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The Personalized Nutrition Study (POINTS):
evaluation of a genetically informed weight
loss approach, a Randomized Clinical Trial

Christoph Höchsmann 1,2 , Shengping Yang2, José M. Ordovás 3,
James L. Dorling 4, Catherine M. Champagne 2, John W. Apolzan 2,
Frank L. Greenway 2, Michelle I. Cardel5,6, Gary D. Foster 5,7 &
Corby K. Martin 2

Weight loss (WL) differences between isocaloric high-carbohydrate and high-fat
diets are generally small; however, individual WL varies within diet groups.
Genotype patterns may modify diet effects, with carbohydrate-responsive gen-
otypes losing more weight on high-carbohydrate diets (and vice versa for fat-
responsive genotypes). We investigated whether 12-week WL (kg, primary out-
come) differs between genotype-concordant and genotype-discordant diets. In
this 12-week single-center WL trial, 145 participants with overweight/obesity
were identified a priori as fat-responders or carbohydrate-responders based on
their combined genotypes at ten genetic variants and randomized to a high-fat
(n = 73) or high-carbohydrate diet (n = 72), yielding 4 groups: (1) fat-responders
receiving high-fat diet, (2) fat-responders receiving high-carbohydrate diet, (3)
carbohydrate-responders receiving high-fat diet, (4) carbohydrate-responders
receiving high-carbohydrate diet. Dietitians delivered theWL intervention via 12
weekly diet-specific small group sessions. Outcome assessors were blind to diet
assignment and genotype patterns. We included 122 participants (54.4 [SD:13.2]
years, BMI 34.9 [SD:5.1] kg/m2, 84%women) in the analyses. Twelve-weekWLdid
not differ between the genotype-concordant (−5.3 kg [SD:1.0]) and genotype-
discordant diets (−4.8 kg [SD:1.1]; adjusted difference: −0.6 kg [95% CI: −2.1,0.9],
p =0.50). With the current ability to genotype participants as fat- or carbohy-
drate-responders, evidence does not support greater WL on genotype-
concordant diets. ClinicalTrials identifier: NCT04145466.

The 2017–2018 National Health and Nutrition Examination Survey
(NHANES) showed that almost 43% of US adults aged 20 and over have
obesity, including 9.0% with severe obesity, and another 31% are
overweight1. Excess body fat increases the risk of numerous medical

conditions and premature mortality2, presenting public health and
economic challenges3,4.

Many weight loss (WL) strategies emphasize either high-
carbohydrate (and low-fat) or high-fat (low-carbohydrate) diets5,6. WL
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differences between isocaloric high-carbohydrate and high-fat diets are
generally small or negligible7; however, individual WL varies sub-
stantially within diet groups6, suggesting that individuals react differ-
ently to high-carbohydrate or high-fat diets. Retrospective data suggest
that participants with carbohydrate-responsive polymorphisms lose
more weight on high-carbohydrate vs. high-fat diets and vice versa for
those with fat-responsive polymorphisms8. However, these results have
not been confirmed in randomized controlled trials (RCT), and the
approach of determining low-fat- and low-carbohydrate-responsive
genotypes based on single-nucleotide polymorphisms (SNPs) from
three genes (PPARG, ADRB2, and FABP2)8,9 has been criticized10. Overall,
reports show that most genotype × diet interactions are not significant,
and replication is rare11. A more comprehensive and informative risk
score (determined a priori), comprised of a greater number of SNPs
with demonstrated and validated effects on the responses to high-fat/

high-carbohydrate diets, may better define fat- and carbohydrate-
responsive genetic predisposition scores.

The present RCT tested the hypothesis that participants assigned
to a diet corresponding to their a priori-determined (fat-responsive or
carbohydrate-responsive) genotype would lose more weight over
12 weeks than those assigned to a diet discordant with their genotype.
Further, we aimed to analyze those with a fat-responsive genotype
(subsequently “fat-responders”) and carbohydrate-responsive geno-
type (subsequently “carbohydrate-responders”) separately. We hypo-
thesized that (1) fat-responderswould losemoreweight on the high-fat
vs. high-carbohydrate diet and conversely (2) carbohydrate-
responders would lose more weight on the high-carbohydrate vs.
high-fat diet. A secondary objective of the present RCT was to test the
newly-developed genetic risk score to determine fat- and
carbohydrate-responsive genotypes that was based on the current
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Fig. 1 | CONSORT diagram illustrating the flow of participants through the
POINTS trial. aAn error in the algorithm to determine carbohydrate- and fat-
responsive genotypes led to the incorrect classification of these participants. These
participants were erroneously enrolled as they did not meet the eligibility criteria.

This was reported to the IRB, and, aspart of the resolution, their datawere removed
from the dataset. bThese participants were unable to attend theW12 visit in person
and only completed surveys and questionnaires remotely.
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state-of-the-art in nutrigenomics. We also aimed to determine asso-
ciations between baseline insulin levels and homeostatic model
assessment for insulin resistance (HOMA-IR) and differential WL
between the diets. These analyses were pursued as previous results
were mixed with some studies finding that insulin resistance12,13 and
glucose-stimulated insulin secretion14 influenced differential weight
loss between low-fat and low-carbohydrate diets. In contrast, others
foundno interaction between glucose-stimulated insulin secretion and
diet type on 12-month weight loss9. Finally, we examined the diet
effects on eating attitudes and behaviors to help elucidate the
mechanisms by which any observed differences in WL occurred. As
program adherence diminishes over time15, we chose a 12-week inter-
vention period, which generally has lower attrition (~19%) than 6-
(~35%) and 12-month (~54%) programs16, and short-term WL is asso-
ciated with long-term results17,18.

Results
Figure 1 shows the flow of participants through the study. Of the
2082 participants who screened for the study, 305 were eligible
following the web/phone screen and were invited to the orientation
visit. After eligibility verification based on medical history, medica-
tion inventory, and physical measures, 275 remained and completed
a genealogy test. Of these 275 individuals, 106 (~39%) were excluded
because they had a genotype that was classified as responsive to
neither a high-fat nor a high-carbohydrate diet or as responsive to
both diets. Of the remaining 169 individuals, 112 (~41%) were fat-
responders, and 57 (~20%) were carbohydrate-responders. Before the
baseline visit (completed by 152 participants), 17 participants were
excluded becausewe either lost contact between the orientation visit
and the baseline visit (n = 13) or because participants changed their
minds about willingness to participate (n = 4). Following the baseline
visit, 7 additional participants were excluded due to elevated glucose
levels (n = 5) or lost contact (n = 2). Of the 145 participants rando-
mized, 16 were lost to follow-up (W12), and 129 completed the trial.
Seven participants were excluded from the analyses because they
were incorrectly genotyped and erroneously enrolled (n = 5; removal
from dataset suggested by IRB) or failed to provide weight data at
W12 (n = 2). Baseline characteristics of all 122 included participants

(54.4 [SD: 13.2] years, BMI 34.9 [SD: 5.1] kg/m2, 84% women, 68%
White) are provided in Table 1. A comparison of baseline character-
istics between non-completers (n = 16) and completers (n = 122) is
provided in Supplementary Table 3.

