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TET2 lesions enhance the aggressiveness of
CEBPA-mutant acute myeloid leukemia by
rebalancing GATA2 expression
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Sachin Pundhir2,3,4, Teresa D’Altri2,3,4, Anne-Katrine Frank 2,3,4,
Coline Gentil2,3,4, Jakob Woessmann 5, Erwin M. Schoof 5,
Manja Meggendorfer 6, Jürg Schwaller 7, Torsten Haferlach 6,
Florian Grebien 1,8,11 & Bo T. Porse 2,3,4,9,11

The myeloid transcription factor CEBPA is recurrently biallelically mutated
(i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a
combination of hypermorphic N-terminal mutations (CEBPANT), promoting
expression of the leukemia-associated p30 isoform, and amorphic C-terminal
mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2
and TET2, however the molecular mechanisms underlying this co-mutational
spectrum are incomplete. By combining transcriptomic and epigenomic ana-
lyses of CEBPA-TET2 co-mutated patients with models thereof, we identify
GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a
rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels,
driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hemato-
poietic enhancer thereby increasing Gata2 expression. Concurrent loss of
TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2
promoter methylation, thereby rebalancing GATA2 levels. Of clinical rele-
vance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores
Gata2 levels and prolongs disease latency.

Acute myeloid leukemia (AML) is characterized by genetic alterations
affecting the proliferation and/or differentiation of hematopoietic
stem or progenitor cells (HSPCs). Thereby, the expansion of immature
myeloid precursors, at the expense of normal hematopoiesis, ulti-
mately leads to bone marrow (BM) failure if left untreated. Recent
sequencing efforts have identified numerous recurrent mutations in
AML and revealed patterns of mutational co-segregation, suggesting

that synergism between certain lesions drives leukemogenesis1. While
we now recognize these patterns, the mechanistic basis for context-
specific positive or negative selection of certain lesions remains to be
elucidated in most cases.

CCAAT enhancer binding protein alpha (CEBPA) is a hemato-
poietic lineage-specific transcription factor that binds and primes
genes formyeloid development and is required for differentiation and
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maturation of granulocytes2. The gene encoding CEBPA is biallelically
mutated (i.e., double mutated; CEBPADM) in 3–15% of de novo AML
patients3–9. CEBPADM patients harbor either biallelic N-terminal muta-
tions or a combination of a monoallelic N-terminal mutation together
with a C-terminal mutation in the other allele. Whereas N-terminal
CEBPA (CEBPANT) lesions promote the expression of the truncated p30
isoform, C-terminal mutations result in CEBPA variants that are unable
to dimerize or bind DNA, thus rendering them inactive. Hence, CEBPA
p30 homodimers are the sole entity with functional transcription
factor activity in CEBPADM AML. This is in contrast to normal hemato-
poietic cells where the full-length p42 isoform is predominantly
expressed2. CEBPA p30 lacks two of three transactivation elements
present in p42, but retains one transcriptional activating element and
the basic-region leucine-zipper, which enables dimerization and DNA-
binding10. CEBPA p30 has functions distinct from CEBPA p42 and can
bind an isoform-specific set of enhancers and regulate the expression
of downstream effector genes, such as Nt5e and Msi211,12. Importantly,
in the context of CEBPADM AML, the CEBPANT is hypermorphic, leading
to higher levels of the transcription factor, and thus, increased binding
to enhancers and subsequent deregulation of gene expression11. In line
with these data, mice with CEBPA p30 expression driven from the
endogenous Cebpa locus develop AML with full penetrance within a
year13.

Most patients with CEBPADM AML also feature additional muta-
tions in GATA2, TET2, WT1, NRAS, FLT3, or CSF3R9. Several of these
mutations are found together with CEBPADM more frequently than
expected by the individual frequency of each mutation, while other
combinations are statistically underrepresented. Recent studies have
shed light on the molecular mechanisms underlying mutational
cooperativity for some of the co-mutated genes, i.e. GATA214 and
CSF3R15, whilemechanistic insight is still lacking for other subgroups of
CEBPADM AML. Of particular importance are mutations in the gene
encoding the methylcytosine dioxygenase TET2 which, by converting
5-methylcytosine to 5-hydroxymethylcytosine, promotes DNA deme-
thylation. TET2 mutations (TET2MUT) are frequent in CEBPADM AML
cases and are associated with inferior prognosis16,17. Moreover, loss of
Tet2 has been implicated in accelerating and/or aggravating hemato-
logical malignancies in combination with several other recurrent gain-
of-function and loss-of-function mutations18–20, reflecting the impor-
tance of appropriately regulated DNA demethylation in normal
hematopoiesis. Importantly, while Tet2 loss alone only mildly affects
hematopoiesis with myeloid skewing and increased competitiveness
of HSCs18, as well as the increased propensity of leukemic blasts to
switch to a more stem-like phenotype21, it does not induce overt leu-
kemia per se22–24. Despite being extensively studied, mechanistic
insights of how TET2 loss-of-function cooperates with other aberra-
tions have been hampered by the fact that malignant cells have been
compared to their normal, wild-type counterparts in many studies.

In the present work, we sought to overcome this limitation by
comparing CEBPA-mutant AML in the presence and absence of addi-
tional mutations in TET2. By combining transcriptomic and epige-
nomic analyses of relevant in vitro and in vivo models as well as data
from AML patients, we identified an intricate mechanism where TET2
loss-of-function rebalances Gata2 expression levels in CebpaDM AML,
and hence drives an aggressive disease.

Results
TET2 mutations impair outcome for patients with
CEBPA-mutant AML
To validate previous reports on the spectrum of co-occurring muta-
tions in CEBPADM AML patients, we compiled data from 557 CEBPADM

cases and evaluated the co-occurrence of other known leukemia driver
mutations3–7,17. TET2was the secondmost frequently co-mutated gene,
with 1 in 5 CEBPADM cases harboring TET2 mutations (Fig. 1a; Supple-
mental Table 1). Importantly, the survival of TET2-mutant (TET2MUT)

CEBPADM patients was significantly lower than TET2 wild-type (TET2WT)
CEBPADM patients (Fig. 1b), consistent with previous reports16, while the
presence of TET2 mutations did not cause a higher overall number of
mutations in CEBPADM patients (Supplemental Fig. 1a).

To investigate the functional consequences ofTET2 andCEBPAco-
mutations, we analyzed RNA sequencing (RNA-seq) data from the Beat
AML dataset1. We identified 1546 up- and 1201 downregulated genes in
patients harboring a combination of CEBPA and TET2mutations when
compared to CEBPA-mutant patients with wild-type TET2 (Fig. 1c).
Similarly, a slight overrepresentation of up-regulated genes was
observed when comparing CEBPAWTTET2MUT patients to
CEBPAWTTET2WT patients (601 up- and 527 downregulated). In line with
the lower overall survival of TET2MUTCEBPADM patients, pathways rela-
ted to inflammation, hypoxia, and aggressive cancer were upregulated
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Fig. 1 | TET2 mutations impair outcome for patients with CEBPA-mutant AML.
a Frequency of co-occurring mutations in CEBPADM AML cases, data aggregated
from published cohorts3–8,17 (321–557 cases; detailed in Supplemental Table 1).
b Overall survival of CEBPADM patients with wild-type (TET2WT; 84 patients) or
mutated TET2 (TET2MUT; 35 patients). The data were analyzed by Mantel-Cox Log-
rank test. c Volcano plot depicting differentially expressed genes dependent on
TET2 mutational status in the cohort of CEBPA-mutant patients in the Beat AML
dataset (TET2WT 11 and TET2MUT 5 patients). Differential analysis was performedwith
DESeq2 (P <0.05). Source data are provided as a Source Data file.
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in CEBPA-TET2 co-mutated patients (Supplemental Fig. 1b). The over-
representation of up-regulated genes associated with TET2 deficiency
in CEBPAMUT (and CEBPAWT) patients is somewhat surprising, as
increased DNA methylation upon TET2 loss would be expected to
cause global transcriptional repression. However, other co-occurring
mutations and residual DNA demethylase activity from the TET2WT

allele may cause a more complex pattern of gene expression.
These findings indicate that mutations in TET2 enhance the

aggressiveness of CEBPA-mutant AML by deregulation of critical cel-
lular pathways.

TET2 deficiency accelerates Cebpa-mutant AML
To study the effect of TET2 mutations in CEBPADM AML in pathophy-
siologically relevant in vitro and in vivo models, we utilized cell and
murine models in which expression of the p30 isoform is retained
(Cebpap30/p30 or CebpaΔ/p30), while the normal p42 isoform of CEBPA is
completely lost13. Since TET2 is predominantly inactivated by loss-of-
function mutations25, we modeled TET2 mutations either by the
introduction of mutations with the CRISPR-Cas9 technology or by
conditional knockout of the Tet2 alleles.

First, we introduced Tet2 mutations into a murine myeloid pro-
genitor cell model (Cebpap30/p30) (Fig. 2a). Tet2-targeted cells displayed
a selective advantage, as they outcompeted Cebpap30/p30 cells (Fig. 2b).
Detailed analysis of the Tet2 mutation that was associated with the
proliferative advantage showed that the Tet2 locus had acquired a + 1
insertion in exon 3, which resulted in a downstream premature ter-
mination codon (Supplemental Fig. 2a, b). In line with this, clones
isolated from the targeted cell pool exhibited strongly reduced TET2
protein expression (Supplemental Fig. 2c). Gene expression analysis
revealed that Tet2 loss in Cebpap30/p30 cells caused downregulated
expression of 916 genes, while only 540 genes were upregulated
(Fig. 2c). Gene set enrichment analysis (GSEA) showed higher expres-
sion of MYC and E2F targets in Cebpap30/p30 Tet2-mutated cells, con-
sistent with their proliferative advantage (Supplemental Fig. 2d).

In summary, these data show thatCRISPR/Cas9-inducedTET2 loss
provides a competitive advantage to myeloid progenitors expressing
the oncogenic CEBPA variant p30.

