Article

https://doi.org/10.1038/s41467-023-41943-x

Metal to non-metal sites of metallic sulfides switching products from CO to CH₄ for photocatalytic CO₂ reduction

Received: 18 April 2023

Accepted: 22 September 2023

Published online: 04 October 2023

Check for updates

Yao Chai^{1,4}, Yuehua Kong $\mathbb{D}^{2,4}$, Min Lin¹, Wei Lin \mathbb{D}^2 , Jinni Shen¹, Jinlin Long \mathbb{D}^1 , Rusheng Yuan¹, Wenxin Dai $\mathbb{D}^{1,3}$, Xuxu Wang \mathbb{D}^1 & Zizhong Zhang $\mathbb{D}^{1,3}$

The active center for the adsorption and activation of carbon dioxide plays a vital role in the conversion and product selectivity of photocatalytic CO₂ reduction. Here, we find multiple metal sulfides CuInSnS₄ octahedral nanocrystal with exposed (111) plane for the selectively photocatalytic CO₂ reduction to methane. Still, the product is switched to carbon monoxide on the corresponding individual metal sulfides In₂S₃, SnS₂, and Cu₂S. Unlike the common metal or defects as active sites, the non-metal sulfur atom in CulnSnS₄ is revealed to be the adsorption center for responding to the selectivity of CH₄ products. The carbon atom of CO₂ adsorbed on the electronpoor sulfur atom of CuInSnS₄ is favorable for stabilizing the intermediates and thus promotes the conversion of CO₂ to CH₄. Both the activity and selectivity of CH₄ products over the pristine CuInSnS₄ nanocrystal can be further improved by the modification of with various co-catalysts to enhance the separation of the photogenerated charge carrier. This work provides a nonmetal active site to determine the conversion and selectivity of photocatalytic CO₂ reduction.

The solar-energy-driven photocatalytic conversion of CO₂ with H₂O into hydrocarbon fuels is a significant solution for simultaneously addressing global energy demands and climate change issues¹⁻⁴. Various products of CO₂ reduction from photocatalytic multi-electron processes, including CO (two electrons), HCOOH (two electrons), HCHO (four electrons), CH₃OH (six electrons), and CH₄ (eight electrons), have been produced by a great variety of photocatalytic CO₂ reduction is highly desirable in the field of photocatalysis research. However, efficient photoreduction of CO₂ is very challenging, both in terms of chemical thermodynamics and kinetics, due to the highly stable structure of CO₂ and the involvement of multiple proton-coupled electron transfer⁹⁻¹¹. Additionally, the regulation of product selectivity in photocatalytic CO₂ conversion remains an unknown challenge.

It has been well understood for the photocatalytic process that the identification of the active centers of catalysts for the adsorption and activation of CO₂ is prerequisite for efficient CO₂ conversion and product selectivity. Constructing an active center of catalysts for the adsorption and activation of CO₂ is an efficient solution to improve CO₂ conversion efficiency and product selectivity¹²⁻¹⁴. Various metalfree photocatalysts were reported for CO₂ reduction¹⁵⁻¹⁹, typically such as covalent organic frameworks, graphitic carbon nitride, elemental phosphorus, boron nitride, and silicon carbide²⁰⁻²⁴. These metal-free photocatalysts have non-metallic sites as the adsorption and activation sites of CO₂ molecules and thus photocatalytical CO₂ reduction^{20,25-28}. However, for metal oxide or sulfide photocatalysts, many studies suggest that metal components or defects on photocatalysts play a crucial role as primary sites in the adsorption and activation of CO₂ and thus affect product selectivity²⁹. Zhou et al. reported that the S vacancy

¹State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China. ²College of Chemistry, Fuzhou University, Fuzhou, P. R. China. ³Qingyuan Innovation Laboratory, Quanzhou, P. R. China. ⁴These authors contributed equally: Yao Chai, Yuehua Kong. e-mail: z.zhang@fzu.edu.cn

or Cd vacancy CdS with single Au atom deposition for CO₂ adsorption is different³⁰. CO₂ prefers to physically adsorb on single Au atoms of Au/CdS_{1-x} and photoreduction into CO, while CO₂ is more likely to chemically bond on the Cd vacancies of Au/Cd_{1-x}S, resulting in a remarkable CO and CH₄ generation rate on Au/Cd_{1-x}S. He et al. synthesized a ZnIn₂S₄ nanosheet photocatalyst with abundant Zn vacancies³¹, where CO₂ can be efficiently adsorbed on Zn vacancies to form CO₂⁻ species and highly selective photoreduction into CO. Yu et al. designed a Cu₃SnS₄ photocatalyst with S vacancies to increase ratios of Cu (I/II) for CO₂ photoreduction³². The formed Cu (I) acts as adsorption sites for CO₂, conducive to further hydrogenation of CO intermediate into CH₄. Xie et al. showed that the defect-state CuIn₅S₈ ultrathin nanosheets have low-coordination Cu and In sites for CO2 adsorption to form highly stable Cu-C-O-In intermediates, which tend to obtain 100% CH₄ selectivity³³. Xu et al. designed a Co-Ni-P NH/BP catalyst with bimetallic sites to form a highly stable Co-O-C-Ni intermediate for the selective photoreduction of CO₂ to CH₄³⁴. However, the complex structures of defects on photocatalyst make it only a plausible correlation between defect structures and product selectivity. Some research shows that the adsorbed interaction between CO₂ and metal sites is relatively weak since the formed metal-C bonds are weaker than the highly stable C=O bonds in CO₂. This leads to the easy cleaving of metal-C bonds during the reaction process, hindering the deep reduction of CO₂ into hydrocarbons³⁰. Obviously, the non-metal sites on metal sulfide photocatalysts are very rarely considered the primary active center for the adsorption and activation of CO₂.

Here, we have successfully prepared multiple metal sulfides, including CuInSnS₄ octahedral nanocrystal and corresponding individual metal sulfides In₂S₃, SnS₂, and Cu₂S, through a simple one-step hydrothermal method. The CuInSnS₄ nanocrystal is thermodynamically favorable to activate CO₂ and leads to a switch of main products from CO to CH₄ with a yield of 6.53 μ L h⁻¹ for the visible-light-driven CO₂

reduction with H₂O vapor without the assistance of any noble metal cocatalysts. In contrast, individual metal sulfides can only produce CO. We reveal that different adsorption configurations of CO₂ on metal sulfides lead to different products in CO₂ photoreduction. The nonmetal sulfur atom in the prepared multiple metal sulfides CuInSnS₄ octahedron nanocrystal is thermodynamically favorable to activate CO₂ and leads to a switch of main products to CH₄, as compared with the common individual metal sulfides In₂S₃, SnS₂ and Cu₂S with metal center as active sites to form CO products. CO₂ is revealed to be adsorbed on the S atom center of CuInSnS₄ to form an S-C-O-In structural unit, which is more conducive to protonation and leads to the efficient photocatalytic yield of CH₄. Thus, we provide an insight into the role of non-metal center of photocatalyst in determining the conversion and selectivity of photocatalytic CO₂ reduction. Although the pristine CuInSnS₄ only exhibits a yield of CH₄ evolution of 6.53 µL h⁻¹ (corresponding to 5.83 μ mol h⁻¹ g⁻¹), the activity and selectivity of CH₄ evolution on CuInSnS₄ can be significantly improved by modifying with cocatalysts such as Pt, CoO, NiO, and Co(OH)₂. We believe that this knowledge can contribute to the development of more efficient and selective photocatalysts for CO₂ reduction in the future.

