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Generative complex networks within a
dynamic memristor with intrinsic variability

Yunpeng Guo1,6, Wenrui Duan 2,6 , Xue Liu3,1,6 , Xinxin Wang1,
Lidan Wang 4, Shukai Duan 4, Cheng Ma 1 & Huanglong Li 1,5

Artificial neural networks (ANNs) have gained considerable momentum in the
past decade. Although at first the main task of the ANN paradigm was to tune
the connectionweights in fixed-architecture networks, there has recently been
growing interest in evolving network architectures toward the goal of creating
artificial general intelligence. Laggingbehind this trend, currentANNhardware
struggles for a balance between flexibility and efficiency but cannot achieve
both. Here, we report on a novel approach for the on-demand generation of
complex networks within a single memristor where multiple virtual nodes are
created by time multiplexing and the non-trivial topological features, such as
small-worldness, are generated by exploiting device dynamics with intrinsic
cycle-to-cycle variability. When used for reservoir computing, memristive
complex networks can achieve a noticeable increase inmemory capacity a and
respectable performance boost compared to conventional reservoirs trivially
implemented as fully connected networks. This work expands the function-
ality of memristors for ANN computing.

Connectionism is a movement in cognitive science that hopes to
explain mental phenomena using artificial neural networks (ANNs).
Since the 1980s, connectionist modelling has gradually gained atten-
tion in thefield ofAI, whose popularity has greatly increased in thepast
decade due to the success of deep learning (DL). Within DL,
researchers study ways of updating the weights of connections to
improve the performance of ANNs, starting by defining the archi-
tectures of ANNs.

AlthoughDL, as its name suggests, is best known for itsmultilayer
data representation architecture, the invention of new architectural
motifs with increasing complexity has enabled DL to continue tomake
sweeping strides, from AlexNet1 to ResNet2, DenseNet3 and
transformer4. Alongwith these advances, interest hasquickly turned to
architecture design and the possibility of automating architecture
engineering towards the more ambitious goal of creating artificial
general intelligence5–7.

Lagging behind the trend of ANNs towards evolvable network
architectures, current AI hardware struggles for balance between
flexibility and efficiency but cannot achieve both at the same
time. GPUs are suitable for general-purpose computing because
of their software programmability. However, like other von Neu-
mann processors, GPUs are power-hungry. Rather than being
intended for general-purpose computing, ASICs are customized
and efficiency-optimized for particular uses, sacrificing post-
fabrication software programmability and thus failing to meet the
requirement for on-demand ANN architecture generation. This
seemingly fundamental conflict between ASIC-like efficiency and
software-like programmability will eventually become a road-
block for the AI trend towards network architecture evolution.

In contrast to what these familiar computing platforms
operate on, the brain principles are completely different, bringing
many orders of magnitude higher efficiency than digital methods.
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The brain has a far more complex network architecture than does
any of the existing ANNs. The brain realizes efficient processing
of information based on two seemingly opposite principles: seg-
regation and integration. Segregation relies on the spatial
aggregation of neurons with similar response preferences to form
different functional cortices, while integration relies on commu-
nication among the various functional cortices. The structure of
the brain network continuously evolves dynamically, disrupting
and re-establishing the balance between segregation and inte-
gration with sub-second time granularity throughout the
lifespan8. The brain also uses processes occurring in nature (of
course it does) as computational primitives instead of building
them up from elementary AND and OR manipulations of 1 and 0,
and its components are so highly plastic that they never stop
changing in response to the learning environments9.

To capture this important trait of the brain components, mem-
ristive technology is emerging as a promising enabler of the brain-
inspired computing paradigm. The memristor, as its name suggests, is
a variable resistor withmemory. It is most widely used as the emulator
of biological synapse and is often integrated into a crossbar array as
the neuromorph of the full synaptic connections between two neuron
layers in a layered neural network10. Heavily influenced by the classical
DL practice, thesememristive systems have been built primarily as the
accelerators for fixed-architecture ANN algorithms10–17 which in turn
demand memristive devices to be static (because typical ANN models
are static) and have strictly reproducible behaviors (because typical
ANN models are deterministic). To satisfy these demands, however,
substantial device-level and circuit-level optimization efforts are
required because memristors are, by nature through their internal
electrophysical processes,more of dynamic and stochastic devices18–40

than static and deterministic ones.
In this work, we report a hardware approach that simulta-

neously exploits the dynamic nature of the memristor and the
intrinsic stochasticity in its dynamics to realize the on-demand
degeneration of complex networks. With temporal dynamics,
Appeltant et al.41 have proposed the use of a single dynamical
node as a complex system by time-multiplexing. In this way, the
dynamical node that is reused repeatedly can be treated as a
time-domain complex system (i.e., network) composed of a
number of virtual nodes with internode couplings (i.e., connec-
tions). A number of memristive implementations have also been
reported42, including the use of thin-film oxide memristors43–48

