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Machine learning electronic structure
methods based on the one-electron reduced
density matrix

Xuecheng Shao 1 , Lukas Paetow1, Mark E. Tuckerman 2,3,4,5 &
Michele Pavanello 1,6

The theorems of density functional theory (DFT) establish bijective maps
between the local external potential of a many-body system and its electron
density, wavefunction and, therefore, one-particle reduced density matrix.
Building on this foundation, we show that machine learning models based on
the one-electron reduced density matrix can be used to generate surrogate
electronic structuremethods.We generate surrogates of local and hybridDFT,
Hartree-Fock and full configuration interaction theories for systems ranging
fromsmallmolecules such aswater tomore complex compounds like benzene
and propanol. The surrogate models use the one-electron reduced density
matrix as the central quantity to be learned. From the predicted density
matrices, we show that either standard quantum chemistry or a second
machine-learning model can be used to compute molecular observables,
energies, and atomic forces. The surrogate models can generate essentially
anything that a standard electronic structure method can, ranging from band
gaps and Kohn-Sham orbitals to energy-conserving ab-initio molecular
dynamics simulations and infrared spectra, which account for anharmonicity
and thermal effects, without the need to employ computationally expensive
algorithms such as self-consistent field theory. The algorithms are packaged in
an efficient and easy to use Python code, QMLearn, accessible on popular
platforms.

Computational models are routinely employed to predict molecular
and material properties in lieu of or prior to performing costly
experiments. They are also used to explain the complex electron and
nuclear dynamics that underlie experimental observations1. When
these computational strategies require the evaluation of the electronic
structure of a system, they often become the computational bottle-
neck, lengthening the time to solution. Consequently, an important
and timelygoal is thedevelopmentof approaches capableof providing
the electronic structure of complex systems at reduced computational

cost2–5 or even bypassing electronic structure calculations altogether.
This article focuses on achieving the latter by leveraging the power of
machine learning (ML).

The standard use of ML methods is to target single quantities of
interest, which are learned in terms of a few descriptors. Examples of
this are predictions of the electronic energy (including those that
apply the concept of “delta” learning)6–9, dipole moments, and
polarizabilities10,11, to name a few. Such a modus operandi is not ideal.
Should the target be a quantity for which the model has not been
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trained, then a newmodel needs to be trained to predict this quantity.
A relevant example is the computation of infrared (IR) spectra, where
both the spectral line positions as well as the intensities are needed. A
typical ML model that learns the potential energy surface of a mole-
cular system or a material can only predict the spectral line positions
through a molecular dynamics simulation followed by analysis of the
velocity autocorrelation function12. However, in order to predict
intensities, the autocorrelation function of the dipole moment is
needed. The usual procedure to set up two ML models—one for the
energy surface andone for thedipolemoment—is time-consuming and
ultimately avoidable. It is worth noting that there are various devel-
oping and complementary techniques that involve learning Hamilto-
nian matrices with respect to localized orbitals using symmetrized 2-13

or N-center14 representations, or deepneural network representation15.
Thesemethods share some of the underlyingmotivations of our work.
For further reading on this and related topics, we recommend a recent
comprehensive review16.

An idealMLmethod should learn fromquantities that aredense in
the amount of information they hold. The most general and ideal ML
model would learn the many-body electronic wavefunction. From the
wavefunction, one could predict the potential energy surface, the
dipolemoment and anyother quantity of interest.MLmodels ofmany-
body wavefunctions17,18 are becoming competitive against other
accurate wavefunction solvers, such as Quantum Monte Carlo. How-
ever, the complexity involved in both computations and training data
sizes19,20 hampers their broad applicability. Luckily, rigorous and
bijective maps from DFT21,22 and Reduced Density Matrix Functional
Theory (RDMFT)23–26 canbe exploited to shift the focus from themany-
body wavefunction to other, related quantities such as the electron
density, ρ(r), or the N-electron reduced density matrix (N-rdm), γ̂N .
Caution must be used, as the bijective nature of the maps considered
in the case of RDMFT can only be guaranteed for non-degenerate
ground states. When spin systems are considered, additional con-
straints and features for the ML model for the 1-rdm would be
required27,28.

