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Metal-free photoinduced C(sp3)–H/C(sp3)–H
cross-coupling to access α‑tertiary amino
acid derivatives

Yujun Li1, Shaopeng Guo2, Qing-Han Li2 & Ke Zheng 1

The cross-dehydrogenative coupling (CDC) reaction is the most direct and
efficientmethod for constructingα-tertiary amino acids (ATAAs), which avoids
the pre-activation of C(sp3)-H substrates. However, the use of transitionmetals
andharsh reaction conditions are still significant challenges for these reactions
that urgently require solutions. This paper presents a mild, metal-free CDC
reaction for the construction of ATAAs, which is compatible with various
benzyl C-H substrates, functionalizedC-H substrates, and alkyl substrates, with
good regioselectivity. Notably, ourmethod exhibits excellent functional group
tolerance and late-stage applicability. According to mechanistic studies, the
one-step synthesized and bench-stable N-alkoxyphtalimide generates a highly
electrophilic trifluoro ethoxy radical that serves as a key intermediate in the
reaction process and acts as a hydrogen atom transfer reagent. Therefore, our
metal-free and additive-free method offers a promising strategy for the
synthesis of ATAAs under mild conditions.

Unnatural α-tertiary amino acids (ATAAs) are frequently employed
as biologically active molecules and building blocks in synthetic
organic chemistry1–3. Over the past decade, various methodologies
have been developed for synthesizing unnatural ATAAs, such as
enzymatic4 or transition metal catalysis5,6, as well as radical
methods7–11, among others. Among these strategies, the catalytic
C(sp3)–H/C(sp3)–H cross-dehydrogenative coupling (CDC) reaction
represents one of the most straightforward routes for accessing
complex ATAAs with superior properties from easily accessible
compounds12–17. Despite their versatility, these reactions primarily
rely on metal catalysts (e.g., Pd, Ni, Cu and others), often assisted by
a chemical oxidant, harsh conditions (temperatures up to 140 °C),
and/or large amounts of solvent and C-H feedstock (Fig. 1a)18–24.
These factors hinder the late-stage functionalization of bioactive
pharmaceuticals and industrial application. Undoubtedly, the
development of a mild and general strategy for accessing diverse
ATAAs derivatives by CDC reaction with abundant hydrocarbon
feedstocks as C-H donors is a highly challenging and underexplored
area. We envision an alternative C(sp3)–H/C(sp3)–H CDC reaction

employing a photoinduced hydrogen atom transfer (HAT) strategy,
instead of a metal catalyst.

Photoinduced hydrogen atom transfer (HAT) has recently
emerged as a powerful and selective strategy for C(sp3)–H functiona-
lization that is practical, inexpensive, and environmentally friendly25–34.
Among the various HAT intermediates35–43, alkoxy radicals are widely
regarded as one of the most versatile44–46, with particular focus on
intramolecular 1,5-HAT47–50 or 1,2-HAT51–53 reactions. The Zuo54,55 and
Stahl56 groups have developed alkoxy radicals as hydrogen atom
transfer (HAT) agents for C(sp3)–H functionalization.
Alkoxyphthalimides57, which are convenient precursors of alkoxy
radicals, have been less studied due to their higher reduction poten-
tials compared to acyloxyphthalimides (alkoxy derivatives:
E1/2

red = −1.8 V, acyloxy: E1/2
red = −1.6 V)58. Moreover, the direct use of N-

alkoxyphtalimides asprecursors ofHATagents for intermolecularHAT
to generate alkyl radicals has not been extensively explored (Fig. 1b).
Intramolecular 1,2-HAT or β-scission of alkoxy radicals usually occurs
before their intermolecular HAT with substrates, presenting a com-
mon challenge51–53,59,60. There is only one recent example, from the

Received: 31 March 2023

Accepted: 22 September 2023

Check for updates

1Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China. 2Key Laboratory of
General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China.

e-mail: kzheng@scu.edu.cn

Nature Communications |         (2023) 14:6225 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3345-7715
http://orcid.org/0000-0002-3345-7715
http://orcid.org/0000-0002-3345-7715
http://orcid.org/0000-0002-3345-7715
http://orcid.org/0000-0002-3345-7715
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41956-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41956-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41956-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41956-6&domain=pdf
mailto:kzheng@scu.edu.cn


Aggarwal group, that described a metal-free C(sp3)–H borylation of
alkanes using a HAT strategy61. In their study, the alkoxy radical pro-
duced by N-(trifluoroethoxy)phthalimide played a critical role in the
transformation, despite the identification of a radical ‘ate’ complex as
the crucial HAT agent (Fig. 1b).