Results

Characterization of CuInSnS₄ octahedral nanocrystal

The as-prepared CulnSnS₄ nanocrystals belong to the cubic spinel structure (JCPDS No. 29-0548), as revealed by the X-ray diffraction pattern (Fig. 1a), which were prepared through a simple one-step hydrothermal reaction. The hydrothermal temperature (160 °C, 180 °C, and 200 °C) did not have any evident impact on the crystalline and purity of CulnSnS₄ (Supplementary Fig. 1). Under similar hydrothermal processes, In₂S₃ with a tetragonal crystal phase structure (JCPDS No. 25-0390), SnS₂ with a hexagonal crystal phase (JCPDS No. 23-0677), and Cu₂S with a cubic crystal phase were also prepared (JCPDS No. 02-1284)

Fig. 1 | **The characterization of crystal phase, composition, and morphology. a** XRD patterns of several metal sulfides, **b** EDS spectra of CulnSnS₄ photocatalyst, **c** a TEM image of CulnSnS₄ sample, **d** an HRTEM image, and **e** an SAED pattern of the CulnSnS₄ sample, as well as **f**-i EDS elemental mapping images.

(Supplementary Fig. 2). The cubic spinel CuInSnS₄ crystal structure shows that either In or Sn atom is coordinated with six S atoms to form an octahedron structure, while Cu atom is formed by a $[CuS_4]$ tetrahedral structural unit (Supplementary Fig. 3). For comparison, in In₂S₃ crystals, the In atom is present in $[InS_4]$ tetrahedron and $[InS_6]$ octahedron coordination (Supplementary Fig. 4). Cu and Sn atoms exist as [CuS₄] tetrahedron and [SnS₆] octahedron coordination in Cu₂S and SnS₂ crystal structure, respectively (Supplementary Figs. 5, 6). The coordination structure of each metal in CuInSnS₄ coincides with the individual Cu₂S, In₂S₃, and SnS₂. The composition of CuInSnS₄ is analyzed by energy-dispersive spectroscopy, as shown in Fig. 1b. EDS offers that the Cu, Sn, In, and S atomic ratio is ~1:1:1:4, very close to the stoichiometric value of CuInSnS₄ compounds, indicating the high purity of CulnSnS₄ nanocrystal. Meantime, the ICP-MS test results of the metal element content of the nano-single crystal CuInSnS₄ sample are presented in Table S1. The atomic ratio of Cu:In:Sn is 1.06:1.00:1.00, which closely matches the theoretical value of CuInSnS₄. Supplementary Fig. 7 shows the SEM images of In₂S₃, Cu₂S, and SnS₂ samples. In₂S₃ exhibits a morphology of microspheres self-assembled from nanosheets. Cu₂S has the basic shape of nanoparticles, while SnS₂ displays the morphology of ultrathin nanosheets. Both scanning electron microscopy and transmission electron microscopy images of nanoscale microstructure confirm that the prepared CuInSnS₄ displays an octahedral nanocrystal structure with a size of about 30 nm (Supplementary Fig. 8 and Fig. 1c). The high-resolution TEM image (Fig. 1d) shows the exposed facets of the octahedron with a lattice spacing of 0.601 nm, which is assigned to (111) facets of CuInSnS₄. Selected area electron diffraction further verifies that the CulnSnS₄ sample not only exposes the (111) crystal plane but also has a single crystal structure (Fig. 1e). All the results confirm the successful preparation of CuInSnS₄ nanocrystal with high-quality exposed (111) crystal faces. The specific surface area of the CuInSnS₄ sample is about 24.1 m² g⁻¹, while that of the prepared In_2S_3 , SnS_2 , and Cu_2S are 26.8 m²g⁻¹, 37.6 m²g⁻¹, and 3.6 m²g⁻¹, respectively (Supplementary Fig. 9). As displayed in Fig. 1f-i, the uniform distribution of Sn, S, In, and Cu elements in CuInSnS₄ octahedral nanoparticles indicates that the catalyst is of high purity.

X-ray photoelectron spectroscopy was used to compare the electronic states of the obtained sample. The $Cu2p_{3/2}$ and $Cu2p_{1/2}$ binding energies of CulnSnS₄ sample are 932.07 eV and 951.90 eV, respectively (Fig. 2a). This demonstrates that the valence state of Cu is +1 in the CulnSnS₄ sample^{35,36}, which is also confirmed by the Cu LMM spectra (Supplementary Fig. 10). Notably, the Cu2p-binding energies of the CulnSnS₄ sample is identical to that of Cu₂S. The binding energies of $In3d_{5/2}$ and $In3d_{3/2}$ in the CuInSnS₄ sample are 444.63 eV and 452.18 eV, respectively. These values indicate that the valence state of In in the CulnSnS₄ sample is +3. Compared with In₂S₃, the In3d binding energy of CuInSnS₄ uniformly shifts toward the lower binding energy, as shown in Fig. 2b. This is attributed to the difference in the In coordinated environment between CuInSnS₄ and In₂S₃ because the partial In atom in In₂S₃ exists in the state of [InS₄] tetrahedron³⁷. In the CuInSnS₄ sample, the $Sn3d_{5/2}$ and $Sn3d_{3/2}$ doublets are centered respectively at 486.30 eV and 494.70 eV, assigning to Sn⁴⁺ valence state. Notably, the binding energy of Sn in CuInSnS₄ is slightly lower than that in the parent SnS₂ (Fig. 2c). The possible reason is that the Sn atoms are in different crystal structures³⁸. Furthermore, the binding energies of $S2p_{3/2}$ and $S2p_{1/2}$ in the CuInSnS₄ sample are measured to be 161.45 eV and 162.70 eV, respectively, which corresponds to the S²⁻ valence state. In the S2p XPS spectra, the binding energies of S atoms increase in the order of $Cu_2S < In_2S_3 < SnS_2 < CuInSnS_4$, as shown in Fig. 2d. S atoms in CuInSnS₄ have the highest binding energy. This is interpreted by the fact that the average bond length (0.253 nm) between sulfur and metal atoms in CulnSnS₄ is slightly larger than in monometallic sulfide^{4,37,39}. Moreover, the S atom in CulnSnS₄ has a higher binding energy than that of monometallic sulfides, indicating an electron-deficient state of the S atoms in CuInSnS₄ compared to monometallic sulfides. This electrondeficient state of the S atom in CuInSnS₄ can serve as the reaction site for CO₂ adsorption and activation.