The electron density can be learned in terms of local atom-
centered descriptors11,29,30. While energies obtained using these
methods can be accurate to around 1 kcal ⋅mol−1, the model densities
usually have deviations from the target on the order of a few percent.
However, evenwith these small deviations, themodel densities cannot
be used directly to evaluate ionic forces in a DFT algorithm. This is
because self-consistent electron densitiesmust be converged towithin
much tighter thresholds for accurate force calculations. Exploiting the
Hohenberg and Kohn theorems21, the electron density can be used as
the target quantity in ML models where external potentials serve as
features31,32. This recovers model electron densities that, even if not
completely accurate, can still be successfully used as a feature to
accurately learn the energy and forces of methods such as DFT and
coupled cluster7,32,33.

The 1-rdm is emerging as a powerful feature for describing
quantumsystems, evenwhennon-local correlations are important. For
example, Schmidt et al. show that approximate 1-rdm energy func-
tionals can be constructed (evenwith the aid ofML) for the description
of correlated bosonic systems34. Focusing on the 1-rdm instead of the
electron density has several advantages, e.g., the ability to deliver
expectation values of any one-electron operator, including non-
multiplicative operators such as the kinetic energy, the exchange
energy, and the corresponding non-local (Hartree–Fock (HF)) poten-
tial. Additionally, much as can be done for the electron density, formal
functionals of the 1-rdm can be learned35, such as that of the electronic
energy or corresponding atomic forces. Therefore, models for the
1-rdmshould significantly extend the scopeofMLmodels compared to
those that learn the density alone. Wetherell et al.35 considered the
possibility of learning the functional γ̂½ρ� from exactly solvable real-
space model systems achieving promising results. To date, however,

therehave beenno attempts to learn γ̂½ρ� or γ̂½v� (aswedohere) for real
systems, such as molecules.

In this work, we take on the challenge of learning 1-rdms to such
an accuracy that the predicted 1-rdm are essentially indistinguishable
from those delivered by standard electronic structure software. We
achieve this aim by representing external potentials and target 1-rdms
in terms of their matrix elements over Gaussian-type Orbitals (GTOs)
and devising an efficient generator of training sets. This allows us to
deliver “surrogate electronic structuremethods” thatpredict 1-rdms to
then deliver useful quantities (e.g., energy, forces, band gaps, orbitals)
that are as accurate and useful as those computed by standard elec-
tronic structure software.

In the following sections, we present examples of calculations
performed using various surrogate electronic structure methods,
ranging from DFT to full configuration interaction, after introducing
themain algorithms.Our proof of concept consists of sevenmolecules
from small tomedium-sized, rigid andfloppy,whichwehave chosen to
demonstrate the uniqueness and novelty of our method.

Results
Learning rigorous maps from DFT and RDMFT
We aim at learning rigorous maps from DFT21 and RDMFT23 linking the
1-rdm (the fullmatrix for RDMFTor just thediagonal elements forDFT)
with virtually any ground state property given as the expectation value
of any operator. Specifically, the following two maps are considered
(dropping subscripts for notational ease),

where v̂ is the external potential, E and F are the electronic energy and
the corresponding atomic forces, respectively, and hÔi is the expec-
tation value of the operator Ô. We call the ML procedure for map 1 γ-
learning, and that for map 2 γ + δ-learning. We note that when DFT
methods are considered, the Kohn-Sham 1-rdm is targeted.

The utility of a ML model for map 1 is evident, as the computa-
tionally costly steps in electronic structure solvers (such as the self-
consistent field (SCF) procedure or evenmore complex algorithms for
post-Hartree–Fock (post-HF) methods) are replaced by the MLmodel.
For similar reasons, the utility of learning map 2 is also evident. When
considering mean field methods, map 2 can either be learned or
directly computed frompredicted 1-rdms. In the following sections, we
will consider these options and show that they both lead to equally
successful outcomes (vide infra). For post-HF wavefunction-based
methods, map 2 must be learned, as there are no pure functionals of
the 1-rdm that deliver energy and forces for these methods.

In this work, we represent 1-rdms and external potentials in terms
of GTOs. GTOs are useful and convenient. For example, expectation
values are simply computed, e.g., the non-interacting kinetic energy,
Ts½γ̂�= � 1

2 Tr½∇2
r0γðr, r0Þ�=Tr½γ̂t̂� (where ∇r0 is the gradient with respect

to the r0 variable, tμν = � 1
2 hμj∇2jνi, where μ and ν are GTO indices).

Another important positive consequence of using GTOs is the possi-
bility to work in an internal reference frame, providing a straightfor-
ward framework for dealing with the rotational and translational
degrees of freedom. For ML models, this has been a significant
challenge11,36,37.