We recently developed a metal-free method for the synthesis of
valuable unnatural α-amino acid derivatives using aliphatic carboxylic
acids as alkyl radical precursors62. In that process, the redox-active
esters could be reduced by the excited state of oxazolones
(E1/2

red = −2.12 V vs Ag/Ag+ in DMF), followed by decarboxylative frag-
mentation to generated alkyl radicals. We hypothesized that a highly
reactive alkoxy radicals would be produced by N–O bond cleavage,
that is capable of cleaving strong C(sp3)–H bonds via HAT, when the
N-alkoxyphthalimides were used instead of the redox-active esters.
Followed intermolecular HAT between an alkoxy radical and an alkane
(R = alkyl) would generate an alkyl radical, which would be rapidly
couple with the persistent oxazolone radical to give a CDC product.
However, several challenges must be addressed in order to realize this
reaction. Firstly, previous studies have shown that azaallyl radical
tends to dimerize under oxidizing conditions, which can lead to
competitive side reactions63–65. Secondly, the regioselectivity of the
reaction (C4/C2) must be carefully controlled. Thirdly, it remains
unclear whether the alkoxy radicals will undergo the desired inter-
molecular HAT with an alkane prior to the β-scission process and
intramolecular 1,2-HAT51–53,59,60. Finally, a suitable solvent is required to
facilitate the enolization of the oxazolone, without participating in the
reaction itself. Herein, we report a photoinduced metal-free C(sp3)–H/
C(sp3)–H cross dehydrogenative coupling (CDC) reaction using a
hydrogen atom transfer (HAT) strategy. Over 85 unnatural ATAAs with
vastly diversified functional groups were synthesized with excellent
regioselectivity (C4/C2 > 20/1) from abundant hydrocarbon feed-
stocks under mild conditions (Fig. 1c; metal-, PC-, and additive-free,

ambient temperature). This metal-free strategy provided excellent
functional group tolerance and Late-stage applicability. Mechanistic
studies revealed the reactive trifluoroethoxy radical act as aHATagent
in the reaction, abstracting a hydrogen atom from hydrocarbon to
generate an alkyl radical.

Results and discussion
Initial optimization studies
We initiated an investigation into the metal-free CDC reaction using
oxazolone 1 and commercially available ethylbenzene 2 (4.4$ /100mL)
as model substrates (Table 1). After systematically screening various
reaction parameters, we achieved 70% yield of the desired product 3
with 18:1 regioselectivity upon irradiation with purple light-emitting
diode (LED) in t-BuCN for 12 hours, in the presence of alkox-
yphthalimideH1 (Table 1, entry 1). Other electrophilic oxygen-centered
radical precursors, such as H2, H3, and H4, showed lower reactivity
and selectivity (Table 1, entries 2-4). The reaction exhibited lower
efficiency when more electron-rich H5 and H6 were used (entry 5).
Using other solvents instead of t-BuCN resulted in decreased yield and
regioselectivity, and no product 3 was observed in DMF and PhCF3,
respectively (entries 6-9). Control experiments confirmed that light
irradiation andH1were essential for the reaction (entries 10 and 11). No
CDC product was detected in the absence of visible light, even upon
heating at 120 °C (Table 1, entry 12). Furthermore, traditional oxidants
or radical initiators, including (NH4)2S2O8, 2,2’-azobis(2-methylpro-
pionitrile) (AIBN), t-butyl hydrogen peroxide (TBHP), benzoyl per-
oxide (BPO), and di-tert-butyl peroxide (DTBP), could not facilitate this
transformation (Table 1, entry 13; see Supportingmaterials for details).

Reaction scope
With the optimized conditions established, we investigated the sub-
strate generality of the present metal-free CDC reaction (all examples
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with 5.0–10.0 equiv of C–H donor substrates). We started by investi-
gating oxazolone derivatives with different substituted groups (Fig. 2).
Various phenyl glycine derivatives with electron-withdrawing and
donating substituents (F, Cl, Br, Me, OMe, Ph), as well as heterocycle
and condensed ring, were all compatible with the reaction and gave
the corresponding CDC products in moderate to high yields (41–81%,
4–11). Next, we explored the scopeof theC(sp3)–Hsubstrates. Benzylic
and heterobenzylic C–H bonds are ubiquitous in bioactive molecules,
and site-selective functionalization of such positions could have a
broad impact66. As shown in Fig. 2, various primary C-H benzyl sub-
strates bearing anelectron-withdrawing or anelectron-donating group
at the para or meta position were identified as suitable primary
C(sp3)–H donors for this methodology (12–22). The list of suitable
groups included OMe (13), F (15), Cl (16), Br (18), and CF3 (19). This
method also tolerated various easily hydrolyzed functional groups,
such as OCF3 (20), SCN (21), and Bpin (22).

