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Aromatized liposomes for sustained drug
delivery

Yang Li1, Tianjiao Ji1, Matthew Torre2, Rachelle Shao 1, Yueqin Zheng1,
Dali Wang1, Xiyu Li1, Andong Liu1, Wei Zhang 1, Xiaoran Deng1, Ran Yan1 &
Daniel S. Kohane 1

Insufficient drug loading and leakage of payload remain major challenges in
designing liposome-based drug delivery systems. These phenomena can limit
duration of effect and cause toxicity. Targeting the rate-limiting step in drug
release from liposomes, we modify (aromatized) them to have aromatic
groups within their lipid bilayers. Aromatized liposomes are designed with
synthetic phospholipidswith aromatic groups covalently conjugatedonto acyl
chains. The optimized aromatized liposome increases drug loading and sig-
nificantly decreases the burst release of a broad range of payloads (small
molecules and macromolecules, different degrees of hydrophilicity) and
extends their duration of release. Aromatized liposomes encapsulating the
anesthetic tetrodotoxin (TTX) achieve markedly prolonged effect and
decreased toxicity in an application where liposomes are used clinically: local
anesthesia, even though TTX is a hydrophilic small molecule which is typically
difficult to encapsulate. Aromatization of lipid bilayers can improve the per-
formance of liposomal drug delivery systems.

Liposomes have been explored for drug delivery applications formore
than 50years1. Liposomal formulations have been approved for clinical
use in treating various diseases including cancer, fungal infections and
pain2. Despite this success, some basic challenges remain in encapsu-
lating and controlling the release of payloads3, particularly with
hydrophilic small molecule drugs4. Considerable drug release can
occur immediately following administration4,5, which may lead to
systemic or local toxicity6.

There are emerging efforts in developing synthetic lipids with
chemical modifications in headgroups7, linkers8 or hydrophobic
domains9,10 to provide control over the intermolecular forces, phase
preference, and macroscopic behavior of liposomes11. Movement
across lipid bilayers is the rate-limiting step in the passive diffusion of
molecules through cellular membranes and artificial membranes such
as those of liposomes, because the hydrophobic phase (lipid bilayer) is
100–1000 times more viscous than the surrounding aqueous phase12.

Inspired by the transportation ofmolecules across cellmembranes, we
reasoned that engineering the lipid bilayers of liposomes via chemical
modification may improve the stability of liposomes and prolong the
release of payloads.

Here, we report a strategy where we chemically modify the lipid
bilayers with synthetic phospholipids whose acyl chains were cova-
lently bound to a terminal aromatic group, creating aromatized lipo-
somes. We studied the effect of liposome aromatization on drug
encapsulation and release. We used the ultrapotent local anesthetic
tetrodotoxin (TTX) as themodel drug, as it hasmany of the properties
that are most problematic in encapsulation in liposomes: low mole-
cular weight, high hydrophilicity, and the potential formarked toxicity
from uncontrolled release. We performed a proof-of-concept study
demonstrating the in vivo effect of liposomal aromatization in local
anesthesia, an application where liposomes are used clinically. Since
the liposomes were intended for local administration and effect, they
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were designed to be larger than nanoscale liposomes intended for
systemic delivery, to extend duration of release13, and slow loss of
particles from the site of injection14.

Results
Synthesis of acyl chain-modified phospholipids
To examine the hypothesis that aromatized liposomes could enhance
sustained drug release (Fig. 1a), we coupled the commercially available
lipid 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-PC) to
a fatty acid bearing terminal aromatic group (aromatized fatty acid;
Fig. 1b). We selected phenyl (one aromatic ring) and coumarin (two
rings) groups, as their small size would make them less likely to
interfere with the packing of hydrocarbon chains of phospholipids.

The aromatized fatty acid was synthesized via substitution of an aro-
matic group with a corresponding brominated fatty acid. Methyl 16-
bromohexadecanoate, phenol, and potassium carbonate were mixed
in anhydrous acetonitrile at 60 °C overnight to create methyl 16-
phenoxyhexadecanoate. Deprotection of the carboxylic acid yielded
16-phenoxy-palmitic acid, which was then reacted with 1-palmitoyl-2-
hydroxy-sn-glycero-3-phosphocholine (lysoPC) to create phenoxy-
conjugated dipalmitoylphosphatidylcholine (Ph-DPPC). In the
1H-NMR spectrum of Ph-DPPC, the representative signals of aromatic
rings at 7.2 and 6.9 ppm clearly demonstrated the successful con-
jugation of a phenoxy group to an acyl chain of the phospholipid
(Supplementary Figs. 1–4), which was also confirmed by liquid
chromatography–mass spectrometry (LC-MS, Fig. 1c). A combination
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Fig. 1 | Design of aromatized liposomes for sustained drug delivery. a Schematic
of aromatized liposomes for sustained drug delivery. b Synthesis of phenoxy-
conjugated phospholipid (Ph-DPPC) and coumarin-conjugated phospholipid (CM-
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of 2,6-dichlorobezoyl chloride and 1-methylimidazole was selected as
the coupling reagent for the synthesis due to their high potency in
activating fatty acids15, which lead to the coupling reaction being
completed within 12 h in high yield (>75%). The coumarin-conjugated
phospholipid (CM-DPPC, Supplementary Fig. 5) was synthesized fol-
lowing the same route. Coupling of a phenoxy and coumarin group
increased the phase transition temperature of DPPC from 41 °C to 48
and 66 °C, respectively (Fig. 1d).

