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A systematic study of key elements
underlying molecular property prediction

Jianyuan Deng 1, Zhibo Yang2, Hehe Wang3, Iwao Ojima 3,
Dimitris Samaras 2 & Fusheng Wang 1,2

Artificial intelligence (AI) has been widely applied in drug discovery with a
major task as molecular property prediction. Despite booming techniques in
molecular representation learning, key elements underlying molecular prop-
erty prediction remain largely unexplored, which impedes further advance-
ments in this field. Herein, we conduct an extensive evaluation of
representative models using various representations on the MoleculeNet
datasets, a suite of opioids-related datasets and two additional activity data-
sets from the literature. To investigate the predictive power in low-data and
high-data space, a series of descriptors datasets of varying sizes are also
assembled to evaluate the models. In total, we have trained 62,820 models,
including 50,220 models on fixed representations, 4200 models on SMILES
sequences and 8400 models on molecular graphs. Based on extensive
experimentation and rigorous comparison, we show that representation
learningmodels exhibit limited performance inmolecular property prediction
in most datasets. Besides, multiple key elements underlying molecular prop-
erty prediction can affect the evaluation results. Furthermore, we show that
activity cliffs can significantly impact model prediction. Finally, we explore
into potential causes why representation learning models can fail and show
that dataset size is essential for representation learning models to excel.

Drug discovery is an expensive process in both time and cost with a
daunting attrition rate. As revealed by a recent study1, the average cost
of developing a new drug was ~1 billion dollars and has been ever
increasing2. In the past decade, the practice of drug discovery has been
undergoing radical transformations in light of the advancements in
artificial intelligence (AI)3–5, which, at its core, is molecular repre-
sentation learning. Molecules are typically represented in three ways:
fixed representations, including fingerprints and structural keys, that
signify the presence of specific structural patterns; linear notations,
such as SimplifiedMolecular Input Line Entry System (SMILES) strings;
and molecular graphs6. With the advent of deep learning, various
neural networks have been proposed for molecular representation
learning, such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs) and graph neural networks (GNNs), among

others5. One major task for AI in drug discovery is molecular property
prediction, which seeks to learn a function that maps a structure to a
property value. In the literature, deep representation learning hasbeen
reported as a promising approach for molecular property prediction,
outperforming fixed molecular representations7,8. More recently, to
address the lack of labeled data in drug discovery, self-supervised
learning has been proposed to leverage large-scale, unlabeled corpus
on both SMILES strings9–11 andmolecular graphs12–15, whichhas enabled
state-of-the-art performance on the MoleculeNet benchmark
datasets16.

Despite the current prosperity, AI-driven drug discovery is not
without its critiques. Usually, when a new technique is developed for
molecularproperty prediction, improvedmetrics by experimentingon
the MoleculeNet benchmark datasets16 are used to substantiate the
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claim that themodel achieves chemical spacegeneralization. Although
these novel techniques often present impressive metrics, most often
they do not suffice to meet the practical needs in real-world drug
discovery. Indeed, the prevailing practice of representation learning
for molecular property prediction can be dangerous yet quite
rampant17. Details are elaborated as follows.

First, there is a heavy reliance on the MoleculeNet benchmark
datasets, which may be of little relevance to real-world drug
discovery18. Moreover, despite the wide adoption of the benchmark
datasets, discrepancies in the actual data split across the literature can
entail unfair performance comparison19. Very often, the focus on
achieving state-of-the-art performance overshadows statistical rigor
and model applicability17. For instance, when reporting prediction
performance for a newly developed model, most papers just used
meanvalues averaged over 3-fold7,13,20 or 10-fold11,12,19,21 splits. The seeds
for dataset splitting are not always explicitly provided and in some
cases, it may just be some arbitrary split with a few individual runs. The
inherent variability underlying dataset splitting is often overlooked.
One caveat is that, without rigorous analysis, the improved metric
values could be mere statistical noise17. As for model applicability,
besides the limited relevance of the heavily used MoleculeNet
benchmark datasets, the recommended evaluation metrics may lack
practical relevance. One example is AUROC, which, as opined by
Robinson et al.17, cannot well capture the true positive rate, a more
relevantmetric in virtual screening. To address these prevailing issues,
we revisited representative models in molecular property prediction
and examined the underlying key elements, with a focus on: (1) dataset
profiling, including label distribution and structural analysis; (2)model
evaluation, which involves scrutiny of molecular representations, sta-
tistical analysis, evaluation metrics, and task settings together with
label noise considerations; and (3) chemical spacegeneralization,w.r.t.
inter-scaffold and intra-scaffold generalization. To explain the limita-
tions of representation learning models, we also applied all models to
predicting simple molecular descriptors which examine their funda-
mental predictive power.

The outline of the paper is as follows. We first discussed the
preliminaries for molecular property prediction, including molecular
representations, model architectures, and learning paradigms5. Sub-
sequently, we provided the rationales behind this study and presented
our experiment schemes. To fully assess the effectiveness ofmolecular
representation learning models, we also assembled a diverse set of
datasets, including opioids-related datasets from ChEMBL22, activity
datasets proposedbyCortés-Ciriano et al.23 andbyTilborg et al.24 and a
series of datasets on basic molecular descriptors, in addition to the

MoleculeNet datasets. Then, the experimental results are presented
and analyzed. Furthermore, we explored why representation learning
models can sometimes fail and discussed on advancing representation
learning for molecular property prediction. Finally, we elaborated on
the methods, including datasets assembly, evaluation metrics, model
training, and statistical analyses. Taking a respite from representation
learning, we revisited traditional molecular representations and
models to reflect on the key elements underlying molecular property
prediction (Fig. 1). Drawing on a quote fromBender et al.25,26 “amethod
cannot save an unsuitable representation which cannot remedy irrele-
vant data for an ill-thought-through question”, our central thesis asserts
that “amodel cannot save an unqualified dataset which cannot remedy
an improper evaluation for an ambiguous chemical space general-
ization claim”.

Preliminaries
Molecular representations
Fixed representations. Over the years, various formats have been
used to represent small molecules5,6. Arguably, the simplest formats
are 1D descriptors which represent a molecule based on its formula,
such as atom counts, atom types, and molecular weight. Besides,
there are 2D descriptors of a molecule, which can be computed
rapidly by RDKit27. Notably, RDKit2D descriptors cover 200 mole-
cular features, such as molar refractivity and fragments. Among
them, a subset of 11 drug-likeness PhysChem descriptors (namely
MolWt, MolLogP, NumHDonors, NumHAcceptors, NumRotata-
bleBonds, NumAtoms, NumHeavyAtoms, MolMR, PSA, For-
malCharge and NumRings) can serve as a baseline24. To enhance
prediction performance, normalized RDKit2D descriptors are con-
catenated with the learned representations8,13.

Moreover, molecules can also be represented by 2D fingerprints,
including (1) structural keys, such as Molecular ACCess System
(MACCS) keys, and (2) path-based or circular fingerprints28. The cir-
cular fingerprints can take the form of either bit vectors, which are
binary vectors with each dimension tracking the presence or absence
of specific substructures, or count vectors tracking the frequency of
each substructure. One of the most widely used circular fingerprints
is the extended-connectivity fingerprints (ECFP) based on the Mor-
gan algorithm, which was originally proposed to address the mole-
cular isomorphism issue, specifically to determine if two molecules
with different atom numberings are the same29,30. The ECFP genera-
tion involves three stages: (1) initial assignment of integer identifier
to each atom; (2) iterative update of each atom identifier to reflect its
neighbors and identify duplicated structural features; and (3)
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Fig. 1 | Key elements underlying molecular property prediction. There are four
aspects involved: model, dataset, model evaluatcgqrrently in the literature, the
focus is more on the model, which aims at developing novel learning paradigms or
model architectures on certain molecular representations. However, it is also
necessary to consider other crucial elements, pertaining to (1) what the model is
built upon, (2) how the model is evaluated, and (3) eventually what the model is
capable of. For the dataset, its chemical space coverage (w.r.t. both structures and

labels), and scrutiny of its quality, including dataset size and label accuracy (e.g.,
duplicates, contradictories, and noise), as well as data splitting, is essential before
developing a model for a specific property prediction task. For the model evalua-
tion, thoughtful consideration of statistical analysis, evaluation metrics, and task
settings is critical as they impact the observed prediction performance. For the
chemical space generalization, it is important to clarify the model’s applicability
and if the activity-cliffs issue is addressed.
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duplicate identifier removal, reducing multiple occurrences of the
same feature to a single representative in the final feature list to
generate the standard MorganBits fingerprints. Notably, the occur-
rence counts can be retained, which correspond to the Morgan-
Counts fingerprints. ECFP has been the de facto standard circular
fingerprint and is still valuable in drug discovery28. The vector size of
ECFP is usually set as 1024 or 2048. The radius size of ECFP can either
be 2 or 3, termed ECFP4 or ECFP6, which are common variants of
ECFP in the literature. For instance, Yang et al.8 used ECFP4 while
Mayr et al.7, Robinson et al.17, and Skinnider et al.31 used ECFP6. We
compared ECFP with different vector and radius sizes. Additionally,
atom pair fingerprints proposed to capture the size and shape of
molecules32 were also evaluated. Fixed representations are sum-
marized in Supplementary Table 1.

Molecular graphs. Intuitively, small molecules can be represented as
graphs, with atoms as nodes and bonds as edges. Formally, a graph is
defined asG = (V, E), where V and E represent nodes (atoms) and edges
(bonds), respectively. The attributes of atoms can be represented by a
node featurematrixX and each node v can be represented by an initial
vector xv∈RD and a hidden vector hv∈RD. Similarly, the attributes of
bonds can also be represented by a feature matrix. In addition, an
adjacencymatrixA is used to represent pairwise connections between
nodes. For every two nodes vi and vj, Aij = 1 if there exists a bond
connecting them; otherwise, Aij =0. Usually, the edge feature matrix
and the adjacency matrix can be combined to form an adjacency
tensor. Supplementary Table 2 summarizes commonly used node and
edge features in molecular graphs.