Learning map 1: γ-learning
Inspired by Brockherde et al.31, we learn map 1 by supervised ML
exploiting a kernel ridge regression (KRR),

γ̂½v̂�=
XNsample

i

β̂iKðv̂i, v̂Þ: ð1Þ
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In the above equation Kðv̂i, v̂jÞ=Tr½v̂iv̂j �, fv̂ig is a training set of size
Nsample of external potentials and β̂i are KRR coefficients which, in this
case, are matrices with leading dimension of the number of atomic
orbitals (AOs). The β̂i coefficients are determined by KRR through the
standard method of inversion of the regularized kernel matrix leading
to (in matrix notation) β̂i =

P
j K+ λI½ ��1

ij γ̂j, where Kij =Kðv̂i, v̂jÞ, I is the
identity matrix, λ a regularization hyperparameter, and fγ̂jg the target
1-rdms from the training set. The 1-rdms predicted by γ-learning are
denoted by γ̂p.

Learning map 2: γ+ δ-learning
While in γ-learning external potentials serve as features and the 1-rdms
are the targets, in γ + δ-learning, due to the shifted focus to learning
functionals of the 1-rdm, the features are the matrix elements of the
1-rdm. Targets can be the 1-rdm itself (producing predicted 1-rdms of
higher accuracy, hereafter denoted by γ̂p +Δγ̂p), the electronic ener-
gies and associated nuclear forces (hereafter denoted by Ep and Fp), or,
in principle, any other expectation value with respect to the ground
state wavefunction. Another difference among the two learning steps
are the types of regression used. As we have seen, KRR is employed for
γ-learning. For γ + δ-learning, after some testing, we chose to use a
regularized linear regression. A summary of γ- and γ + δ-learning and
the adopted nomenclature for the associated predicted quantities is
given in Table 1.

To summarize, we introduced three models: QMML[γp],
QMML[γp +Δγp], and QMML, where QM can be any quantummechanical
method that yields the 1-rdm. QMML[γp] and QMML[γp +Δγp] denote
methods where all properties are calculated directly from the 1-rdm
from map 1 and map 2, respectively. QMML is equivalent to
QMML[γp +Δγp], except energy and forces are predicted directly
using map 2.

Once the MLmodels are formulated, the next step is to develop a
strategy for training them, which is the subject of the next section.

Training and benchmark tests
γ− and γ + δ-learning require carefully generated training sets. A set of
molecular geometries that samples a desired configuration space
needs to be formulated. In a second step, for γ-learning external
potential/1-rdm pairs of matrices over a GTO basis for each geometry
in the training set are needed. For γ + δ-learning, the electronic energy,
atomic forces, and any additional molecular property are needed.

Separate training sets must be generated for each molecule and
electronic structure method chosen, including any method-specific
settings such as basis sets, charge, and spinmultiplicity. This aspect of
ourmethod can be seen as both an advantage and a limitation. On one
hand, it allows for flexibility in choosing the electronic structure
method best suited for a particular application. On the other hand, it
means that in principle, a new ML model should be trained for each
combination of settings. However, our results in the next section show
that the limitations of themethod aremitigated by its potentially good
transferability.

Key to the success of this effort is to limit the training set to the
smallest number of elements possible. Our guiding principle is to train
the ML models, carrying out only a fraction of the simulations needed

to run a standard ab initiomolecular dynamics (AIMD) simulation with
the target electronic structure method.

Such a tall order can be achieved using a sampling method based
on vibrational normal mode analysis. For each molecule, we (1) carry
out a normal mode analysis at the equilibrium geometry, and (2)
generate Nsample geometries randomly displaced from the equilibrium
geometry along each normal mode according to a normal (Gaussian)
distribution of variance σ2

i =2kBTNatoms=½Ω2
i Nvib 1� 2=9Nvib

� �3�, where
T is a target temperature, Nvib is the number of vibrational degrees of
freedom, and Natoms is the number of atoms, and Ωi is the vibrational
frequency of mode i. In principle, sampling Nvib modes with Ns points
for each mode would lead to Nsample = Ns

� �Nvib total sampled points,
which would be unattainable. However, after some testing, we noticed
that Nsample / N3

vib is more than sufficient to achieve a deviation of
about 0.1 kcal ⋅mol−1 for the predicted energy. Forfloppymoleculeswe
carry out samplings from several initial geometries that reflect the
number of stable conformers.