Change in the primary outcome
Weight change did not differ between genotype-concordant (−5.3 kg
[SD: 1.0]) and genotype-discordant diets (−4.8 kg [SD: 1.1]; adjusted
difference: −0.6 kg [95% CI: −2.1, 0.9, p =0.50]; Table 2, Fig. 2). Among
fat-responders, weight change did not differ between the high-fat
(−5.5 kg [SD: 1.2]) and the high-carbohydrate diet (−5.3 kg [SD: 1.3];
adjusted difference: −0.2 kg [95% CI: −2.1, 1.6, p =0.78]; Table 2).
Similarly, among carbohydrate-responders, weight change did not
differ between the high-carbohydrate (−5.1 kg [SD: 1.6]) and high-fat
diet (−4.1 kg [SD: 1.7]; adjusted difference: −1.3 kg [95% CI: −3.9, 1.3,
p =0.49]; Table 2). Raw differences are presented in Supplementary
Table 5.

Percent weight change and change in body fat and body
composition
Similar to absolute weight change, percent weight change (adjusted
difference: −0.6% [95% CI: −2.1, 0.9, p =0.61]) and change in body
fat (adjusted difference: −0.5% [95% CI: −2.4, 1.4]) did not differ
between genotype-concordant and genotype-discordant diets
(Table 2, Fig. 2). Among fat-responders, percent weight change
(adjusted difference: −0.2% [95% CI: −2.1, 1.7, p =0.83]) and change in
body fat (adjusted difference: 0.9% [95% CI: −1.3, 3.0]) did not differ
between the high-fat and the high-carbohydrate diet (Table 2). Simi-
larly, among carbohydrate-responders, percent weight change
(adjusted difference: −1.2% [95% CI: −4.2, 1.7, p =0.57]) and change in
body fat (adjusted difference: −3.4% [95% CI: −7.5, 0.8]) did not differ
between the high-carbohydrate and high-fat diet (Table 2). Changes in
waist circumference (adjusted difference: −0.5 cm [95% CI: −2.3, 1.3]),
hip circumference (adjusted difference: −1.0 cm [95% CI: −3.6, 1.6]),
andwaist-hip ratio (adjusteddifference: 0.00 [95%CI:−0.02, 0.03]) did
not differ between genotype-concordant and genotype-discordant
diets (Table 2). Raw differences are presented in Supplementary
Table 5.

Table 1 | Participant characteristics

Fat-responders (n = 85) Carbohydrate-responders (n = 37)

All participants (N = 122) High-fat diet (n = 44) High-carbohydrate diet (n = 41) High-fat diet (n = 21) High-carbohydrate diet (n = 16)

Race, n (%)

White 83 (68.0) 30 (68.2) 31 (75.6) 12 (57.1) 10 (62.5)

Black/ African American 36 (29.5) 12 (27.3) 10 (24.4) 9 (42.9) 5 (31.2)

Other 3 (2.5) 2 (4.5) 0 (0.0) 0 (0.0) 1 (6.2)

Sex, n (%)

Female 102 (83.6) 37 (84.1) 35 (85.4) 17 (81.0) 13 (81.2)

Male 20 (16.4) 7 (15.9) 6 (14.6) 4 (19.0) 3 (18.8)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age, years 54.4 (13.2) 57.4 (11.5) 54.4 (14.2) 49.8 (14.1) 52.4 (13.0)

Weight, kg 94.3 (15.2) 94.2 (14.0) 93.5 (14.4) 95.2 (17.6) 95.6 (18.1)

BMI, kg/m2 34.9 (5.1) 35.1 (5.0) 34.3 (4.8) 35.8 (5.8) 34.8 (5.3)

Body fat, % 45.1 (9.3) 45.0 (9.4) 45.2 (8.5) 43.8 (11.6) 46.1 (8.4)

Waist circumference, cm 109.0 (12.2) 109.3 (11.8) 108.5 (12.3) 109.3 (11.8) 109.2 (14.8)

Hip circumference, cm 118.9 (12.2) 117.5 (10.7) 118.3 (12.1) 120.1 (12.5) 122.8 (15.8)

Waist-hip ratio 0.92 (0.08) 0.94 (0.09) 0.92 (0.08) 0.91 (0.06) 0.89 (0.10)

SBP, mmHg 121.7 (11.9) 120.5 (11.6) 124.1 (12.9) 121.7 (11.5) 119.4 (10.5)

DBP, mmHg 74.7 (7.4) 75.1 (7.0) 74.5 (7.9) 75.0 (6.1) 73.9 (9.3)

Data are mean (SD) for continuous and n (%) for categorical variables.
BMI body mass index, DBP diastolic blood pressure, SBP systolic blood pressure, SD standard deviation.
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Change in blood pressure
Changes in resting systolic bloodpressure (SBP) andDBPdid not differ
between genotype-concordant and genotype-discordant diets (SBP
adjusted difference: 4.7mmHg [95% CI: 0.5, 8.8]; DBP adjusted differ-
ence: −0.1mmHg [95% CI: −2.8, 2.5]; Table 2, Fig. 3). Similarly, changes
in SBP and DBP did not differ between the high-fat and the high-
carbohydrate diet among fat-responders (SBP difference: 6.9mmHg
[95% CI: 2.0, 11.8]; DBP difference: −0.5mmHg [95% CI: −3.8, 2.9]) or
between the high-carbohydrate and high-fat diet among carbohydrate
responders (SBP difference: 0.3mmHg [95% CI: −7.4, 8.0]; DBP dif-
ference: 0.9mmHg [95% CI: −3.7, 5.5]; Table 2). Raw differences are
presented in Supplementary Table 5.

Association between insulin levels andHOMA-IR andweight loss
Baseline insulin levels (β = −0.036 [95%CI: −0.125, 0.053, p =0.43]) and
HOMA-IR (β = −0.165 [95% CI: −0.505, 0.175, p =0.34]) were not asso-
ciatedwithweight change (Supplementary Figure 1). Therewas no diet
× baseline HOMA-IR interaction on weight change (p = 0.37). Similarly,
there was no significant diet × baseline HOMA-IR interaction among
carbohydrate-responders (p =0.62) or fat-responders (p =0.23; Sup-
plementary Fig. 2).