Photocatalytic conversion of CO₂ and H₂O vapor

The photocatalytic CO_2 reduction performance of the samples was evaluated in a customized sealed quartz glass vessel, in a gas-solid reaction system, with a small amount of water vapor in a CO_2

Fig. 2 | Characterization of electronic structure. High-resolution XPS spectra of metal sulfides: a Cu2p, b In3d, c Sn3d, and d S2p.

https://doi.org/10.1038/s41467-023-41943-x

atmosphere, under the irradiation of a 300 W Xe lamp with a 420 nm cutoff wavelength filter (Supplementary Fig. 11). It is important to note that this reaction is a gas-solid phase reaction. The system contains only 50 µL of water, which evaporates into water vapor upon injection into the reactor. As a result, only gaseous products such as CH₄, CO, and a small amount of H₂ are detected, while liquid products (such as CH₃OH, HCHO, HCOOH, etc.) are not detected. Figure 3a shows the corresponding photocatalytic CO₂ performance of the samples under visible-light irradiation. For single metal sulfides In₂S₃, Cu₂S, and SnS₂, CO is the main product with a yield rate of less than $3.2 \,\mu\text{L}\,\text{h}^{-1}$ from photocatalytic CO₂ reduction, while the multi-electron transfer product CH_4 is hardly formed. Whereas, the CuInSnS₄ sample shows excellent photocatalytic CO₂ reduction performance, yielding CH₄ as the main product besides a slight amount of CO and H₂ evolution. The hydrothermal temperature has no obvious impact on the CO2 reduction performance of CuInSnS₄ (Supplementary Fig. 12). The rate of CH₄ generation reaches 6.53 μ L h⁻¹ for the CuInSnS₄ sample. The selectivity of CH4 is calculated to be 67.3% based on the contents of carboncontaining products. The significant difference in the product selectivity demonstrates the different mechanisms of CO₂ reduction or the different active sites between CuInSnS₄ and single metal sulfides. The controlled blank experiments under other conditions were investigated to confirm the occurrence of CO₂ reduction on CuInSnS₄, as shown in Supplementary Fig. 13. The CH₄ product is not detected without either light irradiation or catalyst, proving that CO₂ reduction is a light-induced catalytic reaction on CuInSnS₄. Meanwhile, without adding H₂O into the reaction system, only a very few products are detected, indicating that H₂O is also one of the essential reactants involved in the reaction. When N₂ is used instead of CO₂ for the reaction, only a small amount of CO is detected, directly proving that the source of CO and CH₄ products is CO₂. The presence of small amounts of CO may be attributed to contamination from ambient air, reactors, and equipment, as we can see that small CO products is also

detected without CuInSnS₄ photocatalysts⁴⁰. Figure 3b shows the stability of the CuInSnS₄ sample for photocatalytic reduction of CO₂. It is clear that the CuInSnS₄ sample presents good performance without noticeable activity decrement after three-cycle photocatalytic CO₂ reduction tests of a total of 27 h (9 h visible-light irradiation for each cvcle). Neither crystal structural transformation nor absorption behavior changes are found in the XRD pattern and ultraviolet-visible diffuse reflectance spectra for the CuInSnS₄ sample after photocatalytic reaction (Supplementary Fig. 14). These results suggest that CuInSnS₄ possesses good stability during photocatalytic CO₂ reduction. Moreover, the XPS of the catalyst after the reaction shows that a weak photocorrosion phenomenon occurs in CuInSnS₄^{41,42} (Supplementary Fig. 15). Specifically, the photogenerated holes or the active oxygen species oxidize the surface S^{2-} of the catalyst to SO_3^{2-} . The peaks with binding energies in the range of 168.26-170.26 eV are assigned to the XPS peaks of SO₃²⁻ species (Supplementary Fig. 16). The photocatalytic performance of CuInSnS₄ sample is evaluated under different monochromatic light wavelengths in Fig. 3c. It is observed that as the wavelength of the incident light increases, the photocatalytic activity significantly decreases. However, the CuInSnS₄ nano-single crystal photocatalyst demonstrates a CH₄ generation rate of 0.69 µL h⁻¹ and CO generation rate of $0.22 \,\mu\text{L}\,\text{h}^{-1}$ under the irradiation of 525 nm monochromatic light, which is surprising. The different monochromatic light tests indicate that CulnSnS₄ is an exceptional catalyst for CO₂ photoreduction under visible light. The ¹³CO₂ isotope experiment further validates that CH₄ product is generated from the photoreduction of CO_2 molecules, where only $^{13}\text{CH}_4$ is detected when the reaction is carried out in a ¹³CO₂ atmosphere, as shown in Fig. 3d. Meanwhile, the ¹³CO₂ isotope also confirms that the generated CO was indeed a product of CO₂ photoreduction. When the reaction is conducted in a ${}^{13}CO_2$ atmosphere, the weak peak of ${}^{13}CO$ with a m/z = 29 was detected due to the low activity of CuInSnS₄ for CO evolution (Supplementary Fig. 17a). It is noteworthy that the mass spectrum peak

Fig. 3 | **Photocatalytic conversion performance of CO₂ and H₂O. a** The production rate of CH₄, CO, and H₂ in various photocatalysts under visible-light conditions. **b** Photocatalytic CO₂ reduction stability test of CulnSnS₄ sample. **c** Photocatalytic

performance of CuInSnS₄ sample under monochromatic light irradiation. **d** GC-MS spectra of ${}^{13}CH_4$ generated from ${}^{13}CO_2$.

at m/z = 28 corresponds to the N₂ molecule from air interference, as evident from the distinct N₂ peaks in chromatogram. Additionally, the ¹²CO₂ experiment further evidences that the generated CO results from the photoreduction of CO₂ molecules with no peaks at m/z = 29 (Supplementary Fig. 17b).