Next, wewanted to assess the impact of hematopoietic expression
of CEBPA p30 (CebpaΔ/p30) with TET2-deficiency (Tet2−/−) on AML
initiation in vivo. To do so, we transplanted lethally irradiated recipient
micewith BMcells derived frommicewith relevant allele combinations
and, following hematopoietic reconstitution, induced hematopoietic-
specific knockout of the Cebpa WT allele and/or the Tet2 alleles
(Fig. 2d). The combination of CEBPA p30 expression with Tet2 loss led
to an early expansion of myeloid (Mac1+) cells in the BM and blood
compared to mice with hematopoietic cells featuring either alteration
on its own (Fig. 2e; Supplemental Fig. 2e). Conforming to patient data
and data obtained from Cebpap30/30 cells, CebpaΔ/p30Tet2Δ/Δ hemato-
poietic cells gave rise to AMLwith shorter latency thanCebpaΔ/p30Tet2+/+

cells, with a median survival of 23 and 43 weeks, respectively (Fig. 2f).
Mice transplanted with CebpaΔ/p30Tet2+/+ BM cells developed leukemia
with similar latency as mice transplanted with Cebpap30/p30 fetal liver
cells13. This is consistent with the matching expression of Cebpa
in these two contexts (1.1 ± 0.24 vs. 1.0 ± 0.13 (relative expression) in
Cebpap30/p30 and CebpaΔ/p30Tet2+/+ AML blasts n = 3/group, respectively).
TET2 deficiency alone (CebpaΔ/+Tet2Δ/Δ) did not give rise to AML and
cells which retained expression of the p42 isoform from one allele
(Cebpa+/p30) only sporadically underwent leukemic transformation, in
line with unaltered Cebpa expression levels in these cells (Fig. 2f;
Supplemental Fig. 2f; 1.03 ± 0.14 vs. 1.0 ± 0.04 (relative expression) in
Cebpafl/p30 and Cebpafl/+ cells n = 2–3/group, respectively). The trans-
formed blasts expressed myeloid (Mac1+) and granulocytic (Gr1+)
markers, confirming themyeloid origin of the leukemia (Supplemental
Fig. 2g). The leukemias were transplantable into secondary recipients,
and the shorter latency of the TET2-deficient CebpaDM AML was

preserved in this setting (Supplemental Fig. 2h–i), indicating that TET2
not only has important tumor suppressive functions during malignant
transformation but also during progression of AML.

We performed RNA-seq on CebpaΔ/p30 (Tet2 WT and knockout)
AMLblasts to assess changes in gene expression uponTET2deficiency.
Again, we found that themajority of differentially expressed geneswas
decreased in TET2-deficient AML blasts, with 176 down- vs. 58 upre-
gulated genes (Fig. 2g). GSEA highlighted upregulation of genes
involved in IL-6-JAK-STAT-signaling and hypoxia, in line with RNA-seq
data from human TET2MUTCEBPAMUT cases (Supplemental Fig. 1b;
Supplemental Fig. 2j). Furthermore, pathways related to cell cycle
progression (G2M checkpoint and E2F targets) were enriched in TET2-
deficient AML, indicating increased growth upon loss of TET2, con-
sistent with the effects observed in the cell model (Supplemental
Fig. 2d; Supplemental Fig. 2j). In line with this, we found that a higher
frequency of CebpaΔ/p30Tet2Δ/Δ blasts expressed the proliferation mar-
ker Ki67 (Fig. 2h). In addition, we also observed increased proliferative
capacity ofCebpaΔ/p30Tet2Δ/Δblasts compared toCebpaΔ/p30Tet2+/+ blasts
ex vivo. This difference was dependent on Tet2 status, as the TET2 co-
factor Vitamin C was able to mitigate proliferation of CebpaΔ/p30Tet2+/+

but not of CebpaΔ/p30TetΔ/Δ cells (Supplemental Fig. 2k).
Collectively, these data show that TET2 deficiency accelerates the

establishment and progression of CEBPA p30-driven AML in vivo.

Loss of TET2 leads to reducedGata2 levels inCebpa-mutantAML
To find conserved gene targets of the CEBPA-TET2 axis, we integrated
the transcriptomic data from our in vitro and in vivomodels with gene
expression analyses from AML patients harboring CEBPA and TET2
mutations. Three target genes exhibited downregulated expression in
all three data sets; FUT8, GATA2, and SIRT5 (Fig. 3a; Supplemental
Fig. 3a–c).

Since the deregulation of these three genes was observed across
species and differential experimental setups, we next aimed to investi-
gate if their decreased gene expression was a direct result of TET2
deficiency. We therefore assessed chromatin accessibility and DNA
methylation as a proxy for TET2 binding and activity26. Through assay
for transposase-accessible chromatin sequencing (ATAC-seq), we
identified 1809differentially accessible regions inCebpap30/p30Tet2MUT vs.
Cebpap30/p30Tet2WT cells, and consistentwith an activating effect of TET2,
themajorityofdifferential regionswere less accessible inTET2-deficient
cells (Fig. 3b). Half of the ATAC-seq peaks downregulated upon Tet2
mutation were located in promoters, and these regions were enriched
for GATA and NFATmotifs (Fig. 3c; Supplemental Fig. 3d). Using whole
genome bisulfite sequencing (WGBS), we observed a global increase in
DNA methylation in CebpaΔ/p30Tet2Δ/Δ vs. CebpaΔ/p30Tet2+/+ AML blasts,
consistent with a loss of demethylase activity in Tet2 knockout blasts
(Fig. 3d). IncreasedDNAmethylationwas observed in promoter regions
of geneswhose expressionweredownregulated uponTET2 loss ( + 54%;
Fig. 3e), while upregulated and not differently expressed genes did not
show any marked changes. Strikingly, this pattern was not apparent
when DNA methylation was evaluated across gene bodies (Supple-
mental Fig. 3e). Non-expressed genes exhibited equal increase in DNA
methylation across promoters and gene bodies (Fig. 3e; Supplemental
Fig. 3e). Since increased gene body methylation is not associated with
gene repression27, we evaluated whether a gain in gene body methyla-
tion was coupled to a gain in promoter methylation for the down-
regulated genes. In the presence of promoter hypermethylation, the
bodies of down-regulated genes were more prevalently hypermethy-
lated compared to neutral and up-regulated genes (34.8% [95%CI
18.8–55.11] vs. 18.1% [16.4–19.9], p =0.0427). While, in the absence of
promoter hypermethylation, the bodies of up-regulated genes tended
to be hypermethylated compared to neutral and down-regulated genes
(13.8% [95%CI 7.2–24.9] vs. 7.1% [6.8–7.4], p =0.0518). Thus, loss of TET2
in CebpaDM cells caused decreased chromatin accessibility and
increased methylation of DNA in promoters of TET2-responsive genes,
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consistent with previous reports showing that TET2 binding is enriched
in promoters of TET2-regulated genes28.

To identify direct CEBPA-TET2 gene target(s), we evaluated the
previously identified conserved candidates based on changes in DNA
methylation of their promoters. Out of the three target genes, only the
gene encoding the transcription factorGATA-binding factor 2 (GATA2)
showed a gain of DNAmethylation in the promoter of the gene variant
2 (Gata2 V2) upon TET2 deficiency ( + 46%; Fig. 3f). In line with this,

specifically the Gata2 V2 mRNA isoform was downregulated in TET2-
deficient CebpaDM AML blasts (−86%; Fig. 3g), while changes in mRNA
expression and promoter methylation of Gata2 V1 did not reach sta-
tistical significance (Fig. 3f, g).

In summary, these analyses identify Gata2 (locus overview in
Fig. 3h) as a conserved target of the CEBPA-TET2 axis across several
settings. TET2 deficiency causes increased DNA methylation of the
Gata2 promoter, resulting in reduced mRNA expression.
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Fig. 2 | TET2 deficiency accelerates Cebpa-mutant AML. a Schematic
representation of generation of Tet2-knockout clones with CRISPR/Cas9. The
illustration was created with BioRender.com. b Proliferative outgrowth of
Cebpap30/p30 cells with Tet2 indels. c Volcano plot depicting differentially expressed
genes dependent on the Tet2 mutational status in Cebpap30/p30 cells (Tet2WT 7 and
Tet2MUT 5 clones). Differential analysis was performed with DESeq2 (P <0.05).
d Experimental setup for evaluating the effect of Tet2-deficiency (Tet2Δ/Δ) in
CebpaDM AML initiation in vivo. The illustration was created with BioRender.com.
e Myeloid (Mac1+) contribution of donor-derived blood and bone marrow (BM)
cells evaluated after BM transplantation and Cre-LoxP recombination. (Blood
samples: Week 12; 6 mice per group. Week 24; CebpaΔ/p30Tet2+/+ and Cebpa+/ΔTet2Δ/Δ

6 mice per group and Cebpa+/ΔTet2Δ/Δ 3 mice. Week 36; 3 mice per group. BM

samples: 3mice per group.) Data are presented asmean±SEM and analyzed by one-
way-ANOVA followed by Dunnett’s multiple comparisons correction. f Survival of
lethally irradiated recipient mice after BM transplantation and Cre-LoxP recombi-
nation (CebpaΔ/p30Tet2+/+ 12 mice, CebpaΔ/p30Tet2Δ/Δ 14 mice, and Cebpa+/-Tet2Δ/Δ

14 mice). The data were analyzed by Mantel-Cox Log-rank test. g Volcano plot
depicting differentially expressed genes dependent on Tet2 deficiency status in
CebpaΔ/p30 leukemic blasts (samples from 3 mice per group). Differential analysis
was performed with DESeq2 (P <0.05). h Frequency of proliferating (Ki67+) cells in
BM of moribund recipient mice (specimens from 3 mice per group). Data are
presented as mean±SEM and analyzed by a two-tailed unpaired t-test. Source data
are provided as a Source Data file.
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Moderate Gata2 reduction increases competitiveness of
Cebpa-mutant AML
GATA2 is an essential transcription factor for hematopoietic cells and
has profound effects on HSC maintenance. Moreover, it is recurrently
mutated in AML29,30 andGATA2 lesions are overrepresented inCEBPADM

AML8,16,31–33. Given these critical roles of GATA2, we next examined the
consequences of reduced GATA2 levels in CEBPADM AML.