Change in food cravings, appetitive traits, and food preferences
Changes in food cravings did not differ between the genotype-
concordant and genotype-discordant diets (Table 3). Among
carbohydrate-responders, those on a high-fat diet decreased
cravings for carbohydrates/starches relative to those on the high-
carbohydrate dietwith an adjusteddifferenceof −0.7 (95%CI:−1.1,−0.4,
p =0.006, without Holm-Bonferroni adjustment p =0.001). Changes in
all other food cravings did not differ between diets among
carbohydrate-responders (Table 3). Among fat-responders, changes in
food cravings did not differ betweendiets (Table 3). Rawdifferences are
presented in Supplementary Table 6. Changes in restraint, disinhibition,
and hunger (via EI), and food preferences (FPQ) did not differ between
genotype-concordant and genotype-discordant diets (Table 4). Raw
differences are presented in Supplementary Table 7 and baseline scores
in these instruments are reported in Supplementary Table 4.

Diet personalization and intervention satisfaction
Diet preference (via Diet Personalization Survey, Table 5) and inter-
vention satisfaction (Table 6) did not differ between the genotype-
concordant and genotype-discordant diets. Raw differences are pre-
sented in Supplementary Table 8.

Table 2 | Change in weight (kg and %), percent body fat, body composition, and blood pressure during the 12-week inter-
vention in those assigned to a diet concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Mean (SD) Mean (SD) Adjusted differencea (95% CI) p-value

Weight change, kg −5.3 (1.0) −4.8 (1.1) −0.6 (−2.1, 0.9) 0.501

Weight change, % −5.8 (1.0) −5.4 (1.1) −0.6 (−2.1, 1.0) 0.605

Change in body fat, %b −1.3 (1.2) −0.8 (1.3) −0.5 (−2.4, 1.4)

Waist circumference, cm −4.8 (1.1) −4.3 (1.2) −0.5 (−2.3, 1.3)

Hip circumference, cm −4.6 (1.7) −3.7 (1.8) −1.0 (−3.6, 1.6)

Waist-hip ratio 0.01 (0.00) 0.01 (0.00) 0.00 (−0.02, 0.03)

SBP, mmHg 1.2 (2.7) −2.9 (2.9) 4.7 (0.5, 8.8)

DBP, mmHg 0.4 (1.7) 1.0 (1.9) −0.1 (−2.8, 2.5)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Mean (SD) Mean (SD) Adjusted differencea (95% CI) p-value

Weight change, kg −5.5 (1.2) −5.3 (1.3) −0.2 (−2.1, 1.6) 0.779

Weight change, % −5.9 (1.3) −5.7 (1.4) −0.2 (−2.1, 1.7) 0.831

Change in body fat, %c −1.1 (1.4) −1.9 (1.6) 0.9 (−1.3, 3.0)

Waist circumference, cm −5.0 (1.4) −4.4 (1.5) −0.6 (−2.7, 1.5)

Hip circumference, cm −3.9 (1.5) −4.0 (1.7) 0.2 (−2.1, 2.6)

Waist-hip ratio 0.00 (0.00) 0.00 (0.00) −0.01 (−0.03, 0.02)

SBP, mmHg 4.5 (3.2) −1.2 (3.5) 6.9 (2.0, 11.8)

DBP, mmHg 1.7 (2.2) 2.9 (2.4) −0.5 (−3.8, 2.9)

Carbohydrate-
responders

High-carbohydrate diet (n = 16) High-fat diet (n = 21)

Mean (SD) Mean (SD) Adjusted differencea (95% CI) p-value

Weight change, kg −5.1 (1.6) −4.1 (1.7) −1.3 (−3.9, 1.3) 0.487

Weight change, % −5.7 (1.8) −4.8 (1.9) −1.2 (−4.2, 1.7) 0.565

Change in body fat, % d −1.9 (2.5) 1.4 (2.7) −3.4 (−7.5, 0.8)

Waist circumference, cm −4.4 (2.1) −4.2 (2.3) −0.3 (−3.9, 3.3)

Hip circumference, cm −6.4 (4.3) −2.7 (4.7) −3.9 (−11.1, 3.3)

Waist-hip ratio 0.00 (0.00) 0.00 (0.00) 0.03 (−0.02, 0.08)

SBP, mmHg −5.8 (4.6) −7.2 (5.0) 0.3 (−7.4, 8.0)

DBP, mmHg −2.0 (2.8) −3.0 (3.0) 0.9 (−3.7, 5.5)

CI confidence interval, DBP diastolic blood pressure, SBP systolic blood pressure, SD standard deviation.
aMixed-effect model, adjusted for sex, race, and baseline value of the outcome for all data.
bData available for 58 of 60 participants (genotype-concordant diet) and 60 of 62 participants (genotype-discordant diet).
cData available for 42 of 44 participants (high-fat diet) and 40 of 41 participants (high-carbohydrate diet).
dData available for 16 of 16 participants (high-carbohydrate diet) and 20 of 21 participants (high-fat diet).
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Diet adherence
Adherence to the assigned diets is shown in Fig. 4. We encountered
difficulties in obtaining the adherence data from participants due, in
part, to the pandemic and needing to move to remote intervention
delivery. Consequently, these adherence data are only available for 22
of 57 participants (39%) on the high-carbohydrate diet and for 43 of 65
participants (66%) on the high-fat diet (the discrepancy in the percent
complete/missing is noted, thoughwe have no reason to believe that it
was systematic). On average, participants on the high-carbohydrate
diet reported consuming 63.4% (SD: 2.3) of their energy from carbo-
hydrates (target 65%), 20.9% (SD: 2.4) from fat (target 20%), and 16.0%
(SD: 1.0) from protein (target 15%) in week 4, 63.3% (SD: 2.8) from
carbohydrates, 20.5% (SD: 1.7) from fat, and 15.9% (SD: 1.0) from pro-
tein in week 8, and 62.7% (SD: 4.0) from carbohydrates, 20.5% (SD: 2.5)
from fat, and 15.7% (SD: 1.8) from protein in week 12. Participants on
the high-fat diet reported consuming on average 45.4% (SD: 2.2) of
their energy from carbohydrates (target 45%), 39.4% (SD: 2.0) from fat
(target 40%), and 15.8% (SD: 1.2) from protein (target 15%) in week 4,
44.7% (SD: 2.2) from carbohydrates, 40.5% (SD: 2.1) from fat, and 15.7%
(SD: 2.3) from protein in week 8, and 44.5% (SD: 3.4) from carbohy-
drates, 39.9% (SD: 2.5) from fat, and 16.1% (SD: 3.3) from protein in
week 12.