Preparation of aromatized liposomes and in vitro evaluation
Given that local anesthesia is for local (nerve) not systemic delivery,
the liposomes were designed to be comparatively large13,16,17. Aroma-
tized liposomes were prepared via thin-film hydration followed
by agitation and freeze-thaw method to produce microscale
liposomes18,19, which favors local action following local
administration13. A dried lipid thin film containing Ph-DPPC, 1,2-dio-
leoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-distearoyl-sn-glycero-
3-phosphatidylglycerol (DSPG), and cholesterol was hydrated with
phosphate buffered saline (PBS). A combination of phosphatidylcho-
line (PC), phosphatidylglycerol (PG) and cholesterol is used in FDA
approved liposome products for local administration. DOPC was used
as in clinically used liposomes (like DepoDur) for local injection. DSPG
wasused becausewe found that negatively chargedDSPG can enhance

the encapsulation of positively charged TTX18. Mechanical agitation
was applied during hydration to facilitate membrane fusion and for-
mation of multivesicular vesicles7. Liposomes made with Ph-DPPC and
natural phospholipidswereamixtureof unilamellar andmultivesicular
spherical vesicles as confirmed by cryogenic electron microscopy
(Cryo-EM) (Fig. 2a),with a volume-weighteddiameter of 1.05 ± 0.10 μm
(Fig. 2b). The liposomes displayed similar size and did not aggregate
after storage at 4 °C for several weeks, indicating good stability (Sup-
plementary Fig. 6a, b). 100 nm liposomes could be produced after
extrusion through polycarbonate filters (Supplementary Fig 6c, d);
nanoscale is favorable for systemic administration. Release kinetics
confirmed that in nanoscale liposomes, aromatization also increased
drug loading and decreased the release rate of SRho (Supplementary
Fig 6e, f)

The hydrophilic small molecule fluorophore Sulforhodamine B
(SRho, logP = −0.53, Fig. 2c)18 was loaded into liposomes by hydrating
the lipid cake with a 10mg/mL SRho solution in PBS. The loading of
SRho in aromatized liposomes (SRho@Lipo-Ph) was 19% greater than
in unmodified liposomes (Fig. 2d), showing slightly increased drug
loading efficiency as a result of aromatization. The release kinetics of
SRho was evaluated in vitro. Free (unencapsulated) dye was released
within 6 h. In SRho@Lipo, more than 12% SRho was released in 24 h. In
comparison, less than 6.0% and 5.5% of SRhowas released in 24 h from
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Fig. 2 | Physicochemical characterizations of aromatized liposomes.
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release of SRho from different formulations at 37 °C. Data are presented as
mean ± SD, n = 4 independent experiments. Statistical analysis was performed
using one-way ANOVA with a Tukey post hoc test. P-values compare groups at
168 h. SRho@Lipo vs SRho@Lipo-Ph, P <0.0001. SRho@Lipo vs SRho@Lipo-CM,
P <0.0001. SRho@Lipo-Ph vs SRho@Lipo-CM, P =0.0279. *P <0.05. **P <0.01,
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(SRho@Lipo-CM), respectively.
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SRho@Lipo-Ph and SRho@Lipo-CM (Fig. 2e). Compared to Lipo-Ph,
Lipo-CM did not considerably increase the drug loading or reduce the
cumulative drug release in first 24 h. Viscosity is an important factor
for injectability. The viscosity of different formulations was char-
acterized at a range of angular frequencies. The aqueous solution of
Lipo-CM was notably more viscous than Lipo-Ph (Fig. 2f). Thus, we
chose Lipo-Ph for the subsequence studies.

We further modified the acyl chain of phospholipids with diben-
zocyclooctyne (DBCO) (DBCO-DPPC, Supplementary Fig. 7a, b), a
group with three rings including two aromatic rings. The loading of
SRho in DBCO-modified liposomes was 2.3 ± 0.3%, comparable to that
in unmodified liposomes (Supplementary Fig. 7c). 21% of SRho was
released from SRho@Lipo-DBCO in 24 h, which was faster than from
SRho@Lipo (Supplementary Fig. 7d). The bulky DBCO group may
interfere with the packing of hydrocarbon chains, making the lipo-
some leakier20,21.

Since the covalently conjugated phenyl group slowed the release
of payload, we studied the extent to which physical (non-covalent)
encapsulation of phenol into lipid bilayers would stabilize liposomes.
To compare the effects of covalent conjugation and physical encap-
sulation, we co-encapsulated SRho with 1mM phenol into liposomes
(Ph+SRho@Lipo) (Supplementary Fig. 8). Ph+SRho@Lipo released
7.1% of SRho in 24 h, 42% less than from unmodified liposomes, but
20% more than from covalently aromatized liposomes.

Phenol is intrinsically toxic22,23, as confirmed by cytotoxicity data
(Supplementary Fig. 9). Therefore, in order to be able to assess the
effect of non-covalently incorporated aromatic groups in vivo, we co-
encapsulated SRho with 1mM indocyanine green (ICG)24, an FDA
approved fluorophore containing four aromatic rings (Supplementary
Fig. 8). SRho release from ICG+SRho@Lipo was less rapid than from
unmodified liposomes, but more than from covalently aromatized
liposomes. Since there was no statistically significant difference
between the effect of Ph and ICG on drug release, we use the latter in
downstream experiments.

Effect of liposome aromatization on different payloads
We expanded our study of the effect of liposome aromatization to
include payload molecules with different characteristics such as
hydrophilicity and molecular weight. The hydrophilicity of different
payloads was measured by their octanol-water partition coefficients
(LogP, Supplementary Fig. 10). In addition to SRho described above,
we encapsulated the following small molecule compounds (Fig. 3a),
using the same encapsulation and analytical techniques: tetrodotoxin
(TTX, logP = 0.13), a hydrophilic ultrapotent local anesthetic; bupiva-
caine hydrochloride (Bup, logP = 1.24), an amphiphilic amino-amide
local anesthetic in current clinical use; doxorubicin hydrochloride
(Dox, logP =0.33), a chemotherapeutic drug that has been used clini-
cally in liposomes to treat cancer. These are logPs at pH 7.4, the pH at
which the compounds were encapsulated.