SMILES strings. While graph representations offer rich structural
information, they can bememory-intensive and storage-demanding6.
Alternatively, a more computationally efficient representation of
molecules is the SMILES strings33, where atoms are represented by
the atomic symbols and bonds by symbols like “–”, “=”, “#”, and “:”,
corresponding to single, double, triple and aromatic bonds, respec-
tively. Notably, single bonds and aromatic bonds are usually omitted.
Moreover, parentheses are used to denote the branches in a mole-
cule. For cyclic structures, a single or aromatic bond is firstly broken
down in the ring and the bonds are then numbered in any order with
the ring-opening bonds by a digit following the atomic symbol at
each ring. Notably, one molecule can have multiple SMILES
representations6. Thus, the canonicalized SMILES strings are more
often used34. To be understood by models, SMILES strings should be
firstly tokenized and the tokens are then converted into one-hot
vectors.

Model architectures
Various model architectures have been proposed for molecular
property prediction, such as RNNs, GNNs, and transformers5. Origin-
ally designed for handling sequential data (e.g., text and audio), RNNs
can be naturally used to model molecules represented as SMILES
strings, such as SMILES2Vec35 and SmilesLSTM7. On the other hand,
GNNs are well-suited for molecular graphs. Different variants have
been applied, such as graph convolutional networks (GCN)36, graph
attention networks (GAT)37, message passing neural networks
(MPNN)38, directed MPNN (D-MPNN)8, and graph isomorphism net-
works (GIN)12,39. To address the scarcity of annotated data in drug
discovery, self-supervised learning has recently been proposed for
pretraining on large-scale unlabeled molecules corpus before down-
stream finetuning5. In our study, we mainly utilized two pretrained
models: MolBERT11 and GROVER13, which use SMILES strings and
molecular graphs as input, respectively. To evaluate the effectiveness
of the advanced molecular representation learning models, we used
traditional machine learning models on fixed representations as
baselines.

TraditionalMLmodels: RF, XGBoost&SVM. Random forest (RF) is an
ensemble of decision tree predictors, commonlyused for classification
and regression tasks40. RF has been widely adopted in drug discovery
prior to the “deep-learning” era4. XGBoost (eXtreme Gradient Boost-
ing) is another popular ensemble learning model41. Different from RF
which builds multiple decision trees independently, XGBoost itera-
tively trains decision trees to correct the errors of previous trees. This
is achieved by adding new trees that focus on samples incorrectly
predicted previously. XGBoost is computationally efficient and can
handle large datasets, making it suitable for many real-world applica-
tions. Support Vector Machine (SVM) is a classical model for both
classification and regression tasks42, which is based on the concept of
finding the optimal hyperplane that separates different classes in a
dataset. SVM has been successfully applied in various domains,
including image recognition and text classification, particularly in low-
data regimes. Previous studies have shown that RF, XGBoost, and SVM
serve as strong baselines for deep-learning models in molecular
property prediction43. Consequently, we selected them as baselines in
our study.

Sequence-based models: RNN & MolBERT. The SMILES strings can
be viewed as a “chemical” language. Languagemodels, therefore, have
been widely applied in molecular representation learning for mole-
cular property prediction, molecule generation, and retro-synthesis
prediction5. Related model architectures include RNNs and Transfor-
mers. In our study, we evaluated two sequence-based models: GRU44

(an RNNs variant) and MolBERT11 (a Transformer-based model). GRU,
like other RNNs, is designed to process sequential data and has shown
to be particularly effective in natural language processing (NLP) tasks,
such as language modeling45. Recently, inspired by Bidirectional
Encoder Representation from Transformers (BERT) in NLP46, Fabian
et al.11 exploited the architecture of BERT for molecular property
prediction. Using Transformers as the building block, MolBERT is
pretrained on a corpus of about 1.6M SMILES strings, which improves
prediction performance on six benchmark datasets in both classifica-
tion (BACE, BBBP, HIV) and regression (ESOL, FreeSolv, Lipop)
settings16.

The abstracted architecture of MolBERT is depicted in Supple-
mentary Fig. 1a. MolBERT is pretrained on a vocabulary of 42 tokens
and a maximum sequence length of 128 characters. To support arbi-
trary lengthof SMILES strings at inference, relative positional encoding
is used47. Following the original BERT model, MolBERT uses the
BERTBase architecture with an output embedding size of 768, 12 BERT
encoder layers, 12 attention heads, and a hidden size of 3072, resulting
in about 85M parameters. During finetuning, the pretrained model,
with its backbone weights frozen, is combined with one linear layer,
totaling 769 parameters to be optimized.

Graph-based models: GCN, GIN & GROVER. As stated in “Molecular
graphs”, molecules can be intuitively abstracted as graphs. GNNs,
therefore, have been widely applied in molecular representations
learning5. The core operation in GNNs is message passing, also known
as neighborhood aggregation38. During message passing, a node’s
hidden state is iteratively updated by aggregating the hidden states of
its neighboring nodes and edges, involving multiple hops. After each
iteration, the message vectors can be integrated using certain
AGGREGATE function, such as sum, mean, max pooling, or graph
attention48. The AGGREGATE function is essentially a trainable layer,
which is shared by different hops within an iteration. When message
passing is completed, the hidden states of the last hop from the last
iteration are the nodes’ embeddings, followed by a READOUT function
to obtain the graph-level embedding. Among different variants of
GNNs, GCN36 is a basic type that encodes themolecular structure into a
graph and then applies convolutional operations to extract features.
GIN39 further improves GCN with a permutation-invariant aggregation
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operation, which ensures the learned embeddings invariant to the
node orderings. This enables GIN to handle graph isomorphism, where
two graphs have identical structures but different node labels.

To improve prediction performance in low-data regimes, pre-
training has been proposed for GNNs with two common tasks:12: self-
supervised node-level atom type prediction and supervised graph-
level molecular label prediction. However, supervised pretrainingmay
cause “negative transfer”12, where downstream performance can be
deteriorated. Recently, Rong et al.13 proposed GROVER with delicately
designed, self-supervised pretraining tasks at the node-, edge- and
graph-level. GROVER is pretrained on about 10M unlabeled molecules
and achieves state-of-the-art performance on 11 benchmark datasets,
comprising both classification (BACE, BBBP, ClinTox, SIDER, Tox21,
ToxCast) and regression (ESOL, FreeSolv, Lipop, QM7, QM8) settings.
The abstracted model architecture of GROVER is depicted in Supple-
mentary Fig. 1b. For downstream tasks, GROVER follows the practice in
Chemprop8, where 200 global molecular features are extracted using
RDKit27. These features are concatenatedwith the learned embeddings
(i.e., output of the READOUT function), which pass through a linear
layer (i.e., a task head) for molecular property prediction.

Notably, GROVER has two configurations: GROVERbase and
GROVERlarge, corresponding to about 48M and 100M model para-
meters, respectively. With nearly 10M molecules for pretraining,
GROVER demands highly intensive computational resources. As sta-
ted, pretraining GROVERbase takes 2.5 days, and GROVERlarge requires
around 4 days on 250 NVIDIA V100 GPUs. Given a large number of
experiments in this study, we focused solely on the pretrained
GROVERbase. Besides the backbone with weights frozen during fine-
tuning, GROVERbase includes one READOUT layer and two 2-layer
MLPs, resulting in about 5.2Mparameters to be optimized. To examine
the actual power of GROVER, we further distinguished between GRO-
VER (without RDKit features) and GROVER_RDKit.

Assembled datasets
Opioids with reduced overdose effects. Opioid overdose is a leading
cause of injury-related death in the United States49. There is an
increasing interest in developing opioid analgesics with reduced
overdose effects50. As indicated by a large-scale observational study51,
reduced overdose effects can potentially be addressed from the
pharmacokinetic (PK) perspective and the pharmacodynamic (PD)
perspective. The PK perspective focuses on reducing overdose events
by avoiding excessive amounts of opioids at the action site. Key PK-
related targets include multi-drug resistance protein 1 (MDR1), cyto-
chrome P450 2D6 (CYP2D6) and CYP3A4. On the other hand, the PD
perspective aims to alleviate overdoseoutcomesby avoidingoff-target
effects. Relevant PD-related targets include the μ opioid receptor
(MOR), δ opioid receptor (DOR), and κ opioid receptor (KOR). Further
details about these datasets are available in “Datasets assembly”.

Descriptors datasets of varying sizes. In drug discovery, the property
of interest for prediction is often thebinding activity. However, activity
can be innately hard to predict due to the complex interaction
mechanisms17. Moreover, the available activity datasets are usually
limited in size. To circumvent these constraints posed by activity
prediction, we assembled descriptor datasets to further interrogate
molecular representation learning in predicting simple molecular
descriptors, namelyMolWt andNumAtoms. Specifically, we assembled
datasets of varying sizes from ZINC250K52. Details on the datasets
assembly can be found in “Datasets assembly”.

Study rationale and experiment design
How useful are the learned representations?. The first major ques-
tion that our study aims to answer is: how useful are the learned
representations for molecular property prediction? While deep neural
networks have been reported to outperform traditional machine

learningmodels, such as RF and SVMon ECFP6 in a large-scale activity
prediction study7, recent analyses by Robinson et al.17 revealed that
SVM remains competitive with neural network models. Therefore, to
thoroughly investigate whether learned representations can surpass
fixed representations, we carefully selected several representative
models for molecular property prediction following an extensive lit-
erature review5. Our evaluation includes traditional machine learning
models (RF, SVM, and XGBoost), regular neural networkmodels (RNN,
GCN, and GIN), and pretrained neural network models (MolBERT,
GROVER, and GROVER_RDKit) (Supplementary Fig. 2a). Additionally,
we evaluated the models using the opioids-related datasets, other
activity datasets, and descriptor datasets, as depicted in Supplemen-
tary Fig. 2b–d. In total, we trained and evaluated 62,820 models.

Are the models properly evaluated?. In MoleculeNet16, each bench-
mark dataset comes with a recommended evaluation metric, which is
widely adopted by subsequent studies. Specifically, for classification
datasets, area under the receiver operating characteristic curve
(AUROC) is mostly used; whereas for regression datasets, the root
meansquare error (RMSE) is prevailing. However, these recommended
metrics can have limitations. As opined by Robinson et al.17, AUROC for
classification may be of little relevance in real-world drug discovery
applications such as virtual screening. In the case of imbalanced
datasets, which is often the case in a reality where only a small portion
of test molecules are actives, AUROC can be biased53. The issue arises
because AUROC represents the expected true positive rate averaged
over all classification thresholds (false positive rates). Thus, if two ROC
curves cross, even if one curve has higher AUROC, it may perform
considerably worse (lower true positive rate) under certain thresholds
of interest. An alternative is the area under the precision-recall curve
(AUPRC)17,53, which focuses on the minor class, typically the actives.