Session attendance and adverse events
Weekly attendance was similar across the four genotype-diet groups
(Supplementary Table 9), with weekly session attendance ranging
from 85% to 100%. There were 4 adverse or serious adverse events in
total. Two adverse events occurred among fat-responders on a high-
carbohydrate diet (unrelated to the study), and there were 2 serious
adverse events (1 among fat-responders on a high-carbohydrate diet, 1

among fat-responders on a high-fat diet) that required hospitalization
(unrelated to study).

Discussion
The present RCT determined the participant’s (fat-responsive or car-
bohydrate-responsive) genotype a priori via a comprehensive genetic
risk score based on published and validated effects and tested the
effects of a genotype-concordant diet onWL over 12 weeks. We found
no difference in WL between individuals on the genotype-concordant
vs. genotype-discordant diet. Further, insulin levels or HOMA-IR were
not associated with WL. Food cravings tended to decrease among
carbohydrate-responders on a high-fat diet compared to those on a
high-carbohydrate diet. Finally, fat-responders on a high-carbohydrate
diet tended to decrease resting SBP.

The lack of significant and clinically meaningful differences in WL
(~0.6 kg) between genotype-concordant and genotype-discordant
diets aligns with the literature9,11. In contrast to the well-conducted
Gardner et al. study (non-significant difference in WL of 0.7 kg over
12 months)9, who defined fat vs. carbohydrate-responsive genotypes
based on 3 SNPs that were predictive in a preliminary retrospective
analysis8, we determined fat- or carbohydrate-responsive genotypes
based on an algorithm involving 10 SNPs. Supported by a recent-meta-
analysis (8 trials with 91 SNPs and 63 genetic loci)11, our results suggest
that with the current ability to genotype individuals as fat or carbo-
hydrate-responders, there is no evidence that genotype-concordant
diets result in greater WL.

Our sample consisted of substantially fewer carbohydrate-
responders (n = 37) than fat-responders (n =85). We did not limit
recruitment to achieve equal numbers of participants in each genotype-
diet group, and this distribution reflects the prevalence in our

Fig. 2 | Change inweight andpercent body fat during the 12-week intervention.
Results are presented as boxplots for all participants (a, d), as well as for fat-
responders (b, e) and carbohydrate responders (c, f) separately. a Genotype-con-
cordant group (n = 60, genotype-discordant group (n = 62);b high-fat diet (n = 44),
high-carbohydrate diet (n = 41); c high-carbohydrate diet (n = 16), high-fat diet

(n = 21); d genotype-concordant group (n = 58), genotype-discordant group
(n = 60); e high-fat diet (n = 42), high-carbohydrate diet (n = 40); f high-carbohy-
drate diet (n = 16), high-fat diet (n = 20). In the boxplots, the center line denotes the
median value (50th percentile), the bounds of the box represent the 25th and 75th
percentiles of the dataset, and the whiskers mark the 5th and 95th percentiles.
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population. As reported in the Results section, 275 individuals com-
pleted a genealogy test, of which ~39% had a genotype classified as
responsive to both or neither of the two diets, ~41%were fat-responders
and ~20% were carbohydrate-responders. Notably, these numbers are
somewhat different from what we had estimated during the study’s
planning phase, as we expected 1/3 of people to be fat-responders, 1/3
carbohydrate-responders, and 1/3 to respond to neither or both of the
specified diets. Future studies with larger samples should verify if this
uneven distribution between carbohydrate-responders and fat-
responders is representative of the general population and further
investigate the potential effect onWL among carbohydrate-responders.

Future studies could also consider assigning participants to
genotype-concordant diets without specific energy intake targets and
examine the diet effects not only onWL but also on cardiovascular risk
factors. Previously, a low-carbohydrate diet without energy intake
target resulted in greater improvements in body composition, blood
lipids, and estimated 10-year coronary heart disease risk compared to a
low-fat diet19. It would be insightful to investigate whether genotype
plays a role in cardiovascular risk reduction following a low-
carbohydrate vs. low-fat diet without calorie restriction.

Fasting insulin levels and HOMA-IR did not predict WL. Previous
studies reporting a diet × fasting insulin interaction forWL found lower
carbohydrate diets to be superior for individuals with greater insulin
resistance13 and high baseline insulin secretion (30min after a 75 g oral
glucose tolerance test)20, presumably due to a reduced burden on
insulin-mediated glucose disposal. However, these studies involved
relatively small sample sizes, and findings of the influence of insulin
sensitivity21 and insulin secretion9,14 on WL via a low-fat vs. a low-
carbohydrate diet are inconsistent.

WL can reduce food cravings, particularly for foods restricted on
specific diets22, contributing to the hypothesis that food cravings are a
conditioned expression of hunger due to stimuli paired with eating
certain foods23. Consequently, cravings can be reduced by eliminating
or restricting the intake of craved foods. This hypothesis is partially
supported by our results as, among carbohydrate-responders, crav-
ings tended to decrease for high-carbohydrate foods on the high-fat
diet. Nonetheless, cravings alsodecreasedmodestly for high-fat foods,
which is to be expected as the amount of all foods was restricted, and
cravings for specific foods correlate with each other24.

Among fat-responders, a high-carbohydrate diet tended to
decrease resting SBP. Nonetheless, these individuals had the highest
mean SBP of the 4 genotype-diet groups at baseline. Thus, this effect
could be explained, in whole or partially, by regression to the mean.
Also, all 4 genotype-diet groups had relatively well-controlled
blood pressure, leaving little room for improvement through dietary
changes, making the non-significant improvements potentially more
meaningful.