Loading of small compounds was increased by 19–60% by aro-
matization of liposomes (Supplementary Table 1). Althoughmolecular
weight did not correlate strongly with the degree of increase of drug
loading (R2 = 0.32), hydrophilicity showed good correlation with the
degree of increase (R2 = 0.92; Supplementary Fig. 11). Release in the
first 24h was reduced by 30–60% by aromatization of liposomes
(Fig. 3b–d, Supplementary Table 2). Neither molecular weight (Fig. 3e;
R2 = 0.01) nor hydrophilicity (Fig. 3f; R2 = 0.00) showed correlation
with the degree of reduction.

Similar loading and release experiments were done with lipo-
somes loaded with the macromolecules rhodamine-conjugated poly-
ethylene glycol (1 kDa and 10 kDa, LogP = −2.05 and −2.19,
respectively) and fluorescein isothiocyanate-conjugated albumin
(LogP = −2.39, Supplementary Fig. 10). Although aromatization had a
modest (or no) effect on drug loading of macromolecules (Supple-
mentary Table 1), aromatization decreased the release of

macromolecules in the first 24 h from liposomes (Fig. 3g–i). The effect
of liposomal aromatization on drug release increased with increasing
molecular weight (Fig. 3j; R2 = 0.81) and increasing hydrophilicity
(Fig. 3k; R2 = 0.97).

These data showed that aromatized liposomes had benefits over
conventional liposomes for delivery of a wide range of small and large
molecules.

In anticipation of in vivo experimentation, TTX was also co-
encapsulated in unmodified liposomes with ICG (ICG +TTX@Lipo).
13% of TTX was released from ICG+TTX@Lipo within 24 h, which was
less rapid than from unmodified liposomes, but more than from aro-
matized liposomes in the same period (Supplementary Fig. 12).

Nerve blockade and systemic toxicity
To assess whether the prolongation of release and reduction in drug
release with aromatized liposomes could translate into enhanced
duration of effect and reduced toxicity in vivo, we used them in a rat
model of peripheral nerve block. Aromatic (TTX@Lipo-Ph) and
unmodified liposomes (TTX@Lipo) with or without TTX showed
similar volume-weighted diameters (Supplementary Fig. 13a and
Table 3). All liposomes had zeta potentials around −30 mV, indi-
cating that the incorporation of aromatized phospholipids or
encapsulation of TTX did not change their surface charge (Sup-
plementary Fig. 13b). The low viscosity of all liposomal formulations
(≤100mPa s; Supplementary Fig. 13c) indicated that they were syr-
inge injectable.

Rats were injected at the left sciatic nerve with 300 μL of different
TTX formulations (Fig. 4a). Local anesthesia was assessed by a mod-
ified hotplate test25,26 in which thermal latency, the time in seconds a
rat left its hindpaws on a hotplate, wasmeasured in both hindpaws (2 s
was the baseline, and 12 s wasmaximal). The duration of deficits in the
injected (left) hindpaw reflected the duration of sensory nerve block,
whereas deficits in the contralateral uninjected (right) hindpaw indi-
cated effects from systemic distribution of TTX.

Formulations were delivered locally, by injection directly at the
nerve and had their principal therapeutic effect at that local site. The
duration of nerve block reflected the kinetics of effective levels of drug
at the site of injection. Similarly, the contralateral block is a reflection
of systemic drug levels (i.e. levels in blood). Changes in the latencies
and durations of contralateral nerve block are thereforemetrics of the
effect of formulational changes on pharmacokinetics.

The starting point for dose selection for free TTX in the in vivo
study was based on dose-response curves that we have reported26,
where 4–5 µg of TTXproduced 1.5–2.5 h of sciatic nerve blockade, with
a shorter duration of deficits in the contralateral extremity. The
starting dose of TTX in unmodified liposomes was adapted from our
previous work18, where 22 µg of TTX in liposomes produced effective
sciatic nerve blockade lasting 17.2 h. A similar dose was used in the
modified liposomes. Subsequent increases in dose were studied by
incremental increases in dose-response curves, with dose escalation
until systemic toxicity became dose-limiting.

Duration of block in rats injected at the sciatic nervewith free TTX
increased with increasing dose (Fig. 4b), but so did systemic toxicity
(Fig. 4c, d). 4 µg of TTX at the sciatic nerve resulted in amean duration
of sensory nerve block of 2.5 ± 0.6 h (Fig. 4b), with contralateral block
lasting 2.1 ± 0.5 h. That dose of free TTX resulted in contralateral
blocks in all animals (Fig. 4c), indicating systemic toxicity. Injection of
5 µg of free TTX was uniformly fatal (Fig. 4d).

Encapsulation of TTX in liposomes decreased systemic toxicity
substantially27, increasing the TTX dose that could be delivered. (The
actual dose in each formulation varied slightly due to differences in
TTX loading efficiency; Supplementary Table 4). Nerve block from
TTX@Lipo containing 20.4 µg TTX lasted 19.9 ± 4.4 h (Fig. 4b). The
contralateral block occurred in 62.5% of animals (Fig. 4c) with a
duration of 0.8 ± 0.3 h, a peak latency of 7.5 ± 1.0 s, and there were no
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deaths (Fig. 4d). 3 out of 4 rats died when TTX@Lipo containing
24.8 µg TTX was injected. Higher loadings of TTX (29.6 µg) were fatal.