and memristive nanowire networks49,50. We here show that the
cycle-to-cycle (C2C) variability of the time constant of the spon-
taneous resistance decay after the memristor has been electrically
excited can be viewed as a source of randomness in connectivity
generation, giving rise to nontrivial topological features. In par-
ticular, the physically implemented complex networks within a
dynamic memristor with intrinsic variability can exhibit a certain
degree of small-worldness, lying somewhere between completely
regular networks and completely random ones. By regulating the
time-slot assignment in multiplexing, networks with different
topologies and varying degrees of small-worldness can be gen-
erated. Furthermore, we demonstrate the information processing
capabilities of several such memristive complex networks folded
into the temporal domain in the context of reservoir computing
(RC). Experimental results show that the memory capacity of the
memristive complex network reservoir is increased to 209.8% of
that of the memristive FC network and respectable performance
boost in speech recognition tasks compared to conventional
reservoirs implemented trivially as fully-connected (FC) networks.
The proposed approach of generating complex networks is very
generic and applicable to various dynamical memristors with
intrinsic variability.

Results and discussion
A dynamic memristor with intrinsic variability
The dynamic memristor used in this work has a crosspoint structure
vertically stacked as Pd/HfO2/Ta2O5/Ta (50nm/10 nm/5nm/20nm)
(seeMethods). Its schematic structure and optical spectroscopy image
are shown in Fig. 1a, b, respectively. We have also used the focused ion
beam (FIB) to prepare the transmission electron microscopy (TEM)
specimen. Its cross-sectional TEM image is shown in Fig. 1c, and the
corresponding element distribution profiles from energy dispersive
spectroscopy (EDS) are shown in Fig. 1d and Supplementary Fig. S1,
where individual layers are separable. Figure 1e shows the typical
volatile resistance switching characteristics of the memristor. Under a
read voltage of 3 V, the device exhibits high resistance about 108 Ω as
estimated from the current through it. When a voltage pulse of the
intensity of 5 V and the duration of 1ms is applied, the current keeps
increasing till the pulse is ceased (a read voltage immediately follows).
Anobviousdropof current from I- to I+ at the instant thepulse ends can
be seen. Over the next few hundred of milliseconds, it is seen that the
read-out current I+ gradually decreases until a steady-state value
comparable to that measured before pulse application is reached.

In order to understand the nature of the resistance change, elec-
trode area-dependent resistancemeasurements have been performed.
Supplementary Fig. S2 shows the results of DC sweep measurement
and the electrical properties of the devices with different areas. The
low resistances do not differ significantly from each other, while
the high resistance clearly increases with decreasing area, indicating
the filamentary nature of the resistance change. This is also consistent
with other reported results obtained from devices based on similar
materials systems51.

To evaluate the degree of C2C variation of our device, we perform
one thousand identical and independent pulse measurements on this
device and analyze its dynamics statistically. As shown in Fig. 1f, the
time (τ) of the spontaneous decay of the read-out current I+ varies
broadly between 342ms (τmin) and 1089ms (τmax). The C2C τ prob-
ability distribution looks like a two-side-truncated Gaussian distribu-
tion in which the random variable τ is bounded both above
(τmax = 1089ms) and below (τmin = 342ms). It also looks like τ and I+ are
correlated, that is to say, the variation of τ may originate from the
variation of I+, which makes intuitive sense.

A further question then naturally arises: are I+ and therefore τ also
correlated with I-? Behind the question is something important when
we consider if the same distribution as acquired from single pulse
measurements also reasonably applies to C2C τ variations measured
under arbitrary pulse protocols. It is known that volatile memristors
with finite τs can exhibit paired-pulse facilitation (or short-term facil-
itation), i.e., I-s increase with each arriving pulse when they are subject
to pulse train stimuli as long as pulse intervals are shorter than τs19,52.
This can be understood as due to the temporal coupling between the
adjacent pulse-induced resistance switching events. Given this, τs
obtained from the last pulses in pulse train or multi-pulse measure-
ments may ormay not follow the same truncated Gaussian probability
distribution as acquired from single pulse measurements, which is
dependent on whether or not I+ and τ also correlated with I-.