This trial has some limitations. First, the genetic algorithm
to classify individuals as fat- or carbohydrate-responders was created
based on published literature25–38. However, these (mostly retro-
spective) studies generally had modest sample sizes, and some of
the genotype × diet interactions, which may be false positives, have
not been independently replicated. Further, WL is determined by
multiple modifiable and non-modifiable (e.g., genetic) factors,
and current knowledge accounts for a small percentage of the
variability. Further genotypes may have influenced participants’ WL
responses in directions different from those predicted from the
measured genotypes. More comprehensive knowledge of the role of

Fig. 3 | Change in systolic and diastolic blood pressure during the 12-week
intervention.Results are presented as boxplots for all participants (a,d; genotype-
concordant group, n = 60, genotype-discordant group, n = 62), as well as for fat-
responders (b, e; high-fat diet, n = 44, high-carbohydrate diet, n = 41) and

carbohydrate responders (c, f; high-carbohydrate diet, n = 16, high-fat diet, n = 21)
separately. In the boxplots, the center line denotes the median value (50th
percentile), the bounds of the box represent the 25th and 75th percentiles of the
dataset, and the whiskers mark the 5th and 95th percentiles.
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genetics in WL is needed and should be obtained from genome-wide
association studies; however, the sample size and experimental
design required to generate that essential information are beyond
reach at this time. Additional limitations of the present study include
the relatively small sample size, single-center design, and short time
frame. A longer timeframe (6–12-month follow-up) may have
increased the amount and differential weight loss between diets. A
larger sample size might have also allowed for detecting differences
in clinically important secondary outcomes such as changes in
body fat and SBP. Further, we did not provide meals in this
study, which may have affected dietary adherence (high-fat vs.
high-carbohydrate). However, this choice wasmade by design, as our
study was designed as a (pragmatic) effectiveness trial with real-
world conditions rather than an efficacy trial. Additionally, the
adherence data (albeit limited) suggests that diet adherence was
overall satisfactory. In addition to assessing diet adherence con-
tinuously throughout the study, future studies should also assess the
macronutrient composition of participants’ habitual diets to see
any differences in the magnitude of the shifts from baseline to the
high-fat or high-carbohydrate diet. Further, when assessing a
potential effect modification by insulin resistance status, using an
oral glucose tolerance test (AUC or INS-30) rather than HOMA-IR to
quantify insulin resistance might have been a better option, as

HOMA-IR has limited sensitivity due to its reliance on fasting insulin
and glucose levels and it does not reflect differences between tissues
(e.g., adipose, muscle) or postprandial physiology. Non-fasting
methods yield greater variability of the glucose/insulin dynamics
and may have been more suitable. Additionally, the assessment of
percent body fat via BIA is a limitation as BIA does not provide
information on body fat distribution. Finally, participation in “nutri-
genomics” studies generally induces improved diet adherence39–42,
independent of the specific recommendations. Therefore, in our
study, participantsmay have responded better to their assigned diets
regardless of their genotype matching, obscuring the specific nutri-
genomics effects.

In conclusion, in this 12-week RCT, there was no difference in WL
between individuals with an a priori determined fat- or carbohydrate-
responsive genotype on a high-carbohydrate vs. high-fat diet with
specific energy targets and the same level of energy restriction
across diets.

Methods
Design and participants
The PersonalizedNutrition Study (POINTS, ClinicalTrials.gov identifier:
NCT04145466) was a 12-week, single-site, parallel-armWL trial that was
approved by the institutional review board (IRB FWA00006218) of the

Table 3 | Changes in food cravings (via the FoodCraving Inventory) during the 12-week intervention in those assigned to adiet
concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

High fatsb −0.3 (0.1) −0.4 (0.2) 0.1 (−0.1, 0.4)

Sweetsc −0.3 (0.2) −0.5 (0.2) 0.2 (−0.1, 0.4)

Carbohydrates/Starchesd −0.1 (0.2) −0.4 (0.2) 0.3 (0.0, 0.5)

Fast-food fatse −0.3 (0.2) −0.4 (0.2) 0.1 (−0.2, 0.4)

Fruits and vegetablesf −0.1 (0.2) −0.4 (0.2) 0.2 (−0.1, 0.5)

Total cravingsg −0.2 (0.1) −0.4 (0.1) 0.2 (−0.1, 0.4)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

High fatsb −0.4 (0.2) −0.3 (0.2) −0.1 (−0.3, 0.3)

Sweetsc −0.4 (0.2) −0.6 (0.2) 0.2 (−0.1, 0.5)

Carbohydrates/Starchesd −0.2 (0.2) −0.3 (0.2) 0.1 (−0.3, 0.4)

Fast-food fatse −0.4 (0.2) −0.3 (0.3) −0.1 (−0.4, 0.3)

Fruits and vegetablesf −0.3 (0.2) −0.4 (0.3) 0.1 (−0.3, 0.5)

Total cravingsg −0.3 (0.2) −0.3 (0.2) 0.0 (−0.3, 0.3)

Carbohydrate-responders High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

High fatsb −0.2 (0.2) −0.7 (0.2) 0.5 (0.1, 0.9)

Sweetsc −0.1 (0.2) −0.3 (0.3) 0.2 (−0.2, 0.6)

Carbohydrates/Starchesd 0.1 (0.2) −0.7 (0.2) 0.7 (0.4, 1.1)

Fast-food fatse −0.1 (0.3) −0.5 (0.3) 0.5 (0.0, 1.0)

Fruits and vegetablesf 0.3 (0.3) −0.3 (0.3) 0.6 (0.1, 1.1)

Total cravingsg 0.0 (0.2) −0.5 (0.2) 0.5 (0.2, 0.9)

CI confidence interval, SD standard deviation.
aAdjusted for sex, race, and baseline value of the outcome.
bGenotype-concordant diet: 55/60 participants; genotype-discordant diet: 60/62 participants. Fat-responders: 41/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 14/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
cGenotype-concordant diet: 59/60 participants; genotype-discordant diet: 60/62 participants. Fat-responders: 43/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 16/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
dGenotype-concordant diet: 59/60 participants; genotype-discordant diet: 61/62 participants. Fat-responders: 44/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 15/16 participants (high-carbohydrate diet) and 21/21 participants (high-fat diet).
eGenotype-concordant diet: 58/60 participants; genotype-discordant diet: 61/62 participants. Fat-responders: 43/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 15/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
fGenotype-concordant diet: 58/60 participants; genotype-discordant diet: 60/62 participants. Fat-responders: 43/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 15/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
g Genotype-concordant diet: 54/60 participants; genotype-discordant diet: 67/62 participants. Fat-responders: 41/44 participants (high-fat diet) and 38/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 13/16 participants (high-carbohydrate diet) and 19/21 participants (high-fat diet).
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Pennington Biomedical Research Center (PBRC, Baton Rouge, LA).
Participants were enrolled between October 7, 2020 and September 8,
2021. Participants were identified a priori as carbohydrate-responders
and fat-responders based on their combined genotypes at 10 genetic
variant loci and randomized to either a high-carbohydrate or high-fat
diet, yielding the following groups: (1) fat-responders receiving a high-
fat diet, (2) fat-responders receiving a high-carbohydrate diet, (3)
carbohydrate-responders receiving a high-fat diet, and (4)
carbohydrate-responders receiving a high-carbohydrate diet.