Nerve block from TTX@Lipo-Ph containing 25.3 µg TTX (Fig. 4b)
lasted 36.9 ± 4.6 h (~2-fold the duration obtained with 20.4 µg TTX in

TTX@Lipo), there was no contralateral block (Fig. 4c), and there were
no animal deaths (Fig. 4d). Nerve block fromTTX@Lipo-Ph 32.1 µgTTX
(Fig. 4b) lasted 57.1 ± 11.6 h even though this dose was higher than a
dose that was uniformly fatal in animals receiving TTX@Lipo (29.6 µg
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TTX). TTX@Lipo-Ph containing 37.5 µg TTX enabled nerve block last-
ing 64.5 ± 8.1 h. Increasing the TTX loading to 44.2 µg further increased
the duration of block to 70.7 ± 9.8 h (Supplementary Table 5). Even at
that loading, there were no animal deaths, and contralateral block
(lasting 0.9 ± 0.4 h) only occurred in 50% of animals (lower than the
percentage with 20.4 µg TTX in TTX@Lipo). These data were con-
sistent with the slower release kinetics of TTX@Lipo-Ph and demon-
strated that liposome aromatization resulted in prolonged block and
reduced toxicity.

To compare the covalently aromatized liposomes with liposomes
where aromatic molecules were physically encapsulated, we injected
ICG +TTX@Lipo containing 24.4 µg TTX at the sciatic nerve. Sensory
nerve block lasted 26.9 ± 5.5 h (Fig. 4b), whichwas 1.35-fold longer than
that with 20.4 µg TTX in TTX@Lipo, but shorter than that from 25.3 µg
TTX in TTX@Lipo-Ph. Contralateral block (lasting 0.6 ± 0.2 h) occur-
red in 37.5% of animals (Fig. 4c; similar to that from TTX@Lipo) and
therewereno animal deaths (Fig. 4d). 2 of 4 animals administered 31 µg
TTX in ICG +TTX@Lipo died. All animals receiving 38 µg TTX in
ICG +TTX@Lipo died.

We then investigated whether the codelivery of encapsulated
adjuvant compounds with aromatized liposomes can further enhance
the nerve block duration. Previous studies have combined S1SCBs like
TTX with adjuvants with α-adrenergic activity like epinephrine26 and
glucocorticoid receptor agonists like dexamethasone28 for prolonged
nerve blockade. TTX@Lipo-Ph containing 45.1 µg TTX combined with
epinephrine (Epi, 3.6 µg) in the injectate (Epi + TTX@Lipo-Ph) and
dexamethasone (Dex, 290 µg) in separate liposome (Dex@Lipo-Ph +
TTX@Lipo-Ph) markedly increased the nerve block duration to
128.8 ± 22.3 h and 186.5 ± 23.8 h respectively (Fig. 4e). No contralateral
block was observed in these groups. Prolonged duration local anes-
thesia (PDLA) lastingweeks is desirable for treating prolongedpain like
cancer pain.

In all animals, motor nerve blockade was assessed by a weight-
bearing test (see animal studies section in the Methods). There was no
statistically significant difference between the durations of sensory
and motor nerve block (Supplementary Fig. 14).

Localization and retention of liposomal formulations
To assess whether liposome aromatization affected the tissue reten-
tion of liposomes, liposomes were covalently conjugated with Cy7 and
injected at the sciatic nerve. Fluorescence images of rats were taken at
different time points using an in vivo imaging system (IVIS) (Fig. 5a).
While free Cy7 diffused away from the injection site within hours
(Supplementary Fig. 15a), both unmodified liposomes (Cy7-Lipo) and
aromatized liposomes (Cy7-Lipo-Ph) remained in place for at least
5 weeks (Supplementary Fig. 16). Fluorescent confocal microscopy

confirmed the localization of Cy7-conjugated liposomes (Fig. 5b) as
well as free dyes (Supplementary Fig. 15b) in the connective tissue
between muscles and nerves. These findings suggested that differ-
ences in anesthetic effect between formulations would be due to dif-
ferences in drug release, not tissue retention.

Cytotoxicity and tissue reaction
The in vitro cytotoxicity to muscle and nerve of TTX formulations
was evaluated in myoblast C2C1229 and pheochromocytoma PC1230

(Fig. 6a, b) cell lines, that are used to assess myo- and neuro-toxicity
respectively. After 48 h of incubation with different TTX formulations
(TTX, TTX@Lipo, ICG +TTX@Lipo and TTX@Lipo-Ph), cell viabilities
as assessed by MTS assays were similar to that of PBS, indicating that
liposomes containing Ph-DPPC did not cause cytotoxicity.

4 and 14 days after injection, sciatic nerves and surrounding tis-
sues were harvested for histology. Liposomes could be seen at the
sciatic nerve 4 days after injection (Fig. 6c). Small amounts of residual
liposomes could still be identified at the injection site after 14 days
(Supplementary Fig. 17), consistent with the IVIS results.

Local anesthetics, particularly prolonged duration local anes-
thetics, can be associated with myotoxicity and inflammation31,
although with site 1 sodium channel blockers tissue reaction is due to
the vehicle, not the anesthetic16. Drug delivery systems themselves are
known to cause inflammation32 that can outlast the duration of nerve
block and may enhance local anesthetic myotoxicity33,34.

The sciatic nerves and surrounding tissues were harvested and
sectioned, and tissue reaction was assessed by hematoxylin and eosin
(H&E) staining. All liposomal formulations produced comparable
degrees of inflammation (Fig. 6d). Inflammation was seen around the
sciatic nerves, which is also commonly seen with a broad range of
delivery systems35. All slides were scored for inflammation (0–4) and
myotoxicity (0–6; see tissue harvesting and histology section in the
Methods). There was no statistically significant difference in inflam-
mation scores (1.5–3.0) between different liposomal formulations
(Supplementary Table 6). No myotoxicity was observed for ICG +
TTX@Lipo and TTX@Lipo-Ph 4 days after injection (Supplementary
Table 7). Mild myotoxicity (0.5) was observed in rats injected with
TTX@Lipo and TTX@Lipo-Ph 14 days after injection; there was no
statistically significant difference in myotoxicity scores between these
groups and the untreated groups. It should be noted that the inflam-
mation and myotoxicity scores of these formulations are comparable
or better than those of Exparel in the same animal model17, suggesting
the observed tissue reactions are acceptable for potential clinical use.