To test if reduced Gata2 expression would provide a competitive
advantage in vivo, we set up an RNA-interference (RNAi) based com-
petition assay (Fig. 4a) utilizing established Cebpap30/p30 leukemia cells,
in which both Cebpa (+56–73%) and Gata2 (+45–56%) levels are
increased modestly compared to primary CebpaΔ/p30Tet2+/+ blasts11,34.
First, we identified four short hairpin RNAs (shRNA) which lowered
Gata2 expression to a varyingdegree (Fig. 4b).Upon transplantationof

shRNA-expressing cells, we observed a non-monotonic relationship
betweenGata2 expression levels and competitiveness, asmeasured by
shGata2-to-shControl ratios. While efficient downregulation of Gata2
expression did not provide any competitive advantage to CebpaDM

cells, moderate silencing imposed a three-fold increase in their ability
to compete (Fig. 4c, d). Repetition of this experiment including only
the most and least efficient shRNAs in a separate experiment yielded
similar results (Supplemental Fig. 4a, b). These results were mirrored
by increased expression of the proliferation marker Ki67 in cells
expressing the least efficient Gata2-targeting shRNA but not the most
efficient one (Supplemental Fig. 4c). To test if the same effects are
observed in an in vitro setting, we targeted Gata2 in Cebpap30/p30 cells
using the CRISPR/Cas9 approach. Gata2-targeted cells showed a pro-
liferative advantage over Gata2WT cells, leading to their outgrowth
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(Fig. 4e, f). In accordancewith previously publisheddata that complete
loss of Gata2 expression results in a loss of competitiveness35–37, we
found that only clones with heterozygous Gata2 inactivation
were viable, while clones with homozygous mutations in Gata2 could
not be recovered (Supplemental Fig. 4d).

If the pro-leukemogenic effect of TET2 mutations was, at least
partly, caused by lowering GATA2 expression, we reasoned that

concomitant mutations in both genes would be redundant and thus,
the pattern of TET2 andGATA2mutationswould bemutually exclusive.
Indeed, TET2MUTCEBPADM AML cases showed a lower frequency of
GATA2 mutations than expected from the frequency of GATA2 muta-
tions in TET2WTCEBPADM AML cases (Fig. 4g; Supplemental Table 2a),
which was also true for all AML cases (3.5% in TET2MUT vs. 8.9% in
TET2WT; Supplemental Fig. 4e; Supplemental Table 2b). Importantly,
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whereas mutations in WT1 followed the same pattern as TET2, CSF3R
mutations appeared in equal frequency between TET2MUTCEBPADM and
TET2WTCEBPADM AML cases, and ASXL1 mutations were increased in
TET2MUTCEBPADM AML (Supplemental Fig. 4f; Supplemental
Table 2c–e).While we favor a functional redundancymodel, we cannot
exclude that co-mutation of TET2 and GATA2 could induce synthetic
lethality in AML cells, asGata2-loss has been shown to induce terminal
myeloid differentiation37.

Altogether, our data suggest that loss of TET2 in CebpaDM AML
causes a moderate decrease in Gata2 expression, which in turn
increases the competitive fitness of the leukemia. Hence, this indicates
that TET2 and GATA2 mutations are partially redundant in CEBPADM

AML, providing a mechanistic rationale for the mutational spectrum
observed in this AML entity.

Increased CEBPA p30 binding to theGata2 distal hematopoietic
enhancer drives expression of Gata2 via TET2
We next asked if GATA2 expression is dependent on CEBPA
mutational status. To this end, we exploited published tran-
scriptomics data from human and mouse CEBPADM AML11. GATA2
expression was increased in human CEBPADM leukemic granulo-
cyte/monocyte progenitors (GMPs) compared to GMPs from
healthy donors ( + 77%; Supplemental Fig. 5a). Correspondingly,
Gata2 was upregulated in murine Cebpap30/p30 leukemic GMPs as
compared to normal GMPs ( + 43%; Fig. 5a). Likewise, analysis of
AML patient data from the BEAT AML study1, revealed that both
CEBPA and GATA2 expression were increased in CEBPANT AML
compared to CEBPAWT AML ( + 91% and +37%, respectively), while
GATA2 expression was reverted to CEBPAWT level in
CEBPANTTET2MUT AML (Supplemental Fig. 5b, c). Since CEBPA is
known to exert its transcription factor activity by binding to
enhancers and thereby promote gene expression38, we assessed
the binding of CEBPA to the crucial Gata2 distal hematopoietic
enhancer (G2DHE; −77 kb in mouse) that governs Gata2 expres-
sion in hematopoietic stem and progenitor cells including
GMPs11,39. Notably, we found substantially increased levels of
CEBPA bound to the G2DHE in Cebpap30/p30 leukemic GMPs com-
pared to their normal counterparts ( + 147%; Fig. 5b), while the
binding levels associated with other known proximal and distal
cis-regulatory elements of the Gata2 gene were unchanged
(Supplemental Fig. 5d, e). Additionally, TET2 showed significant
binding to the G2DHE in Cebpap30/p30 cells (Fig. 5c). However, DNA
methylation at the G2DHE was low and unaltered upon Tet2 loss
(Supplemental Fig. 5f). Importantly, CEBPA binding, as assessed
by ChIP-qPCR, was not altered by introduction of Tet2 mutations
in Cebpap30/p30 cells (Supplemental Fig. 5g).

These results prompted us to test if CEBPA binding to the
G2DHE modulates Gata2 expression in CebpaDM AML. We deleted
250–500 bp fragments of the Gata2 enhancer encompassing the
CEBPA binding site using the CRISPR/Cas9 approach in
Cebpap30/p30 cells in vitro. Expression of total Gata2 mRNA, as well
as both individual transcript variants, was decreased upon tar-
geting the genomic region with strong CEBPA binding compared

to non-targeting control (Fig. 5c–e, Supplemental Fig. 5h–k). In
contrast, Gata2 expression was unchanged when G2DHE deletions
were introduced in Cebpap30/p30Tet2MUT cells (Supplemental Fig. 5l,
m). Combined, these data suggest that CEBPA binding to the
G2DHE is important for promoting Gata2 expression in CebpaDM

AML. Further, the G2DHE has been shown to primarily regulate
expression of the hematopoietic specific Gata2 variant 2 (V2)40,41,
conforming with our data that particularly the Gata2 V2 promoter
displayed an increase in DNA methylation and that the Gata2 V2
mRNA was downregulated in TET2-deficient CebpaDM AML blasts
(Fig. 3f–g).

Next, we tested if the reduction of CEBPA in AML cells influenced
the expression and promoter DNAmethylation of Gata2 V2. Given the
dependence of CEBPADM AML on CEBPA for survival and maintenance,
we utilized MLL-fusion-driven AML, in which CEBPA is dispensable for
themaintenanceof established leukemia42. Cre-mediated lossofCebpa
in leukemic cells expressing the inducible MLL-AF9 fusion-protein
(iMLL-AF9+CebpaΔ/Δ; Fig. 5f) caused reduced Gata2 V2 mRNA levels
compared to control cells (iMLL-AF9+Cebpafl/fl) ( − 72%; Fig. 5g).
Importantly, the methylation frequency of the CpG island located at
the Gata2 V2 promoter was increased in two separate leukemic lines
( + 186%; Fig. 5h; Supplemental Fig. 5n), suggesting that Gata2 V2
mRNA expression is regulated via the CEBPA-TET2 axis. Finally, we
assessed TET2 binding to the G2DHE upon Cebpa knockdown in
Cebpap30/p30 cells using ChIP-qPCR (Fig. 5i). Notably, we observed
decreased TET2 binding to the G2DHE in cells expressing shCebpa
compared to cells expressing control shRNA, verifying that CEBPA is
important for recruitment of TET2 to the G2DHE (Fig. 5j).

In light of these findings, we asked whether elevated CEBPA level
and not the CEBPAmutation(s) per se, drives the selective pressure for
GATA2 and/or TET2 loss in AML to achievemoderate GATA2 levels that
are optimal for leukemia growth. We therefore stratified AML cases in
the Beat AML cohort1 based on CEBPA expression and assessed their
GATA2 and TET2 mutational status. Indeed, the frequency of GATA2
and/or TET2 mutations was three-fold higher in CEBPAHIGH AML com-
pared to the CEBPALOW samples (Fig. 5k). In line with previous data
showing a hypermorphic effect of CEBPADM 11, the CEBPAHIGH group
contained the majority of the CEBPA-mutant cases in the cohort (82
and 100% of CEBPASM and CEBPADM, respectively), while none of the
cases in the CEBPALOW group were CEBPA-mutated.

In conclusion, our data show that elevated CEBPA binding to the
G2DHE, driven by the hypermorphic effect of CebpaNT, increases TET2-
mediated demethylation of the Gata2 promoter, which leads to ele-
vated Gata2 levels in CebpaDM AML. In this context, CebpaDM AML cells
gain a competitive advantage by loss of TET2, which in turn promotes
an increase in DNAmethylation at the Gata2 promoter resulting in the
rebalancing of Gata2 levels.

Demethylating treatment restores Gata2 expression and
prolongs survival in TET2-deficient Cebpa-mutant AML
Finally, we investigated if treatment with the demethylating agent
5-azacytidine (5-AZA) would be beneficial in TET2-deficient CEBPADM

AML. Ex vivo treatment with 5-AZA restored Gata2 expression in

Fig. 4 | Moderate Gata2 reduction increases competitiveness of Cebpa-mutant
AML. a Experimental setup for evaluating the effect of Gata2 knockdown, via short
hairpin RNA (shRNA) mediated silencing, on Cebpap30/p30 leukemic cells in a com-
petitive in vivo assay. The illustration was created with BioRender.com. b Gata2
mRNA in Cebpap30/p30 leukemic cells prior to transplantation. c Representative flow
cytometry profiles of input and output of shControl (no knockdown), shGata2A
(low knockdown), and shGata2D (high knockdown). d Competitive advantage of
targeting shRNA (GFP+) vs. non-targeting shRNA (YFP+) cells in vivo assessed as by
flow cytometry (Control 4, shGata2A 4, shGata2B 4, shGata2C 4, and shGata2D 3
mice). Data are presented as mean±SEM. Data were log-transformed and analyzed
by one-way-ANOVA followed by Dunnett’s multiple comparisons correction.

e Experimental setup for Gata2 CRISPR/Cas9 mutagenesis in Cebpap30/p30 cells, and
outgrowth of heterozygous mutated clones. Percentages of Gata2mutated clones
are indicated. f Growth curve of Cebpap30/p30 clones with Gata2 mutation
(Cebpap30/p30Gata2+/MUT, n = 10) or wild type Gata2 (Cebpap30/p30Gata2+/+, n = 3). Data
are presented as mean±SEM and analyzed by two-tailed unpaired t-test. Red lines
mark individual mutated clones. g Presence or absence of GATA2mutations
(GATA2MUT) in CEBPA double mutated (CEBPADM) AML cases with or without TET2
mutations (TET2MUT) in aggregated data from published cohorts3–5,7,8,17 (detailed in
Supplemental Table 2a). Data were analyzed by Wilson/Brown binominal test.
Source data are provided as a Source Data file.
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CebpaΔ/p30Tet2Δ/Δ blasts to levels observed in CebpaΔ/p30Tet2+/+, while
5-AZA treatment did not affect Gata2 levels in CebpaΔ/p30Tet2+/+ cells
(Supplemental Fig. 6a). Moreover, 5-AZA decreased the viability of
blasts from both genotypes, although to a higher degree in the TET2-
deficient setting (−82% and −40%, respectively, p <0.01; Supple-
mental Fig. 6b).