Participants were recruited from the community. Eligible partici-
pants were 18–75 years old, had a BMI of 27.0–47.5 kg/m2, and had
completed orwerewilling to complete a genealogy test (e.g., Ancestry,
23andMe) and to share the raw data with the investigators. Finally, a
genetic profile indicating a predisposition to respond favorably to a
high-carbohydrate or high-fat WL diet based on specific SNPs (see
below) was required. Exclusion criteria included smoking, weight
change ≥10 lbs. in the last 3 months, being pregnant or breastfeeding,

conditions, diseases, or medications that affect body weight or meta-
bolism or could affect risk or study completion, and a genotype indi-
cating a predisposition to respond favorably to neither or both of the
specified diets. We estimated that approximately 1/3 of people would
be fat-responders, 1/3 carbohydrate-responders, and 1/3 would
respond favorably to neither or both of the specified diets.

The study included 1 orientation visit, 2 clinic visits (one before
and one after the intervention), and 12-weekly intervention sessions.
All participants provided written informed consent, and participants
who completed the study received a minor compensation of $150.

Genotype determination. Carbohydrate- and fat-responders were
identified a priori based on their combined genotypes at the following
genetic variants: (1) FGF21rs83814725, (2) TCF7L2rs1225537226,43, (3)
IRS1rs294364128, (4) APOA5rs66279930,31,44, (5) PLIN1rs89416027,32, (6)
APOA2rs508229,33, (7) FTOrs993960934,35, (8) PPARGrs180128236, (9)
GIPRrs1042392837, and (10) GYS2rs147829038. The genetic information

Table 4 | Change in restraint, disinhibition, and hunger and in food preferences during the 12-week intervention in those
assigned to a diet concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

Restraint (EI)b 3.6 (0.9) 3.3 (1.0) 0.4 (−1.1, 1.9)

Disinhibition (EI)c −0.1 (0.6) 0.1 (0.7) 0.0 (−1.0, 0.9)

Hunger (EI)d −0.4 (0.5) −0.9 (0.6) 0.5 (−0.4, 1.4)

HF/HS (FPQ) −0.1 (0.3) 0.0 (0.4) 0.0 (−0.5, 0.5)

LF/HS (FPQ) 0.1 (0.3) 0.1 (0.3) 0.1 (−0.4, 0.5)

HF/HCCHO (FPQ) −0.3 (0.3) −0.3 (0.3) 0.0 (−0.4, 0.5)

LF/HCCHO (FPQ) −0.1 (0.3) 0.0 (0.3) −0.1 (−0.5, 0.4)

HF/LCHO/HP (FPQ) −0.4 (0.3) −0.4 (0.3) 0.0 (−0.5, 0.4)

LF/LCHO/HP (FPQ) 0.1 (0.3) 0.1 (0.3) 0.0 (−0.4, 0.4)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

Restraint (EI)b 3.5 (1.2) 2.7 (1.4) 0.8 (−1.3, 2.9)

Disinhibition (EI)c −0.3 (0.8) 0.2 (0.9) −0.4 (−1.6, 0.9)

Hunger (EI)d −0.9 (0.7) −1.3 (0.8) 0.4 (−0.8, 1.5)

HF/HS (FPQ) 0.0 (0.4) 0.0 (0.5) 0.1 (−0.6, 0.7)

LF/HS (FPQ) 0.2 (0.4) 0.3 (0.4) 0.0 (−0.6, 0.5)

HF/HCCHO (FPQ) −0.2 (0.4) −0.1 (0.4) 0.0 (−0.6, 0.5)

LF/HCCHO (FPQ) 0.0 (0.4) 0.2 (0.4) −0.2 (−0.7, 0.4)

HF/LCHO/HP (FPQ) −0.5 (0.4) −0.6 (0.4) 0.1 (−0.5, 0.7)

LF/LCHO/HP (FPQ) 0.2 (0.4) 0.1 (0.4) 0.1 (−0.4, 0.7)

Carbohydrate-
responders

High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

Restraint (EI)b 3.4 (1.1) 4.6 (1.1) −0.7 (−2.6, 1.2)

Disinhibition (EI)c 0.7 (0.9) 0.0 (0.9) 0.8 (−0.8, 2.5)

Hunger (EI)d 0.8 (0.8) −0.1 (0.9) 1.0 (−0.4, 2.5)

HF/HS (FPQ) −0.2 (0.5) 0.0 (0.5) −0.1 (−1.0, 0.7)

LF/HS (FPQ) −0.1 (0.4) −0.4 (0.4) 0.3 (−0.3, 0.9)

HF/HCCHO (FPQ) −0.4 (0.5) −0.6 (0.5) 0.2 (−0.6, 1.0)

LF/HCCHO (FPQ) −0.2 (0.4) −0.5 (0.4) 0.3 (−0.3, 0.9)

HF/LCHO/HP (FPQ) −0.3 (0.4) 0.1 (0.5) −0.2 (−1.0, 0.5)

LF/LCHO/HP (FPQ) −0.1 (0.4) 0.1 (0.4) −0.2 (−0.8, 0.4)

CI confidence interval, EI Eating Inventory, FPQ Food Preference Questionnaire, HF/HS high fat/high simple sugar, LF/HS low fat/high simple sugar, HF/HCCHO high fat/high complex carbo-
hydrate, LF/HCCHO low fat/high complex carbohydrate, HF/LCHO/HP high fat/low carbohydrate/high protein, LF/LCHO/HP low fat/low carbohydrate/high protein, SD standard deviation.
aAdjusted for sex, race, and baseline value of the outcome.
bGenotype-concordant diet: 46/60 participants; genotype-discordant diet: 47/62 participants. Fat-responders: 34/44 participants (high-fat diet) and 29/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 12/16 participants (high-carbohydrate diet) and 18/21 participants (high-fat diet).
cGenotype-concordant diet: 49/60 participants; genotype-discordant diet: 49/62 participants. Fat-responders: 37/44 participants (high-fat diet) and 31/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 12/16 participants (high-carbohydrate diet) and 18/21 participants (high-fat diet).
dGenotype-concordant diet: 51/60 participants; genotype-discordant diet: 51/62 participants. Fat-responders: 37/44 participants (high-fat diet) and 33/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 14/16 participants (high-carbohydrate diet) and 18/21 participants (high-fat diet).
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was accessed via the rawdata from the genealogy tests. Initially, only 6
SNPswere included and pilot tested, and the scoring criteria were then
modified as few participants were deemed carbohydrate- or fat-
responders. The original and updated scoring criteria, including a
specific example for 1 SNP, are provided in the Supplementary Meth-
ods, including Supplementary Tables 1 and 2. The final risk score
comprised 10 SNPs with demonstrated and validated effects on the
responses to high-fat/high-carbohydrate diets25–38,43,44, and validation
of this comprehensive and informative risk score was an objective of
this study.