Various representative secondary C-H benzyl substrates were
compatible with the reaction, delivering the corresponding products
in good yields with excellent regioselectivity (23–28). The reaction
conditions demonstrated excellent tolerance towards longer alkyl
chains, including primary alkyl halide substituents (29-31). Tetralin
(35) and indan (32–34) derivatives, substructures commonly present
in many drugs such as indinavir, sertraline, and nepicastat67, were also
well-tolerated, affording the target products inmoderate to high yields
(51-80%). The C(sp3)–H substrate bearing a naphthalene ring structure
gave the desired product in 75% yield (36). Diarylmethane derivatives
(37–40), pervasive as key motifs in a wide range of pharmaceutical
agents68, delivered the CDC products in good yields (70–75%) The
corresponding sterically hindered ATTAs derivatives (41–42) were
obtained in moderate yield when tertiary C-H benzyl substrates were

used as C(sp3)–H donors, which would be difficult to construct using
traditional methods.

Functional groups such as SCF3, F, Cl, CN, and SiR3 not only
influence the hydrogen atom transfer (HAT) process of the reaction
but also readily participate in subsequent reactions, leading to the
complexity of the reaction69–72. Consequently, substrates containing
these functional groups on the reaction center carbon (the carbon of
C-H bond) are less likely to undergo further multi-functional group
transformation through C-H activation. Pleasingly, the substrates with
these functional groups were also well tolerated in this method due to
its mild reaction onditions, yielding the multifunctional products in
reasonable yields (43–49). The CDC reaction also proceeded effec-
tively in the late-stage functionalization of a number of complex
molecules, including the retinoic acid receptor agonist derivatives
(50–51) and dapagliflozi derivatives (52–53). In this redox-neutral
system (Fig. 3), not only olefin (54), ether (55), and readily oxidized
thioethers (56–57) could be employed as alkylation agents, but also
aliphatic C(sp3)-H bonds with higher bond energy (≈ 100 kcal/mol)73

were demonstrated to be compatible with this methodology (58-68).
Moreover, this CDC system exhibits excellent compatibility with sim-
ple silanes, displaying exclusive regioselectivity at the α-silyl position
and leading to the formation of synthetically valuable products
(69–75). However, compared to traditional C(sp3)–H substrates, it
remains a great challenge to convert substrates with alkynyl (76–79)
and tertiary ether (82) into corresponding allenic and sterically hin-
dered amino acids due to the multiple reaction sites offered by C-H
substrates74,75. Nevertheless, it is delightful to observe that our system
can still efficiently convert such substrates into the corresponding
CDCproducts inmoderate yields (49-63%). This CDC reaction also had
a good regioselectivity, HAT preferentially occurring at the more

Table 1 | Optimization of the reaction conditionsa

Entry Variation from the standard
conditions

Yield (%)b

1 None 70 (18:1)

2 H2 instead of H1 64 (11:1)

3 H3 instead of H1 55 (15:1)

4 H4 instead of H1 53 (15:1)

5 H5 and H6 instead of H1 Trace

6 MeCN instead of t-BuCN 49 (4:1)

7 t-BuCO2Me instead of t-BuCN 48 (10:1)