To evaluate if the enhanced effect of 5-AZA treatment in TET2-
deficient AML would also hold true in vivo, mice were transplanted
with CebpaΔ/p30Tet2Δ/Δ or CebpaΔ/p30Tet2+/+ AML blasts and treated with
5-AZA for three consecutive days after disease establishment (Fig. 6a).
While the blast frequency of TET2-deficient CebpaΔ/p30 AML decreased
upon 5-AZA treatment ( − 62%; Fig. 6b), the treatment did not sig-
nificantly decrease the frequency of TET2-proficient cells. Further-
more, 5-AZA treatment restoredGata2 levels in CebpaΔ/p30Tet2Δ/Δ blasts
in vivo to the same level as in CebpaΔ/p30Tet2+/+ blasts (Fig. 6c). Intri-
guingly, two out of three individual CebpaΔ/p30Tet2Δ/Δ leukemic clones
(A + B) responded to 5-AZA treatment with a pronounced increase of
Gata2 levels and concomitant reduction of myeloid blasts, while one
clone (C) appeared partially refractory to 5-AZA treatment, with lim-
ited increaseofGata2 andno reductionof leukemicburden (Fig. 6b, c).
Importantly, a longer intermittent 5-AZA treatment prolonged the
survival of mice transplanted with CebpaΔ/p30Tet2Δ/Δ blasts from one of
the responding clones (A) (median survival +22%; Fig. 6d, e), while it
did not affect disease latency of mice transplanted with
CebpaΔ/p30Tet2+/+ blasts (A).

In summary, we show that the demethylating agent 5-AZA can
restore Gata2 expression levels in TET2-deficient CebpaDM AML to that
of TET2-proficient CebpaDM AML, and concomitantly reduce leukemic
burden and prolong survival of mice transplanted with TET2-deficient
CebpaDM leukemic blasts.

Discussion
Mutational cooperativity is a fundamental driver of cancer develop-
ment, progression, and aggressiveness. For CEBPADM AML, co-
occurring lesions have been found in genes such as GATA2, TET2,
WT1, FLT3, and CSFR3. While themechanistic basis for the cooperation
between CEBPA and GATA2/CSFR3 mutations has been investigated
using mouse models14,15, we have very little insight into why other
lesions, such as those in TET2, are overrepresented in CEBPADM AML.
Here, we show that TET2 loss-of-function in CEBPADM AML leads to an
aggressive disease phenotype by rebalancing the increased and sub-
optimal levels of GATA2 that are induced by hypermorphic CEBPANT

mutations driving CEBPA-p30 isoform expression (see model in
Fig. 7a). Specifically, loss ofTET2 binding to the hematopoietic-specific
G2DHEenhancer results in increasedDNAmethylation in the promoter
region of the hematopoietic-specific Gata2 isoform (Gata2 V2). This

proleukemic effect of TET2 loss can be reversed by the demethylating
agent 5-AZA, suggesting that this couldbe apotential treatment option
in CEBPADMTET2MUT patients. Altogether, our work proposes that
CEBPA-mutant AMLs acquire additional lesions in genes suchasGATA2
and TET2 to reestablish balanced GATA2 levels that permit leukemia
development and progression.

Our work highlights the central importance of GATA2 regulation
in CEBPA-mutant AML. Specifically, we show thatGATA2 is a conserved
target gene ofCEBPA andTET2. Furthermore, the elevated levels of the
CEBPA p30 variant likely mediate GATA2 upregulation in CEBPA-
mutant AML. The increased expression of Gata2 is counteracted by
loss of TET2 in vitro and in vivo models of CebpaDM AML as well as in
CEBPA-TET2 co-mutated patients. This is accompanied by the gain of
Gata2 promoter DNA methylation. These findings are consistent with
previous data showing that Gata2 expression is TET2-dependent, as
Gata2 was downregulated in various Tet2 knockout settings and that
forced expression of Gata2 decreased the competitiveness of both
normal and malignant TET2-deficient cells28,43–45. Further paralleling
our data, TET2 deficiency in the context of Flt3ITD AML has been shown
to accelerate leukemia by hypermethylation and consequent silencing
of the Gata2 locus43.

Strikingly, we found that while moderate reduction of Gata2
expression increased competitiveness in CebpaDM AML both in vivo
and in vitro, leukemia cells remain critically dependent on residual
GATA2 function. Indeed, homozygous Gata2 lesions induced a strong
inhibitory effect on CebpaDM AML in vitro37, which was also observed in
other AML subtypes as well as in normal hematopoietic stem
cells36,46–48. These findings are corroborated by a substantial body of
genetic evidence supporting the importance of GATA2 regulation in
CEBPA-mutant AML. First, heterozygous GATA2 lesions frequently co-
occur with CEBPADM 4,8,16,17,31–33,49–52. Secondly, GATA2 allele-specific
expression is strongly associated with CEBPADM AML and is neither
found in AML with reduced CEBPA expression (i.e. t(8;21)) nor in
CEBPA-silenced AML53. Thirdly, TET2MUT and GATA2MUT rarely co-occur
in CEBPADM AML. Finally, we showed thatmutations inGATA2 and TET2
are overrepresented in AML cases with high CEBPA expression. This
supports the notion that unfavorable, high GATA2 levels in AML pro-
moted by the CEBPA-TET2 axis are not limited to CEBPADM AML, but
also include cases where CEBPA expression is high for other reasons.
Further, this model also suggests that a major proleukemic effect of
TET2 deficiency is to rebalanceGATA2 levels in the context of CEBPADM

AML (see Fig. 7b).
GATA2 expression is mainly driven by the conserved G2DHE in

normal myeloid progenitors and leukemic blasts by promoting
expression from the hematopoietic specific Gata2 V2
promoter39,40,44,54. Our data demonstrate that CEBPA plays a key role in

Fig. 5 | Increased CEBPA p30 binding to the Gata2 distal hematopoietic
enhancer drives expression of Gata2 via TET2. a Gata2mRNA expression in
mouse Cebpap30/p30 leukemic granulocyte/monocyte progenitors (GMPs) vs normal
GMPs (samples from 4 Cebpa+/+ and 2 Cebpap30/p30 mice) and, b CEBPA binding to
the Gata2 distal hematopoietic enhancer (G2DHE; −77 kb) region (samples from 2
mice per group), data from Jakobsen et al.11. Data are presented as mean± SEM.
Differential analysis was performed with DESeq2 (P <0.05). c Schematic genomic
view of the Gata2 distal hematopoietic enhancer (G2DHE), including normalized
chromatin immunoprecipitation sequencing (ChIP-seq) signal of CEBPA (data from
Heyes et al.12), TET2 and H3K27Ac (data from Heyes et al.12), as well as assay for
transposase-accessible chromatin using sequencing (ATAC-seq) in Cebpap30/p30

cells without (light blue) and with (green) mutation in Tet2. d Gata2mRNA levels in
response to targeting of the G2DHE by CRISPR-Cas9 in Cebpap30/p30 cells in vitro
using indicated sgRNAs and e the averaged change in Gata2mRNA levels of the 12
deletions (averaged data from 2 separate experiments). Data are presented as
median ± range and analyzed by two-tailed Wilcoxon signed-rank test.
f Experimental setup for evaluating the effects of Cebpa knockout on Gata2 V2
mRNA expression andDNAmethylation of the CpG island at the promoter ofGata2

V2 in MLL-fusion driven AML (iMLL-AF9). The illustration was created with BioR-
ender.com. g Gata2 V2 mRNA expression (leukemic cell lines generated from
2 separate mice were assayed on 2 separate days in 2–3 technical replicates each).
Data are presented as mean± SEM and the individual cell lines are indicated by
circles or squares. Data were log-transformed and analyzed by two-tailed unpaired
t-test. h DNA methylation of the Gata2 V2 promoter CpG-island (2 separate leu-
kemic cell lines). Data are presented as median±range and the individual cell lines
are indicatedby circles or squares. i Experimental setup for evaluating the effects of
CebpaknockdownonTET2binding to theG2DHE inCebpap30/p30 cellswith inducible
expression of shRNA targeting Cebpa and control (Renilla), respectively. The
illustrationwas createdwith BioRender.com. j TET2binding to theG2DHE assessed
by ChIP-qPCR (3 replicates per condition). Data are presented as mean±SEM and
analyzed by two-tailed unpaired t-test. k Frequency of GATA2 and/or TET2 muta-
tions (GATA2MUT and TET2MUT, respectively) inCEBPAhigh expressing (CEBPAHIGH; 45
cases) vs. CEBPA low expressing (CEBPALOW; 61 cases) AML cases, data from Beat
AML cohort1. The distributions of GATA2WTTET2WT vs. GATA2MUT and/or TET2MUT

cases were analyzed byWilson/Brown binominal test. Source data are provided as a
Source Data file.
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regulating G2DHE activity. Specifically, we showed that the hyper-
morphic effects of CEBPADM 11, and experimental models thereof,
resulted in increased GATA2 expression compared to CEBPAWT, and
that CEBPA deficiency resulted in reduced Gata2 levels. Secondly, we
observed increased CEBPA binding to the G2DHE in CebpaDM AML
compared to normal progenitors and found that deletion or muta-
genesis of the CEBPA-bound region of the enhancer resulted in lower
expression of Gata2 in CebpaDM cells. In further support of the role of
CEBPA, theG2DHE is highly active in CEBPADM AML, with both elevated
eRNAexpression and levels ofH3K27ac53. An equally important role for
CEBPA is observed in the context of inv(3) and t(3;3) AML in which
inversions, translocations, and rearrangements involving the EVI1 gene
at the MECOM locus, lead to hijacking of the G2DHE to promote EVII
expression at the expenseofGATA2 expression thus resulting inGATA2
haploinsufficiency55–58. Here, EVI1 expression was found to be down-
regulated following knockdown of CEBPA in inv(3) AML cells, and
mutation of the CEBPA binding site in the hijacked enhancer reduced
enhancer activity58. In this context, CEBPAMUT would not be favorable,
and these lesions are indeed underrepresented in inv(3) and t(3;3)
AML59–61.