Sciatic nerves were stained with toluidine blue due to the low
sensitivity of H&E staining for nerve damage (Fig. 6d). No nerve injury
was observed in the free TTX, ICG +TTX@Lipo and TTX@Lipo-Ph
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groups. Small areas of sub-perineurial damage were observed in the
TTX@Lipo group. There is a substantial track record of perineurial
safety of the materials used here, and of TTX itself18,27,36. Moreover,
other groups (TTX@Lipo-Ph, ICG +TTX@Lipo) that incorporated all
the components of TTX@Lipo did not show injury. Therefore, it is
likely that the injury was related to trauma from injection (the injec-
tions are done percutaneously, i.e., not under direct observation), or

injury at the time of dissection, rather than the composition of matter
of TTX@Lipo.

Discussion
Here, we report the improvement of sustained drug release by the
aromatization of the inner aspect of liposomal lipid bilayers. Aroma-
tized liposomes increased the drug loading and considerably
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decreased the release of payloads with different water solubilities and
molecular weights. These changes had an impact in vivo: aromatiza-
tion prolonged the duration of local anesthesia fromTTX liposomes to
more than 3 days, and curtailed systemic toxicity.

Aromatic groups were incorporated within the lipid bilayers of
liposomes to target the rate-limiting step in the passive diffusion of
molecules from liposomes12. There are a number of mechanisms by
which this might occur. π–π stacking interactions non-covalent
crosslinked adjacent phospholipids37, decreased lateral motion of
lipids within the liposomal membranes, stabilized lipid bilayers,
decreased their fluidity and permeability. The rigid ring structures of
aromatic groups may reduce the fluidity and permeability of lipid
bilayers as observed in some bacteria38. The aromatized liposomes
may find broad application in the encapsulation and release of a broad
range of drugs, including chemotherapeutics, macromolecular drugs,
and proteins drugs. The release kinetics suggested the reduced release
of small molecules due to aromatization likely correlates to multiple
factors. Neither molecular weight nor hydrophilicity correlated
strongly with the degree of reduction. The reduced release of macro-
molecules as result of aromatization correlated with their molecular
weight and hydrophilicity.

There were constraints on the effect of aromatization on the
loading of liposomes and the resulting release kinetics. While the
addition of one ring enhanced performance, a second ring (coumarin)
had minimal effect on liposome performance, and greatly increased
viscosity—which would adversely affect removal of free drug from the
formulation, and injectability in the clinical application. Addition of a
bulky three-member ring (DBCO) actually impaired performance. That
impairment may be due to the bulky group interfering with the
packing of hydrocarbon chains and creating free space within lipid
bilayers20, which could increase the permeability of liposomes21. The
DBCO group was conjugated to the acyl chain via two amide bonds,
which may also make the liposome leakier. It remains to be seen
whether further hydrophobic non-bulky modifications of aromatic
groups would further enhance liposome performance.

Conventional anesthetics are short in duration and can have
associated neurotoxicity and myotoxicity31. Limited therapeutic alter-
natives in pain management have produced an overreliance on opioid
anesthetics worldwide39. A long-acting formulation of bupivacaine
liposome (Exparel)40 has been approved for clinical use in local
anesthesia2. However, a recent study revealed that Exparel did not
demonstrate significant pain relief compared to standard bupivacaine
in 74.58% of randomized clinical trials41. Developing new formulations
for prolonged non-addictive pain relief has long been of research and
clinical interest31. Here we have described a formulation that provides
three days of nerve block from a single injection. Addition of dex-
amethasone further extended the duration of analgesia to over a week.
One important consideration in that context is that use in larger ani-
mals (such as humans) will allow for the use of larger doses, enabling
longer blocks. There would also be less systemic toxicity because it
tracks relatively linearly with the compound’s volume of distribution
(i.e., the animal’s size) while the duration of nerve block does not.
Nerve block lasting 2-3 days would cover the duration of most post-
operative pain. Longer durations would be useful for severe localized
chronic pain like cancer pain.

The majority of local anesthetics cause both sensory and motor
nerve blockade; this is true of local anesthetic sustained release sys-
tems as well. In most cases, the treatment of pain would justify the
accompanying immobility, and one might not want to be moving a
painful body part. Moreover, the prolonged analgesia could obviate
the need for opioid use. However, if the motor block greatly exceeded
the durationof sensory block, or it the duration of blockwas very long,
one might have to consider whether alternative approaches would be
preferable.

Unlike perhaps most reports on the use of liposomes, the clinical
application model used here involved local administration and effect,
not systemic (intravenous). In that context, the neurobehavioral defi-
cits in the injected extremity are a relevant bioassay of local drug
kinetics and showed that the aromatized liposomes greatly enhanced
the duration of nerve block. Similarly, deficits in the contralateral
(uninjected) extremity are a reliable bioassay of systemic drug
distribution26, i.e., of the presence of TTX in the blood. Aromatization
clearly affected the systemic pharmacokinetics of TTX, reducing
toxicity and allowing larger doses and longer durations of effect.

In conclusion, aromatized liposomes increased the drug loading
and reduced the release of encapsulated compounds compared to
conventional liposomes. In vivo, they greatly prolonged the duration
of local anesthesia from the small hydrophilic and charged molecule
TTX and mitigated the systemic toxicity.