As shown in Table 2, the training set size, Nsample, is 27 (or
Nsample =N

3
vib) for molecules with Nvib = 3, and it grows to 13,824 for

benzene which has Nvib = 30 (i.e., Nsample = ð0:8 � NvibÞ3). Nsample then
triples for methanol, 1- and 2-propanol due to the need to generate
samples for the threemost stable conformers (found by rotating the H
atom of the OH group around the axis given by the C–O bond).

Supplementary Fig. S1 shows histograms of the electronic ener-
gies corresponding to the sampled geometries for benzene in com-
parison to an AIMD simulation. The sampling method captures, within
a margin of error, the electronic energy distribution with a much-
reduced number of energy evaluations compared to the AIMD simu-
lation. In Supplementary Fig. S2, we show that the distribution of
geometries in each normal mode is also correctly recovered. The dis-
tributions are given in the energy-scaled displacement coordinates
(i.e., it is expected that all distributions share the same energy-scaled
variance, σ2 = σ2

i Ω
2
i ).

The goal of our ML model is to achieve accuracies beyond che-
mical accuracy, as our model aims to predict the 1-rdm with an accu-
racy that matches the SCF densities produced by conventional
quantum chemistry codes. SCF densities are typically converged to
energy thresholds of 10−5 or 10−6 Hartree, which is two to three orders
ofmagnitudemore accurate than chemical accuracy. In Fig. 1, we show
the energy accuracy achieved for the total energy of benzene using
training sets with varying numbers of structures. Chemical accuracy is
already achieved with a training set size of 30 structures, and a one-
order-of-magnitude improvement can be achieved by increasing the
training set size to 100. However, to achieve accuracies three orders of
magnitude below chemical accuracy and match the accuracy of con-
ventional SCF-derived densities, larger training sets are required, as
reported above.

Table 2 reports results for a surrogate of DFT within the local-
density approximation (LDA). The conventional method is indicated
by LDA and the surrogate model by LDAML. We compute and predict
quantities along a 10 ps AIMD for several molecular systems, from
small and rigid (such as water) to medium size and floppy (such as 1-
and 2-propanol).

Energies, forces, dipoles, and non-interacting kinetic energies
can either be predicted through separate regressions using γ + δ-
learning, or calculated from the predicted 1-rdm obtained from γ-
learning (i.e., with γ̂p) or γ + δ-learning (i.e., with γ̂p +Δγ̂p). In Table 2,
dipole moments and non-interacting kinetic energies are only com-
puted from the predicted 1-rdms.When employing themost accurate
model, dipole deviations are at most 10−4 Debye (D) per vibrational
degree of freedom, and non-interacting kinetic energies deviate by
1 kcal ⋅mol−1.

Table 2 also shows that energies and forces computed by the
1-rdm from γ + δ-learning (indicated by the predicted 1-rdm, γ̂p +Δγ̂p),
substantially improve the result from γ-learning. While the electronic

Table 1 | Brief summary of the machine-learning (ML) models
employed in this work: γ-learning and γ +δ-learning

Model Features Targets Prediction

γ-learning Eq. (1) v̂ γ̂ γ̂p

γ + δ-learning rLR γ̂p γ̂, E, F γ̂p +Δγ̂p, Ep, Fp

v̂ and γ̂ stands for external potential and one-electron reduced density matrix, respectively. E
and F stand for electronic energy and atomic forces, respectively. The subscripts and super-
scripts p indicate the predicted quantities. The row “Predicted” introduces the nomenclature of
the quantities predicted by the ML methods. rLR stands for regularized linear regression.
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energies do not improve much, the computed atomic forces improve
more, deviating by not bigger than 3 kcal ⋅mol−1 ⋅Å−1. Such a deviation
is acceptable for AIMD and geometry optimization. As expected,
computed expectation values, i.e., dipoles and non-interacting kinetic
energy are also improved when they are evaluated with γ̂p +Δγ̂p rather
than just with γ̂p.

In Supplementary Table S1, we present the RMSDs for individual
terms in the energy functional. It is observed that the RMSDs of these
separate terms are larger compared to the RMSD for the total energy.
This suggests that the model is benefiting from some degree of error
cancellation. Notably, however, our model can accurately predict HF
exchange energies using the predicted 1-rdms (with an RMSD of less
than 0.2 kcal ⋅mol−1).