We hypothesized that CEBPA recruits TET2 and thus mediates
DNA demethylation of the Gata2 V2 promoter in a CEBPA- and TET2-
dependentmanner. Indeed, we observed reduced TET2-binding to the
G2DHE upon knockdown of Cebpa in Cebpap30/p30 cells. Furthermore,
Gata2 V2 levels were decreased, and Gata2 V2 promoter DNA methy-
lation was increased upon Cebpa depletion in an MLL-AF9 leukemic
setting where CEBPA is dispensable for maintenance of the leukemia.
The concept of CEBPA as a recruiting factor for TET2 is also supported
by previous findings showing that both the p30 and p42 isoforms of
CEBPA interact with TET2 via the DNA binding domain of CEBPA62,63.

Further, CEBPA binds preferentially to methylated DNA62,64, and has
been classified as a binding site-directed DNA demethylation-inducing
transcription factor62,65. Interestingly, TET2 binds genomic regions that
are enriched for CEBP motifs in myeloid cells, particularly in myeloid
enhancers such as the G2DHE26,62. Moreover, knockdown or knockout
of Tet2 leads to impaired upregulation of myeloid-specific genes upon
Cebpa induction, with corresponding increased promoter
methylation66. Also, in TET2MUT or Tet2−/− leukemia an enrichment of
CEBP motifs at or near hypermethylated CpGs was observed26,67.
Importantly, AML with silenced CEBPA is associated with DNA hyper-
methylation, a feature that is not present in CEBPADM AML, which may
suggest a broader function of CEBPA in the recruitment of TET268. In
summary, we conclude that CEBPA plays an important role in the
recruitment of TET2 to chromatin at the G2DHE, promoting DNA
demethylation at the Gata2 V2 promoter and the induction of Gata2
expression. The extent to which this can be extended to other loci
warrants further analysis but is supported by the data
mentioned above.

While our findings suggest that GATA2MUT and TET2MUT both con-
verge at rebalancing the increased expression of GATA2 in CEBPADM

AML, patients with CEBPADM and GATA2MUT have a more favorable
prognosis16,31–33,49 than patients harboring the CEBPADM and TET2MUT

combination16,17. This suggests that while GATA2 deregulation plays an
important role in leukemogenesis in the CEBPAMUT context, TET2
deficiency may likely contribute to malignancy through additional
mechanisms that shall remain the subject of future work. Of clinical
interest, wefind that TET2deficiency rendersCebpaDMAML sensitive to
5-AZA and that TET2-deficient cells lose their proliferative advantage
over TET2-proficient cells following 5-AZA treatment. In agreement
with TET2-dependent Gata2 expression, ours and previous results
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Fig. 6 | Demethylating treatment restores Gata2 expression and prolongs
survival in TET2-deficient Cebpa-mutant AML. a Experimental setup for evalu-
ating the effect of short-term 5-azacytidine (5-AZA) treatment in vivo. Recipient
mice were sub-lethally irradiated and transplanted with leukemic BM from mor-
ibund secondary recipient mice. Three individual CebpaΔ/p30Tet2Δ/Δ clones (A–C)
and two CebpaΔ/p30Tet2+/+ clones (A–B) were used, respectively. The illustration was
createdwith BioRender.com.b Expansionofmyeloid (Mac1+) donor-derivedcells in
bone marrow (BM) assessed by flow cytometry, and c Gata2 mRNA expression in
sorted leukemic blasts by qPCR assessed 24hours after the last of three injections
of 5-AZA or vehicle (samples from 3mice per clone and 6 and 9mice per group, for

CebpaΔ/p30Tet2+/+ and CebpaΔ/p30Tet2Δ/Δ, respectively). Dot plots showing individual
mice for separate clones and bar graphs shows mean ± SEM for each group. Data
were analyzed by Kruskal–Wallis test followed by Dunn’s correction for multiple
comparisons. d Experimental setup for evaluating the effect of 5-AZA treatment on
AML progression in vivo. The illustration was created with BioRender.com.
e Survival of sub-lethally irradiated tertiary recipient mice after transplantation of
leukemic BM from moribund secondary recipient mice (clone A from both geno-
types) in response to intermittent 5-AZA treatment (5-AZA treated groups 8 mice
and vehicle-treated groups 4 mice). The data were analyzed by Mantel–Cox Log-
rank test. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41927-x

Nature Communications |         (2023) 14:6185 10



show that 5-AZA treatment derepresses Gata2 expression in TET2-
deficient cells44. Intriguingly, CEBPACT mutations have recently been
reported to sensitize AML to treatment with hypomethylating agents
by disrupting the inhibitory interaction with DNMT3Amediated by the
wild-type CEBPA bZIP domain69. Taken together, this suggests that
demethylating agents could be a particularly interesting treatment
option in CEBPADMTET2MUT patients.

Finally, we note that although our mechanistic data have been
acquired in experimental models of complete TET2 loss, data from
AML patients indicates that TET2 haploinsufficiency is sufficient to
rebalance GATA2 levels. We are also aware of the fact that our
experimental models mimic AML in which the CEBPA p30 variant
constitutes the sole CEBPA entity, which is different from the combi-
nation of N- and C-terminal mutations that constitutes the bulk of
humanCEBPADM AML cases. However, since ourmain findings from the
murine Cebpap30/p30/CebpaΔ/p30 models are also observed in human
CEBPADM AML (including upregulation of CEBPA and GATA2 in leu-
kemic GMPs compared to normal GMPs, as well as rebalancing of
GATA2 expression and worsened outcome by the acquisition of TET2
lesions), we believe that our observations indicate that a similar
disease-relevant CEBPA-TET2 axis is active in human CEBPADM AML.

In conclusion, our results reveal that GATA2 is a conserved target
of the CEBPA-TET2mutational axis in CEBPADM AML andwe propose an
intricate mechanism by which elevated CEBPA p30 levels mediate
recruitment of TET2 to regulatory regions of the Gata2 gene to pro-
mote its expression. We demonstrate that increased GATA2 levels are
disadvantageous to CEBPADM leukemic cells and that this can be
counteracted by TET2 loss thus providing an explanation for the co-
occurrenceofCEBPA andTET2 lesions inAML. Finally, increasedGata2
promotermethylation, inflicted by TET2 deficiency, canbe restored by
demethylating 5-AZA treatment, thereby providing entrypoints for the

development of rational targeted therapies in AML patients with these
mutations.

Methods
Patient data
Assessment of mutational status. To evaluate co-occurring muta-
tions in CEBPADM AML cases, data frompublished studies3–8,17 including
>40 CEBPADM cases were extracted, and co-occurring mutations were
evaluated (Supplemental Table 1). To determine frequencies of target
gene mutations between CEBPADM AML cases with TET2MUT compared
to TET2 wild-type (TET2WT) AML cases, data from published
studies3–5,7,8,17,51 with specifiedmutational status including >40CEBPADM

cases or corresponding cohorts were extracted and co-occurring
mutations in TET2, GATA2, WT1, CSF3R, and ASXL1 were evaluated
(Supplemental Table 2a–e). To examine how the mutational status of
TET2 and GATA2were affected by CEBPA expression levels in AML, we
utilized the publicly available data from the Beat AML cohort (Oregon
Health & Science University; OHSU)1, including 382 cases for which
mutation and mRNA expression data were available. The cases were
stratified based on CEBPA mRNA expression levels (z-score ±1.0 rela-
tive to all samples; CEBPAHIGH n = 45 and CEBPALOW n = 61) and fre-
quencies of CEBPA, TET2, and GATA2 mutations were determined.

Survival analysis. The clinical data set comprises 298 patients with
CEBPAmutations (MLLMünchner Leukämielabor GmbH), of which 152
harbored biallelic CEBPA mutations. Out of these 119 had specified
TET2 mutational status and were included in the analyses
(CEBPADMTET2WTn = 84,CEBPADMTET2MUTn = 35; Supplemental Table 3).
All patients gave written informed consent for the use of data for sci-
entific evaluations. The study was approved by the Internal Review
Board and by the Bavarian Ethics Committee, the Bavarian State
MedicalAssociation (Bayerische Landesärztekammer)with thenumber
05117. The study adhered to the tenets of the Declaration of Helsinki.

Gene expression. The Beat AML dataset used in this study is available
at http://vizome.org/aml and comprises 25 patients with CEBPA
mutations (CEBPANT and/or CEBPACT) for which mutation and mRNA
expression data is available. For the gene expression analysis, we
excluded patients, whichhadco-occurringmutation(s) inWT1or IDH1/
2 since these have been shown to interfere with TET2 function70–73 as
well as two patients with low CEBPA variant allele frequency (VAF).
Gene expression analysis was conducted on data from 16 CEBPA-
mutant patients of which 5 have a co-occurring mutation in TET2
(TET2MUT) (Supplemental Table 4). Differential expression analysis was
performed with DESeq274 (v. 1.26.0, RRID:SCR_015687) and default
parameters. To assess gene expression changes in CEBPAWT patients
with TET2MUT vs TET2WT, we included patients with normal karyotype
AML from the Beat AML dataset and excluded patients with muta-
tion(s) in WT1 or IDH1/2 (CEBPAWTTET2MUT n = 34 and CEBPAWTTET2WT

n = 167). To analyze CEBPA and GATA2 expression levels in CEBPAWT vs.
CEBPANT AML mRNA expression of the two genes together with
mutational and karyotype status data was retrieved from the Beat AML
study1 via cBioPortal75,76 (RRID:SCR_014555). We evaluated patients for
whom data was available for genomic profiling including mRNA
expression, mutations, and karyotype. We included patients with
normal karyotype AML and excluded patients with mutation(s) inWT1
or IDH1/2 (CEBPAWT n = 52 and CEBPANT n = 15).