Here, we further argue that the evaluation metric should be con-
tingent on the question of interest during drugdiscovery. For instance,
target fishing, a popular sub-task in virtual screening54, aims to identify
all possible targets that amolecule canbind to. According toHu et al.55,
an active PubChem compound can interact with about 2.5 targets.
Consequently, off-target effects can be pervasive, which may lead to
undesired adverse drug reactions. Thus, identifying potential targets
for a molecule during the early stage is important56. In this scenario,
the evaluation should go beyond merely predicting whether a mole-
cule can bind to a specific target. Instead, we would ask: (1) given a set
of predicted drug targets k, what is the fraction of correct predictions
among the predicted positives(i.e., recall@k)? and (2) given a set of
predicted drug targets k, what is the fraction of correct predictions
among the annotated positives (i.e., precision@k)? Even in the single-
target virtual screening scenario, we may prioritize precision, the
positive predictive value, inasmuch as it is imperative to ensure a
sufficient amount of true positives out of the predicted positives. On
the other hand, if the goal is to exclude molecules inactive against
certain targets that are related to adverse reactions, the negative
predictive value is ofmore interest. More details on evaluationmetrics
are in “Evaluation metrics”.

In addition to the choice of evaluationmetrics, another crucial but
oftenmissing part in previous studies is the statistical test, despite that
the benchmark datasets are small-sized17,18,57. Most often, when a new
model is developed, some arbitrary split or 3/10-fold splits are applied
to calculate themeanof somemetric for rudimentary comparison. The
reality is, however, that without rigorous statistical tests, such results
are insufficient to justify a real advancement.

Another factor that can impact evaluation is task setting. Typically
in activity data collection, pIC50 values are obtained and an arbitrary
cutoff value, such as 5 or 6, isused todissectmolecules into actives and
inactives. Nevertheless, how classification with an arbitrary cutoff
value affects the final prediction, compared to directly regressing the
pIC50 values, is not well examined yet. To study the influence of task
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settings, we conducted experiments under both classification and
regression settings for the opioids-related datasets (Supplemen-
tary Fig. 2b).

What does chemical space generalization mean?. In representation
learning for molecular property prediction, the ultimate goal is to
build models that can generalize from known molecules to unseen
ones. To mimic chronological split in the real-world setting, Molecu-
leNet recommends scaffold split58 as a proxy which ensures that
molecules in test sets are equipped with unseen scaffolds during
training, posing a more challenging prediction task. In the literature,
manypapers adopt the scaffold split practice and claimchemical space
generalization upon improved evaluation metrics. The assumption is
that chemical space generalization means generalizing between dif-
ferent scaffolds, which further assumes that each scaffold is associated
with specific properties, for instance, similar activity. However, one
scaffoldmaynot necessarilymap to a narrow range of property values.
In such cases, the use of scaffold split does not suffice to claim che-
mical space generalization. Moreover, it entails ambiguity.

Formally, the chemical space is defined as the set of all possible
organic molecules, in particular, the biologically relevant molecules59.
In the chemical space, there usually exist some structural constella-
tions, which are populated by molecules with specific properties and
can be identified using scaffold-based analysis60. Since these con-
stellations have diverse scaffolds, two molecules with different scaf-
folds can have disparate properties, a phenomenon known as the
“scaffold cliff”60. For the widely adopted scaffold split, we argue that it
actually addresses the “scaffold cliff” and the model is essentially
engaged in inter-scaffold generalization. Meanwhile, another major
challenge in drug discovery is the “activity cliffs” (AC), where a minor
structural change causes a drastic activity change between a pair of
similar molecules, usually with the same scaffold61. On the contrary to
inter-scaffold generalization, it is intra-scaffold generalization needed
in the case of activity cliffs. Unfortunately, while activity cliffs are
prevalent and have been discussed in computational and medicinal

chemistry for nearly three decades61, they have not been emphasized
in most molecular property prediction studies. In this study, we
adopted both scaffold split and random split to examine inter-scaffold
generalization (Supplementary Fig. 2). Furthermore, to assess intra-
scaffold generalization, we filtered out molecules with scaffolds
observed with the AC issue, denoted as the AC molecules (see “Intra-
scaffold generalization”), and evaluated prediction performance
separately on the AC and non-AC molecules (see “Intra-scaffold
generalization”).

Results
Label and structure profiling
To gain a clear understanding of the datasets, we conducted label
profiling for both the MoleculeNet benchmark datasets and the
opioids-related datasets (see “Datasets assembly”). As shown in Fig. 2a,
BACE is balanced, with a positive rate of 45.7%. On the other hand,
BBBP is imbalanced towards the positives (76.5%), whereas HIV has
significantly fewer positive instances (3.5%). The labels of ESOL, Free-
Solv, and Lipop all exhibit left-skewed distribution, especially for
FreeSolv. In contrast, the pIC50 distribution for the opioids-related
datasets is right-skewed (Fig. 2b), suggesting that most screened
molecules exhibit low activity. To construct the opioids-related data-
sets in the classification setting, we applied a cutoff at 6 on the raw
pIC50 values to convert molecules as either active or inactive, abiding
by the rule that pIC50 less than 6 inactive otherwise active. As shown in
Fig. 2b, the resultant datasets are all imbalanced. The positive rates for
MOR, DOR, and KOR, are 29.7%, 23.3%, and 27.8%, respectively. For
MDR1, CYP2D6, CYP3A4, the positive rates are even lower, with 9.1%,
1.4%, and 2.2%, respectively.

To quantify the difference of label distributions, we calculated the
Kolmogorov D statistic62 among training, validation, and test sets
(Supplementary Fig. 3a). Using scaffold split, the D statistic is more
dispersed with a higher median than that using random split. This
suggests that scaffold split leads to larger gaps in label distributions in
addition to separating molecules by scaffolds. It also manifests that

45.7%54.3% 76.5%
23.5%

96.5%

3.5%

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

c

Ac�ves 
9.1%

Ac�ves
1.4%

Ac�ves
2.2%

Ac�ves
29.7%

Ac�ves
23.3%
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27.8%

Fig. 2 | Datasets profiling for MoleculeNet datasets and opioids-related data-
sets. a Label distribution of selected MoleculeNet datasets. b Label distribution of
the opioids-related datasets. cActivity cliffs showcase on a series ofmolecules with

the KOR top 14 scaffold (Supplementary Fig. 13). pIC50 is the negative logarithm of
half maximal inhibitory concentration. Data are in the Source Data.
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molecules with same scaffolds tend to have similar properties. Ran-
dom split, on the other hand, results in amore compact distribution of
theD statisticwith a lowermedian, indicating that training and test sets
are more likely to have molecules with close labels. To quantify the
structural similarity among training, validation, and test sets, we also
calculated the Tanimoto similarity63 (Supplementary Fig. 3b). Likewise,
the similarity exhibits a more compact distribution with higher med-
ians under random split, suggesting that training and test molecules
are more structurally similar compared to scaffold split.

We also calculated the percentage of top fragments, i.e., hetero-
cycles and functional groups,which are summarized in Supplementary
Figs. 4 and 5. The top heterocycles vary across different datasets,
manifesting their unique pharmacological properties. For instance,
piperidine is the top heterocycle for MOR, DOR, and KOR (Supple-
mentary Fig. 5b), which is common in opioid analgesics64. For the
functional groups, all datasets share top functional groups such as
benzenes and amines, which are key components to facilitate inter-
acting with drug targets, typically proteins with abundant amino acid
residues, via forming hydrogen bonds or π-π stacking interactions65.
Other structural traits, such as NumRotatableBonds and NumRings,
are summarized in Supplementary Fig. 6.

For the activity datasets, the label distributions are summarized in
Supplementary Fig. 7.

Activity cliffs in opioids-related datasets
In “What does chemical space generalization mean?”, we discussed
chemical space generalization. To address the intra-scaffold general-
ization, we looked into activity cliffs in the opioids-related datasets.
For each target, we visualized the top 30 scaffolds along with their
pIC50 distribution (Supplementary Figs. 8–13). To showcase activity
cliffs where analogs exhibit drastic differences in potency, we illu-
strated with the KOR Top 14 scaffold (Supplementary Fig. 13). As
shown in Fig. 2c, the replacement of the two hydrogen atoms with the
chlorine atoms at the phenyl ring from molecule #9 to molecule #1
results in a drastic activity increase by 7 orders of magnitude, which,
presumably, is due to the chlorine atoms helping the ligand better
occupy the hydrophobic space in the binding pocket, an important
contributor for binding. When comparingmolecule #1 tomolecule #5,
the hydroxyl group at the pyrrolidine ring increases the potency by 4
orders of magnitude, indicating that a potential H-bond interaction
with the receptor is crucial for binding. Meanwhile, although short-
ening the acetyl group to the aldehyde group causes aminor reduction
in activity when contrasting molecule #5 to molecule #6, longer side
chains (molecules #7&#8) can undermine activity, suggesting limited
space around the binding site.

These molecules demonstrate that major activity change can
occur even with minor structural changes. More formally, we defined
the activity cliffs as IC50 values spanning at least two orders of mag-
nitude within one scaffold61,66. Note that one order of magnitude can
be also used as a criterion. The scaffolds observed with activity cliffs
are termed as AC scaffolds and molecules with AC scaffolds are
denoted as the AC molecules. The numbers (percentages) of AC
scaffolds and AC molecules are summarized in Table 1. Notably,

although AC scaffolds are ~10%, nearly half of molecules are equipped
with the AC scaffolds in MDR1, MOR, DOR, and KOR, posing a chal-
lenge for intra-scaffold generalization.

Does learned representation surpass fixed descriptors?
To check if learned representations outperform fixed representations,
we compared between RF and pretrained models, specifically Mol-
BERT, GROVER, and GROVER_RDKit, which have been reported to
achieve state-of-the-art performance. Notably, the results of RF on
RDKit2D descriptors are used for this comparison since these
descriptors are also utilized in GROVER_RDKit. As shown in Fig. 3a, RF
achieves the best performance in BACE, BBBP, ESOL, and Lipop
(p < 0.05), whereas MolBERT achieves comparably best performance
in HIV under scaffold split. In FreeSolv, GROVER and GROVER_RDKit
achieve similarly low RMSE with RF, whereas MolBERT has the highest
RMSE (p <0.05). Similarly in Fig. 4a, MolBERT shows the highest RMSE
(p < 0.05) in 21 activity datasets by Cortés-Ciriano et al.23 as well as
ESOL (p <0.05). In datasets with larger sizes (~4K), such as COX-2,
erbB1, and HERG, MolBERT achieves comparable performance with
GROVER, but is still outperformedbyRF andGROVER_RDKit (p <0.05).
We speculate thatMolBERTmay exhibit higher prediction powerwhen
there are more data points.