After testing (see Supplementary Table S2 for RMSDs of the 1-
rdm’s occupationnumbers), weobserved that strict non-interactingN-

representability of the 1-rdms is crucial for accessing stable, long AIMD
trajectories for molecules that are larger than triatomics. To achieve
this, we compute the occupation numbers of the predicted 1-rdms and
enforce the Aufbau occupation. However, we omit this purification
step when learning full configuration interaction (Full-CI) 1-rdms. In
section III, we will also test the ability of the model 1-rdms to predict
fractional occupations upon bond breaking.

While a thorough analysis of the transferability properties of our
MLmodels is beyond the scopeof thiswork,we tested the ability of the
model trained on two molecular species, CO and N2, together to pre-
dict two systems not included in the training set, the CN− anion and BF.
Training and test molecules are isoelectronic and share the same
number of AOs within the cc-pVTZ basis set which was chosen for this
test. The results are displayed in Fig. 2 and show that theMLmodel can
predict the energy of CN− and BF vs bond length quite well with a
coefficient of determination (R2) value of 0.9807 and 0.9753, respec-
tively. For CO and N2 (which are part of the training set) the R2 score
is 0.9999.

Fig. 1 | Accuracy of the surrogate electronic structuremethods as a function of
training set size for the benzene molecule. The root-mean-square deviation
(RMSD) of calculated energies from LDAML[γp] and LDAML[γp +Δγp] surrogate mod-
els of the local-density approximation (LDA) from predicted one-electron reduced
density matrices γ̂p and γ̂p +Δγ̂p are presented. The typical energy convergence
thresholds of self-consistent field (SCF) methods are indicated by the shadowed
region.

Fig. 2 | Total energy as a functionof bond length for the isoelectronic series N2,
CO, CN−, and BF. The training set is composed only of N2 and CO geometries with
bond lengths indicated by the shadowed region. Hybrid functional B3LYP bench-
mark results are shown by scatter points, and our surrogate model results are
represented by lines. The coefficient of determinations (R2) values for different
molecules are also represented.

Table 2 | Benchmark study for the surrogate electronic structure method for the local-density approximation (LDA), LDAML

System H2O CO2 NH3 CH3OH* C6H6 1-propanol* 2-propanol*

Nvib 3 3 6 12 30 30 30

Training set size (Nsample) 27 27 216 5184 13,824 41,472 41,472

Energy (kcal ⋅mol−1) LDAML[γp] 0.0004 0.0020 0.0008 0.0050 0.0145 0.1640 0.0636

LDAML[γp +Δγp] 0.0003 0.0020 0.0008 0.0014 0.0055 0.0270 0.0076

LDAML 0.0233 0.0281 0.0037 0.0117 0.0143 0.1580 0.1289

Force (kcal ⋅mol−1 ⋅Å−1) LDAML[γp] 1.53 2.56 1.74 2.79 3.78 5.40 3.67

LDAML[γp +Δγp] 0.53 0.24 0.15 1.05 1.05 2.35 1.03

LDAML 0.09 0.08 0.01 0.07 0.05 1.16 0.41

Dipole (10�3 D � N�1
vib) LDAML[γp] 0.57 0.25 0.19 0.13 0.13 0.35 0.35

LDAML[γp +Δγp] 0.05 0.06 0.02 0.05 0.02 0.16 0.08

Kinetic Energy (kcal ⋅mol−1) LDAML[γp] 0.28 0.61 0.56 1.46 1.12 5.42 4.14

LDAML[γp +Δγp] 0.11 0.05 0.03 0.19 0.35 1.09 1.00

Root-mean-square deviations (RMSDs) of predicted energy, magnitude of the atomic forces, magnitude of the dipolemoment vector, and the non-interacting kinetic energy, along a 10picosecond
(ps) ab initio molecular dynamics trajectory sampled every 100 femtoseconds (100 test structures in total) at 300K. LDAML[γp] and LDAML[γp +Δγp] compute all quantities from the predicted one-
electron reduced density matrices γ̂p and γ̂p +Δγ̂p. Nvib is the number of vibrational degrees of freedom in the molecule. The superscript * indicates that samples are generated from three stable
conformers.
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The QMLearn software and workflow
The methods developed in this work are collected in the all-Python
QMLearn software which is freely available from GitLab38 and easily
installed throughpipinstallqmlearn. QMLearn is composedof the
following classes: (1) a database collecting the training sets; (2) QM
engines (we use PySCF, although other engines are also supported)
capable of generating the training sets and matrix elements over the
GTOs as well as the needed infrastructure to compute energies and
atomic forces; (3) a structure handler (we use Atomistic Simulation
Environment (ASE)39). ASE is used to handle molecular geometry,
including driving molecular dynamics simulations; and (4) ML mod-
ules such as scikit-learn40 or Tensorflow41 (the current version of
QMLearn supports only scikit-learn).