In vitro experiments
Competitive CRISPR-targeting. For generation of Tet2 or Gata2
mutated clones, Cebpap30/p30 (♂) cells37 were electroporated with
ribonucleoparticles containing recombinant Cas9 nuclease from
Streptococcus pyogenes (Sp) (#1081058, IDT), tracrRNA (#1075927,
IDT) and crRNAs (Alt-R® CRISPR-Cas9 crRNA, IDT) targeting Tet2 and
Gata2, respectively. crRNAs were designed using the CHOPCHOP77
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Fig. 7 | TET2 lesions enhance the aggressiveness of CEBPA-mutant AML by
rebalancing GATA2 expression. a Model of Gata2 differential expression as a
consequence of (I) elevated CEBPA p30 due to the hypermorphic effect of the
CEBPANT, (II) TET2 deficiency and, (III) CEBPA deficiency. b Schematic illustration of
two strategies for CEBPADM AML to rebalance GATA2 levels by (I) loss-of-function
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illustrations were created with BioRender.com.
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web tool (chopchop.cbu.uib.no, RRID:SCR_015723) (Supplemental
Table 5). crRNA and tracrRNA molecules were complexed at room
temperature and assembled with recombinant SpCas9 according to
the manufacturer’s protocols (IDT). Pools of Tet2- or Gata2-targeted
cells were screened at regular intervals to monitor the outgrowth of
subpopulations. The genomic regions thatwere targetedwith CRISPR/
Cas9 technologywere PCR-amplified, Sanger sequenced, and analyzed
with the online tool Tracking of Indels by DEcomposition (TIDE)78 for
insertions or deletions (indels) in the targeted region. Primers for PCR
are provided in Supplemental Table 6.

Gata2 enhancer CRISPR-targeting. sgRNA sequences targeting the
Gata2 distal hematopoietic enhancer (G2DHE) were obtained from
the UCSC Genome Browser79 (genome.ucsc.edu, RRID:SCR_005780)
and targets with a high predicted cleavage (Doench/Fusi 2016
Efficiency > 55)80 selected (Supplemental table 5). SpCas9-
expressing Cebpap30/p30Tet2MUT cells were isolated after lentiviral
expression of lenti-Cas9-Blast (#52962 Addgene). Cebpap30/p30 and
Cebpap30/p30Tet2MUT cells were co-transduced with pLenti-hU6-
sgG2DHE_A/B-IT-PGK-iRFP and LentiGuide-sgG2DHE_1–6-Puro-IRES-
GFP. GFP+iRFP670+ cells were sorted via fluorescence-activated cell
sorting (FACS) and frozen for subsequent analysis.

Cebpa shRNA-knockdown. Cepbap30/p30 rtTA3 cells expressing Dox-
inducible shRNAs against Renilla luciferase (shRen, control) or Cebpa
(shCebpa) were used as previously described12. Cebpa knockdown was
induced by the addition of 4-hydroxytamoxifen (4-OHT; 1μM;#H7904
Sigma-Aldrich) to the cell culture medium to activate shRNA expres-
sion (mean Cebpa knockdown efficiency > 90% compared to shRen
control) and cells were collected for further analysis after 48 h.

In vivo experiments
Experiments were carried out according to protocols approved by the
Danish Animal Ethical Committee. Mice were bred and housed locally
at the Department of Experimental Medicine at the University of
Copenhagen. The mice were housed in a temperature- and humidity-
controlled room with a 06:00–18:00 h light cycle and fed a standard
chow diet and tap water ad libitum. We used Tet2fl/fl 81, Cebpap30/+ 13,
Cebpa+/fl 82 and Mx1-Cre+ 83 lines to generate inducible Tet2-deficient
and Cebpa-mutant compound lines. The following genotypes
were used for experiments: Cebpafl/p30Tet2+/+, Cebpa+/flTet2fl/fl,
Cebpafl/p30Tet2fl/fl, Cebpafl/p30Tet2+/+Mx1-Cre+, Cebpa+/flTet2fl/flMx1-Cre+,
and Cebpafl/p30Tet2fl/flMx1-Cre+. Cebpap30/p30 embryos were generated as
previously described13. We used iMLL-AF9+ 84, Cebpa+/fl 82 and R26-
CreER+ 85 lines to generate an iMLL-AF9+Cebpafl/flR26-CreER+ compound
line. Primers for genotyping in are provided in Supplemental Table 6.

During the leukemia initiation and propagation experiments
described below, the animals were monitored daily and euthanized
when they showed sign(s) of sickness e.g., inactivity, hunched posture,
white paws, and/or matted or puffed-up fur as well as pain assessed
based on the NC3R’s mouse grimace scale86 or reduced bodyweight
(maximal allowed reduction = 15%). The experiments were terminated
after 12 months.

Leukemia initiation (CebpaΔ/p30 model). C57BL/6 J.SJL congenic reci-
pients (female, 10–12 weeks old) were lethally irradiated (900 cGy)
12–24 h prior to intravenous injection with 1 × 106 bone marrow (BM)
cells from individual donor mice. The mice were given Ciprofloxacin
(100mg/l in acidified water; #17850 Sigma-Aldrich) in the drinking
water to prevent infections 3 weeks post-irradiation. Recipient mice
were allowed to recover for 6 weeks post-transplantation before Cre-
LoxP recombination was induced by two intraperitoneal injections of
Poly(I)-Poly(C) (300μg in 200μl PBS; #27-4732-01 GEHealthcare) with
48 h rest in-between. The day of the first injectionwas set as time-point
zero for the survival study and mice were monitored for leukemia

development and euthanized when moribund. To follow leukemia
initiation in the recipients, a subgroup of mice was subjected to blood
and BM sampling at 12, 24, and 36-week time-points. BM from mor-
ibund mice was collected and frozen (10% DMSO in FBS; #D8418
Sigma-Aldrich, #HYCLSV30160.03 Hyclone) for subsequent FACS and
analysis.

Leukemia initiation (Cebpap30/p30 model). C57BL/6 J.SJL congenic
recipients (female, 10 weeks old) were lethally irradiated (900 cGy)
12–24 h prior to intravenous injection with 0.5-1 × 106 fetal liver cells
from E15.5 Cebpap30/p30 embryos. The mice were given Ciprofloxacin
(100mg/l in acidifiedwater) in the drinkingwater to prevent infections
3 weeks post-irradiation. Latency to leukemic initiation was 8-11
months.

Leukemia propagation. C57BL6/6 J.SJL recipients (female,
10–12 weeks old) were lethally irradiated (900 cGy) 12–24 h prior to
being intravenously injected with 2 × 105 thawed live BM cells from
moribund donor mice together with 4 × 105 freshly isolated BM cells
from C57BL6/6 J.SJL mice. The day of the injection was set as time-
point zero for the survival study and mice were monitored and
euthanized when moribund. The mice were given Ciprofloxacin in the
drinking water to prevent infections 3 weeks post-irradiation.

Competitive shRNA-knockdown. C57BL/6 J.SJL recipients (female,
10–12 weeks old) were sub-lethally irradiated (500 cGy) 12–24 h prior
to being intravenously injected with a 1:1 mix of Cebpap30/p30 cells13

transduced with shRNA targeting Gata2 (detailed in ShRNA knock-
down below) or with control-shRNA87. The ratio of Gata2- or control-
shRNA-GFP+ to control-shRNA-YFP+ cells was analyzed by flow cyto-
metry four weeks later.

5-azacytidine treatment. C57BL/6 J.SJL recipients (female,
10–12 weeks old) were sub-lethally irradiated (500 cGy) 12–24 h prior
to being intravenously injected with 1 × 105 thawed live BM cells from
moribund secondary recipient mice. The mice were given Cipro-
floxacin in the drinking water to prevent infections 3 weeks post-
irradiation. The mice received intraperitoneal injections with the
demethylating agent 5-azacytidine (2.5mg/kg/day in saline; #A2385
Sigma-Aldrich) at days 6–10 and 20–24 post-transplantation. The time
of the BMcell injectionwas set as time-point zero for the survival study
andmiceweremonitored andeuthanizedwhenmoribund. To evaluate
the effects of short-term 5-azacytidine treatment, recipient mice were
treated at days 13–15 and euthanized 24 h after the last injection. BM
was collected for FACS, and sorted cells were frozen for subsequent
analysis.

Ex vivo cell culture
Establishment of ex vivo CebpaΔ/p30Tet2+/+ and CebpaΔ/p30Tet2Δ/Δ

lines. Thawed cryo-preserved cells fromprimary AMLwere cultured in
Lonza X-VivoTM 15 cell medium (#BE02-060QThermo Fisher Scientific)
supplemented with Bovine Serum Albumin in Iscove’s MDM (10%;
#09300 StemcellTM Technologies), Penicillin-Streptomycin (1%;
#15140122 Gibco), β-mercaptoethanol (0.1mM; #31350010 Gibco),
L-glutamine (2mM;#25030149Gibco), and cytokines h-IL-6 (50 ng/ml;
#130-093-032 Miltenyi Biotec), m-SCF (50ng/µl; #250-03 Peprotech),
m-IL-3 (10 ng/ml; #213-13 Peprotech), and m-GM-CSF (10 ng/ml; #315-
03 Peprotech). Two clones of each genotype (CebpaΔ/p30Tet2+/+ and
CebpaΔ/p30Tet2Δ/Δ) continued to expand beyond 40 days and withstood
freeze-thawing, and these clones have been used for further
experiments.

Vitamin C treatment. Cells were seeded at a density of 2 × 105 cells/ml
and the cell culture medium was supplemented with vitamin C
(100μg/ml; L-ascorbic acid, #A8960 Sigma Aldrich). Live cells were
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counted using Solution 13 (AO-DAPI; #910-3013 Chemometec) on a
NucleoCounter® NC-3000TM and reseeded at 2 × 105 cells/ml every
third day. The experiments were run with a total of two biological
replicates per genotype (performed on separate days) where each
experiment assayed one leukemic line per genotype. Each condition
(Vitamin C and vehicle) was performed in technical triplicates for each
of the two biological replicates per genotype.