Moreover, by comparing GROVER and GROVER_RDKit, we
observed that concatenating RDKit2D descriptors significantly
improves GROVER’s performance in HIV, ESOL, and Lipop (Fig. 3a).
Similar observations can be made in all opioids-related datasets at the
regression setting (Fig. 5a). Among the 24 activity datasets by Cortés-
Ciriano et al.23, 9 datasets show significantly lower RMSE in GRO-
VER_RDKit compared to GROVER under scaffold split (Fig. 4a).
Therefore, concatenating RDKit2D descriptors to the learned repre-
sentations is misleading when assessing the real power of the repre-
sentation learning models. Due to the non-negligible effect of
descriptors concatenation, we only included GROVER when compar-
ing major molecular representations, namely RDKit2D descriptors,
SMILES strings, and molecular graphs (Figs. 3d, 5d). As supported by
most datasets, RDKit2D descriptors show better performance than
learned representations by RNN, GCN, GIN, and pretrained models
using SMILES strings or molecular graphs.

For RDKit2D descriptors, we also compared among traditional
machine learning models (Figs. 3d, 5d) and found that under scaffold
split, RF achieves the best performance in BACE, BBBP, HIV, Lipop and
all opioids-related datasets, whereas XGBoost performs best in ESOL
and FreeSolv (p <0.05). SVM exhibits the worst performance in all
opioids-related datasets in the regression setting andmost benchmark
datasets. For SMILES strings,MolBERT outperforms RNN in BACE, HIV,
Lipop, and all opioids-related datasets except MDR1. For molecular
graphs, we found that GCN and GIN achieve similar performance in
BBBP, HIV, ESOL, FreeSolv, MDR1, CYP3A4, DOR and KOR. In BACE,
Lipop, and MOR, GIN outperforms GCN whereas in CYP2A6, GCN
surpasses GIN (p <0.05). GROVER outperforms GCN and GIN in BBBP,
ESOL, and FreeSolv. However, in HIV, Lipop, and most opioids-related
datasets, GROVER shows worse performance. On the contrary to
MolBERT, we speculate that GROVER may exhibit higher prediction
power in smaller datasets. The prediction performance under random
split is depicted in Supplementary Fig. 17.

Are the statistical analysis necessary?
To demonstrate the necessity of statistical analysis, we conducted a
simple analysis by comparing RF on RDKit2D descriptors, MolBERT,
and GROVER using the benchmark datasets. The analysis aims to
answer the question: when using the averagemetric value alone under
scaffold split, the widely adopted practice, how many individual or
triple-split combination out of the 30 splits are there for a certain
model to be concluded as best-performing? Note that GROVER_RDKit
is removed from this analysis because concatenating descriptors can

Table 1 | Activity cliffs in the opioids-related datasets

Dataset #AC scaffolds (%) #AC molecules (%)

MDR1 62 (10.2) 594 (41.3)

CYP2D6 124 (9.3) 710 (31.0)

CYP3A4 146 (7.2) 926 (25.2)

MOR 213 (13.1) 1627 (46.1)

DOR 178 (11.6) 1342 (41.6)

KOR 218 (13.1) 1502 (45.2)
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Fig. 3 | Evaluating prediction performance with MoleculeNet datasets.
a Performance of RF on RDKit2D descriptors, MolBERT, GROVER and GRO-
VER_RDKit (performance distribution in Supplementary Fig. 14a). b Performance of
RF on RDKit2D descriptors, MolBERT, GROVER and GROVER_RDKit under scaffold
split. c Statistical significance for pairwisemodel comparison inb.dPerformanceof
RF, SVM & XGBoost on RDKit2D descriptors, RNN & MolBERT and GCN, GIN &
GROVER under scaffold split (performancedistribution in Supplementary Fig. 14b).
e Performance of RF on fixed representations (performance distribution in Sup-
plementary Fig. 14c). f Statistical significance for pairwise model comparison in d.

g Statistical significance for pairwise fixed representation comparison in e. Default
metric for classification datasets (BACE, BBBP, HIV) is the area under the receiver
operating characteristic curve (AUROC) and root mean square error (RMSE) for
regression datasets (ESOL, FreeSolv, Lipop); other metrics include the area under
the precision-recall curve (AUPRC), positive predictive value (Precision_PPV),
negative predictive value (Precision_NPV), mean absolute error (MAE), coefficient
of determination (R2) and Pearson correlation coefficient (Pearson_R). Error bar
denotes standard deviation over 30 splits. Mann–Whitney U test is applied in
f, g Data are in the Source Data.
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significantly bias the comparison (see “Does learned representation
surpass fixed descriptors?”).

For RF, MolBERT, and GROVER, we first calculated the number of
single test folds where a model achieves the best performance using
the recommended metrics (Supplementary Table 3). In BACE, BBBP,
ESOL, and Lipop, RF dominates across 23, 20, 30, and 30 splits,

respectively, which is consistent with the finding in “Does learned
representation surpass fixed descriptors?”, that is, RF performs the
best. Still, there are other splits where MolBERT or GROVER achieves
the highest AUROC in the classification datasets, which means there is
a chance to wrongly conclude the representation learning models as
best-performing. Moreover, to emulate the common practice, we also

Fig. 4 | Evaluating prediction performance with activity datasets by Cortés-
Ciriano et al. a Performance of RF on RDKit2D descriptors, MolBERT, GROVER and
GROVER_RDKit (performance distribution in Supplementary Fig. 15a). b Statistical
significance for pairwise model comparison in a. c Performance of RF on fixed
representations (performance distribution in Supplementary Fig. 15b; statistical

significance for pairwise representation comparison in Supplementary Fig. 16).
Default metric is root mean square error (RMSE). Error bar denotes standard
deviation over 30 splits. Mann–Whitney U test is applied in b. Data are in the
Source Data.
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Fig. 5 | Evaluating prediction performance with opioids-related datasets at
regression setting. a Performance of RF on RDKit2D descriptors, MolBERT,
GROVER, and GROVER_RDKit (performance distribution in Supplementary
Fig. 21a). b Performance of RF on RDKit2D descriptors, MolBERT, GROVER, and
GROVER_RDKit under scaffold split. c Statistical significance for pairwise model
comparison in b. d Performance of RF, SVM & XGBoost on RDKit2D descriptors,
RNN & MolBERT and GCN, GIN & GROVER under scaffold split (performance dis-
tribution in Supplementary Fig. 21b). e Performance of RF on different fixed

representations (performance distribution in Supplementary Fig. 21c). f Statistical
significance for pairwise model comparison in d. g Statistical significance for
pairwise fixed representation comparison in e. Default metric is root mean square
error (RMSE); other metrics include mean absolute error (MAE), coefficient of
determination (R2), and Pearson correlation coefficient (Pearson_R). Error bar
denotes standard deviation over 30 splits. Mann–WhitneyU test is applied in c, f, g.
Data are in the Source Data.
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calculated the number of triple-splits combinations where a specific
model predicts best based on the average of recommended metrics.
Supplementary Table 4 shows that there are quite a few combinations
where a model can be mistaken as best-performing.

Therefore, without statistical tests, there exists a potential risk of
drawing incorrect conclusions regarding whether a new technique
truly improves predictive performance. Moreover, since the bench-
mark datasets are publicly available, one caveat is that data splitting
may be customized to cater to a specificmodel, introducing bias in the
model generalizability.

Which fixed representation is most powerful?
Given the superior performance of RF in most datasets (see “Does
learned representation surpass fixed descriptors?”), we mainly ana-
lyzed results by RF on fixed molecular representations, namely
RDKit2Ddescriptors, PhysChemdescriptors,MACCSkeys,MorganBits
fingerprints, MorganCounts fingerprints, and AtomPairs fingerprints.
Notably for MorganBits, we compared different sizes for radius (2, 3)
and numBits (1024, 2048) using the benchmark and opioids-related
datasets. Since there is little difference when altering the sizes (Sup-
plementary Fig. 18), we stickedwith a raidus of 2 and anumBits valueof
2048 for the Morgan fingerprints.

Among all fixed representations, PhysChem descriptors show the
worst performance in most opioids-related datasets under both scaf-
fold and random split (Fig. 5e), as well as in most activity datasets by
Cortés-Ciriano et al. (Fig. 4c & Supplementary Fig. 16) and by Tilborg
et al. (Supplementary Fig. 19), presumably due to its limited features.
Surprisingly in ESOL and FreeSolv (Fig. 3e), PhysChem descriptors
achieves the best performance along with RDKit2D descriptors. In the
activity datasets by Cortés-Ciriano et al., RDKit2D descriptors per-
forms significantly better than PhysChem descriptors except in A2a
(size: 166), ABL1 (size: 536), Dopamine (size: 405), possibly due to
overfitting (Fig. 4c and Supplementary Fig. 16). For MorganBits fin-
gerprints, a widely used strong baseline, we observed that it outper-
forms RDKit2D descriptors in HIV, whereas in BBBP, ESOL, FreeSolv
and Lipop, it is outperformed by RDKit2D descriptors (Fig. 3e). How-
ever, when the datasets are related to binding, for instance,MOR, DOR
and KOR, MorganBits fingerprints exhibit significantly better perfor-
mance (Fig. 5e, 6d). As for MorganBits vs MorganCounts, there is no
significant difference except in ESOL and Lipop, where MorganCounts
outperformsMorganBits. ForAtomPairsfingerprints, it shows similarly
superior performance with RDKit2D descriptors, MorganBits, and
MorganCounts inmost datasets. ForMACCS keys, despite showing the
best performance in FreeSolv, it generally shows worse performance
than the other fixed representations except for PhysChemdescriptors.