Although the pristine CuInSnS₄ only exhibits a yield of CH₄ evolution of $6.53 \,\mu\text{L}\,\text{h}^{-1}$ (corresponding to $5.83 \,\mu\text{mol}\,\text{h}^{-1}\,\text{g}^{-1}$) with a selectivity of 67.3%, the activity and selectivity of CH₄ evolution on CulnSnS₄ can be improved by coupling with semiconductor photocatalysts or noble metals as cocatalysts. We evaluated the photocatalytic performance of CuInSnS₄ modified with Pt, CoO, NiO, $Co(OH)_2$, and dual co-catalysts Pt and $Co(OH)_2$, for the CO₂ reduction reaction. The composition and chemical states of Pt, CoO, NiO, Co(OH)₂ cocatalysts are well verified by XRD patterns and XPS spectra (Supplementary Figs. 18-23). Table S2 lists a comparison of the photoreduction activity of CuInSnS₄ and co-catalyst-modified CuInSnS₄ photocatalysts, along with the common metal sulfide systems currently used for CO₂ photoreduction. Clearly, both the yield and selectivity of CH₄ evolution on CuInSnS₄ can be significantly improved by modifying with cocatalysts such as Pt, CoO, NiO, and Co(OH)₂. The activity of CH₄ evolution on the modified CulnSnS₄ photocatalysts surpasses the majority of the reported photocatalysts for CO2 reduction up to now. Particularly, the incorporation of Co(OH)₂ as a cocatalyst significantly enhances the CO₂ photoreduction activity of the CuInSnS₄ photocatalyst. As the Co(OH)₂ loading increases, the photoreduction activity of CO₂ exhibits a characteristic volcanic pattern. With 5%Co(OH)₂ loading onto CuInSnS₄, the production rates for CH₄ and CO, respectively, reach 145.45 and 32.32 µmol h⁻¹g⁻¹, corresponding to a CH₄ selectivity of 81.8%. The generation rates of CH₄ and CO are 25 times and 13 times that of pure CulnSnS₄, respectively. Furthermore, when CuInSnS₄ is modified with a dual co-catalyst of 5% Co(OH)₂ as an oxidation co-catalyst and 1%Pt as a reduction co-catalyst, CH₄ production reaches 195.60 μ mol h⁻¹g⁻¹, along with 22.00 µmol h⁻¹ g⁻¹ of CO, and a CH₄ selectivity of 89.9%. Photoelectrochemical characterization was employed to assess the separation efficiency of photogenerated carriers on the modified CulnSnS₄, as shown in Supplementary Fig. 24. Clearly, the CuInSnS₄ samples modified with the co-catalyst exhibit a higher photocurrent signal and a smaller electrochemical impedance radius as compared to the parent CuInSnS₄ sample. The photocurrent increases sequentially in the order CulnSnS₄ < 5%Co(OH)₂/CulnSnS₄ \approx 1%Pt/CulnSnS₄ < 5%Co(OH)₂/ of CuInSnS₄/1%Pt, indicating that the modification of the dual co-catalyst improves photoelectric carrier separation and migration compared to the single co-catalyst. The NiO and CoO cocatalysts also improve the separation efficiency and migration rate of the photogenerated carriers of CuInSnS₄ photocatalyst. The decreasing order of electrochemical resistance radius is CuInSnS₄ > 1%Pt/CuInSnS₄ $\approx 5\%$ Co(OH)₂/ $CuInSnS_4 > 5\%Co(OH)_2/CuInSnS_4/1\%Pt$, consistent with the photocatalytic activity trend. Additionally, both 10%NiO/CuInSnS₄ and 10% CoO/CuInSnS₄ exhibit smaller electrochemical resistance radii than pure CuInSnS₄, confirming that the cocatalyst promotes the photogenerated charge separation and migration. Therefore, the modification of CuInSnS₄ with various cocatalysts to enhance the separation of photogenerated carriers is related to the activity and selectivity of CH4 products. The apparent quantum yield is calculated by measuring the yield of CH4 and CO in 5%Co(OH)2/CuInSnS4/1%Pt under monochromatic light at 400 nm. Supplementary Fig. 25 shows the spectrum and intensity of monochromatic light at 400 nm. Under 400 nm monochromatic light irradiation, the apparent quantum efficiencies for CH4 and CO are 0.16% and 0.01%, respectively. Based on the above analysis, we believe that CuInSnS₄ nano-single crystal photocatalysts through further optimization design of the different contents and types of cocatalyst modification can be more efficient and selective for CO₂ reduction in the future.

Energy band and photoelectrochemical characterization

The band energy potential is a key determinant of the driving force of redox reactions. Therefore, we have studied the band structure of the catalyst through UV-vis DRS and XPS valence band spectroscopy. As shown in Fig. 4a and Supplementary Fig. 26, the optical absorption band edge of CuInSnS₄ is calculated to be 787.5 nm, which corresponds to a band gap energy of 1.57 eV. For comparison, the absorption band edges of single metal sulfide Cu₂S, SnS₂, and In₂S₃ are 747.0 nm, 552.7 nm, and 641.6 nm, corresponding to the band gap of 1.66 eV, 2.24 eV, and 1.93 eV, respectively. Moreover, the valence band potential of CuInSnS₄ is determined to be 0.50 V from the valence band XPS spectra (Supplementary Fig. 27), while the Cu₂S, SnS₂, and In₂S₃ possess valence band potentials of 1.02 V, 1.70 V, and 1.93 V, respectively. By using the formula $E_{CB} = E_g - E_{VB}$, we have determined that the conduction band potentials of CuInSnS₄, Cu₂S, SnS₂, and In₂S₃ are -1.15 V, -1.10 V, -0.54 V, and -0.55 V, respectively. Based on the optical band gaps, we have obtained the electronic band energies relative to a normal hydrogen electrode (Fig. 4b), indicating that both CuInSnS₄ and single metal sulfides have the ability to reduce CO_2 to CH₄ and CO. Notably, CuInSnS₄ exhibits the highest reduction potential for the photogenerated electrons to reduce CO₂. Additionally, CuInSnS₄ shows a significantly increased photocurrent density (0.014 mA cm⁻²) compared to the single metal sulfide under visiblelight irradiation (Fig. 4c), indicating a more efficient separation of the photoinduced charge in multi-metal sulfides. The lower interface resistance in the corresponding electrochemical impedance spectra (Fig. 4d) confirms the rapid transfer of photogenerated electrons in CuInSnS₄. The efficient separation efficiency and migration rate of photogenerated carriers make polymetallic sulfides exhibit higher photocatalytic CO₂ reduction performance compared to monometallic sulfides. However, the higher migration and separation efficiency of charge carriers in CuInSnS₄ alone is not sufficient to explain the substantial difference in the product selectivity between CuInSnS₄ and single metal sulfides.

The in situ CO₂ adsorption FT-IR spectra and mechanism

To understand the CO₂ reduction process over CuInSnS₄ and single metal sulfides, in situ Fourier-transform infrared spectroscopy is used to compare the reaction intermediates on the catalyst surface. No macroscopic infrared absorption peaks for intermediates are found on Cu₂S or SnS₂, even under light irradiation, possibly due to their weak chemical interaction with CO₂ (Supplementary Fig. 28a, b). However, In₂S₃ shows a significant activation effect on the CO₂ adsorbed on the surface under light irradiation (Fig. 5a). Notably, CO₂ can form chemical adsorption with In₂S₃ even under dark conditions, as indicated by the infrared peak at 1150 cm⁻¹, which can be considered an O-S stretching vibration⁴³, suggesting that the oxygen atom of CO₂ is bonded to the sulfur atom of In₂S₃. Upon light irradiation, some infrared peaks of the produced intermediates on the catalyst surface are observed. The infrared peak at 1225 cm⁻¹ is attributed to the vibration of bidentate bicarbonate⁴⁴, while the infrared peak at 1412 cm⁻¹ is attributed to the vibration of monodentate bicarbonate⁴⁵. Most importantly, the infrared peak at 1610 cm⁻¹ is attributed to the *COOH group, which is generally regarded as the crucial intermediate for CO_2 reduction to CO^{46} . Surprisingly, the polymetallic sulfide CuInSnS₄ exhibits strong chemisorption of CO₂ and strong physisorption of H₂O (Fig. 5b). The prominent infrared peak observed at 1627 cm⁻¹ is attributed to the physical adsorption of H₂O. However, In₂S₃ does not exhibit a noticeable infrared adsorption peak of H₂O at 1627 cm⁻¹. This is because In₂S₃ has a lower affinity towards water adsorption than CuInSnS₄, as indicated by the high contact angle on In₂S₃ surface (Supplementary Fig. 29). Moreover, a prominent infrared peak at 1117 cm⁻¹ assigned to C-S stretching vibration is observed upon the CO₂ adsorption on CuInSnS₄⁴⁷⁻⁴⁹. The CO₂ adsorption and

Fig. 4 | **Characterization of energy bands and optoelectronic properties. a** UVvis absorption spectrum of various metal sulfides. **b** The optical band gap energy (E_g) of the corresponding CulnSnS₄ and various single metal sulfides.

c Photocurrent response and **d** electrochemical impedance spectroscopy of the asprepared samples.