Methods
Materials
Unless otherwise specified, the number in parentheses following the
names of reagents is the purity, provided by the manufacturer. 16-
bromohexadecanoic acid (99%), acetyl chloride (99%), anhydrous
methanol (99.8%), phenol (99%), potassium carbonate (99%), anhy-
drous acetonitrile (99.8%), anhydrous tetrahydrofuran (99.9%),
hydrochloric acid (37%), 2,6-dichlorobenzoyl chloride (99%),
1-methylimidazole (99%), cholesterol (99%), sulforhodamine B (SRho,
75%), bupivacaine hydrochloride (99%), and doxorubicin hydro-
chloride (98%) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Albumin–fluorescein isothiocyanate conjugate (FITC-Ab) was
purchased from Sigma-Aldrich (St. Louis, MO, USA) with the catalog
number as A9771. Cyanine 7 carboxylic acid was purchased from
Lumiprobe Corporation (Hallandale Beach, FL, USA) with a catalog
number as 15090. Polyethylene glycol with amolecularweight of 1000
(PEG1k, 95%) and polyethylene glycol with a molecular weight of
10000 (PEG10k, 95%) were purchased from JenKem Technology USA
Inc (Plano, TX, USA). 16:0 DPPC (99%), 18:1 DOPC (99%), 18:0 DSPG
(99%), 16:0 lyso PC (99%), Cy7-DOPC (99%) were purchased from
Avanti Polar Lipids (Alabaster, AL, USA). Tetrodotoxin (TTX, 98%) was
obtained from Abcam (Cambridge, MA, USA). TTX ELISA kits were
purchased from REAGEN LLC (San Diego, CA, USA). Dulbecco’s phos-
phate buffered saline (PBS) were purchased from Thermo Fisher Sci-
entific (Waltham, MA, USA).

Synthesis of aromatic group-modified phospholipids
Synthetic procedures are described in detail in Supplementary Meth-
ods in the supplementary information file.

Liposome preparation and characterization
Liposomes were produced by the thin-film hydration technique, fol-
lowed by subsequent agitation and freeze-thaw cycles18,36. A lipid mix
containing Ph-DPPC, DOPC, DSPG, and cholesterol in a 3:3:2:3 molar
ratio was dissolved in a solution of 90% chloroform and 10%methanol.
This mixture underwent evaporation at low pressure, after which the
lipid contentwas reconstituted in tert-butanol and subjected to freeze-
drying. The resulting lipid cake was then rehydrated with different
payloads, including Sulforhodamine B (SRho), tetrodotoxin (TTX),
polyethylene glycol (PEG), and albumin–fluorescein isothiocyanate
conjugate (FITC-Ab) in PBS buffer (pH=7.4) or bupivacaine hydro-
chloride (Bup), or doxorubicin hydrochloride (Dox) in saline. After 10
cycles of freezing and thawing, the liposomal solutionwas subjected to
a 48-h dialysis against either PBS or water. The molecular mass cut-off
of the dialysis devices was 1000 kDa (Spectra/Por™ Float-A-Lyzer™ G2
Dialysis Devices). The dialysis fluid was routinely replaced with fresh
PBS or saline approximately every 12 h. To determine the drug and dye
content across different formulations, liposomesweredisrupted using

Article https://doi.org/10.1038/s41467-023-41946-8

Nature Communications |         (2023) 14:6659 9



octyl-β-D-glucopyranoside (100mM, twice the volume of liposomal
solution) and analyzed.

Instruments and characterization of materials
We utilized a Varian 400MHz NMR spectrometer (Palo Alto, CA, USA)
for 1H and 13C NMR characterizations. The Zetasizer Pro from Malvern
Panalytical (Westborough,MA, USA) was used to assess the liposomes’
hydrodynamic diameter and zeta potential. To examine bupivacaine
hydrochloride during the in vitro release tests,we employed anAgilent
1260 series HPLC system (Santa Clara, CA, USA), which incorporated a
UV-vis detector and used a solvent mix of 40% acetonitrile (with 0.1%
trifluoroacetic acid) and 60% water (also containing 0.1% tri-
fluoroacetic acid). Molecular weight determinations were achieved
using the Agilent Infinity lab LC/MSD XT single quadrupole mass
spectrometer (Santa Clara, CA, USA).Wemeasured viscosity utilizing a
TA DHR-2 rheometer (New Castle, DE, USA), setting it at 1 Hz fre-
quency, 1% shear strain, and maintaining the temperature at 25 °C. For
differential scanning calorimetry (DSC) evaluations, we utilized the
PerkinElmer DSC6000 (Waltham, MA, USA), operating under a nitro-
gen atmosphere. Samples were sealed with an aluminum crucible, and
thermal transitions were measured and recorded between 20 °C and
80 °C, at a scanning rate of 1 °C/min.

Cryo-EM imaging
Quantifoil copper EMgrids (R2/1, 400mesh) were glow-discharged for
30 s at 15mA. This grid was loaded into the Vitrobot climate chamber
at 100%humidity. 10mg/mL liposome sampleswereprepared and 5μL
aliquots were manually dispensed onto the grids. Grids were blotted
for 5 s with a wait time of 5 s and then plunged into liquid ethane for
vitrification. Frozen gridswere stored in liquid nitrogenuntil use. Cryo-
EM grids were imaged on a Titan Krios II equipped with a Gatan K3
camera at 1.4Å/pixel. 3.The Titan Krios II has an accelerating voltage of
300 kV. Image analysis and scaling were then done through ImageJ
(Fiji) software.

Partition coefficient quantification
We applied a shake-flask technique to measure the octanol−water
partition coefficient (LogP) values42. Buffer solutions of 0.1M ionic
strength at three different pH values: 4.0 (citrate buffer), 7.4 (phos-
phate buffer), and 10.2 (carbonate buffer), were used to examine the
ionized or neutral states of the payloads and their pH-dependent
partition. It should be noted that we compare logP values of different
payloads at pH 7.4, at which condition the payloads were encapsu-
lated. Prior to testing, each buffer solution was saturated with octanol
prior to analysis. After subjecting all mixtures to 5min of vortexing,
they were stirred at room temperature for 24 h, ensuring equilibrium
and phase distribution. After equilibration was achieved, samples were
analyzed either on an Agilent HPLC 1260 or on a plate reader (BioTek,
Winooski, VT, USA). The HPLC used a solvent mix of 70% acetonitrile
(containing 0.1% formic acid) and 30% water (containing 0.1%
formic acid).

