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Record ages of non-Markovian scale-
invariant random walks

Léo Régnier1, Maxim Dolgushev 1 & Olivier Bénichou 1

How long is needed for an observable to exceed its previous highest value and
establish a new record? This time, known as the age of a record plays a crucial
role in quantifying record statistics. Until now, general methods for deter-
mining record age statistics have been limited to observations of either
independent random variables or successive positions of a Markovian (mem-
oryless) random walk. Here we develop a theoretical framework to determine
record age statistics in the presence of memory effects for continuous non-
smooth processes that are asymptotically scale-invariant. Our theoretical
predictions are confirmed by numerical simulations and experimental rea-
lisations of diverse representative non-Markovian random walk models and
real time series with memory effects, in fields as diverse as genomics, clima-
tology, hydrology, geology and computer science. Our results reveal the cru-
cial role of the number of records already achieved in time series and change
our view on analysing record statistics.

The statistics of records in a discrete time series Xt

� �
t =0,1,... is one of

the main topics of interest in the study of extreme events1, with
applications in an increasing number of fields. A record event occurs at
time t if all prior observations Xt0

� �
t0 =0,...,t�1 are smaller than the last

value Xt. In this context, the inter record times τn, also called record
ages2–9, between the nth and (n+1)st record, are pivotal, as they char-
acterise the time of occurrence of the next record breaking event such
as heatwaves10, earthquakes11,12 or record temperatures13.

The theory of records has been studied since the mid-20th
century14,15, and is well understood when the random variables
Xt

� �
t =0,1,... are independent and identically distributed (i.i.d.)16–18. An

important step in the study of records was recently made when
observations are the successive positions of a Markovian RW4,19–22,
Xt+1 = Xt + ηt+1, where the steps ηt

� �
t =0,1,... are still i.i.d. and symmetric.

In this situation, record ages are strictly given by the time T needed to
reach a given value for the first time, regardless of the past. This time
follows an algebraic tail distribution PðT ≥ τÞ / τ�θ, where θ is the
persistence exponent23, provided by the celebrated Sparre-Andersen
theorem24, yielding θ = 1/2. We emphasise that, despite the fact that
this RW model accounts for correlations between the observations
Xt

� �
t =0,1,..., the steps ηt

� �
t =0,1,... themselves are independent. As a

result, this model cannot account for memory effects in the
increments.

However, as a general rule, real time series are not only correlated
but also exhibit such memory effects. When the evolution of an
observable is influenced by interactions with hidden degrees of free-
dom, such as the previous steps of the RW or its interaction with the
environment, it cannot be modeled as a Markov process.

This is typically the case for displacement data from various tra-
cers (microspheres, polymers, cells, vacuoles...) in simple25 and vis-
coelastic fluids26–28, soil29,30 and air temperatures31, river flows32,33,
nucleotide sequence locations34,35 and Ethernet traffic36–38. So far, as
highlighted in the recent review Ref. 4, almost nothing is known about
the record age statistics of non-Markovian processes. The only excep-
tions concernprocesses amenable to aMarkovianprocess by adding an
extra degree of freedom3,8,39, and a numerical observation in the spe-
cific case of the fractional Brownian motion9. Here, we provide a gen-
eral scaling theory which determines the time dependence of the
record age statistics of non-Markovian RWs. We show that memory
effects significantly alter these statistics. They are no longer solely
governed by the persistence exponent θ, but also by another explicitly
calculated exponent,which is thehallmarkofnon-Markoviandynamics.
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Results
Main results
We consider a general non-Markovian symmetric RW, whose succes-
sive positions form a time series Xt

� �
t =0,1,.... These positions satisfy

Xt+1 = Xt + ηt+1, where now the statistics of the steps ηt

� �
t =0,1,... may

exhibit (I) long-range correlations, (II) interactions with the environ-
ment (e.g. footprints left along the trajectory), or (III) explicit space-
time dependence (see Fig. 1). Essentially all statistical mechanisms that
lead to non-Markovian evolution are encompassedby these features of
Xt40. In turn, they allow to account for a variety of real time series
displayingmemory effects41,42. At large time, Xt is assumed to converge
to a scale-invariant process that is continuous (i.e. excluding broadly
distributed steps ηt) and non-smooth23 (meaning that, as for the
standard Brownian motion, the trajectory is irregular, having at each
point an infinite derivative). Under these conditions, the process is
characterised by a walk dimension40 dw > 1, such that Xt / t1=dw , and
the random variable Xt=t