Showcasing several surrogate electronic structure methods
for water
Figure 3 showcases the performance of several surrogate electronic
structure methods for the water molecule. Water is a small molecule,
with only three normal modes of vibration, it is feasible to run Full-CI
simulations with the 6-31G* basis set and train the surrogate Full-CIML

over a training set of only 27 structures. In addition to Full-CI, we also
developed surrogates for Hartree–Fock, DFT within the LDA, and DFT
using the hybrid B3LYP exchange-correlation (xc) functional. We tes-
ted the surrogatemodels in such common tasks as the computation of
band gaps as a function of varying molecular geometry, the shape of

LUMO orbital, AIMD simulations in the microcanonical ensemble
(constant number of particles, N, volume, V, and total energy, E,
denoted hereafter as NVE), the prediction of IR spectra, and geometry
relaxation.

For an AIMD simulation, Full-CIML is stable for tens of picoseconds
and produces energies that are very close to those of a conventional
Full-CI simulation (which could be run for a shorter simulation time
and is found to be four orders of magnitude slower than Full-CIML).
When the IR spectrum is calculated using DFT surrogates, it deviates
somewhat from the coupled-cluster singles and doubles with pertur-
bative triples (CCSD(T)) benchmark of Ref. 42. As expected, when the
IR spectrum is calculated using Full-CIML, it matches the benchmark’s
vibrational frequencies.

To evaluate the performance of our model, Full-CIML 1-rdms in
predicting fractional occupations upon bond breaking, we extended
the water molecule training set with two additional dissociation geo-
metries, H2O→OH+H and H2O→O+H2. As shown in Supplementary
Figs. S3 and S4, the model 1-rdms are able to smoothly interpolate
between Aufbau occupation states at the equilibrium geometry and
fractional occupations at the dissociation limits. However, for the Full-
CI occupations ofO +H2, a sharp transition is observed associatedwith
the breaking of the O–H bonds and formation of the H–H bond, which
is only smoothly interpolated by the model 1-rdms. Despite this lim-
itation, the dipole moment vectors in the two dissociation limits are
qualitatively reproduced by the model. Overall, these results suggest
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Fig. 3 | Performanceof the surrogate electronic structuremethods (superscript
ML) for water. a The machine-learning methods used to make predictions are
described. For each molecular geometry, the matrix elements of the external
potential (e.g., electron-nuclear attraction potential) with respect to a Gaussian-
type Orbital (GTO) basis set are computed. γ-learning uses one-electron reduced
density matrices (1-rdms) as targets in the GTO basis via Eq. (1), exploiting map 1.
γ + δ-learning targets electronic energies and forces from any desired electronic
structure method, and further refines the 1-rdm itself, exploiting map 2. b The
predicted infrared spectra of water are compared to coupled-cluster singles and
doubles with perturbative triples (CCSD(T)) Car-Parrinello molecular dynamics
vibrational frequencies which are taken to be our benchmark, shown with dashed
lines in the figure. c The electronic energy along one ab initio molecular dynamics
trajectory with initial random velocities consistent with a temperature of 300K in

the microcanonical ensemble is shown. d The highest occupied molecular orbital
(HOMO)--lowest unoccupied molecular orbital (LUMO) gap as a function of the
O–H distance (dO-H) is plotted, along with the associated LUMO orbital for
dO-H = 1.6Å, compared to the conventional local-density approximation (LDA)
results. The training set structures are indicated by a green histogram. For LDAML

surrogatemodel, theHOMO-LUMOgaps and orbitals are computedwith predicted
1-rdms from map 2. e The geometry relaxations of H2O molecules are carried out
with the surrogate model of full configuration interaction (Full-CIML). The O–H
distance (Δr in Å) and H–O–H angle (Δθ in radians) referenced to the equilibrium
values are shown. The training set structures are indicated by empty gray circles
and the equilibrium geometry is represented by a dark red dot. The light gray area
indicates the configuration space covered by the training set.
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that bond breaking can be qualitatively described by providing theML
model with critical information about the dissociation limits. To
achieve a more accurate description of bond breaking, we anticipate
that increasing the size of the training set will lead to progressively
more accurate model 1-rdms.