5-azacytidine treatment. Cells were seeded at a density of 2 × 105

cells/ml and medium supplemented with 5-azacytidine (5-AZA; 1μg/
ml; #A2385 Sigma-Aldrich). Live cells were counted using Solution 13
on a NucleoCounter® NC-3000TM and reseeded at 2 × 105 cells/ml days
three and six. 24 hours later, up to 1 × 105 cells were isolated and
resuspended in RA1 buffer (NucleoSpin RNA XS, #740902 Macherey-
Nagel). The experiments were run with a total of two biological repli-
cates per genotype (performed on separate days) where each experi-
ment assayed one leukemic line per genotype. Each condition (5-AZA
and vehicle) was performed in technical triplicates for each of the two
biological replicates per genotype.

Establishment of ex vivo iMLL-AF9+Cebpafl/flR26-CreER+ lines. Sor-
ted GMPs from iMLL-AF9+Cebpafl/flR26CreER+ mice, were cultured in
MethoCult (M3434; #03434, Stemcell technologies) supplemented
with doxycycline (1μg/ml; #D9891 Sigma-Aldrich) for three replatings
to induce expression of the MLL-fusion protein.

Cebpa knockout. Leukemic iMLL-AF9+Cebpafl/flR26CreER+ cells were
cultured in RPMI 1640 medium (#21875034, Gibco) supplemented
with FBS (10%), Penicillin-Streptomycin (1%), doxycycline (1μg/ml),
and cytokines m-IL-3 (6 ng/ml), m-SCF (50 ng/ml), and h-IL-6 (10 ng/
ml). After twodays, 4-hydroxytamoxifen (4-OHT; 1μM;#H7904 Sigma-
Aldrich) or vehicle was added to the cell culture medium to activate
Cre-LoxP recombination, resulting in a reduction of Cebpa mRNA to
1.7 ± 0.3% vs. 100 ± 12.3% in vehicle control. Three days later cells were
isolated and either frozen or resuspended in RA1 buffer (NucleoSpin
RNA XS, # 740902 Macherey-Nagel). The experiments were run with a
total of two biological replicates (performed on separate days). Each
condition (4-OHT and vehicle) was performed in 2-3 technical tripli-
cates for each of the two biological replicates.

ShRNA knockdown
Cloning of shRNA into pMLS vector. Murine shRNAs targeting Gata2
(shGata2) were cloned into MSCV-LTRmir30-SV40-GFP vector. Tar-
geting sequences were identified from the Mission® shRNA library
(Supplemental Table 7) and the sense and anti-sense sequences were
incorporated with a miR-30-loop to generate a 97-mer target
sequence. Oligonucleotides were amplified by PCR using miR30
common primers (Supplemental Table 6), which include restriction
sites for XhoI and EcoRI. The resulting 138-mer PCR amplicons and the
vector were digested with XhoI and EcoRI and products were ligated
using T4 DNA Ligase (#15224025 Invitrogen). Bacterial transformation
was performed to amplify individual ligation products, and correct
inserts were verified by Sanger Sequencing. These, together with
vectors containing a control non-targeting sequence (MSCV-
LTRmir30-SV40-GFP and MSCV-LTRmir30-SV40-YFP), were used in
subsequent transfection/transduction experiments, as previously
described87,88.

Transduction of Cebpap30/p30 cells. Retroviral transduction was done
as previously described87. Briefly, retroviral supernatants were gener-
ated by transfection of Phoenix-Eco cells (RRID:CVCL_H717). For
transduction, retroviral supernatant was added onto retronectin-
coated (1:25; #T100B TaKaRa) non-tissue culture treated plates and
centrifuged at 2000×g for 60min at 4 °C. After aspiration of the
supernatant, Cebpap30/p30 cells were seeded at a density of 0.5–1 × 105

cells/cm2. The transduction was repeated the following day, and the
cells were cultured for 24 h prior to FACS sorting of transduced (GFP+/
YFP+) cells on a BD FACSAriaTM III (BD Bioscience). The efficiency of
shRNA-mediated gene expression knockdownwas assessedwith qPCR
and cells were used for transplantation and assessment of their com-
petitiveness in vivo.

Immuno-staining
Flow cytometry. To analyze the composition of either freshly isolated
or thawed cryopreserved BM and blood, cells were stained with
fluorescently labelled antibodies. For blood analysis, 50 µl blood was
collected from the facial vein and erythrocytes were lysed with lysing
buffer (BD Pharm LyseTM, #555899 BD Bioscience). For BM analysis,
cells were collected by crushing tibia, femur, and ilium and filtered
through a 50μm filcon cup (#340630 BD Bioscience). Blood or BM
cells were washed in PBS with 3% FBS and stained with fluorescently
labelled antibodies for 30min at 4 °C (Supplemental Table 8). For
cryopreserved cells, the cells were counterstained with DAPI (1:10000;
#D3571 Invitrogen) to separate out dead cells. Fluorochrome-minus-
onewasused as controls. Flowcytometry datawas obtainedusing a BD
FACSAriaTM III or a BD LSR IITM (BD Bioscience) and analyzed using
FlowJo software (v9, RRID:SCR_008520).

For downstream transcriptional and epigenetic analyses, live
donor-derived non-lymphoid and non-erythroid cells
(DAPI−CD45.2+CD3−B220−Ter119−) were sorted using a BD FACSAriaTM

III, spun down and cell pellets were either snap-frozen or resuspended
in RLT buffer (RNeasy Mini Kit, #74104 Qiagen).

For ex vivo cell culture of iMLL-AF9+Cebpafl/flR26-CreER+ cells, c-kit+

BM cells were enriched by magnetic sorting (mouse CD117 MicroBe-
ads; #130-091-224, Miltenyi Biotec), and granulocyte/monocyte pro-
genitors (GMPs; Lin−C-kit+Sca1−CD41−FcgRII+) were sorted using a BD
FACSAriaTM III.

Immunohistochemistry. To evaluate the proliferative status of leu-
kemia cells, cells fromBMofmoribundmicewere spun on glass slides,
air-dried, and fixed with methanol (#VWRC20846.292 VWR). After
blocking of endogenous peroxidase activity with hydrogen peroxide
(1%), slideswere stainedovernight at4 °Cwith anti-Ki67 antibody (1:50;
Clone SP6, RRID:AB_302459, #ab16667 Abcam) in antibody diluent
(S3022 Dako). To visualize the primary antibody, EnVision HRP Rabbit
(K4003 Dako) together with Vina GreenTM Chromogen Kit (BRR807
Biocare Medical) was utilized according to manufacturer’s instruc-
tions. The cells were counterstained with Mayer Hematoxylin (#51275
Sigma-Aldrich), dehydrated and coverslips mounted with Entellan
(#107960 Sigma-Aldrich). Images were captured using a Leica micro-
scope at 20X magnification and Ki67+ cells were quantified out of one
hundred cells.

Western blotting. Western blotting for TET2 was performed accord-
ing to standard laboratory protocols, using the following antibodies:
anti-TET2 (1:100, CloneC-7, RRID:AB_2924805, #sc-398535 Santa Cruz)
and anti-HSC70 (1:10000, Clone B-6, RRID:AB_627761, #sc-7298
Santa Cruz).

Quantitative PCR
RNA from sorted blasts or ex vivo-cultured cells was isolated using
NucleoSpin RNA XS kit (#740902 Macherey-Nagel) or RNeasy Mini Kit
(#74104 Qiagen) according to the manufacturers’ instructions and
converted to cDNA using ProtoScript First Strand cDNA Synthesis Kit
(#E6300 New England BioLabs). Quantitative PCR (qPCR) to assess
knockdown efficiency was run using TaqMan Fast Advanced Master
Mix (#4444556 Applied Biosystems) and TaqMan assay for Gata2
(Mm00492301_m1 FAM-MGB), in duplex with housekeeping gene 18 S
(Hs99999901_s1 VIC-MGB-PL). TaqMan assay for Ki67
(Mm01278617_m1 FAM-MGB) was used to assess the expression of the
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proliferation marker. qPCR to evaluate mRNA levels of total Gata2,
variant 1 (V1) and variant 2 (V2), respectively, was run in duplex using
LightCycler 480 SYBR Green I Master (#04887352001 Roche) with
primers for Gata2 and housekeeping gene Actb and Gapdh41 (Supple-
mental Table 6). Gene expression was calculated with the 2−ΔΔct

method.
RNA from Cebpap30/p30 cell lines was isolated using RNeasy Plus

Mini Kit (#74134 Qiagen) according to the manufacturer’s instructions
and converted to cDNAwith RevertAid First Strand cDNA Synthesis Kit
(#K1622 Thermo Scientific). qPCR was run using SsoAdvanced Univ
SYBR Grn Suprmix (#1725271, Bio-Rad Laboratories Ges.m.b.H.) and
primers for Gata2 and Gapdh (Supplemental Table 6).

Bisulfite PCR
DNA was isolated using DNeasy Blood and tissue kit (#69504 Qiagen)
and the DNA was bisulfite converted using EZ-DNA Methylation Gold
Kit (#D5005 Zymo Research), both according to the manufacturer’s
instructions. PCR was run using Pfu Turbo Cx Hotstart DNA poly-
merase (#600410 Agilent) with primers targeting a part of the CpG
island in the Gata2 V2 promoter region (Supplemental table 6). After
verification of their correct size, PCR products were cloned using Zero
Blunt Topo PCR Cloning kit (#450245 Invitrogen), and single colonies
were picked and amplified. Plasmid DNA was isolated using NucleoS-
pin Plasmid EasyPure (#740727.250 Macherey-Nagel), the correct
insert size was verified after cleavage with restriction enzyme EcoRI
(#R0101 New England Biolabs) and sent for Sanger sequencing using
the M13 primer provided with the cloning kit.

Chromatin immunoprecipitation (ChIP)-qPCR
ChIP for CEBPAwas performed as previously described37 using an anti-
CEBPA antibody (1:60, C-18, RRID:AB_2078046, #sc-9314, Santa Cruz
Biotechnology). ChIP for TET2 was performed using an anti-TET2
antibody (1:50; cloneD6C7K, RRID:AB_2799102, #36449, Cell Signaling
Technology), as previously described37, including a 30-minute incu-
bation with 2mM disuccunumidyl glutarate (DSG; #20593 Thermo
Scientific) before the 1% formaldehyde crosslinking step. The
sequences used for qPCR are listed in Supplemental table 6.