8 DMF instead of t-BuCN Trace

9 PhCF3 instead of t-BuCN Trace

10 w/o light ND

11 w/o H1 ND

12 w/o light, 120 °C ND

13 (NH4)2S2O8, TBHP, DTBP, BPO,
100 °C

Trace

aReaction conditions: 1 (0.1mmol), 2 (0.5mmol) and H1 (0.2mmol) in t-BuCN (1.0mL), irradiation with a 10W purple LED (395nm) under N2 at room temperature for 12 h, Isolated yield (3/3′).
bThe number given in parentheses is the ratio of 3/3′ detected by 1H NMR. ND no detected; w/o without; DMFN,N-Dimethylformamide, TBHP t-butyl hydrogen peroxide, DTBP di-tert-butyl peroxide,
BPO benzoyl peroxide.
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electron-rich and less steric benzyl sites (such as 24, 34, 38, 40, and
50). Furthermore, the CDC product 12 could be conveniently trans-
formed into the corresponding free amino acid 83 in high yield with a
one-step procedure (Fig. 3a). Treating 12 with pyrrolidine, the ring-
opening amide product 84 was obtained in 71% yield (Fig. 3b). An
asymmetric CDC strategy to construct chiral amino acid compounds
was also investigated.Whenwe added chiral phosphoric acids (CPA) to
the standard conditions, theCDCproduct85was afforded in 40% yield
with a promising enantiomeric ratio of 68.5:31.5 (see Supporting
materials for details; Figure6). To our delight, the target CDCproducts
(86-88) were obtained in moderate yields with excellent stereo-
selectivities (up to 97:3 er) using chiral phosphoric acid L-1 as the
catalyst under adjusted reaction conditions (Fig. 3c). This one-pot
strategy involved a multi-step synthesis, utilizing 2,6-dichloro-4-
nitropyridine as the hydrogen atom transfer (HAT) reagent (see Sup-
porting materials for more details; Figure 8).

Mechanistic studies
A series of control experimentswereconducted to gain insight into the
nature of this new light-driven, metal-free CDC reaction. As shown in
Fig. 4a, the cross-coupling product 3was not observed in the presence
of radical scavengers, such as (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO) andBHT, and the radical captureproduct89was detectedby
HRMS. The formation of 3was completely inhibited when the reaction
was performed under air, and the oxidation products acetophenone

and 1-phenylethan-1-ol were detected by GC-MS (more details see
Supporting materials; Figures 10 and 11). Moreover, the dimerization
product of the oxazolone was obtained in 48% NMR yield without
adding phenethane 2 under standard conditions, indicating that the
oxazolone radicals were formed in the reaction (more details see
Supporting materials; Figures 12 and 13). These results indicated that
the benzyl radical and the oxazolone radical were formed in the
transformation, and the reaction underwent a radical pathway. Fur-
thermore, the UV/vis spectrum indicated that the absorption onset of
themixtureof oxazolone 1withH1did not significantlydiffer from that
of oxazolone 1 alone, thus excluding the possibility of an EDA complex
formation (see Supporting materials for details; Figures 18–22). Addi-
tional evidence was obtained from in-situ 1H-NMR spectroscopy and
19F-NMR spectroscopy of the mixture of oxazolone 1 with H1, which
showed no interaction between H1 and oxazolone 1 (see Supporting
materials for details; Figures 15 and 17). Stern-Volmer experiments
demonstrated the efficient quenching of the luminescence emission of
oxazolone by H1. In contrast, no quenching was observed with 2,
suggesting the absence of an interaction between H1 and the excited
state of oxazolone during the transformation (see Supporting mate-
rials for details; Figure 23).

Previous reports have demonstrated that alkoxy radicals can act as
hydrogen atom transfer (HAT) reagents, abstracting a hydrogen atom
from alkane substrates to generate alkyl radicals and corresponding
alcohols45,54. Upon visible light irradiation of the mixture of 1, H1 and 2
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under standard conditions, trifluoroethanol was detected by in-situ
19F-NMR spectroscopy (Fig. 4b). In addition,when PhMe-d8was used as a
substrate and MeCN-d3 as a solvent, a new fluorine signal was observed
by in-situ 19F-NMR spectroscopy, indicating that the trifluoroethoxy
radical abstracted a hydrogen atom from the C-H substrate (see Sup-
porting materials for details; Figure 16). Furthermore, under standard
conditions, a three-component product 91 was obtained in 65% yield
when 90 was used instead of phenethane 2, which was formed via an
oxygen radical addition pathway (Fig. 4c). These results demonstrate
that a trifluoroethyl oxygen radical is produced in this metal-free CDC
reaction and can act as a HAT agent, abstracting a hydrogen atom from
phenethane 2 to generate a benzyl radical.