1=dw is asymptotically independent of t. To
account for potential aging in the increments, Xt is more generally
assumed to have scale-invariant increments, meaning that, for 1≪ t≪
T, Xt +T � XT / t1=d

0
wTα=2. This defines the aging exponent α43,44 (α > 0

corresponding qualitatively to accelerating processes and α < 0 to
slowing down processes) and an effective walk dimension at short
times d0

w � ðd�1
w � α=2Þ�1

. We stress that the class of processes that we
consider here covers a very broad rangeof examples ofnon-Markovian
RWs, as detailed below, despite not covering the particular cases of
Lévy flights19 (which are discontinuous) or of the RandomAcceleration
Process3 (smooth), which would require a different approach.

We report that the tail distribution Sðn, τÞ � Pðτn ≥ τÞ of the record
age τn asymptotically obeys a scaling behaviour Sðn, τÞ=n�1ψðτ=ndw Þ,
displaying two universal distinct algebraic regimes :

S n, τð Þ /
1
n

ndw

τ

� � 1
d0w for ndw�d0

w ≪ τ≪ndw ,

1
n

ndw

τ

� �θ
for 1≪ndw ≪ τ

8>><
>>:

ð1Þ

whereψ is a process dependent scaling function and the persistence
exponent θ has been defined above. Equation (1) explicitly deter-
mines the n and τ dependence of the record age statistics of non-
Markovian RWs. Fundamental consequences of our results include:
(i) In regime 1, defined by ndw�d0

w ≪ τ≪ndw , the record time’s decay is
governed by an exponent different from θ. While it is not
unexpected that thememory of the past affects record age statistics
for a non-Markovian process (in particular, it is known that it can
change the persistence exponent45,46), it is striking that the
corresponding exponent is fully explicit and depends only on the
effective walk dimension d0

w of the increments. Note that regime 1
can span several orders of magnitude as soon as sufficiently many
records have been broken, and thus dominate the observations. (ii)
In regime 2, defined by τ≫ndw , the decay in the record time can be
very different from that of regime 1. This is particularly striking for
processes with stationary increments for which the exponent
involved in regime 2, θ = 1 − 1/dw44, is markedly different from the
exponent 1=d0

w = 1=dw of regime 1 (with the exception of Markovian
RWs for which the two exponents are both 1/2 and a single regime is
recovered; note that this single regime of exponent 1/2 is also
obtained in the case of Lévy flights, which are not covered by our
approach). (iii) The record age distribution ages, in the sense that it
depends on the number n of records already achieved. Conse-
quently, the observations of early record ages are not representa-
tive of later records and call for a careful analysis of real data (note
that the record distribution also ages in time series with i.i.d.
observations Xt, which are thus not of the form Xt+1 = Xt + ηt+1
considered here, but the dependence of this distribution on the
number of records and the corresponding statistical mechanisms
are very different4). Finally, note that despite the existence of
two regimes for record ages, because of the explicit dependence of
the prefactors of S(n, τ) on n, the number of records at time t
displays a single time regime n / t1=dw (see Supplementary Informa-
tion, SI).

Derivation of the results
The following outlines the derivation of these results (see SI Sec. S1 for
details):

The first step consists in noting that, due to the scale-invariance of

the process Xt, the time Tn to reach the nth record, Tn � Pn�1
k =0 τk ,

satisfies Tn / ndw and its increments obey Tm+n � Tm / mdw�d0
wnd0

w

(see SI Sec. S1.B). In other words, P Tm+n � Tm ≤T
� �

is a function of a

single variable T=ðmdw�d0
wnd0

w Þ. Then, Tm+n � Tm =
Pn +m�1

k =m τk is
dominated by the largest record age40,47 under the self-consistent

assumption that Sðn, τÞ / n�1 + ϵ1τ�y1 for τ≪ndw (regime 1) and Sðn, τÞ /
n�1 + ϵ2τ�y2 for τ≫ndw (regime 2)with yi between 0 and 1. This results in
the equation