Fig. 5 | In situ CO₂ adsorption FT-IR spectra and differential charge density map as well as free energy diagrams of CO₂ photoreduction to CH₄. In situ FT-IR spectra of CO₂ adsorbed on a ln_2S_3 and b CulnSnS₄. CO₂ adsorption configuration

and differential charge density map of **c** In_2S_3 and **d** $CuSnInS_4$ photocatalysts. In the differential charge density map, the yellow and blue regions indicate electron accumulation and depletion, respectively.

activation are significantly improved on CulnSnS₄ compared to ln₂S₃. Furthermore, the adsorption state of CO₂ on CulnSnS₄ is different from that on ln₂S₃, as the carbon atom of CO₂ is bonded to the sulfur atom of CulnSnS₄. Under light conditions, CulnSnS₄ produces specific CO₂-activated intermediates, as indicated by the infrared peaks at 1225 cm⁻¹ and 1260 cm⁻¹, attributed to the vibration of bidentate bicarbonate and bidentate carbonate^{50,51}, respectively. Additionally, the infrared peaks at 1100 cm⁻¹ and 1160 cm⁻¹ are attributed to the absorption peaks of *CHO and *CH₃O, which are intermediates for the yield of CH₄^{52,53}. Therefore, either the CO₂ adsorption state in darkness or the produced intermediates under light irradiation show that the sites for CO₂ adsorption and the CO₂ reduction approach differ between single-metal sulfide ln₂S₃ and multi-metal sulfide CulnSnS₄.

It has been demonstrated that sulfur defect sites in multiple metal sulfides acted as an active center for the selective photoreduction of CO₂ to CH₄. However, CuInSnS₄ nano-single crystal shows no significant sulfur defect signals compared to the strong defect signals in SnS₂ and In₂S₃, as shown in Supplementary Fig. 30. This indicates that the selectivity of CH₄ products on CuInSnS₄ is not related to sulfur defects. The mechanism of selective photocatalytic CO2 reduction on CulnSnS₄ and In₂S₃ photocatalysts is further theoretically studied. Firstly, we investigated the adsorption behavior of CO₂ on the surfaces of In₂S₃ and CuInSnS₄. The (0 0 1) crystal plane of the In₂S₃ sample and the (1 1 1) crystal plane of the CuInSnS₄ sample were selected as models, and all atoms on the crystal planes were considered as potential sites for CO₂ adsorption activation (Supplementary Figs. 31 and 32). Based on CO₂ adsorption energy, the optimal adsorption models of CO₂ on In₂S₃ and CuInSnS₄ photocatalyst surfaces are optimized (Supplementary Figs. 33 and 34). Figure 5c, d depict schematic diagrams of CO₂ stable adsorption configurations and the charge density difference of CO₂ on In₂S₃ and CuInSnS₄, respectively. The stable CO₂ adsorption configuration on In_2S_3 is the C atom of CO₂ bonded to In atom with a bond length of 2.27 Å, while the O atom of the CO_2 molecule is bonded with the S atom with a bond length of 1.70 Å. The CO₂ adsorption model for the polymetallic sulfide CuInSnS₄ is the opposite. The unique C-S bond with a bond length of 1.90 Å is formed between the C atom of CO₂ and the surface S atom, and one O atom of CO_2 is bonded with In atom with a bond length of 2.23 Å. The various adsorption configurations of CO₂ on In₂S₃ and CuInSnS₄ surfaces are attributed to the coordination environment and charge number of the surface S atoms. The surface S atom of In₂S₃ is an electron-rich site with [SIn₃] coordination structure, while the S atom on CuInSnS₄ is an electron-poor center with [SInSnCu] coordination structure (Supplementary Fig. 35 and Table S1). Different adsorption configurations may be the key to determining the direction of electron transfer and thus the selectivity of CO₂ reduction on CuInSnS₄ and In₂S₃. Adsorption of CO_2 on the In_2S_3 (0 0 1) crystal plane leads to inconsistent changes in two C=O lengths. The length of the C-O² bond is 1.43 Å, equal to the ordinary C-O (1.43 Å) single bond, while the length of C-O¹ is shortened to 1.19 Å, close to the length of C-O (1.12 Å) in a CO molecule. This asymmetric activation is more likely to cause the rupture of $C-O^2$, thereby preferentially producing CO on In₂S₃. In the case of the CuInSnS₄ (111) crystal plane, both C-O bonds are similar in length, measuring 1.26 ± 0.02 Å. They are longer than the C-O bond (1.16 Å) in a free CO₂ molecule, indicating that the bond energy of two C=O bonds of the activated CO₂ is simultaneously weakened. The calculation of the charge density difference reveals the difference in electronic structure and electron flow resulting from the interaction of CO₂ with the surface atoms of In₂S₃ and CuInSnS₄. On the In₂S₃ surface, there is extensive charge depletion for the C-O² and S-O² bonds, which implies that these chemical bonds are weakened. In contrast, CO₂ exhibits a wide charge accumulation region on CuInSnS₄, leading to the formation of a strong C-S and In-O chemical bond. This strong interaction is beneficial for the firm adsorption of CO₂ on the CuInSnS₄ surface, promoting the further deep reduction reaction. The Bader charges analysis further confirms that there is more charge transfer between the CuInSnS₄ surface and CO₂ molecules adsorbed on it. The surface of In₂S₃ and CuInSnS₄ loses 0.28e and 0.32e, respectively, after CO₂ adsorption (Table S3).

The stable configuration of CO_2 adsorption on $CuInSnS_4$ determines its excellent CO_2 photoreduction activity and selectivity. Therefore, DFT calculations were further carried out to study the conversion pathway of CO_2 on the CuInSnS₄ photocatalyst surface, as shown in Fig. 6. In Fig. 6a, the adsorption configuration of CuInSnS₄ is shown for each intermediate step, from CO_2 adsorption to CH₄ generation. The C atoms of various intermediates, such as CO_2^* , COOH*,

Reaction Coordinates

Fig. 6 | DFT calculations of the CO₂ conversion pathway. a Calculated adsorption configuration of CO₂ and reactive intermediates on CuSnlnS₄. b Gibbs free energy diagrams for CO₂ reduction to CH₄ on CuSnlnS₄.

