). The
MIMIC-CXR dataset used in this study are available in the PhysioNet
database [https://www.physionet.org/content/mimic-cxr-jpg/]. All
data supporting the findings described in this manuscript are available
in the article and in the Supplementary Information and from the
corresponding author upon request. All source datasets are public
datasets that can be accessed based on the links in this paper. Source
data are provided with this paper.

Code availability
Codes are available at https://doi.org/10.5281/zenodo.8226443.
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