Cell culture
Cell culture of C2C12 mouse myoblasts (American Type Culture Col-
lection (ATCC, Catalog # CRL-1772, Manassas, VA, USA) and PC12 rat
adrenal gland pheochromocytoma cells (ATCC, Catalog # CRL-1721,
Manassas, VA, USA) were performed18,43. Prior to distribution, ATCC
uses STR analysis to screen C2C12 and PC12 cell lines for authenticity
and purity. Upon receipt of these cell lines and after plating, a mor-
phology check by microscope on both C2C12 and PC12 is done to
ensure authenticity. To summarize, C2C12 cells were cultured in
DMEM with 20% FBS and 1% Penicillin Streptomycin. For differentia-
tion into myotubules, these cells were seeded onto a 24-well plate at a
density of 50,000 cellsmL−1 and then incubated for 10–14 days in
DMEM containing 2% horse serum and 1% Penicillin Streptomycin.

PC12 cells were cultured in DMEM with 12.5% horse serum, 2.5% FBS,
and 1%Penicillin Streptomycin. After seeding these cells onto a 24-well-
plate, nerve growth factor at a concentration of 50 ngmL−1 was intro-
duced 24 h after seeding.

Cell viability
For cytotoxicity assessment, liposomal formulations were directly
added into the cell culture media and incubated in the media bathing
the cells (i.e., in direct contact with them) in cell culture wells (lipid
concentration: 20mg/mL). After a 24 h incubation, cell viabilities were
measured using the MTS assay. The survival rates were quantified as
percentages of results in untreated cells.

In vitro drug release
Cumulative release of small molecules (Sulforhodamine B, Tetrodo-
toxin, Bupivacaine hydrochloride, and doxorubicin hydrochloride)
wereperformedbyplacing 200μLof samples into a Slide-A-LyzerMINI
dialysis device (Thermo Fisher Scientific, Waltham, MA) with a
10,000MW cut-off, further dialyzed with 14mL release media and
incubated at 37 °C on a platform shaker (New Brunswick Innova 40,
60 rpm)18,43. At predetermined intervals, the dialysis solution was
exchangedwith fresh, pre-warmed releasemedia. The releasemedia of
SulforhodamineB, Tetrodotoxinwas PBS (pH= 7.4). The releasemedia
of Bupivacaine hydrochloride, and doxorubicin hydrochloride was
physiological saline. The concentration of TTX in release media was
quantified by an enzyme-linked immunosorbent assay (ELISA, Reagen
LLC). The concentration of Sulforhodamine B in release media was
determined by a plate reader (BioTek, Winooski, VT) with excitation
and emission wavelengths of 560 nm and 580nm. The concentration
of bupivacaine hydrochloride (Bup) in release media was determined
by high-performance liquid chromatography. The concentrations of
SRho, TTX and Bup in release studies were 4mM, 0.3mM and 20mM
as reported previously18,44.

The maximum cut-off of commercially available Slide-A-Lyzer
MINI dialysis device was 20,000MW. Thus, the cumulative release of
macromolecules was performed by placing 500μL of samples into a
Float-A-Lyzer G2 dialysis devices (Spectrum Laboratories Inc, Piscat-
away, NJ)with a 1000,000MWcut-off, further dialyzedwith 14mLPBS
and incubated at 37 °C on a platform shaker (New Brunswick Innova
40, 60 rpm). At predetermined intervals, the dialysis solution was
exchanged with fresh, pre-warmed release media. The concentration
of dye-conjugated macromolecules was determined by a plate reader
(BioTek, Winooski, VT). The concentrations of SRho-PEG1k, SRho-
PEG10k and FITC-Ab in release studieswere 1mM, 0.5mMand0.5mM,
respectively.

Animal studies
Animal studies were conducted following a protocol (20-07-4222R)
approved by the Boston Children’s Hospital Animal Care and Use
Committee, aligning with the guidelines of the International Associa-
tion for the Study of Pain. The Ethics Committee of Boston Children’s
Hospital reviewed and approved the animal protocol. We used 10-
week-old male Sprague–Dawley rats, with weights ranging from
350–400g, purchased from Charles River Laboratories (Wilmington,
MA, USA). They were housed in groups and maintained on a 12-h/12-h
light/dark cycle, with light starting at 6:00 AM.

To perform sciatic nerve injections, a 23G needle was utilized.
Following brief anesthesia using isoflurane-oxygen, the needle was
carefully positioned posteromedial to the greater trochanter, pointing
in an anteromedial direction. Upon bone contact, the formulations
were dispensed onto the sciatic nerve18,27,43.

The starting point for dose selection for free TTX in the in vivo
study was based on dose-response curves that we have reported26,
where 4–5 µg of TTXproduced 1.5–2.5 h of sciatic nerve blockade, with
a shorter duration of deficits in the contralateral extremity. The
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starting dose of TTX in unmodified liposomes was adapted from our
previous work18, where 22 µg of TTX in liposomes produced effective
sciatic nerve blockade lasting 17.2 h. A similar dose was used in the
modified liposomes. Subsequent increases in dose were studied by
incremental increases in dose-response curves, with dose escalation
until systemic toxicity became dose-limiting.

Neurobehavioural evaluations were performed on both hind
paws. Deficits in the right hindpaw, which were uninjected, served as a
metric of systemic drug distribution. A modified hotplate testing27,36

was employed to assess sensory nerve blockade. Each hind paw was
sequentially exposed to a 56 °C hot plate (Stoelting, Wood Dale, IL,
USA). The duration (in seconds) for which the rat allowed each hind-
paw to remain on the hotplate was recorded as the thermal latency. A
2-s thermal latency was determined to be the baseline (indicating no
nerve block), and a 12-s latency was used as the upper limit to avoid
burns and/or hyperalgesia, at which time the hindpaw was removed
from the hotplate. Nerve block was considered to be successful if
latency exceeded 7 s. Each animal was given the hotplate test three
times on each paw at each time point, and the average was used for
subsequent data analysis.