Intervention
After enrollment (Week [W] 0 visit), participants were randomized to
either a high-carbohydrate diet (rich inwhole-grain foods) or a high-fat
diet (rich in unsaturated fats/oils). The high-carbohydrate diet con-
sisted of ~20% of energy from fat and ~65% from carbohydrates,
whereas the high-fat diet consisted of ~40% energy from fat and ~45%
from carbohydrates. Both diets provided 15% of energy from protein.
All participantswere assigned anenergy intake target thatwould result
in a dailydeficit of ~750 kcal andprovidedwith adiet-specificmeal plan
in 200 kcal increments from 1400 to 2800 kcal/day to self-prepare
meals during the intervention period. To facilitate meal plan adher-
ence when preparing or selecting meals, the meal plans included a list
of ingredients (and their amounts) for all meals of each day (breakfast,
lunch, dinner, and 1 daily snack) and instructions for meal preparation
and participants were provided a food scale. Baseline energy require-
ments were calculated with Mifflin-St. Jeor’s formulas45.

The PBRC biostatistics department created the randomization
sequenceusing SAS 9.4 statistical software forWindows (SAS Institute,
Cary, NC) and uploaded it to REDCap (Research Electronic Data
Capture). REDCapused strata for the inaction of genotype and gender.
To ensure a relatively equal baseline BMI between the 4 genotype-diet
groups, a 1:1 randomization scheme was devised that adjusted for
BMI, gender, and genotype. Gender and genotype were used as strata,
while BMI was used in an a-priori-created randomization equation.
Within each stratum, this equation used block sizes of 6 (for females)
and 4 (for males) at the start of the study and ended with block sizes
of 4 and 2, respectively, to ensure relative balance of group assign-
ments. Block sizes were assigned during the study by the biostatisti-
cian with access only to information about the enrolment progress
(percent enrolled).

Outcome assessors were blind to diet assignment and genotype
patterns. Interventionists administering intervention sessions were
blind to genotype patterns but not diet type. Participants were only
informedof their genotype (carbohydrate- or fat-responder) once they
completed the study.

The 12weekly intervention (group) sessionswerediet-specific and
had adifferent focus eachweek (SupplementaryMaterial). Participants
were provided a body weight scale and encouraged to weigh daily
throughout the intervention and to send pictures of their weights to
their interventionist before each intervention session. With very few
exceptions, the first intervention session was conducted in person.
Due to the COVID-19 pandemic, almost all subsequent sessions were
conducted virtually via webinar (Microsoft Teams).

Table 5 | Change in items of the Diet Personalization Survey during the 12-week intervention in those assigned to a diet
concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

The assigned diet…

… fits my typical eating habits 0.9 (0.5) 1.3 (0.6) −0.3 (−1.2, 0.6)

… fits my lifestyle 0.4 (0.6) 0.2 (0.6) 0.2 (−0.7, 1.1)

… makes it easier to lose weight 0.6 (0.5) 0.7 (0.6) 0.1 (−0.8, 0.8)

I am confident that I can…

… successfully lose weight on the assigned diet 0.4 (0.5) 0.6 (0.5) −0.1 (−0.8, 0.7)

… follow the assigned diet −0.7 (0.4) −0.4 (0.5) −0.3 (−0.9, 0.4)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

The assigned diet…

… fits my typical eating habits 0.6 (0.6) 1.3 (0.7) −0.6 (−1.6, 0.4)

… fits my lifestyle 0.0 (0.7) 0.2 (0.8) −0.1 (−1.2, 1.0)

… makes it easier to lose weight 0.2 (0.7) 0.4 (0.7) −0.1 (−1.1, 0.9)

I am confident that I can…

… successfully lose weight on the assigned diet 0.1 (0.6) 0.4 (0.7) −0.1 (−1.1, 0.8)

… follow the assigned diet −0.9 (0.6) −0.5 (0.6) −0.4 (−1.2, 0.5)

Carbohydrate-responders High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

The assigned diet…

… fits my typical eating habits 1.6 (1.1) 1.3 (1.2) 0.4 (−1.4, 2.2)

… fits my lifestyle 1.1 (1.0) 0.3 (1.1) 1.0 (−0.7, 2.7)

… makes it easier to lose weight 1.3 (0.7) 1.3 (0.8) 0.4 (−0.8, 1.6)

I am confident that I can…

… successfully lose weight on the assigned diet 0.9 (0.8) 1.1 (0.9) 0.2 (−1.1, 1.5)

… follow the assigned diet −0.3 (0.7) −0.2 (0.7) 0.0 (−1.1, 1.1)

… the degree to which the diet helped manage
hunger

6.8 (0.9) 6.6 (1.0) 0.3 (−1.3, 1.8)

aMean change during the 12-week intervention.
bAdjusted for sex and race.
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Outcome measures
Anthropometric data. At W0 and W12, fasting body weight and waist
and hip circumference were measured in the PBRC outpatient clinic.
Clinic weights were alsomeasured at all intervention visits (though not
fasting weights). Further, body fat (%, via bioelectrical impedance
analysis [BIA]; X-contact 365, Jawon Medical Co., Ltd, Seoul, South
Korea) and blood pressure (after 5min of seated rest) were measured
at W0 and W12.

Fasting serumglucose and insulin. Fasting serumglucose and insulin
were measured at W0, and HOMA-IR was used to quantify insulin
resistance.

Appetitive traits, food cravings, and food preferences. Appetitive
traits were measured with the Eating Inventory (EI)46, food cravings
were measured with the Food Craving Inventory (FCI)24, and hedonic
food preferences were measured with the Food Preference Ques-
tionnaire (FPQ)47 at W0 and W12 (see Supplementary Methods for
details on outcome materials). Data for these questionnaires were
collected and managed using REDCap tools

Diet personalization and intervention satisfaction. The Diet Perso-
nalization Survey (SupplementaryMethods)was completed atW0 and

W12, as well as during the intervention session at W6, and the Inter-
vention Satisfaction Survey (Supplementary Methods) was conducted
at W12. Data for these surveys were collected and managed using
REDCap tools.

Diet adherence. As stated above, participants were provided with a
kitchen scale and could precisely weigh all ingredients specified
in the meal plans for the foods consumed at home. Additional
foods that were consumed were weighed and added as well. Adher-
ence to the macronutrient content of the assigned diets was assessed
for three 7-day periods throughout the intervention (W4, W8, W12).