Are the recommended metrics appropriate?
InMoleculeNet16, each benchmark dataset comeswith a recommended
evaluationmetric.However, in real-worlddrugdiscovery, thesemetrics
may not always be appropriate (see “Are the models properly eval-
uated?”). In this section, we compared model performance using a
variety of evaluation metrics, in addition to the recommended ones.
For classification tasks, we calculated AUROC, AUPRC, PPV, and NPV
(see “Evaluation metrics”.1). For regression tasks, we calculated RMSE,
MAE, R2, and Pearson_R (see “Evaluation metrics”. (2). As shown in
Fig. 3b, c, when using the recommended AUROC, RF achieves higher
performance than MolBERT, GROVER, and GROVER_RDKit in BBBP
(p <0.05). However, if the evaluation metric PPV or NPV is used, RF
shows similar performance with all the other three models. Another
noteworthy example is that, when evaluated by Pearson_R, GROVER
achieves better performance in FreeSolv compared to RF (p <0.05);
but when evaluated by R2, RF achieves a similar performance with
GROVER (p≥0.05). Thus, different metrics may lead to disparate con-
clusions and caution is needed, especially for similar-naming metrics
such as R2 and Pearson_R. In fact, by plotting R2 against Pearson_R,

we found that Pearson_R can overestimate R2 (Supplementary
Fig. 20a). In certain cases, Pearson_R can still be ~0.5 even when R2
drops to zero or becomes negative. Additionally, when comparing
RMSE and MAE (Supplementary Fig. 20b), MAE underestimates RMSE
on the same raw predictions.

Regarding the choice of appropriate metrics, we observed that in
the opioids-related datasets except CYP2D6, AUROC is generally
above 0.75 (Fig. 6a), whereas most AUPRC values drop below 0.75
(Fig. 6b). For MolBERT, GROVER and GROVER_RDKit, AUPRC drops to
~0.25 in CYP3A4 and approximates zero in CYP2D6. Drawing AUPRC
and PPV against AUROC (Supplementary Fig. 20c, d) reveals that
AUROC can exaggerate prediction performance, especially in CYP2D6
and CYP3A4. Thus, AUROC can be over-optimistic. Furthermore,
despite the high AUROC (~0.90), AUPRC (~1.0), and PPV (~0.90) in
BBBP, NPV drops to ~0.65 (Fig. 3b). In this case, even with nearly per-
fect collective metrics like AUROC and AUPRC, NPV can be very lim-
ited. This becomes an issue if the goal of virtual screening is to identify
hits that are impermeable through the blood–brain barrier, since only
~65% of predicted negatives are truly impermeable among the pre-
dicted negatives. On the contrary, while the highest AUROC in HIV can
reach ~0.80, its best PPV falls below 0.25 (Fig. 3b). Similarly, PPV is
limited in the opioids-related datasets (Fig. 6b). For instance, the best
PPV is ~0.7 inMDR1, whereas inMOR, DOR andKOR, it is even lower. In
highly imbalanced CYP2D6 and CYP3A4 datasets, PPV can drop to
nearly zero. Thus, if the goal of virtual screening is to identify hits
active towards these targets, a substantial proportion of the predicted
actives could be false positives. In summary, precision metrics can be
more suitable for performance evaluation in classification settings,
which further depends on the emphasis on positives or negatives, i.e.,
the specific goal of virtual screening.

Regression vs classification: which to choose?
To study how task setting affects prediction performance, we set both
regression and classification settings for the opioids-related datasets
(Supplementary Fig. 2b). As shown in Fig. 6b, we observed that all
models achieve limited performance in CYP2D6 at the classification
setting, with particularly abysmal performance in PPV. However, at the
regression setting, RMSE and MAE in CYP2D6 can be lowered to ~1.5,
suggesting that regressionmay bemore suitable for CYP2D6, although
the pIC50 labels can be noisy67. On the contrary, in MDR1, MOR, DOR,
and KOR, where the prediction performance is promising indicated by
high AUROC at the classification setting, the regression error, as indi-
cated by RMSE and MAE, remains around 2.0. One potential cause for
the disparate performance between the classification and regression
settings could be the arbitrary activity cutoff. As shown in Fig. 7a,
classification performance varies with the cutoff values. Since each
dataset has a unique label distribution (Fig. 2), the cutoff value at 6may
lead to varying prediction difficulties. For instance, similar molecular
structures with close pIC50 values around 6 could be coerced into
actives vs. inactives, which poses a major challenge and may act as a
source for misclassification.

In fact, these molecules are the so-called “edge cases”67. Formally,
we defined them as molecules sharing the same scaffold but showing
pIC50 spanning from5 to 7. Thepercentages of edge-casemolecules in
the test sets are shown in Fig. 7b. For MOR, DOR, and KOR, around 5%
of molecules are edge cases, whereas for CYP2D6 and CYP3A4, the
percentage is around 1%, which can be attributed to the limited num-
ber of molecules with pIC50 above 5 (Fig. 2b). We also evaluated
classification performance with edge-case molecules removed in the
test sets (Fig. 7c). In general, prediction performance improves after
removing the edge cases, especially for MOR, DOR, and KOR, sug-
gesting the classification challenge posed by the edge cases. We fur-
ther examined prediction errors (the difference between predicted
values and labels) vs labels at the regression setting (RF on Morgan-
Bits). In Fig. 7d, we observed that the prediction error is not constant
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across the range of labels. Instead, there exists an increasing trend,
which suggests that the model is prone to overestimation for mole-
cules with high pIC50 values, and underestimation is more likely to
happen for molecules with low pIC50 values. For CYP2D6, prediction
errors are mostly centered around zero, which explains its relatively
low RMSE (Fig. 5b). For all edge cases, prediction errors are mostly
positive, indicating that the model tends to overestimate their pIC50
values.

To further examine the effect of activity cutoff values, we plotted
the distribution of predicted probabilities for edge-case molecules at
different cutoffs. For MOR, DOR, and KOR, when the cutoff value
increases from 5 to 7, the predicted probabilities are shifted to the left
(Fig. 7e), suggesting these edge cases aremore likely to bepredicted as
inactive. Conversely, for edge cases in MDR1, CYP2D6, and CYP3A4,
the predicted probabilities are always near zero, regardless of the

cutoff values. This may be attributed to the data imbalance issue,
where the majority of training examples are negative instances, mak-
ing it difficult for the model to accurately predict positive instances.
One practical implication is that the positive ratios should be checked
when selecting a cutoff value. If the binarized dataset is highly imbal-
anced, it is recommended to perform regression directly on the raw
labels.

Nonetheless, it is noteworthy that pIC50 labels inherently contain
noise, which is often heteroscedastic67. For instance, pIC50of 5.1 or 4.9
are often treated equally in contributing to the opposing activity (e.g.,
classification threshold of 5). However, the accuracy of such mea-
surements may not be 100% guaranteed in the presence of experi-
mental errors, which can be categorized into systematic error and
random error68. Systematic error is hard to trace down whereas ran-
dom error can be approximated by a Gaussian distribution. A previous

Fig. 6 | Evaluating prediction performance with opioids-related datasets at
classification setting. a Performance of RF on RDKit2D descriptors, MolBERT,
GROVER, and GROVER_RDKit (performance distribution in Supplementary
Fig. 22a). b Performance of RF on RDKit2D descriptors, MolBERT, GROVER, and
GROVER_RDKit under scaffold split. c Statistical significance for pairwise model
comparison in b. d Performance of RF on different fixed representations

(performance distribution in Supplementary Fig. 22b). e Statistical significance for
pairwise fixed representation comparison in d. Default metric is the area under the
receiver operating characteristic curve (AUROC); other metrics include area under
the precision-recall curve (AUPRC), positive predictive value (Precision_PPV),
negative predictive value (Precision_NPV). Error bar denotes standard deviation
over 30 splits. Mann–Whitney U test is applied in c, e. Data are in the Source Data.
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study by Cortés-Ciriano et al.69 simulated adding random noise to
pIC50 values in 12 datasets and assessed how it affects the subsequent
predictive performance of 12 models. The results revealed that dif-
ferent models showed different sensitivity to the added noise. Other
factors underlying the response to noise include noise levels and noise
distribution as well as label distribution of the dataset and the selected
cutoff value.

Inter-scaffolds generalization
To check inter-scaffolds generalization, we focused on the opioids-
related datasets, where experiments were conducted under both
scaffold and random splits at regression setting (Supplementary
Fig. 2b). Prediction performance is summarized in Fig. 5d (scaffold
split) and Supplementary Fig. 17c (random split). Given no scaffolds
overlap among training, validation, and test sets under scaffold split,
we compared the prediction performance between scaffold and
random split so as to evaluate how the models perform during inter-
scaffold generalization. The difference in mean RMSE between
scaffold and random split is shown in Fig. 8a. Note that
Mann–Whitney U is used to assess the statistical significance of the
difference, and non-significant differences were imputed as zero.
Compared to random split, prediction performance of most models
is worse under scaffold split, indicated by significantly higher RMSE,
across all opioids-related datasets. This observation manifests the
inter-scaffold generalization challenge. Notably, MolBERT shows
negligible differences in prediction performance between scaffold
and random split in MDR1, CYP2D6, CYP3A4, and MOR. For GROVER,
the differences in prediction performance are all zero, likely due to
the high variability associated with GROVER’s performance (Fig. 9a).
Given the limited performance of MolBERT and GROVER under
scaffold split (see “Does learned representation surpass fixed
descriptors?”), achieving inter-scaffold generalization can not yet be
claimed. Besides the difference in metric means, we observed higher
metric variability under scaffold split across all models (Fig. 9a),

showing increased prediction uncertainty during inter-scaffold
generalization.

Intra-scaffold generalization
To examine intra-scaffold generalization, we compared prediction
performance for AC and non-AC molecules (see “Intra-scaffold gen-
eralization”) under both scaffold and random splits. Mann–Whitney
U test was conducted to examine the statistical significance, and non-
significant differences were imputed as zero. As shown in Fig. 8b, the
RMSE difference is generally positive, indicating a worse prediction
on the ACmolecules. This inferior performance for the ACmolecules
suggests limited intra-scaffold generalization in the case of activity
cliffs. Besides, the performance differences between AC and non-AC
molecules are more frequently observed under scaffold split. In
other words, random split appears to alleviate the intra-scaffold
generalization challenge in the case of activity cliffs. This can be
attributed to the fact that some AC scaffolds have been seen during
training, which enables better prediction at inference time. Once
again, it highlights the importance of scaffolds in molecular property
prediction.