PðTm+n � Tm ≤TÞ ’ Pðmaxðτm, . . . , τm+n�1Þ≤TÞ: ð2Þ

Adapting the argument of Ref. 48, we show for continuous scale-
invariant non-smooth processes analytically (see Sec. S1.D of SI) and
verify numerically (see Sec. S2.C of SI) that, in Eq. (2), the record ages τk

Fig. 1 | Record ages for non-Markovian randomwalks (RWs). a Sketch of a space
time trajectory of the RW represented by successive discrete steps ηt (grey arrows).
The records in the trajectory are identified by red dotted lines. The record age τn of
the RW is defined as the time between the nth and (n+1)st records. b Different
statistical mechanisms giving rise to a non-Markovian evolution: The statistics of
the RWsteps ηtmaydependon (I) the previous steps of thewalk (red arrow), (II) the
environment with which the RW interacts (green arrow, schematically represented
by the function E(t, x)), or (III) the current time or position (blue arrows). In this
article, we show that these memory effects strongly modify the record age statis-
tics, which are no longer simply given by the usual persistence exponent θ, but also
by a distinct exponent that we determine explicitly.
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are asymptotically (n≫ 1) effectively independent, which leads to

PðTm+n � Tm ≤TÞ ’
Yn+m�1

k =m

ð1� Sðk,TÞÞ : ð3Þ

First, for time scales T much smaller than the typical time Tm /
mdw required to break m records and for n≪m (regime 1), Eq. (3)
becomes

PðTm+n � Tm ≤TÞ /
T ,ndw ≪mdw

exp � const:n
m1�ϵ1Ty1

h i
: ð4Þ

Using Tm+n � Tm / mdw�d0
wnd0

w gives the exponents of regime 1 as
y1 = 1=d

0
w and ϵ1 =dw=d

0
w.

Second, for τ≫ndw (regime 2), the memory of the n broken
records no longer affects the algebraic time decay of S(n, τ), which is
thus given by the persistence exponent θ = y2. Taking m =0 in Eq. (3),
we get

PðTn ≤TÞ / exp �const:nϵ2=Tθ
h i

: ð5Þ

Using Tn / ndw leads to the exponent ϵ2 = dwθ.

Comparison with numerical simulations of non-Markovian
models
We confirm the validity of our analytical results in Fig. 2 by comparing
them to numerical simulations of a broad range of representative
RW examples, which illustrate the classes (I), (II), and (III) of non-

Markovianity discussed above. Specifically, we consider (see SI for
precise definitions and Supplementary Table 1 for a summary of their
characteristics): (I) (a) the fractional Brownian motion (fBm), a non-
Markovian Gaussian process, with stationary increments given by
hðXt � X0Þ2i= t2H , where H is the Hurst exponent; this paradigmatic
model has been used repeatedly to account for anomalous diffusion
induced by long-range correlations in viscoelastic fluids26 as well as
temporal series displaying memory effects41,42; (b) its extension to
quenched initial conditions (qfBm), for which the statistics of incre-
ments is not stationary anymore, and which describes for instance the
height fluctuations under Gaussian noise of an initially flat
interface44,45; (c) the elephant RW (eRW)49, for which the current step is
drawn uniformly from all of the previous steps performed by the RW,
and then reversed with probability β; (II) (d) The Self-Attractive Walk
(SATW), (e) Sub-Exponential Self-Repelling Walk (SESRW) and (f) True
Self-Avoiding Walk (TSAW) are prototypical examples of self-
interacting RWs50–53, for which the RW deposits a signal at each lat-
tice site it visits and then has a transition probability depending on the
number of visits to its neighbouring sites (see SI for precise rules), so
that memory emerges from the interaction of the walker with the
territory already visited; these RWs have been shown to be relevant in
the case of living cells, where it was demonstrated experimentally that
various cell types can chemically modify the extracellular matrix,
which in turn deeply impact their motility54; (III) Twomodels involving
an explicit spatial or temporal dependence of the steps: (g) the sub-
diffusive (resp. (h) the superdiffusive) Average Lévy Lorentz model
(subALL and supALL, respectively)55–57 for which the transmission
(resp. reflection) probability at every site decays algebraically with the