To evaluate motor nerve block, we utilized a weight-bearing
method to measure the hind paw’s motor strength27,36,45. The rat was
placed with one hind paw on a digital balance, allowing it to bear its
own weight. The maximum weight it could bear without the ankle
touching the balancewas recorded. If themotor strengthwas less than
50% of the maximum strength, it was considered a successful motor
block. The test was also repeated three times for each time point, and
the average was used for subsequent data analysis.

Duration of sensory block was defined as the time needed for the
thermal latency return to 7 s (a midpoint between the baseline and
upper threshold)18,36. The motor block duration was calculated as the
time for the motor strength to return to 50% of normal motor
strength27,36,45.

Laser scanning confocal microscopy (LSCM) Imaging
Cy7-labeled liposomes were fabricated using Cy7-conjugated DOPC.
The Cy7-conjugated DOPC was added to the lipid mixture and
subsequently solubilized in a solution containing 90% chloroform
and 10% methanol, with Cy7 concentration at 0.2mg/mL43,46. Under
reduced pressure, the solvent was removed. The lipid mixture was
reconstituted in tert-butanol and subsequently freeze-dried. The
resulting lipid cake was rehydrated in PBS buffer at pH = 7.4 to yield
Cy7-labeled liposomes. Rats, briefly anesthetized with isoflurane-
oxygen, received injections of 0.3mL of different Cy7 labeled lipo-
somal formulations. Sciatic nerves and adjacent tissues were col-
lected and embedded into optimal cutting temperature (OCT)
compound (VWR, Radnor, PA, USA), then cryopreserved at −20 °C.
Using a Leica CM3050 S cryostat microtome (Wetzlar, Germany),
tissue sections of 10 μm thickness were produced and mounted
onto glass microscope slides. These sections were then treated with
4% paraformaldehyde for a duration of 20min at ambient condi-
tions, followed by three PBS (pH 7.4) washes. Hoechst 33342 was
utilized to stain the nuclei. Subsequent imaging of these sections
was undertaken using the Zeiss LSM 710 multi-photon confocal
microscopy (Carl Zeiss AG, Oberkochen, Germany).

In vivo imaging system (IVIS) imaging
Cy7-labeled liposomes were created using Cy7-conjugated DOPC. The
Cy7-conjugated DOPC was integrated into the lipid mixture and sub-
sequently solubilized in a solution containing 90% chloroform and 10%
methanol, with Cy7 molar concentration at 0.2mg/mL43. The solvent
was removed by applying reduced pressure. The lipid mixture was
reconstituted in tert-butanol and then freeze-dried. Rehydrating the
lipid cake with pH 7.4 PBS buffer yield the Cy7-labeled liposomes.
Under anesthesia using isoflurane-oxygen, the fur on the rats was

removed by shaving. They were then injected with 0.3mL of different
Cy7-labeled liposomes. Captured in vivo fluorescence images allowed
for the measurement of fluorescence intensity at specific post-
injection time intervals. Under isoflurane-oxygen anesthesia, the
fluorescence intensity was measured using a Spectrum IVIS (Perki-
nElmer, MA, USA). The imaging of the rats was recorded non-
invasively43. For imaging process and recording, the 745 nm excita-
tion filter and the 800nm emission filter were applied. The Live Ima-
ging® software associated with the IVIS was used for quantitative
assessment.

Tissue harvesting and histology
4- and 14-days post-injection, rats were euthanized, a decision based
on our prior observations that these intervals are optimal for exam-
ining both acute and chronic inflammation and myotoxicity18,27,43. The
sciatic nerve and its adjacent tissues were collected for histological
evaluations. A pathologist, blinded to the individual samples, assessed
the samples for inflammation scores (on a scale of 0–4) and myo-
toxicity (ranging between 0 and 6)18,27,43.

The inflammation score was a subjective quantification of sever-
ity, in which 0 indicated a normal state and 4 indicated severe
inflammation. The myotoxicity score was determined based on two
characteristics of local anesthetics’ myotoxicity: the nuclear inter-
nalization and regeneration of myocytes. Nuclear internalization was
identified by myocytes having nuclei located away from their normal
position at the peripheryof the cell. Regenerationwas identifiedby the
presence of shrunken myocytes with basophilic cytoplasm. The scor-
ing scale was as follows: 0 = normal; 1 = perifascicular internalization;
2 = deep internalization (more than five cell layers); 3 = perifascicular
regeneration; 4 = deep tissue regeneration (more than five cell layers);
5 = hemifascicular regeneration; 6 = holofascicular regeneration.

To assess the formulations’ potential neurotoxicity, the sciatic
nerves were fixed using Karnovsky’s KII solution, processed and
embedded in Epon, and subsequently stained with toluidine blue. The
stained samples were then assessed though optical microscope by a
pathologist who was kept blind to individual samples.

Statistical analysis
Statistical comparisons were performed using the unpaired two-tailed
t-test unless stated otherwise. Thermal latency, inflammation and
myotoxicity scores were reported as means and quartiles due to their
ordinal or non-Gaussian character. Data are presented as means ± SD
(n = 4) in release kinetics, cell work, neurobehavioral, and histology
studies. To determine the statistically significant differences between
the means of independent groups, the two-tailed t-test was used for
twogroupsof data, andANOVAwith aTukeyposthoc testwasused for
multiple group comparisons. Details of sample size and statistical tests
are specified in the figure legends. Data were considered statistically
significant if P < 0.05 (****P <0.0001, ***P <0.001, **P <0.01, *P <0.05).
All graphs were generated with GraphPad Prism 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available within the
article and its Supplementary Information files. The raw numbers for
charts and graphs are available in the Source Data file whenever pos-
sible. Source data are provided with this paper. The full image dataset
is available from the corresponding author upon request.
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