Statistical analyses
The distribution of variables was evaluated by visual examination and
the Shapiro-Wilk test. The primary outcomewas weight change (kg) at
12 weeks. All other measures were secondary endpoints. Changes in
outcomes are presented asmeanand95%confidence intervals (CI).We
used linear mixed models to determine if changes in outcome vari-
ables differed among diets. Covariates in themodels included baseline
value of the outcome, sex, and race. The mixed-effect model accoun-
ted for the correlation of the subject over time, and least-squaremeans
based on the estimate from the mixed-effect model were used to test
for differences in weight change between diets. To evaluate whether

Table 6 | Change in intervention satisfaction (post-intervention) in those assigned to a diet concordant vs. discordantwith the
genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

I am satisfied with…

… the group format 6.9 (0.4) 7.4 (0.4) −0.5 (−1.0, 0.1)

… the support from interventionists 7.5 (0.3) 7.5 (0.3) 0.1 (−0.4, 0.5)

… the intervention materials 7.0 (0.3) 7.2 (0.3) −0.1 (−0.6, 0.4)

… the support from other participants 6.4 (0.4) 6.5 (0.4) −0.1 (−0.7, 0.6)

… the amount of food in my meal plan 6.5 (0.5) 6.4 (0.5) 0.1 ( −0.6, 0.8)

… the macronutrient content in my meal plan 6.1 (0.4) 5.8 (0.5) 0.3 (−0.4, 1.0)

… my progress toward weight management 6.4 (0.5) 6.3 (0.5) 0.3 (−0.5, 1.0)

… the degree to which the diet helped manage hunger 6.5 (0.5) 6.1 (0.5) 0.5 (−0.3, 1.2)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

I am satisfied with…

… the group format 6.8 (0.4) 7.3 (0.5) −0.6 (−1.2, 0.1)

… the support from interventionists 7.6 (0.4) 7.8 (0.4) −0.1 (−0.7, 0.4)

… the intervention materials 7.1 (0.4) 7.4 (0.4) −0.3 (−0.9, 0.3)

… the support from other participants 6.1 (0.5) 6.5 (0.6) −0.4 (−1.2, 0.4)

… the amount of food in my meal plan 6.3 (0.6) 6.3 (0.6) 0.0 (−0.9, 0.9)

… the macronutrient content in my meal plan 6.0 (0.5) 5.6 (0.6) 0.3 (−0.5, 1.2)

… my progress toward weight management 6.5 (0.6) 6.2 (0.6) 0.4 (−0.5, 1.2)

… the degree to which the diet helped manage hunger 6.4 (0.6) 5.8 (0.6) 0.6 (−0.3, 1.4)

Carbohydrate-responders High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

I am satisfied with…

… the group format 7.2 (0.7) 7.4 (0.7) −0.2 (−1.3, 0.9)

… the support from interventionists 7.5 (0.6) 6.9 (0.6) 0.5 (−0.4, 1.4)

… the intervention materials 7.1 (0.5) 6.6 (0.5) 0.4 (−03, 1.1)

… the support from other participants 7.1 (0.6) 6.4 (0.7) 0.8 (−0.3, 1.8)

… the amount of food in my meal plan 7.0 (0.7) 6.6 (0.8) 0.4 (−0.8, 1.6)

… the macronutrient content in my meal plan 6.3 (0.8) 5.9 (0.9) 0.4 (−1.0, 1.7)

… my progress toward weight management 6.2 (0.9) 6.4 (0.9) −0.1 (−1.5, 1.4)

… the degree to which the diet helped manage hunger 6.8 (0.9) 6.6 (1.0) 0.3 (−1.3, 1.8)
a Mean post-intervention value. The Intervention Satisfaction Survey was only assessed at Week 12.
bAdjusted for sex and race.

Article https://doi.org/10.1038/s41467-023-41969-1

Nature Communications |         (2023) 14:6321 10



baseline insulin levels and HOMA-IR needed to be included as covari-
ates, their effects on WL were tested using a linear mixed model,
adjusted for diet group and other known covariates. Neither baseline
insulin levels nor HOMA-IRwas significantly associatedwithWL; hence
these variables were not included as covariates. The significance level
was set to 0.05 (2-sided). Multiple testing adjustment was performed
for secondary outcomes using the Holm-Bonferroni method48. All
analyses were conducted using SAS (Windows version 9.4; SAS Insti-
tute, Cary,NC) and the statistical programRversion4.0.2 (https://cran.
r-project.org/).

Power calculations. The present study planned to obtain data from up
to 154participants in total, andweaimed tocomplete32participantsper
genotype-diet group (128 participants in total) though we did not limit
recruitment to achieve equal numbers of participants in each group.We
hypothesized that participants on a genotype-concordant diet would

lose more weight than those on a genotype-discordant diet. Based on
previous studies49,50, we assumed a standard deviation for between-
group differences in weight change of 2.8 kg. To detect a 2.0 kg differ-
ence in weight change between group 1 (fat-responders on a high-fat
diet) and group 2 (fat-responders on a high-carbohydrate diet) or
between group 3 (carbohydrate-responders on a high-fat diet) and
group 4 (carbohydrate-responders on a high-carbohydrate diet), with
the intended sample size and an alpha level of 0.05, the present study
would have 80% power. Further, based on the same assumptions, the
present study would have >95% power to test if WL differs between
participants on a genotype-concordant diet (groups 1 and 4 combined)
and those on a genotype-discordant diet (groups 2 and 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Fig. 4 | Adherence to themacronutrient compositions of the respective diet at
week 4, week 8, and week 12. Boxplots showing adherence data for the high-
carbohydrate diet (a, c, e) and the high-fat diet (b, d, f). For the high-carbohydrate
diet (n = 22 at week 4 and 8 and n = 21 at week 12), target intakes were 65%
carbohydrates (a), 20% fat (c), and 15%protein (e) and for the high-fat diet (n = 40at

week 4, n = 38 at week 8, and n = 37 at week 12), they were 45% carbohydrates (b),
40% fat (d), and 15% protein (f). The dashed line shows the target intake with the
shaded area representing ±5%. In the boxplots, the center line denotes the median
value (50th percentile), the bounds of the box represent the 25th and 75th
percentiles of the dataset, and the whiskers mark the 5th and 95th percentiles.
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Data availability
All of the data needed to recapitulate the analysis found within this
study can be found in the manuscript, figures and supplementary
information. Source data are provided with this paper. Due to privacy
reasons, de-identified data from the study cannot be shared publicly
but will be available from the corresponding author (chris-
toph.hoechsmann@tum.de) immediately following the publication of
the paper upon reasonable request. The study protocol and statistical
analysis plan will also be available. Source data are provided with
this paper.
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