Fig. 2 | Universal record age distributions for non-Markovian RWs: theoretical
predictions (lines) vs numerical simulations (symbols). Simulated rescaled tail
distribution of record ages τn for different values of record number n displayed for
various representative RW models: (a) fractional Brownian motion (fBm) of Hurst
exponent H =0.25 = 1/dw = 1 − θ for n = 8, 16 and 32 (b) quenched fBm (qfBm) of
Hurst exponent H =0.25 = 1/dw and θ ≈ 1.55 for n = 5, 10 and 20 (c) elephant RW
(eRW)withβ =0.25 such thatdw = 2 andθ = 1, forn = 10, 25 and 50 (d) Self-Attractive
Walk (SATW) with β = 1, such that dw = 2 and θ = e−1/2 for n = 25, 50 and 100 (e) Sub-
Exponential Self-Repelling Walk (SESRW) with β = 1 and κ =0.5 such that dw = 5/3

and θ ≈0.3 for n = 25, 50 and 100 (f) True Self-AvoidingWalk (TSAW)with β = 1 such
thatdw = 3/2 and θ = 1/3 forn = 25, 50and 100 (g) subdiffusive Average Lévy Lorentz
(subALL) with a =0.25 such that dw = 2.75, d0

w = 2 and θ = 7/11 for n = 10, 100 and
1000 (h) superdiffusive ALL (supALL) with a =0.5 such that dw = 3/2, d0

w = 2 and
θ = 1/3 for n = 10, 100 and 1000 (i) exact rescaled tail distribution (see SI) for scaled
Brownian motion (sBm) with β =0.75 such that dw = 8/3, d0

w = 2 and θ = 3/8 for
n = 100, 1000 and 10,000. Increasing values of n are represented respectively by
blue circles, orange stars and green squares. The black dashed line represents the
algebraic decay τ−θ while the red dashed line stands for the algebraic decay τ�1=d0

w .
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distance to the origin, and (i) the scaled Brownian motion (sBm)58 for
which the jumping rate is an algebraic function of time, and which is a
paradigmatic model of subdiffusion59.

Figure 2 reveals excellent quantitative agreement between
numerical simulations and our analytical results. The data collapse of
the properly rescaled record ages tail distribution and the confirma-
tion of the two successive algebraic decays τ�1=d0

w and τ−θ show that
Eq. (1) unambiguously captures the dependence on both the number
of records n and the time τ (further confirmed by the analytical
determination of the full tail distribution in the solvable case of the
sBm, see SI). We emphasise that the very different nature of these
examples (subdiffusive and superdiffusive, aging and non-aging, cov-
ering all classes of non-Markovian RWs) shows the broad applicability
of our approach.

Discussion
We demonstrate the relevance of our results by showing that they
apply even when the hidden degrees of freedom responsible for the
non-Markovianity of the dynamics are unknown, as is the rule in real
observations.

This is illustrated by considering both trajectories involving a
variety of tracers in complex fluids (see Fig. 3c–e, which provide
experimental realisations26 of several non-Markovian RW models

discussed above) and real time series in diverse fields displaying
memory effects, for which record ages are crucial as they characterise
the occurrence of extreme events (see Fig. 3a, b and f–h).

Specifically, we consider the following data: (a) river flows32

(1/dw ≈0.14), (b) volcanic soil temperatures29,30 (1/dw ≈0.42), (c) tra-
jectories of microspheres in gels26 (1/dw ≈0.43) (d) trajectories of
vacuoles inside an amoeba26 (1/dw ≈0.67), (e) trajectories of telomeres
in a nucleus26,60 (1/dw ≈0.25), (f) pyrimidines/purines DNA RW where a
step value is given by the nucleotide type, + 1 for adenine/thymine, − 1
for cytosine/guanine34,35 (1/dw ≈0.67), (g) cumulative air
temperatures31 (1/dw ≈0.8), (h) cumulative Ethernet traffic36–38

(1/dw ≈0.8). The walk dimension dw was estimated by applying the
Detrending Moving Average (DMA) method61,62 to these data, which
removed the deterministic behaviours (see SI for details on the data-
sets’ analysis). Indeed, the characterisationof extreme events, and thus
records, requires the meticulous examination of fluctuations around
the trend, as underlined in Refs. 31,63.