The bandgap from the surrogate LDADFTmethod, LDAML, follows
closely the conventional LDA result; the orbitals do aswell and are very
similar to LDA. A similarly accurate result is found for geometry
relaxations, where the equilibrium geometry is found starting from
structures that are far away from the training set.

We therefore conclude that the surrogate models considered for
the water molecule deliver a predicted electronic structure that is
extremely close to the target electronic structure method, even for
molecular geometries that are well outside the configuration space
spanned by the training set.

Ab initio dynamics and IR spectra
A more stringent test of the robustness of the surrogate electronic
structure methods is the generation of fully deterministic energy-
conserving dynamics. Figure 4 reports the electronic energies along
NVE trajectories (the equilibrium geometry was used as initial geo-
metry and the same random initial velocities were used for the meth-
ods reported) at an instantaneous temperature of 300K for benzene
and 1-propanol. Two flavors of the LDAML surrogate model are con-
sidered: LDAML and LDAML½γp +Δγp�. The latter only predicts 1-rdms
(the γ̂p +Δγ̂p) and computes energies and forces from them.

Using LDAML½γp +Δγp� and associated forces or the predicted
energies and forces for LDAML leads to essentially equivalent results.
Specifically, we see that trajectories from the LDA surrogates follow
closely the conventional LDA result up to a simulation time of 1 ps,
after which they begin to slightly deviate. This behavior is in line with
the RMSDs presented in Table 2.

The surrogate electronic structure methods are able to predict,
for example, molecular dipole moments along a AIMD trajectory

directly from the predicted 1-rdms (i.e., the γ̂p +Δγ̂p). This can be
exploited to compute anharmonic and temperature-dependent spec-
tra of molecules12.

Figure 3a already reports the IR spectrum of a water molecule.
Moving on to larger and more floppy molecular systems, in Fig. 5 we
report the gas-phase IR spectra of benzene, 1- and 2-propanol computed
by the surrogateB3LYPMLmethod.Given the large number of vibrational
normal modes, for each of the threemolecules, we first run a 10ps NVT
dynamics at 300K with B3LYPML. We then selected five snapshots for
benzene and twelve snapshots for 1- and2-propanol (sampledbetween5
and 10ps of the trajectory) and run additional 2 ps NVE trajectories
computing the dipolemoment at each step. IR spectra are computed by
Fourier transformation of the dipole autocorrelation function. The
model successfully reproduces the peak positions of the experimental
spectra and follows the correct trend for peak intensities. However, due
to the flexible nature of themolecules, particularly 1-propanol, a greater
number of snapshots and longer trajectoriesmaybenecessary to obtain
a more accurate comparison to the experiment. More importantly, the
use of the B3LYP xc functional, which is an approximation, introduces
errors in thepredicted IR spectra, affectingboth the frequencypositions
and the oscillator strengths43,44. Our B3LYPML model excellently repro-
duces the B3LYP dipoles along one of the AIMD trajectories used for the
computation of the IR spectra (see, e.g., Supplementary Fig. S5), show-
ing that the deviations from the experiment are likely due to the
approximations involved in the B3LYP xc functional.

Predicted HOMO-LUMO gap and orbitals
DFT methods provide the ability to calculate band gaps and generate
HOMO and LUMO orbitals. This is useful for a variety of purposes,

Fig. 4 | Potential energies from conventional and surrogate electronic struc-
ture methods. Electronic energy values along three independent ab initio mole-
cular dynamics trajectories for a benzene and b 1-propanol carried out in the
microcanonical (NVE) ensemble with initial velocities corresponding to an instan-
taneous temperature of 300K. The three trajectories share the same initial con-
ditions but are run with three distinct methods: local-density approximation (LDA)
benchmark, machine-learning (ML) surrogate models, LDAML and LDAML½γp +Δγp�
(which uses forces and energies computed from the predicted one-electron
reduced density matrix γ̂p +Δγ̂p). We only report energies from snapshots taken
every 10 femtoseconds of simulation time. To aid visualization, LDAML and
LDAML½γp +Δγp� energies are shifted by 4 and 8 kcal ⋅mol−1, respectively, for (a) and
by 2 and 4 kcal ⋅mol−1, respectively, for (b).