High-throughput sequencing and bioinformatic analyses
RNA-sequencing (RNA-seq) of cell line models. RNA was isolated
from 1 × 106 cells usingRNeasy PlusMini Kit (#74134Qiagen) according
to the manufacturer’s instructions and quality was assessed on a
Bioanalyzer 2100 G2939A (Agilent). 1 µg of RNA was used to generate
sequencing libraries using QuantSeq 3′ mRNA-Seq Library Prep Kit
(FWD) for Illumina, 96 preps (#015.96, Lexogen) and the PCR Add-on
Kit for Illumina, 96 rxn (#020.96, Lexogen). The libraries were quan-
tified on a Bioanalyzer 2100 G2939 (Agilent) and pooled in equimolar
amounts. Multiplexed libraries were sequenced on a HiSeq4A
(Illumina).

RNA-seq of leukemic cells from in vivo models. RNA was isolated
from 5 × 105 sorted cells using RNeasy Mini Kit (#74104 Qiagen)
according to the manufacturer’s instructions and quality was assessed
by RNA 6000 Pico Kit (#5067-1513 Agilent) on a Bioanalyzer 2100
(Agilent). 200 ng RNA was used to generate sequencing libraries using
TruSeq RNA Library Prep Kit v2 (#RS-122-2001 Illumina). The libraries
were quantified using Qubit dsDNA BR Assay Kit (#32853 Thermo
Fisher Scientific) andDNA 1000Kit (#5067-1504Agilent) andpooled in
equimolar amounts. Multiplexed libraries were sequenced on a Next-
Seq 500 (Illumina) using NextSeq 500 High Output v2 Kit (75 cycles;
#FC-404-2005 Illumina).

Bioinformatics analyses of RNA-seq data. RNA-seq analysis for
in vitro Cebpap30/p30 cells was performed as previously described12,37.
Quality checkwasdonewith FastQC89 (v. 0.11.4, RRID:SCR_014583) and

preprocessingwith PRINSEQ-lite90 (v. 0.20.4; RRID:SCR_005454), using
parameters: -min_len 30 -min_qual_mean 30 -ns_max_n 5 -trim_tail_right
8 -trim_tail_left 8 -trim_qual_right 30 -trim_qual_left 30 -trim_qual_win-
dow 5. The remaining reads were aligned against the mouse reference
genome (mm10) with BWA91 (v. 0.7.15; RRID:SCR_010910). RNA-seq
analysis for in vivo CebpaΔ/p30 cells was performed as follows. RNA-seq
reads were processed with the bcbio RNA-seq pipeline92 (https://
github.com/bcbio/bcbio-nextgen, RRID:SCR_004316) and the bcbioR-
NASeq R package (https://github.com/hbc/bcbioRNASeq). In brief,
transcript abundance estimates were obtained using Salmon93 (v.
0.12.0, RRID:SCR_017036) against reference transcriptome GRCm38/
mm10 ENSEMBL release 94, summarized to gene level and imported
into R using tximport94 (v. 1.10.1, RRID:SCR_016752) (using setting
countsFromAbundance = “lengthScaledTPM”). Differential gene
expression analysis between the CebpaΔ/p30Tet2+/+ and CebpaΔ/p30Tet2Δ/Δ

genotype was performed using DESeq2 with standard parameters74 (v.
1.22.2, RRID:SCR_015687) excluding lowly expressed genes ( < 10 sum
normalized counts across all samples) and running with alpha =0.05.

Gene expression levels between primary CebpaΔ/p30Tet2+/+ and
established Cebpap30/p30 leukemias were compared using edgeR (v.
3.32.1, RRID:SCR_012802).

Gene set enrichment analysis (GSEA). GSEAwasperformedusing the
GSEA software95,96 (v. 4.1.0, RRID:SCR_003199) and the Molecular Sig-
natures Database (RRID:SCR_016863).

Assay for transposase-accessible chromatin-sequencing (ATAC-
seq). ATAC-seq was performed as previously described12.

Bioinformatics analyses of ATAC-seq data. Analysis of ATAC-seqwas
performed as previously described12. HOMER97 (v. 4.11,
RRID:SCR_010881) was used to identify motifs enriched in the
ATAC peaks.

Bisulfite whole genome sequencing (WGBS). DNAwas isolated from
1 × 106 sorted cells using DNeasy Blood and tissue kit (#69504 Qiagen)
according to the manufacturer’s instructions. Bisulfite conversion of
DNAwas done according tomanufacturers’ instructions using EZ-DNA
Methylation Gold Kit (#D5005 Zymo Research). Quality of bisulfite
treated DNA was assessed by RNA 6000 Pico Kit (#5067-1513 Agilent)
on a Bioanalyzer 2100. Libraries of bisulfite-converted DNA were pre-
pared using PicoMethyl-Seq Library Prep Kit (#D5455 Zymo Research)
according to manufacturer’s instructions and the final concentration
and quality of the libraries was assessed using Qubit dsDNA HS Assay
Kit (#Q32854 Thermo Fisher Scientific) and High Sensitivity DNA
Analysis Kit (#5067-4626 Agilent) on a Bioanalyzer. Duplexed libraries
were sequenced on a NextSeq 500 (Illumina) using NextSeq 500 High
Output v2 Kit (75 cycles).

Bioinformatics analyses of WGBS data. Reads were trimmed and
filtered using Trim Galore98 (v. 0.4.3, RRID:SCR_011847) with default
parameters, and quality was assessed before and after using FastQC89

(v. 0.11.7). Trimmed reads were aligned to the mouse genome assem-
bly GRCm38 (mm10) using Bismark99 (v. 0.19.1, RRID:SCR_005604)
with option -non_directional (other parameter left at default values;
this used Bowtie 2100 (v. 2.2.8 RRID:SCR_016368) with -q --score-min
L,0,−0.2 --ignore-quals). After deduplication of alignments (using
deduplicate_bismark), the methylation information for individual
cytosines was extracted using bismark_methylation_extractor (--cyto-
sine_report --comprehensive --gzip). To quantify DNA methylation of
gene bodies and promoters (1000bp up-and downstream of tran-
scription start sites), we used the weighted methylation level (i.e.,
summarizing over all CpG positions in the given region, the number of
reads supporting methylated cytosine divided by the number of all
reads covering these positions). Plots of average methylation levels
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across extended gene bodies were generated using deepTools101

(v.3.1.3, RRID:SCR_016366) computeMatrix (scale-regions -m 4000 -a
1000 -b 1000 --unscaled5prime 1000 --unscaled3prime 1000) and
plotProfile, for which Bismark-generated bedGraph files were con-
verted to BigWig format (using UCSC’s bedGraphToBigWig102 (v. 4)).

Bioinformatic analyses of chromatin immunoprecipitation-
sequencing (ChIP-seq). ChIP-seq data from in vitro Cebpap30/p30 cells
was processed as described12. ChIP-seq data from in vivo Cebpap30/p30

cellswasprocessed as follows; raw readsderived fromCEBPA (Cebpa+/+

and Cebpap30/p30) ChIP-seq experiments were mapped to mouse
(mm10) genome assembly using Bowtie 2100 (v. 2.3.4.3). We used
uniquely mapped and PCR duplicates (exact copies) collapsed as one
read and extended to their fragment length by determining the read
extension size usingMACS2103 (v. 2.1.0.20151222; predicted parameter,
RRID:SCR_013291). Raw read counts were normalized to TPM using
deepTools101 (v. 3.3.1; bamCoverage). Raw read counts (CEBPA binding
levels) mapping to Gata2 promoter and enhancer regions were com-
puted using bedtools104 (v. 2.30.0; multicov, RRID:SCR_006646), and
the differences in CEBPA binding between Cebpa+/+ and Cebpap30/p30

conditions were computed using DESeq274 (v. 1.30.1). Sequencing
reads derived fromTET2ChIP-seq experimentwere preprocessedwith
PRINSEQ-lite90 (v. 0.20.4; RRID:SCR_005454) and the remaining reads
weremapped to themouse reference genome sequence (mm10) using
BWA91 (v. 0.7.17-r1188, RRID:SCR_010910). The resulting alignments
were processed with samtools105 (v. 1.13; RRID:SCR_002105) and peak
calling was done with MACS2103 (v. 2.1.0.20140616; RRID:SCR_013291).
Aligned readcountswere normalized toRPKMusing the bamCoverage
function from deeptools101 (v. 3.5.1; RRID:SCR_016366).

Statistics
Data were analyzed for significance using parametric tests, with prior
log-transformation if necessary to achieve normal distribution. Nor-
mality was evaluated by Shapiro–Wilk test. Two-group analyses were
done using an unpaired two-tailed t-test. Multiple-group analyses were
done with one-way-ANOVA followed by multiple comparisons cor-
rection using Dunnett when comparing to a reference group, or two-
way-ANOVA followed by multiple comparisons correction using Šídák
test when comparing two independent factors across four groups.
Data sets that did not pass normality tests were analyzed by
Kruskal–Wallis test followedbymultiple comparisons correction using
Dunn’s test. Survival curves were analyzed usingMantel–Cox Log-rank
test. To compare distributions Wilson/Brown binominal test was used.
To compare amedian against a hypothetical medianWilcoxon signed-
rank test was used. p-values < 0.05 were considered statistically sig-
nificant. Data was analyzed using GraphPad Prism (v. 9,
RRID:SCR_002798). Data is shown as mean± SEM unless otherwise
stated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study is publicly available in Gene Expres-
sion Omnibus (GEO) under accession numbers GSE214224 (RNA-seq,
ATAC-seq, and TET2 ChIP-seq in vitro) and GSE213864 (RNA-seq and
WGBS in vivo), and within the article and its supplementary files. The
following other publicly available data was used in this study: CEBPA
and H3K27Ac ChIP-seq from myeloid progenitor cell model for p30-
driven AML12 is available under GSE158727. CEBPA ChIP from mouse
Cebpa+/+ or Cebpap30/p30 GMPs11 is available under GSE118963. RNA-seq
data from Cebpap30/p30 AML11,34 are available under GSE118963 and
GSE141477. Patient data analyzed in this study were from the Beat AML
study (accessed through cBioPortal75,76 [https://www.cbioportal.org/]

or Vizome1 [http://www.vizome.org/]) or from published cohort stu-
dies (Supplemental tables 1, 2a–e). Source data are provided with
this paper.
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