CHO*, CH₂O*, and CH₃*, remain in a stable bond to the electrondeficient S atoms of the CuInSnS₄ nano-single crystal (111) plane. With the addition of protons and electrons, the removal of the H₂O molecule results in the breaking of the chemical bond between O atoms of intermediates and In atoms on CuInSnS₄. Moreover, unlike most metal sulfide photocatalysts, the hydrogenation of CO₂ adsorbed on the CuInSnS₄ surface to COOH* is an easy step, requiring only a potential energy barrier of 0.075 eV³³, as shown in Fig. 6b. This is attributed to the fact that the electrons are localized on the O² atom of CO₂ molecules in the S-C-O-In adsorption configuration of CO₂ on the CuInSnS₄ surface to facilitate the addition of protons, thus lowering the formation energy of COOH^{*} intermediates. However, converting COOH^{*} to CO is an endothermic reaction that must overcome an energy barrier of 0.46 eV. On the other hand, the continuous hydrogenation of COOH* intermediates to produce HCOOH* is an exothermic reaction, promoting the hydrogenation of CO₂. The formation of H₂CO* intermediates is the rate-limiting step for further hydrogenation processes, but the hydrogenation of H₂CO* to H₃CO* and finally to CH₄ is thermodynamically spontaneous. Therefore, CuInSnS₄ can achieve high selectivity for CH₄ products. Additionally, the adsorption energies of each intermediate product can explain the high CH₄ selectivity. Supplementary Fig. 36 shows that the adsorption energies of CH₄, CH₃OH, and HCOOH on the CuInSnS₄ surface are -0.17, -0.61, and -0.67 eV, respectively, with CH₄ having the highest adsorption energy. This indicates that CH₄ products are most easily desorbed from the CulnSnS₄ surface, which is one of the reasons why the CulnSnS₄ photocatalyst has high selectivity for the photoreduction of CO₂ into CH₄.

The photoreduction mechanism of CO_2 on the CuSnInS₄ surface is proposed in Fig. 7. The first step involves CO_2 adsorbing on the catalyst surface to form the unique S-C-O-In structural unit. This process weakens the C=O double bond in the CO_2 molecule while non-metallic S atoms serve as adsorption sites, ensuring a strong bond to the C atom of CO_2 . This benefits the continuous reduction of CO_2 molecules into COOH*, HCO*, H₃CO* intermediates, and ultimately into CH₄ on the catalyst surface through the assistance of photogenerated electrons and protons. Lastly, the low adsorption energy of CH₄ on the catalyst surface facilitates its quick release, completing the full photocatalytic cycle reaction.

In summary, a $CuSnInS_4$ nano-single-crystal photocatalyst with exposed (1 1 1) facets is successfully prepared by a simple one-step

Fig. 7 | **CO₂ photoreduction pathway.** Proposed photocatalytic mechanism for CO₂ reduction on the CulnSnS₄. The backgroup crystal structure was created by VESTA program⁵⁶.

hydrothermal reaction. Under visible-light irradiation, the CuSnInS₄ nano-single crystal photocatalyzes the conversion of CO₂ and H₂O into main products of CH₄ with a generation rate of $6.53 \,\mu\text{L}\,\text{h}^{-1}$, significantly higher than that of single metal sulfides (In₂S₃, Cu₂S, and SnS_2). The electron-poor center sulfur atom on the CuSnInS₄ (111) crystal plane acts as the site for CO₂ adsorption and activation, which leads to the activation of the two symmetrical C=O double bonds of CO₂ molecule to form a stable S-C-O-In transition state. This induces CH₄ generation via the conversion route of $COOH^* \rightarrow HCOOH^* \rightarrow H_2CO^* \rightarrow H_3CO^* \rightarrow CH_4^*$. However, the asymmetric activation of CO₂ by monometallic sulfides is more likely to result in the cleavage of individual C-O bonds in the CO₂ molecule, leading to the preferential photoreduction of CO₂ to CO. This work provides a distinctive understanding of catalysts for CO₂ adsorption and activation for the CO₂ selective conversion to help the conversion of CO₂ resources into high-value-added products.

Methods

Preparation of CuInSnS₄ nanocrystal

A simple one-step hydrothermal method was used to synthesize CuInSnS₄ nanocrystal photocatalyst with the cubic crystal structure. The detailed operation process is as follows. Firstly, 1 mmol of CuCl, 1 mmol of SnCl₄·5H₂O, and 1 mmol of InCl₃·4H₂O were added to 40 mL of deionized water to form a solution under vigorous stirring. Then, 5 mmol of TAA was dissolved in the above-mixed solution and stirred at room temperature for 30 min. Finally, the resulting mixed solution was transferred to a 50 mL Teflon-lined autoclave and sealed into a stainless steel tank for hydrothermal reaction. The hydrothermal temperature is controlled at 160, 180, and 200 °C for 24 hours. After the reaction, the product was collected and washed with deionized water, and dried under vacuum at 60 °C. The obtained samples were labeled CuInSnS₄ (160 °C), CuInSnS₄ (180 °C), and CuInSnS₄ (200 °C) according to the reaction temperature. The detailed preparation processes of CuInSnS₄ modified Pt, CoO, NiO, and Co(OH)₂ cocatalysts can be seen in supplementary information.

Characterization

X-ray diffractometer (D8 Advance, Bruker) was used to analyze the crystal structure of the catalyst. The XRD test range is 10°-80°, and the scan rate is 10° min⁻¹. Scanning electron microscopy (su8010, Hitachi) was used to observe the surface morphology of the catalyst. The element composition and ratio of the sample are detected by EDS. The apparent morphology and high-resolution TEM image of the catalyst were tested by transmission electron microscope (TEM, TECNAI G2F20, FEI Company). At the same time, SAED and element mapping images of the catalyst were obtained in the TEM measurement mode. A UV-VIS-NIR Spectrophotometer (Cary 500) was used to obtain the catalyst UV-VIS-NIR DRS, in which BaSO₄ was used as a standard sample for 100% light transmission. The Micromeritics 3020 M physical adsorption instrument was used to obtain the nitrogen adsorption and desorption curves of different catalysts. The specific surface area of each catalyst was calculated from the type of nitrogen adsorption and desorption curves. The catalyst and dried potassium bromide were evenly ground, and 20 mg was weighed and pressed into slices, then placed in a quartz infrared tube for a carbon dioxide adsorption infrared test. In situ infrared spectra measurements were performed using a Fouriertransform infrared spectrometer (Nicolet iS50 FT-IR Spectrometer) equipped with a mercury cadmium telluride detector (Supplementary Fig. 37). In situ infrared spectra were recorded by averaging 32 scans at a resolution of 4 cm⁻¹. To initiate the experiment, the catalyst was placed in a 250 mL quartz tube and compacted into a film. The tube was then subjected to vacuum treatment for 60 min. Subsequently, high-purity CO₂ gas was introduced, and the quartz tube was sealed. A liquid sampler was used to inject 60 µL of deionized water into the sealed quartz tube. The tube was heated with a hot blower to vaporize the

deionized water. The quartz tube was positioned in the FT-IR spectrometer, ensuring that the incident light of the infrared spectrometer was perpendicular to the sample surface. A xenon lamp visible-light source was introduced to directly illuminate the sample surface. Infrared spectra were recorded after pretreating the catalyst in a vacuum, introducing CO₂ gas, and vaporizing deionized water, respectively. After the introduction of light, infrared spectra were recorded every 5 min. Gas chromatography-mass spectrometry (Agilent 7890B, Agilent 5977B MSD) was used to analyze ¹³CH₄ and ¹³CO. Electron paramagnetic resonance spectroscopic measurements were performed at room temperature using a Bruker A300 EPR spectrometer.