Fig. 5 | Predicted gas-phase infrared spectra with surrogate electronic struc-
ture methods. The B3LYPML surrogate model is used for a benzene, b 1-propanol
and c 2-propanol. Gas-phase experimental spectra from the National Institute of
Standards and Technology Standard Reference Database50 are reproduced for
comparison. A vibrational scaling factor of 0.97 was applied to the computed
spectra. For ease of visualization,we also featuremagnified intensities by a factor of
100. Here we use 6-311G* basis set for 1- and 2-propanol.
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including the interpretation of photophysics and reactivity45. We
therefore found it important to showcase the ability of the surrogate
models to predict band gaps and orbitals for molecules other than
water and for geometries near and far from the configuration space
spanned by the training set. In addition to the already discussed
Fig. 3d, Fig. 6 considersmethanol and 1-propanol where the O–Hbond
is artificially shortened and stretched in the range 0.7–2.1Å and
0.5–2.1Å, respectively. The predicted LDAML HOMO-LUMO gaps are
overall in excellent agreementwith the LDA results for bothmolecules.
Similar to what we witnessed for water, LDA vs LDAML gaps start to
deviate only for geometries far away from the training set, see green
histogram of O–H bond distances from the training set.

To appreciate the power of these surrogate models, we also
reproduced with isosurface plots the predicted HOMO and LUMO
orbitals for themost stretched configuration (O–Hbond length of 2Å).
The results are similar to what we presented for water, i.e., they show
that the orbitals from surrogate models are correct even for geome-
tries very far away from the configuration space spanned by the
training set.

Discussion
We developed surrogate electronic structure methods based on
machine learning of the one-electron reduceddensitymatrix, or 1-rdm.
When given a target molecule, the surrogate methods provide the
same information and predictions as traditional electronic structure
software.

We showcased DFT, HF, and post-HF surrogates for rigid mole-
cules such as water and benzene and for flexible molecules such as 1-
and2-propanol. First, ourmodels learned the 1-rdmof these systems as
a function of the external potential. Then, rigorous maps were
machine-learned from DFT and RDMFT to predict the 1-rdm to energy
and 1-rdm to atomic forces maps.

Our surrogate methods robustly predict geometry optimizations,
ab initio dynamics, and IR spectra from themolecular dipole moment.
Because of their versatility, the surrogate methods predict not only
structure and dynamics but also expectation values of one-electron
operators and Kohn-Sham orbitals. We predicted HOMO and LUMO

orbitals and energy gaps for several molecules, with results very close
to traditional methods even for geometries far away from the config-
uration space sampled by the training sets.

This work is a proof of concept showing that surrogate electronic
structure methods can replace conventional electronic structure
methods for most computational chemistry tasks. However, the
extending the algorithm to higher-order rdms would enable the com-
putation of expectation values of two-electron operators, energies and
forces and will be considered in the future. Condensed phase systems
and larger molecules are also targeted for future development. To
approach large molecules, initial guesses of the 1-rdms can be con-
structed combining the 1-rdmsof separatemolecular fragments learned
from smaller molecules. Their coupling can then be learned separately.

Methods
Electronic structure calculations
We generate training sets and to compute all the needed matrix ele-
ments over the AOswith PySCF46. DFT calculations carried outwith the
LDA xc functional use the parametrization from Perdew and Zunger47.
Unless otherwise stated, we use the cc-pVTZ basis set for all systems
except benzene, 1− and 2-propanol for which we use the 6-31G*
basis set.

ASE39 is employed to drive all AIMD simulations and geometry
optimizations. Regressions are carried out with scikit-learn40.

Computation of IR spectra
IR spectra of the gas-phase water molecule were computed by Fourier
transform of the molecular dipole moment along AIMD trajectories
carried out in the NVE ensemble. Three trajectories were considered,
one for each of the molecular vibrational normal modes. The initial
geometry was taken to be the equilibrium geometry, and the initial
velocities for each trajectory were proportional to the normal mode
vector with a proportionality constant, “kick strength”, εi, chosen to be
compatible with an initial instantaneous temperature of 50 K for each
mode. For theothermolecules, given a largenumber of normalmodes,
we opted for a standard sampling method described in the main text.

In all cases, for each step in the trajectory, we represented the
molecular coordinates in the so-called Eckart frame. The dipole
moment in this frame, was then processed. First, the derivative of the
dipole moment is computed, _μðtÞ. Then, the autocorrelation function
of the dipole derivative was computed, and Fourier transformed to
give the IR spectrum.

Data availability
Training and test sets, as well as notebooks that fully reproduce all
figures and all tables in this study, have been deposited on Zenodo48.

Code availability
The QMLearn software used for this study is available on GitLab at
https://gitlab.com/pavanello-research-group/qmlearn. A snapshot of
the code is also available on Zenodo49.
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