Moreover, we examined the relationship between RMSE and the
proportion of AC molecules in the training, validation, and test sets
(Fig. 8c). We observed that RMSE values tend to be higher as the
proportions of AC molecules increase, particularly in the training set.
The strongpositive correlation suggests that activity cliff is a key factor
contributing to limited prediction performance. In addition, we
examined the learned representations for the AC showcase molecules
(Fig. 2c) under scaffold split (seed: 4). As shown in Fig. 8d, the pre-
dicted pIC50 values are not well aligned with the y = x line. In parti-
cular, for MolBERT, GROVER, and GROVER_RDKit, the average pIC50
values appear to be “imputed” as the predicted values for the AC
molecules.

As pointed out by Robinson et al.17, active molecules with
different scaffolds can interact with the target with very different

Fig. 7 | Examining the effect of activity cutoff values with opioids-related
datasets. a Prediction performance of RF onMorganBits fingerprints with opioids-
related datasets at classification setting with different activity cutoff values.
b Percentage of edge-casemolecules in the test sets. c Performance distribution of
RF on MorganBits fingerprints (cutoff at 6) under scaffold split after removing
edge-case molecules. d Prediction errors of RF on MorganBits fingerprints (cutoff

at 6) under scaffold split (red dashed line: pIC50 at 5 & 7). e Predicted probability of
RF on MorganBits fingerprints at different cutoff values for edge cases under
scaffold split. AUROC stands for the area under the receiver operating character-
istic curve. Centerline in the box plots denote the median; limits denote lower and
upper quartiles; whiskers denote the range within 1.5 times interquartile from the
median; points are outliers. Data are in the Source Data.
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mechanisms. Thus, expecting a model to generalize by learning
from unseen scaffolds can be somewhat unrealistic. Our explora-
tion into the intra-scaffold generalization further substantiates
this point by incorporating the activity cliffs issue, which holds
two important implications: firstly, exposing the model to a set of
diverse scaffolds during training may be conducive for inference,
even potentially helpful to handle activity cliffs, although further
study is needed; secondly, when applying a molecular property
prediction model, for instance, in a drug design framework70,
predictions should be noted with lower certainty when the gen-
erated molecules have novel scaffolds that exhibit drastic activity
changes.

Furthermore, to identify the best-performingmodel in the activity
datasets by Tilborg et al.24, we applied RF, SVM, and XGBoost on all
fixed molecular representations. As shown in Supplementary Fig. 19,
RF onMorganBits, MorganCounts, or AtomPairs fingerprints generally
achieves the lowest RMSE, whereas SVM on PhysChem descriptors
shows the worst performance mostly.

Metric variability correlates with performance
Based on our extensive experimentation and rigorous comparison, we
observed that traditional machine learning models on fixed molecular
representations still excel in molecular property prediction, out-
performing recent representation learning models in most datasets.
This raises a natural question: why do representation learning models
fail? In the next sections, we further analyzed the prediction results
and conducted follow-up experiments to highlight some pertinent
observations.

In Fig. 9a, we plotted the standard deviation of all regression
metrics in the opioids-relateddatasets for differentmodels. In addition
to the varying prediction performance as discussed in “Does learned
representation surpass fixed descriptors?”, metric variability also var-
ies across models. Representation learning models, particularly GRO-
VER, exhibit high variability in all metrics. Moreover, metric variability
can be further correlatedwithmeanmetric values. As shown in Fig. 9b,
RMSE and MAE (higher values for worse performance)) tend to
increasewith higher metric variability, whereas R2 and Pearson_R tend

Fig. 8 | Examining chemical space generalization with opioids-related datasets
at regressionsetting. aPerformancedifferencebetween scaffold split and random
split. b Performance difference between AC molecules and non-AC molecules
under scaffold and random split. c Relationship between prediction performance

and AC molecules proportions. d Raw predictions for AC showcase molecules in
Fig. 2c. AC stands for activity cliffs. RMSE stands for root mean square error. R in
c denotes Pearson correlation coefficient between RMSE and AC molecules pro-
portions. Red dashed line in d denotes the y = x line. Data are in the Source Data.
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to decrease (lower values for worse performance). The inherent
variability underlying representation learning models can be another
manifestation of the prediction performance, underscoring the
importance of reporting metric variability along with the means.
Notably, imbalanced datasets can contribute to high variability and
subsequently lead to low performance. For instance, in CYP2D6 at the
classification setting (positive rate: 1.4%), all models exhibit highly
variant yet very limited performance with mean AUROC around 0.5 or
even lower.

Descriptors correlate with properties
In “Does learned representation surpass fixed descriptors?”, we
observed that molecular descriptors can be particularly predictive in
certain datasets. For instance, RF on the PhysChem descriptors
can achieve comparable performance with the best-performing
RDKit2D descriptors in ESOL (Fig. 3e). In contrast, biological activ-
ity is more complicated and cannot be well tackled with the
descriptors alone; structural fingerprints are more useful in these
cases (Figs. 5e, 4c).

To explain why PhysChem descriptors show such high perfor-
mance, we visualized the labels against selected descriptors for ESOL
and Lipop. As depicted in Fig. 9c, MolLogP has a nearly linear rela-
tionship with the label in ESOL, whereas in Lipop, there is no such
strong correlation. To quantify the relationship, we calculated the
correlation coefficients between molecular properties and PhysChem
descriptors in all benchmark datasets (Fig. 9d). In ESOL, the coefficient
with MolLogP is nearly −1, which is very likely to be the reason why
PhysChem descriptors excel in its prediction. In FreeSolv, its label also
exhibits moderate correlation with multiple descriptors, such as
NumAtoms, NumHAcceptors, and NumHDonors, with correlation
coefficients ranging from −0.75 to −0.5. These observations may
explain why PhysChem descriptors are among the top 3 best-
performing molecular representations in ESOL and FreeSolv (Fig. 3e).

We also conducted analysis for the activity datasets proposed by
Cortés-Ciriano et al.23 and Tilborg et al.24. As shown in Fig. 9e, corre-
lation coefficients in most datasets fall within the range [−0.5, 0.5],
suggesting weak correlation between binding activity and the
descriptors. This could explain why PhysChem descriptors show

Fig. 9 | Exploring performance inmolecular property prediction. aDistribution
of metric variability of different models in opioids-related datasets. b Relationship
difference between metric mean and metric variability. c Relationship between
label value and molecular descriptors in ESOL and Lipop. d Pearson_R between
label value and molecular descriptors in MoleculeNet datasets. e Pearson_R
between label value andmolecular descriptors inactivity datasets byCortés-Ciriano
et al. and Tilborg et al. f Prediction performance in MolWt datasets of varying

dataset sizes. g Prediction performance in NumAtoms datasets of varying dataset
sizes. Metrics include root mean square error (RMSE), mean absolute error (MAE),
coefficient of determination (R2), and Pearson correlation coefficient (Pearson_R).
Whiskers in the box plots denote the range within 1.5 times interquartile from the
median. ESOL and Lipop are two datasets from MoleculeNet. Error bar denotes
standard deviation over 30 splits. Data are in the Source Data.
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limited performance in activity prediction (Fig. 4c & Supplementary
Fig. 19). Notably, MolWt, NumAtoms, NumHAcceptors, and NumRo-
tatableBonds can have a moderate correlation with activity in certain
datasets, with correlation coefficient >0.5) whereas, surprisingly,
NumHDonors is weakly correlated with activity.

Prediction performance vary with dataset size
Given the advantage of descriptors in many datasets over repre-
sentation learning models, we assembled the descriptor datasets (see
“Descriptors datasets of varying sizes”) to predict MolWt and NumA-
toms, for a further investigation on the fundamental predictive power
(Supplementary Fig. 2d). Moreover, unlike the public activity datasets,
which often have limited dataset sizes, descriptor datasets can be
assembled at low costs. In total, webuilt 16 datasets of varying sizes for
each descriptor, which were split into training, validation, and test sets
under scaffold split.

As shown in Fig. 9f, the prediction forMolWt can have significant
variability among all models when the dataset size is <1K. Even using
fixed representations like MorganBits, MACCS, and AtomPairs, mean
RMSE can be around 25 for RF, 40 for SVM, and 30 for XGBoost. For
sequence-based models, RNN achieves RMSE of around 40 when the
dataset size is 0.1K, whereas MolBERT shows the highest error with
RMSE around 300. For graph-based models, GCN and GIN show
RMSE ~200 when the dataset size is 0.1K, whereas GROVER can
achieve RMSE ~30. This showcases the predictive power of pre-
trained GROVER in the low-data space. When dataset size increases
from0.1K to 1K, we observed that RMSE of GCN and GIN decreases by
around 75%, lowering to below 50. For GROVER, although RMSE also
decreases with size increasing from 0.1K to 1K, the trend is not as
obvious. For RNN, RMSE decreases by around 50% to below 20.
However, little difference can be observed for MolBERT. Overall, the
mean and variance of RMSE decrease with increasing dataset size.
When the dataset size keeps on increasing from 1K to 100K, RMSE of
RF can decrease to around 15, similar to XGBoost. And, surprisingly,
SVM achieves nearly perfect RMSE (close to zero) when the dataset
size is greater than 10K. For representation learning models, we
observed that RMSE of RNN drastically decreases from 20 to
nearly zero when dataset size approaches 100K, whereas GCN and
GIN drop to around 10. Similar observations for NumAtoms predic-
tion Fig. 9g.

In summary, for the descriptors prediction, the performance
of RF, SVM, and XGBoost improves as the data size increases.
Besides, we found that AtomPairs performs best (particularly
when used with SVM), followed by MACCS and MorganBits.
Notably, morganBits can outperform MACCS when used with
SVM. We speculate that SVM, despite its inferior performance
when the dataset size is small, it can achieve superior perfor-
mance in large datasets. For representation learning models,
regular neural network models have limited performance when
the dataset size is below 1K, whereas pretrained graph-based
model GROVER shows superior performance, consistent with
observations in “Does learned representation surpass fixed
descriptors?”, where GROVER achieves excellent performance in
FreeSolv (size: 642). Surprisingly, the pretrained sequence-based
model MolBERT shows quite limited performance, with RMSE
over 200 when the dataset size is less than 10K. Nonetheless,
RMSE of MolBERT shows a decreasing trend when the dataset size
is greater than 10K (Supplementary Fig. 23), whereas GROVER’s
performance does not exhibit substantial improvement with
increasing dataset size. Ultimately, RNN achieves the best per-
formance when the dataset size exceeds 10K, which manifests the
promise of representation learning models in the “big-data”
space. However, activity datasets can be quite limited in size,
particularly those from public databases, which could be another
cause for the observed failures of representation learning models.