Photocatalytic performance

300 W xenon lamp (Microsolar 300, Beijing Perfectlight Technology Co., Ltd.) was equipped with a 420 nm cutoff wavelength filter as a light source that simulates visible light for photocatalytic CO₂ reduction tests. Firstly, 50 mg of catalyst was dispersed in 5 mL of deionized water and sonicated for 10 min. Then the catalyst was dropped into a watch glass with a diameter of 3 cm and dried at 80 °C. Subsequently, the dried catalyst was placed in a quartz reactor with a volume of ~250 cm³, and then high-purity CO₂ gas (99.999%) was introduced to replace all the air. The flow rate of carbon dioxide gas was ~100 mL/min and lasted for 1 h. Finally, 50 µL deionized water was injected into the quartz reactor from the rubber stopper through a gas chromatography liquid syringe (maximum range, 50 µL), and the reactor was heated with a hair dryer to evaporate the water into water vapor. As a result, water is present in the form of water vapor throughout the reaction. The reactor was placed under a xenon lamp for photocatalytic reaction, and the current of the xenon lamp was 16 A. After 1 h of illumination, 0.5 mL of gas was extracted from the reactor with a 1 mL gas chromatograph gas syringe and injected into the gas chromatograph for product analysis and detection. Among them, H₂, O₂, and N₂ are detected by a thermal conductivity detector. CH₄ was detected by the flame ionization detector. CO passes through the flame ionization detector after being transformed by the nickel reformer. The product was qualitatively and quantitatively analyzed by gas chromatography retention time and appearance standard curve method.

Theoretical calculations

The density functional theory calculations were performed using the VASP code with the projected augmented wave method⁵⁴. Generalized gradient approximation in the scheme of Perdew-Bueke-Ernzerhof was used for the exchange-correlation functional⁵⁴. The PBEsol exchange-correlation function s⁵⁴. The PBEsol exchange-correlation function was adopted in the optimization calculations. Grimme's DFT-D3 scheme was used to describe the long-range vdW interactions⁵⁴. The cutoff energy of the basis function was 420 eV. For the CuSnInS₄ (1 1) crystal plane, a $2 \times 2 \times 1$ supercell with a four-layer slab was constructed, and only the top two layers were allowed to relax. A vacuum region of 12 Å was set above the surface for periodic boundary conditions, and dipole correction was also applied. Gamma-centered $1 \times 1 \times 1$ grid k-points were used for the interface. Geometry relaxation was performed until the energy, and atomic forces converged to be smaller than 10^{-5} eV and 0.03 eV/Å. Charge transfers were calculated using the Bader charge analysis^{54,55}.

The free energy of each reaction intermediate was determined by: G = E + ZPE-TS. The electronic energy was directly obtained from DFT calculations. The zero-point energy and entropy correction (TS, T = 298.15 K) were computed from vibration analysis according to standard methods. The adsorption-free energy of the adsorbates can be calculated using: Δ Gads = Δ Eads + Δ ZPE-T Δ S, where Δ Eads is the adsorption energy of the adsorbates, and Δ ZPE and Δ S are the difference between ZPE and S, respectively. After the adsorption-free energies of the adsorbates are obtained, the reaction-free energies of CO₂ reduction reaction elementary steps can be determined correspondingly by using the computational hydrogen electrode model⁴⁰.

Data availability

The authors declare that the data supporting the findings of this study are available in the paper and its supplementary information files. Source data are provided with this paper.

References

- Zhang, Q. et al. Designing covalent organic frameworks with Co-O₄ atomic sites for efficient CO₂ photoreduction. *Nat. Commun.* 14, 1–11 (2023).
- Xu, R. et al. Tandem photocatalysis of CO₂ to C₂H₄ via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. **145**, 8261–8270 (2023).
- Shen, Y. et al. Room-temperature photosynthesis of propane from CO₂ with Cu single atoms on vacancy-rich TiO₂. *Nat. Commun.* 14, 1–9 (2023).
- 4. Chai, Y. et al. Distortion of the coordination structure and high symmetry of the crystal structure in In_4SnS_8 microflowers for enhancing visible-light photocatalytic CO₂ reduction. ACS Catal. **11**, 11029–11039 (2021).
- Shi, X. et al. Highly selective photocatalytic CO₂ methanation with water vapor on single-atom platinum-decorated defective carbon nitride. *Angew. Chem. Int. Ed.* 61, e2022030 (2022).
- Park, H. R., Pawar, A. U., Pal, U., Zhang, T. & Kang, Y. S. Enhanced solar photoreduction of CO₂ to liquid fuel over rGO grafted NiO-CeO₂ heterostructure nanocomposite. *Nano Energy* **79**, 105483 (2021).
- Kamada, K. et al. Photocatalytic CO₂ reduction using a robust multifunctional iridium complex toward the selective formation of formic acid. J. Am. Chem. Soc. **142**, 10261–10266 (2020).
- Ding, J. et al. Core-shell covalently linked graphitic carbon nitride-melamine-resorcinol-formaldehyde microsphere polymers for efficient photocatalytic CO₂ reduction to methanol. *J. Am. Chem.* Soc. **144**, 9576–9585 (2022).
- Hao, Y. C. et al. Metal-organic framework membranes with singleatomic centers for photocatalytic CO₂ and O₂ reduction. *Nat. Commun.* 12, 1–11 (2021).
- Xia, Y. et al. Highly selective CO₂ capture and its direct photochemical conversion on ordered 2D/1D heterojunctions. *Joule* 3, 2792–2805 (2019).
- Zhu, J. et al. Asymmetric triple-atom sites confined in ternary oxideenabling selective CO₂ photothermal reduction to acetate. J. Am. Chem. Soc. 143, 18233–18241 (2021).
- Liu, Y. et al. Improving CO₂ photoconversion with ionic liquid and Co single atoms. *Nat. Commun.* 14, 1–11 (2023).
- Tan, T. H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. *Nat. Catal.* 3, 1034–1043 (2022).
- 14. Yang, S. et al. Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photo-catalytic CO₂ Reduction. *Adv. Funct. Mater.* **32**, 2110694 (2022).
- Nguyen, H. L. & Alzamly, A. Covalent organic frameworks as emerging platforms for CO₂ photoreduction. ACS Catal. 11, 9809–9824 (2021).
- Guo, R. T., Zhang, Z. R., Xia, C., Li, C. F. & Pan, W. G. Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO₂ to CH₄. *Nanoscale* **15**, 8548–8577 (2023).
- 17. Zhai, R. et al. A review of phosphorus structures as CO₂ reduction photocatalysts. *Small* **19**, 2207840 (2023).
- Laghaei, M., Ghasemian, M., Lei, W., Kong, L. & Chao, Q. A review of boron nitride-based photocatalysts for carbon dioxide reduction. J. Mater. Chem. A 11, 11925–11963 (2023).
- Li, C., Xu, Y., Tu, W., Chen, G. & Xu, R. Metal-free photocatalysts for various applications in energy conversion and environmental purification. *Green. Chem.* **19**, 882–899 (2017).
- 20. Biswas, S., Dey, A., Rahimi, F. A., Barman, S. & Maji, T. K. Metalfree highly stable and crystalline covalent organic nanosheet

for visible-light-driven selective solar fuel production in aqueous medium. ACS Catal. **13**, 5926–5937 (2023).