Subsequent efforts were aimed at verifying whether this photo-
chemical process was initiated by the direct photoexcitation of either

oxazolone 1 or alkoxyphthalimide H1. Our recent findings demon-
strate that the in situ-formed oxazolone’s excited state can function as
a strong reductant upon direct photoexcitation by visible light.
Moreover, the cyclic voltammetry studies revealed that the C(sp3)–H
of alkanes (>1.5 V in t-BuCN) cannotbe oxidizedby the excited states of
H1 (Eox = +1.46V vs SCE)61. The redoxpotential ofH1’s ground statewas
around −1.24 V vs SCE61, which could be easily reduced by the excited
state of oxazolone 1 (E1/2

red = −2.12 V vs. Ag/Ag+)62 to produce a tri-
fluoroethoxy radical by N–Obond cleavage ofH1. TMS-phenethane 92
was used as a substrate, and no benzyl radical-adding product 12 was
detected, excluding the aryl radical cation mechanism in this process
(Fig. 4d)76. Aggarwal’s work showed that H1’s absorption was around
400nm and H1 could not be excited at around 460nm in MeCN61.
Moderate yields of product 3 were obtained under irradiation at
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440 nm and 460nm (the solution was yellow), respectively, in our
control experiments. When toluene 93 was used as a C-H donor and
solvent under standard conditions (the solution was colorless), only
10% of the target product 94 was obtained due to oxazolone 1 was
difficult to enolize in a non-polar solvent and the reaction cannot been
initiated (Fig. 4e). These observations suggest that the photochemical
processwasmost likely initiated by excited state 1* rather than excited
state H1*. However, it can not be completely ruled out that direct
photoinitiation of H1 may also have played a role (see Supporting
materials for details; Figure 31).

Recently, Houk and co-workers demonstrated that the CF3CH2O
•

radical exhibits superior efficiency in cleaving strong C(sp3)–H bonds
via HAT compared to other alkoxy radicals (such as tBuO• andCH3O

•)77.
Furthermore, the trend of HAT capability for CF3CH2O

• with different

C-H bonds of alkanes was PhCH2Me> PhCH(Me)2 > PhMe (Fig. 4f). The
results obtained in our system are consistent with those observed in
Houk’s studies, further supporting the idea that the CF3CH2O

• radical
plays a critical role in the reaction as a HAT agent (more details see
Supporting materials; Figure 32). The KIE study results indicate that
theC–Hcleavage step is the rate-determining stepof this CDC reaction
(kH/kD = 2.4, Fig. 4g). Moreover, the quantum yield of the coupling
reaction between 1 and 2 was found to be 0.15, suggesting that the
reaction probably undergoes a radical cross-coupling pathway
(Fig. 4h). However, the radical-chain process cannot be rigorously
excluded in this transformation.

Based on a series of control experiments and previous
reports54,61,62,78,79, we propose the mechanism outlined in Fig. 4i. Upon
visible light irradiation, the in situ-generated oxazolone enolate II is
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directly excited, resulting in the formation of excited state II*. An
intermolecular single electron transfer (SET) between alkox-
yphthalimideH1 generates trifluoroethoxy radicalA and the persistent
oxazolone radicalC. Trifluoroethyloxygen radicalA acts as a hydrogen
atom transfer (HAT) reagent, abstracting a hydrogen atom fromalkane
B to generate alkyl radicalD. The alkyl radicalD subsequently couples
with oxazolone radical C to generate CDC product E.

In summary, this manuscript presents a facile strategy for syn-
thesizing valuable α-tertiary amino acid derivatives through CDC
reactions with abundant hydrocarbon feedstocks. This method
enables rapid construction of sterically hindered α,β-tetrasubstituted
α-amino acids under mild conditions, including metal-, PC-, and redox
agent-free reaction conditions at room temperature. This metal-free
strategy exhibits excellent functional group tolerance and broad sub-
strate scope.Moreover, it can employ simple alkanes to provide highly
C(sp3)-enrichedproducts. Overall, this simple radical approachoffers a
less expensive and less toxic alternative to classical methods for syn-
thesizing α-tertiary amino acids.

Methods
General procedure for synthesis of α‑tertiary amino acid deri-
vatives via CDC reaction
An oven-dried 10-mL Schlenk tube equippedwith a stirrer was charged
with the oxazolones (0.1mmol, 1.0 equiv.) and the phthalimide H1
(0.2mmol, 2.0 equiv). Then, 1.0mL t-BuCN (0.1M)was added followed
by the alkane (0.5mmol, 5 equiv) in glove box. The tube was sealed
with a screw cap and took out from glove box. The reaction mixture
was inserted into the PhotoSyn 3.0 reactor and irradiated using a 10W
LED lamp (395 nm) for 12 h. The reaction mixture was concentrated in
vacuo and purified by flash column chromatography (petroleum
ether/EA = 20/1).

Data availability
Materials and methods, experimental procedures, useful information,
spectra and mass spectrometry data are available in Supplementary
materials. Raw data are available from the corresponding author on
request.
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