We stress that we do not require any knowledge on the
microscopic details of the process to obtain the record age
statistics provided by Eq. (1). In particular, the processes are not
necessarily Gaussian and can exhibit various distributions of the
increments xt ≡ XT+t − XT (see Fig. 3), as long as they are asymptotically
scale-invariant (the sampling time of the data is much longer than the

Fig. 3 | Universal record age distributions for non-Markovian RWs: theoretical
predictions (lines) vs experimental RW realisations and real time observations
(symbols). a–h Distribution of the increment xt = Xt+T − XT at different times t
normalised by t1=dw for: (a) river discharge (t = 10, 20, and 40), (b) volcanic soil
temperature (t = 5, 10, and 20), (c) motion of microspheres in a gel (t = 2, 4, and 8),
(d) motion of vacuoles inside an amoeba (t = 10, 20, and 40), (e) motion of telo-
meres (t = 20, 40, and 80), (f) DNA RW (t = 20, 40, and 80), (g) cumulative air
temperature (t = 5, 10, and 20), and (h) Ethernet cumulative requests (t = 500, 1000,
and 2000). Increasing values of times are represented successively by blue circles,
orange stars and green squares. a0–d0 Statistics of the time to first reach the initial

value in the sub interval (blue stars) and the statistics of the records (regardless of
the number n of records, orange circles) for (a0) river discharge, (b0) volcanic soil
temperature, (c0) motion of microspheres in a gel, and (d0) motion of vacuoles
inside an amoeba. The black dashed line represents the algebraic decay τ�1 + 1=dw

while the red dashed line stands for the algebraic decay τ�1=dw . (e0–h0) Rescaled tail
distribution of record ages τn for different values of the number of records n for (e0)
motionof telomeres (n = 1, 3, and 6), (f0) DNARW (n = 1, 2, and 4), (g0) cumulative air
temperatures (n = 1, 2, and 3), and (h0) Ethernet cumulative requests (n = 1, 5, and
25). Increasing valuesofn are represented successivelyby blue circles, orange stars,
and green squares. The lines represent the algebraic decays as for (a0–d0).
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microscopic time scales involved in the process to avoid effects similar
to those observed in Ref. 64, as it is checked in Sec. S3 of SI).

Figure 3 demonstrates the quantitative agreement between var-
ious real data (see SI Supplementary Fig. 8 for additional datasets,
including examples displaying aging of the increments xt) and our
analytical predictions given by Eq. (1). The strong dependence of
record ages on the number nof records already achieved, predicted by
our analytical approach and confirmed by both numerical simulations
and real observations, is a direct manifestation of the non-Markovian
feature of the underlying RWs. These results quantitatively demon-
strate the significance of memory effects in the record ages of non-
Markovian RWs, providing the tools to better predict record-breaking
events.

Methods
Numerical simulations of non-Markovian RWs
In this section, we present briefly the models and the numerical
methods used to generate the data in Fig. 2.

(a) Fractional Brownianmotion (fBm). The fBm is a non-Markovian
Gaussian process, with stationary increments. Thus, an fBm Xt of Hurst
index H is defined by its covariance

Cov Xt ,Xt0
� �

=
1
2

t2H + t02H � jt � t0j2H
� �

: ð6Þ

The steps ηt = Xt − Xt−1 are called fractional Gaussian noise (fGn).
Nowadays, the fBm is broadly spreadand its implementations could be
found in standard packages of python or Wolfram Mathematica.

(b) Quenched fBm (qfBm). This process is an extension of fBm to
quenched initial conditions, which results in non-stationary increment
statistics. In particular, it describes the height fluctuations under
Gaussian noise of an initially flat interface. Then Xt corresponds to the
height of the interface at position x = 0, Xt = h(0, t), h(x, t) following the
Stochastic Differential Equation (SDE)

∂thðx, tÞ= � �Δð Þz=2hðx, tÞ+ ηðx, tÞ: ð7Þ

Here η(x, t) is a Gaussian noise with possible spatial correlations.
We solve numerically this SDE with a spatial discretization Δx = 1 and a
time discretization Δt = 0.1. The system is initially flat, h(x, t = 0) = 0.