- Yuan, Y. P., Cao, S. W., Liao, Y. S., Yin, L. S. & Xue, C. Red phosphor/ g-C₃N₄ heterojunction with enhanced photocatalytic activities for solar fuels production. *Appl. Catal.*, B 140-141, 164–168 (2013).
- Hu, Z., Lu, Y., Liu, M., Zhang, X. & Cai, J. Crystalline red phosphorus for selective photocatalytic reduction of CO₂ into CO. J. Mater. Chem. A 9, 338–348 (2021).
- Qu, M., Qin, G., Fan, J., Du, A. & Sun, Q. Boron-rich boron nitride nanomaterials as efficient metal-free catalysts for converting CO₂ into valuable fuel. *Appl. Surf. Sci.* 555, 149652 (2021).
- 24. Wang, Y. et al. Openmouthed β -SiC hollow-sphere with highly photocatalytic activity for reduction of CO₂ with H₂O. *Appl. Catal., B* **206**, 159–167 (2017).
- 25. Xu, G. et al. Integrating the $g-C_3N_4$ nanosheet with B–H bonding decorated metal–organic framework for CO_2 activation and photoreduction. ACS Nano **12**, 5333–5340 (2018).
- Cao, Y. et al. B–O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion. ACS Appl. Mater. Interfaces 12, 9935–9943 (2020).
- Chen, P. et al. Rare-earth single-atom La–N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO₂ reduction. ACS Nano 14, 15841–15852 (2020).
- Feng, H. et al. Surface nonpolarization of g-C₃N₄ by decoration with sensitized quantum dots for improved CO₂ photoreduction. *ChemSusChem* 11, 4256–4261 (2018).
- Zhang, Y., Xia, B., Ran, J., Davey, K. & Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO₂ reduction. *Adv. Energy Mater.* **10**, 1903879 (2020).
- Cao, Y. et al. Modulating electron density of vacancy site by single Au atom for effective CO₂ photoreduction. *Nat. Commun.* 12, 1675 (2021).
- He, Y. et al. 3D hierarchical ZnIn₂S₄ nanosheets with rich Zn vacancies boosting photocatalytic CO₂ reduction. *Adv. Funct. Mater.* **29**, 1905153 (2019).
- Wang, J. et al. Effect of S vacancy in Cu₃SnS₄ on high selectivity and activity of photocatalytic CO₂ reduction. *Appl. Catal., B* 297, 120498 (2021).
- Li, X. et al. Selective visible-light-driven photocatalytic CO₂ reduction to CH₄ mediated by atomically thin CuIn₅S₈ layers. *Nat. Energy* 4, 690–699 (2019).
- Zhu, X. et al. Unique dual-sites boosting overall CO₂ photoconversion by hierarchical electron harvesters. Small 17, 2103796 (2021).
- Bae, K. L., Kim, J., Lim, C. K., Nam, K. M. & Song, H. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. *Nat. Commun.* 8, 1156 (2017).
- Deng, Y. et al. Synergy effect between facet and zero-valent copper for selectivity photocatalytic methane formation from CO₂. ACS Catal. **12**, 4526–4533 (2022).
- 37. Horani, F. & Lifshitz, E. Unraveling the growth mechanism forming stable γ -In₂S₃ and β -In₂S₃ colloidal nanoplatelets. *Chem. Mater.* **31**, 1784–1793 (2019).
- Rangappa, A. P. et al. In situ growth of Ag₂S quantum dots on SnS₂ nanosheets with enhanced charge separation efficiency and CO₂ reduction performance. *J. Mater. Chem. A* **10**, 7291–7299 (2022).
- Liu, Y., Liu, M. & Swihart, M. T. Reversible crystal phase interconversion between covellite CuS and high chalcocite Cu₂S nanocrystals. *Chem. Mater.* 29, 4783–4791 (2017).
- Zhang, Y. et al. Photocatalytic CO₂ reduction: identification and elimination of false-positive results. ACS Energy Lett. 7, 1611–1617 (2022).
- 41. Weng, B., Qi, M. Y., Han, C., Tang, Z. R. & Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle,

current development, and future perspective. ACS Catal. 9, 4642–4687 (2019).

- 42. Yu, H., Huang, X., Wang, P. & Yu, J. Enhanced photoinduced stability and photocatalytic activity of CdS by dual amorphous cocatalysts: synergistic effect of Ti(IV)-hole cocatalyst and Ni(II)-electron cocatalyst. J. Phys. Chem. C. **120**, 3722–3730 (2016).
- Netzsch, P., Pielnhofer, F. & Höppe, H. A. From S–O–S to B–O–S to B–O–B bridges: Ba[B(S₂O₇)₂]₂ as a model system for the structural diversity in borosulfate chemistry. *Inorg. Chem.* 59, 15180–15188 (2020).
- Xiong, X. et al. Photocatalytic CO₂ reduction to CO over Ni single atoms supported on defect-rich zirconia. *Adv. Energy Mater.* **10**, 2002928 (2020).
- 45. Wang, Y. et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO₂ reduction and H₂O oxidation. *Nat. Commun.* **11**, 3043 (2020).
- 46. He, Y. et al. Quantitative evaluation of carrier dynamics in fullspectrum responsive metallic $Znln_2S_4$ with indium vacancies for boosting photocatalytic CO₂ reduction. *Nano Lett.* **22**, 4970–4978 (2022).
- Caminiti, R., D'Ilario, L., Martinelli, A., Piozzi, A. & Sadun, C. DSC, FT-IR, and energy dispersive X-ray diffraction applied to the study of the glass transition of poly(p-phenylene sulfide). *Macromolecules* **30**, 7970–7976 (1997).
- 48. Yu, X. et al. Lithium storage in conductive sulfur-containing polymers. J. Electroanal. Chem. **573**, 121–128 (2004).
- Wang, X. et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. *Adv. Funct. Mater.* **29**, 19029029 (2019).
- Xu, C. et al. Photothermal coupling factor achieving CO₂ reduction based on palladium-nanoparticle-loaded TiO₂. ACS Catal. 8, 6582–6583 (2018).
- Xu, J. et al. Efficient infrared-light-driven CO₂ reduction over ultrathin metallic Ni-doped CoS₂ nanosheets. *Angew. Chem. Int. Ed.* 60, 8705–8709 (2021).
- Jiao, X. et al. Partially oxidized SnS₂ atomic layers achieving efficient visible-light-driven CO₂ reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017).
- Li, J. et al. Interfacial engineering of Bi₁₉Br₃S₂₇ nanowires promotes metallic photocatalytic CO₂ reduction activity under near-infrared light irradiation. *J. Am. Chem. Soc.* **143**, 6551–6559 (2021).
- 54. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. *J. Phys. Condens. Mat.* **21**, 084204 (2009).
- 55. Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved gridbased algorithm for bader charge allocation. *J. Comput. Chem.* **28**, 899–980 (2007).
- Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grants no. 21972020, Z.Z.), and the Natural Science Foundation of Fujian Province of P. R. China (2020L3003, Z.Z.).

Author contributions

X.W. and Z.Z. conceived the concept and supervised the research. Y.K., W.L., and J.S. performed the DFT calculations. Y.C. and M.L. performed the experimental work. J.L., R.Y., and W.D. helped to write—review & edit the manuscript. All authors designed the experiments, analyzed the data, and drafted the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-41943-x.

Correspondence and requests for materials should be addressed to Zizhong Zhang.

Peer review information *Nature Communications* thanks Tao Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2023