Discussion
In this study, we took a step back from representation learning and
conducted a comprehensive evaluation on molecular property pre-
diction. We evaluated a diverse collection of models, including tradi-
tionalmachine learningmodels andneural networkmodels, alongwith
a set of molecular representations, on various datasets. In total, we
trained over 60,000 models to ensure a rigorous and thorough com-
parison. Notably, we carefully investigated two large models based on
SMILES strings and molecular graphs, namely MolBERT11 and
GROVER13. Both of thesemodels employ transformer as their core unit
and adopt self-supervised learning for pretraining.

Compared to supervised learning, self-supervised learning does
not require heavy human annotations71, which can be particularly
expensive in drug discovery1. As demonstrated by Hu et al.12, self-
supervised pre-training can help mitigate the “negative transfer”
associated with supervised pre-training. In general, self-supervised
learning can be categorized into three types: generative, contrastive
and generative-contrastive (adversarial)72. Pretraining tasks, such as
masked language modeling in MolBERT and contextual property
prediction in GROVER, lean towards the generative type. Recently, the
contrastive type of self-supervised pretraining has also been applied in
molecular property prediction. For instance, MolCLR14 proposes three
augmentation strategies, namely, atom masking, bond deletion and
subgraph removal, on molecular graphs to pretrain GCN and GIN,
respectively. More recently, iMolCLR15 has been proposed to improve
on MolCLR, which integrates structural similarities into the loss func-
tion. In MolBERT11, one pretraining task is the SMILES equivalence
prediction, which is predicting whether two input SMILES strings
represent the same molecule, where the second SMILES is either ran-
domly sampled from the pretraining corpus or an equivalent SMILES.
Based on the ablation study, however, the SMILES equivalence task
slightly but consistently decreases downstream performance. Addi-
tionally, MolBERT11 and GROVER13 both utilize RDKit27 to calculate
molecular descriptors values or extract graph-level motifs as domain-
relevant labels for pretraining. As indicated by the ablation study in
MolBERT, molecular descriptors value prediction has the highest
impact on downstream performance. Moreover, our study also
revealed that RDKit2D descriptors play a crucial role in GROVER, and
fixed representations such as RDKit2D descriptors significantly out-
perform the learned representations in many datasets, which aligns
with previous studies43,73. As a potential direction for future research,
exploring better ways to leverage fixed representations could be
beneficial in improving molecular property prediction.

Nonetheless, despite the advancements in AI techniques, the
question of whether AI can benefit real-world drug discovery is not
without its concerns25,26. To ensure responsible use of AI in drug dis-
covery, guidelines for evaluatingmolecules generated by AI have been
suggested by Walters et al.74. Similarly, evaluation of molecular prop-
erty prediction models should also be standardized. Recently, Bender
et al.75 proposed a set of evaluation guidelines for machine learning
tools, covering appropriate comparison methods and evaluation
metrics, among other essential aspects. In our study, we addressed
molecular property prediction from three key perspectives: datasets
profiling, model evaluation and chemical space generalization (Fig. 1).
For the datasets, each of them has unique label distribution and
molecular structures, which poses varying degrees of prediction dif-
ficulty. The molecular structures are dissected into scaffolds and
structural traits, including fragments (functional groups and hetero-
cycles) and other structural traits, such as MolWt and NumAtoms.
Furthermore, under different dataset split schemes and with different
seeds, the structural similarity and label divergence among the train-
ing, validation and test sets also vary, which contributes to the per-
formance variance. For model evaluation, a diverse collection of
models were compared, including three traditional machine learning
models, three regular neural network models and two large models
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pretrained with self-supervised learning strategies, using various
molecular representations. With statistical analyses, fixed representa-
tions exhibit leading performance in most datasets, suggesting the
need for further advancements in representation learning for mole-
cular property prediction. For chemical space generalization, it is
dissected into inter-scaffolds generalization and intra-scaffold gen-
eralization. The inferior prediction performance under scaffold split,
compared to random split, indicates that better AI techniques are
needed to enhance inter-scaffolds generalization. Similarly, the infer-
ior performance observed for ACmolecules (see “What does chemical
space generalization mean?”) suggests that more efforts are required
for intra-scaffold generalization, especially in the case of activity cliffs.
Moreover, routine evaluation of activity cliffs is essential, which has
been overlooked inmany previous studies. One reason for this neglect
could be due to the heavy reliance on the MoleculeNet benchmark
datasets.

Indeed, the widely used benchmark datasets may not always
reflect real-world drug discovery challenges18. Some benchmark data-
sets canposeunreasonable prediction tasks26. For instance, SIDER16 is a
dataset for 1,427 marketed drugs and their side effects in 27 system
organ classes. In addition to molecular structures, there are many
other factors underlying the side effects in humans, such as food-drug
interactions76, drug–drug interactions77, among others26. Thus, it is
unrealistic to expect amodel to directly predict side effects solely from
chemical structures. Similarly, the ClinTox dataset16 has a classification
task for FDA approval status alongside clinical trial toxicity. These two
tasks cannot be entirely attributed to the chemical structures. Thus, to
examine the usefulness of advanced representation learning models,
we assembled a suite of opioid-related datasets. As shown in Fig. 2, the
MOR, DOR and KOR datasets related to the pharmacodynamic aspect
of opioid overdose are quite balanced. On the contrary, the CYP2D6
and CYP3A4 datasets related to the pharmacokinetic aspect of opioid
overdose are extremely skewed to the left, with an active rate <10%
under the cutoff value 6. Consequently, the PPV for these two meta-
bolic enzymes is considerably limited. Indeed, datasets in these
domains are still scarce26. Besides, the activity datasets from public
databases may contain noise. For instance, we found some duplicates
and contradictory records in the opioids-related datasets, which were
subsequently removed for further analysis. In some cases, even the
established benchmark datasets may require an extra “washing” step
to ensure data quality43.

Given the limited prediction performance, we also explored into
potential explanations on why representation learning fails and dis-
cussed pertinent observations on the inferior performance of
molecular representation learning models. Firstly, representation
learning models, presumably due to their large numbers of para-
meters, tend to show greater metric variability, which is further
negatively correlated with metric mean values. Secondly, certain
molecular properties show correlations with specific molecular
descriptors, which explains the superior performance of the fixed
representations. Thirdly, nevertheless, our experiments on the
descriptor datasets of varying dataset sizes revealed that repre-
sentation learning models struggle to accurately predict simple
molecular descriptors, especially when the dataset size is small. One
exception, though, is the pretrained GROVER, which performs simi-
larly well with fixed representations when data points are fewer than
1K. However, its performance does not improve with increasing
dataset size. On the other hand, traditional machine learning models
and regular neural network models exhibit lower prediction error
when there are substantial data points. Particularly, RNN achieves the
best performance when dataset size reaches 6K. For the pretrained
MolBERT, it exhibits little advantage when descriptor datasets have
small sizes. However, when the dataset size reaches 100K, it shows
comparable performance with fixed representations. Indeed, the
dataset size is a key bottleneck. Addressing this challenge calls for

concerted efforts in generating high-quality datasets to fully harness
the power of representation learning models.

Last but not least, there are still some limitations in this study.
Firstly, the sources of uncertainty underlying molecular property
prediction include dataset split, experimental data, and model
training67. While our experimental scheme repeated dataset split 30
times with different random seeds, it only partially addressed the
uncertainty. Moreover, there could also be variations introduced
during model training, such as random weight initialization and ran-
dom mini-batch shuffling78. Ensembling techniques have been pro-
posed to alleviate the uncertainty related to model training and
improve prediction accuracy8. However, these techniques were not
evaluated in this study due to heavy computation burden. Another
crucial, yet often neglected, assumption is that the collected datasets
are usually regarded as the gold standard without any experimental
errors, which, however, may not always hold true. Experimental
uncertainty needs to be taken into consideration to further enhance
the reliability of molecular property prediction67. Secondly, the
explainability of the molecular property prediction models is not
covered. This concept of explainable AI aims to make the predictions
more understandable by domain experts79, which is crucial in building
trust towards effective AI tools in drug discovery.

In conclusion, this study dived into underlying molecular prop-
erty prediction. By gaining insights from extensive experimentation,
we expect to raise more awareness of these key elements, which, in
turn, can bring better AI techniques in molecular property prediction.

Methods
Datasets assembly
MoleculeNet benchmark datasets. In 2018, Wu et al.16 proposed a
suite of MoleculeNet benchmark datasets for molecular property
prediction, which have been widely used to develop novel molecular
representation learning models. Among them, we selected three
classification datasets (BACE, BBBP, HIV) and three regression datasets
(ESOL, FreeSolv, Lipop), which were used in MolBERT11 and GROVER13

(except for HIV) as well as a recent study by Jiang et al.43. Note that
these datasets are for single-task purpose and were downloaded from
MolMapNet19. Supplementary Table 5 summarizes each dataset,
including its task type, number of molecules, maximum length, and
number of scaffolds. Since MolBERT needs to pad the input SMILES
strings to the maximum length, we only retained molecules with
lengths up to 400,whichwas applied to allmodels for fair comparison.
As shown in Supplementary Table 5, all selected benchmark datasets
have a maximum length <400, except for HIV, where ~0.01% of mole-
cules were removed.

As for dataset splitting, there are several options, such as random
split, scaffold split, stratified split, and time split16, and each method
serves its own purpose. For example, time split is used to train the
model on older data points and test on newer molecules, simulating
the real-world scenario where models predict newly synthesized
molecules based on existing data points. The most widely adopted
method in the literature is scaffold split, which addresses the inter-
scaffold generalization (see “What does chemical space generalization
mean?”). However, the actual splits can vary across studies. For the
regression datasets, MolBERT used the random splits provided in
MolMapNetwhileGROVERadopted scaffold split. For the classification
datasets, both MolBERT and GROVER adopted scaffold split but the
seeds were not provided, so the splits may not be identical.

In this study, we adopted both scaffold and random split, fol-
lowing an 80:10:10 ratio for training/validation/test sets (Supple-
mentary Fig. 2a). Additionally, to ensure statistical rigor, we
repeated the dataset split procedure 30 times with 30 different seeds
(0, 1, 2,⋯, 29) using GROVER’s implementation for dataset split. The
same splits were then used consistently for all experiments to ensure
fair comparison.