(c) Elephant RW (eRW). This process is representative of interac-
tions with its own trajectory. At time t, the step ηt is drawn uniformly
among all the previous steps ηi (i < t) and is reversedwith probability β.

(d) Self-attractive walk (SATW). This model is a prototypical
example of self-interacting RWs. In the SATW model50–53, the RW at
position i jumps to a neighbouring site j = i ± 1 with probability
depending on the number of times nj it has visited site j,

pði ! jÞ=
exp �βHðnjÞ

h i

exp �βHðni�1Þ
� �

+ exp �βHðni+ 1Þ
� � , ð8Þ

where H(0) = 0, H(n >0) = 1 and β >0.
(e-f) Exponential self-repelling RW. This is another example of self-

interacting RW. In this model, the RW at position i jumps to a neigh-
bouring site j = i ± 1with probability depending on the number of times
nj it has visited site j,

pði ! jÞ=
exp �βnκ

j

h i

exp �βnκ
i�1

� �
+ exp �βnκ

i + 1

� � ð9Þ

where κ and β are two positive real numbers.
(g–h) Average Lévy Lorentz gas (ALL). We consider a RW on a 1d

latticewithposition dependent reflection or transmissionprobabilities

r(x) or t(x). In the subdiffusive model (resp. superdiffusive model), the
transmission coefficient t(x) (resp. reflection coefficient r(x)) is taken
to be proportional to ∣x∣a−1 at large distance ∣x∣ from the origin.

Data analysis
In this section we provide the method developed to determine the
walk dimension of the time series presented in Fig. 3 as well as
numerical checks of their stationarity.

(i) Walk dimension determination: In order to obtain the walk
dimension dw in a time series, we apply the Detrending Moving Aver-
age (DMA) method61,62, which consists in evaluating the typical fluc-
tuations in a window of size ℓ regardless of any bias or deterministic
trend. More precisely, for a dataset ðXtÞt =0,...,N , we consider the win-

dows of size up to ‘max, compute thewindow averages x‘
t =

1
‘

P‘�1
i =0 Xt�i,

and the typical fluctuation for a window of size ℓ,

Fð‘Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�‘max

PN
t = ‘max

ðXt � x‘tÞ
2

q
. When several trajectories are avail-

able, we consider the average fluctuation over all the trajectories (for
telomeres, vacuoles and microspheres in agarose data). If the data

behave as a RW of walk dimension dw, then Fð‘Þ / ‘1=dw . We obtain the
value of 1/dw via the DMA method to each dataset.

(ii) Check of stationarity: In order to check that the data are sta-
tionary, we compare the MSD obtained from the increments
fxt =Xt +T � XT gT ≤N=4,t in the first quarter of the data and the incre-
ments fxt =Xt +T � XT g3N=4≤T ,t in the last quarter of the data.

(iii) Record ages in datasets: Record ages are obtained by starting
the subtrajectories at values of t equally spaced at intervals at least 200
time steps long, and observing successive records occurring in the
subtrajectory. First return times are obtained by starting the sub-
trajectories at any value of time.

Data availability
The simulation data of this study are generated based on the code
deposited in a GitHub repository65 located at https://github.com/
LeoReg/RecordAges.

The data of the Hadley Centre Central England Temperature
(HadCET) project are available at https://www.metoffice.gov.uk/
hadobs/hadcet/. The data of the European Climate Assessment &
Dataset (ECA&D) project are available at https://www.ecad.eu/. The
volcanic soil temperature data are available at Ref. 30. River discharge
data are available at https://portal.grdc.bafg.de/applications/. The
GenBank database is available at https://www.ncbi.nlm.nih.gov/
genbank/. The data of traffic traces are available at http://ita.ee.lbl.
gov/html/contrib/BC.html. Experimental trajectories of fBm realisa-
tions are available upon request by the authors of Ref. 26. Experi-
mental cell migration trajectories are available upon request by the
authors of Ref. 54.

Code availability
The codes used to generate the simulation data presented in this study
as well as the code to analyse the experimental data have been
deposited in a GitHub repository located at https://github.com/
LeoReg/RecordAges.
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