Article https://doi.org/10.1038/s41467-023-41948-6

Nature Communications |         (2023) 14:6395 16



Opioids-related datasets. To examine practical issues in molecular
property prediction, we also assembled a suite of opioids-related
datasets (see “Opioids with reduced overdose effects”). Specifically,
binding affinity is collected for these pharmacological
components51,77: MDR1 (ChEMBL ID: 4302), CYP2D6 (ChEMBL ID:
289), CYP3A4 (ChEMBL ID: 340), MOR (ChEMBL ID: 233), DOR
(ChEMBL ID: 236) and KOR (ChEMBL ID: 237). The data is retrieved
from ChEMBL2722 using in vitro potency measures, namely: IC50,
EC50, Ki, and Kd. We set the assay type as “Binding”, the standard
relationship as “=”, the standard unit as “nM” and the organism as
“Homo Sapiens”. The raw binding affinity data is converted into the
negative log 10 scale, which is denoted as pIC50. Contradictory
entries and duplicates were removed.

Notably, IC50/EC50/Ki/Kd are often heteroscedastic67. Conse-
quently,measurement errorsmaynot be equally distributed across the
rangeof activity and, therefore, regressionof the rawpIC50valuesmay
not be favorable67. Thus, one common practice is to convert direct
regression into a binary classification task. For the active vs. inactive
threshold, 1μM (pIC50 at 6) is usually used as the default cutoff. In our
study, we also adopted this practice.

Supplementary Table 5 summarizes task type, number of mole-
cules, maximum length, and number of scaffolds. Since all datasets
have a maximum length <400, all collected molecules are 100%
retained. For the opioids-related datasets, we performed both scaffold
and random splits (Supplementary Fig. 2b). Each split method was
repeated 30 times using 30 different seeds (0, 1, 2, ⋯, 29) with GRO-
VER’s implementation for dataset split. These splits were used con-
sistently in all subsequent experiments.

Activity datasets. In light of critiques on the MoleculeNet bench-
mark datasets, we utilized two other sets of activity data from the
literature to further assess the performance of representation
learning models. The first set, proposed by Cortés-Ciriano et al.23,
contains activity data for 24 drug targets. The experiment scheme
on these activity datasets is depicted in Supplementary Fig. 2c,
where we adopted both scaffold and random splits. To ensure
statistical rigor, we repeated dataset splitting 30 times with 30
different seeds (0, 1, 2, ⋯, 29) using GROVER’s procedure, which
was saved and kept consistent across all experiments. The second
set, proposed in MoleculeACE by Tilborg et al.24, contains activity
data for 30 targets. These datasets highlight the issue of activity
cliffs and provide a fixed training-test split, based on which we
only evaluated traditional machine learning models on the fixed
representations.

Descriptor datasets. Asmentioned in “Descriptors datasets of varying
sizes”, we assembled a series of descriptor datasets of varying sizes
(0.1K, 0.2K, ⋯, 80K, 100K). The molecules were randomly sampled
from ZINC250k52 and the descriptor values, namely MolWt and
NumAtoms, were calculated using RDKit27. The experiment scheme on
the descriptor datasets is in Supplementary Fig. 2d, where we applied
scaffold split. To ensure statistical rigor, we repeated the split proce-
dure 30 times with 30 different seeds (0, 1, 2, ⋯, 29) using GROVER’s
implementation, which was saved and kept consistent across all
experiments.

Evaluation metrics
In “Are themodels properly evaluated?”, we highlighted the limitations
of using recommended metrics for model evaluation and emphasized
the necessity of considering othermetrics. Next, we provide details on
these metrics. Notably, there are more sophisticated virtual screening
metrics in early drug discovery, such as area under the accumulative
curve (AUAC), Boltzmann-EnhancedDiscrimination of ROC (BEDROC),
enrichment factor (EF), and robust initial enhancement (RIE), among
others80.

Classification metrics. In binary classification tasks, each molecule is
assigned a probability of belonging to the positive (or active) class.
When the predicted probability is greater than a threshold value
(between 0 and 1), the molecule is classified as positive (or active),
otherwise negative (or inactive). In total, there are four possible out-
comes: true positive (TP), false positive (FP), true negative (TN) and
false negative (FN). Based on the TP and FP rates across different
probability thresholds, the receiver operating characteristic curve can
be plotted with the area under the ROC curve as AUROC. Similarly,
based onprecision and recall, the precision-recall curve canbe plotted
to derive AUPRC. AUROC usually ranges from 0.5 (random classifica-
tion) and 1 (perfect classification); if a classifier performs worse than
random guessing, AUROC can be lower than 0.5. AUROC is more
robust in the case of imbalanced datasets, but it may not be suitable
when theminor class is of greater interest17. In such cases, AUPRC is an
alternative53, with a baseline value as the fraction of the minor class.

PPV=
TP

TP+FP
ð1Þ

NPV=
TN

TN+FN
ð2Þ

Despite the usefulness of AUROC and AUPRC, these “collective”
metrics may not be directly pertinent to virtual screening17, a common
application for molecular property prediction5. In fact, the primary
goal of early drug discovery is to rank molecules based on the pre-
dicted activity, thus avoiding the intractable number of false positives
or false negatives in experimental assays81. Given a set of predicted
actives or inactives, depending on the screening goal, we argue that
positive predictive value (PPV; Equation (1)) and negative predictive
value (NPV; Equation (2)) are more relevant to virtual screening and
drug design, as discussed in “Are the models properly evaluated?”.
Unlike AUROC and AUPRC, which are averaged across different
probability thresholds, a threshold is determined first before deriving
TP, FN, TN and FP, based on which PPV and NPV are calculated. When
the datasets are balanced, the threshold is set as 0.5 whereas for
imbalanced datasets, the threshold may be adjusted. In our study, we
used Youden’s J statistic82, the vertical distance between ROC curve
and a random chance line, to derive a threshold whichmaximizes the J
statistic.

Regression metrics. In regression tasks, the recommended metrics
are RMSE (Equation (3)) and MAE (Equation (4)), which quantify how
far apart the predicted values are from labels: a lower value indicates a
better model fit. MAE measures the average error whereas RMSE is
more sensitive to outliers. In addition, two other metrics can also
measure regression performance8,16,83, namely, Pearson_R and R2,
which are scale-independent.

RMSE=
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PN

i = 1 ðyi � �yobsÞ2
ð6Þ

Article https://doi.org/10.1038/s41467-023-41948-6

Nature Communications |         (2023) 14:6395 17



Pearson_R is an intuitivemeasureof the linear correlationbetween
the predicted values and labels84, and is defined as the ratio between
the covariance of two variables and the product of their standard
deviations (Equation (5)), ranging from −1 to 1. An absolute value of 1
indicates a perfect linear relationship between the predicted values
and labels. Notably, some studies used Pearson_R83 while others used
the square of Pearson_R16,19, known as Pearson_R2, ranging from 0 to 1.
On the other hand, R2, also known as the coefficient of determination,
is not based on correlation. Instead, it calculates the proportion of the
variance in the predicted values that can be explained by the labels
(Equation (6)). R2 usually ranges from 0 to 1, and a higher R2 corre-
sponds to a better model fit. An R2 of 1 indicates that the predicted
values exactly match the observed values, while an R2 of 0 represents
the baseline case, where the model always predicts �yobs, the mean of
labels. R2 can even be negative if the model performs worse than the
baseline. Presumably due to naming similarity, R2 and Pearson_R2 can
sometimes be confusing. In our study,we includedboth Pearson_R and
R2, which are calculated with the scipy package and the scikit-learn
package, respectively.

Model training
For traditional machine learning models, the hyperparameters were
determined by using grid search around the default values or reported
values in the literature. For regular neural network models, we set the
hyperparameters such that the models in comparison have a similar
number of parameters. Specifically, we followed Chemprop8 and set
the number of trees as 500 for RF. For SVM,weused the linear support
vector regressor or classifier. For XGBoost, we used the gradient
boosting regressor or classifier. For RNN, we adopted the GRU variant
and set the hidden size as 512, followed by 3 fully connected layers. For
GCN and GIN, the embedding dimension is 300, followed by 5 con-
volutional layers, and the size for hidden vectors is set as 51214. For
these regular neural networks, we applied uniform Xavier initialization
to initialize model weights85. For MolBERT and GROVER, we adopted
the optimal hyperparameters reported in the original papers11,13. All
experiments with the neural network models were run on a single
NVIDIA V100 GPU for 100 epochs. The validation loss is used to select
the bestmodel during training for test. Batch size is set as 32. However,
for the HIV dataset, MolBERT takes ~3 hours to complete a 100-epochs
training in each split when the batch size is 32. Since GROVER takes
even more time, we set the batch size as 256 when applying GROVER
on HIV, which still takes around 5 hours to complete a 100-epoch
training. To ensure fair comparison, we saved all raw predictions,
based on which evaluation metrics were calculated using the
same codes.

Statistical analyses
To examine if there are significant differences among the models and
representations, we conducted statistical analyses on the prediction
performance (Supplementary Table 6). Two major categories of ana-
lyses can be applied: parametric and non-parametric tests86. Para-
metric t tests examine whether two groups have equal means and can
be further categorized into paired t test and unpaired t test. For the
paired t test, the null hypothesis is that two populations have equal
means, with the assumption of equal variances (i.e. homoscedasticity).
When two samples have unequal variances and/or unequal sample
sizes, the unpaired or independent t test, also known asWelch’s t test,
should be used. Notably, the paired and independent t tests are
parametric with the normality assumption. While parametric tests can
be robust to moderate violations of the normality assumption with
large sample sizes, non-parametric tests are recommended when the
sample size is small. Two common approaches are Wilcoxon signed-
rank test and Wilcoxon rank-sum test (i.e. Mann–Whitney U test).
Wilcoxon signed-rank test is a non-parametric version of the paired t
test and compares the medians of two populations. Wilcoxon rank-

sum test also compares medians and is robust to violations of homo-
scedasticity. The non-parametric tests do not require the normality
assumption; however, when the data are normally distributed, they
may lead to less statistical power, which corresponds to a higher
chance of making type II error (i.e., failure to detect a true effect)17,86.

Since we observed that the distribution of each performance
metric is skewed together with heteroscedasticity (Supplementary
Figs. 14, 15, 21, 22), Mann–Whitney U test was used to calculate the
pairwise significance. The significant level is set as the two-sided p
value < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for all figures and tables are provided in the Source Data file.
Raw data are provided in the Github repository87. Source data are
provided with this paper.

Code availability
Code is provided in the Github repository87.
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