To address this question, we carry out several sets of multi-pulse
measurements, each with a different number (2 ~ 10) of pulses and
containing one thousand independent experiments, and record I-s and
I+s at the ends of the last pulses as well as τs as the last pulses end. The
interval between consecutive pulses is set to be 200ms which is
shorter than the minimum recorded τ in single pulse measurements.
This ensures that consecutive resistance-switching events are tempo-
rally coupled. As shown in Fig. 1g, h, although the increase in I-with the
number of pulses is statistically significant as the result of the afore-
mentioned paired-pulse facilitation or temporal coupling, I+ and τ do
not have obvious correlations with I-. This observation implies that the
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memristive changes in the ionic or electronic configuration of the
device induced by multiple pulses are still minor (negligibly affect the
I+s measured under 3 V) under our experimental protocols though
they are sufficient to be reflected in the I- instantaneously measured
under a relatively large voltage of 5 V. The difference in the sensitivity
to the configurational change between I- and I+ could be due to the
strong nonlinearity in the device I-V characteristics; in otherwords, the
memristive changes of the device translate to changes in the instan-
taneously measured current which increase dramatically with the
measuring voltage24. Given thenoncorrelationbetween I+ (and τ) and I-,
the same C2C τ probability distribution as acquired from single pulse
measurements also reasonably applies to those measured under these

multi-pulse protocols. This is clearlymanifested in thewell-overlapped
distribution functions emerging from the statistical measurements in
the respective experimental sets, as shown in Fig. 2a.

As demonstrated previously, the state of a dynamic memristor
(like our Pd/HfO2/Ta2O5/Ta memristor) at the present time (or cycle
that is discrete and abstracted away from the real continuous physical
time) canbe temporally coupled to its states at previous times (cycles).
In the context of network formation, the temporal coupling between
any two cycles is referred to as a connection between two virtual nodes
emerging in a sequential fashion in the temporal domain. Therefore, a
singlememristor can serve as the time-divisionmultiplexed unit that is
sequentially reused41. The time division multiplexing procedure
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Fig. 1 | Electrical characteristics of the dynamicmemristor. a Schematic diagram
of the structure of the device. b Optical microscopy image of a 4 × 4μm2 device.
c Cross-sectional TEM image of the dynamic memristor, consisting of a vertically
stacked structure of Pd/HfO2/Ta2O5/Ta (50 nm/10 nm/5 nm/20 nm). d The corre-
sponding elements distribution profile from EDS. e Evolution of the current (cyan
curve) through the device under read voltage of (3 V) after the stimulating voltage
pulse (5 V and 1ms) has ceased. Inset: zoom-in view of current evolution over a
short time interval before, during and after the stimulating pulse is applied. The

current drops from the peak I- to I+ immediately after the voltage has decreased
from 5 V to 3 V. f Spontaneous decay of the current under read voltage from I+ to a
baseline steady-state value after the stimulating pulse has ceased. The decay time τ
varies broadly between 342ms (τmin) and 1089ms (τmax) over 1000measurements.
g Statistical analysis of the correlation between I+ and I- over 10 sets of multi-pulse
(1 ~ 10) measurements, each containing 1000 independent measurements.
h Statistical analysis of the correlation between τ and I- over 10 sets of multi-pulse
(1 ~ 10) measurements, each containing 1000 independent measurements.
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reduces the complex network to a single hardware node and therefore
facilitates implementations enormously. In addition, the read-out can
also be taken at a single point of the delay line. These simplifications
will enable ultra-high-speed implementations, using high-speed com-
ponents that would be too demanding or expensive to be used for
many nodes41,53,54. As for our dynamical memristor as such a single
physical node, it is a passive element with a working current of only a
few tens of nA and its speed limit could potentially be in the picose-
cond range55, thereby promising speed and energy advantages.

To create a connection between two virtual nodes next to each
other, the interval θ (physical time) between two immediate adjacent
cyclesmust be shorter than τmin; otherwise, these two virtual nodes are
temporally independent (supplementary Fig. S3) and are not con-
sidered as connected. Therefore, θ becomes a key tuning factor to
modulate network connectivity: given a particular τ, the smaller the θ,
the denser the connectivity because the temporal range of coupling (τ)
of a virtual node will cover more subsequently emerging ones. What
we want to clarify here is that though the weights of the connections
are not designed intentionally in this approach, they are naturally
present in our physically implemented complex network. Specifically,
the connection strength between any two virtual nodes that are tem-
porally separated by m×θ can be reflected in the amplitude of the
remanent current as the result of spontaneous decay over the period
of m×θ from I+ excited at the moment when the former node appears
(no further voltage excitation over this period). Accordingly, pairs of
virtual nodes with different temporal separations will have different
connection strengths. We would also like to remind that virtual nodes
appear regardless of whether signals in the formof voltage excitations
occur; in other words, the connection strength is pre-defined in prin-
ciple, though adjustable during the training of the network56. There-
fore, if voltage excitations do occur during the interval between two
nodes, a change in the measured remanent current at the moment
when the latter node appears should be regarded as a change in the
network state due to the coupling with a different input signal, but not
a change in the strength of the connection.

Though networks in the spatial domain can be folded into the
temporal domain by multiplexing the dynamic memristor (for given
time slots θs), the generated networks only have trivial topological
features if τ is fixed: the resulting networks are just regular. Quite the
reverse, real-world networks are often complex networks that have
non-trivial topological features—features that do not occur in simple
networks such as regular lattices (e.g., fully connected networks) or
totally random graphs. Instead, the structure of a complex network is
neither completely regular nor completely random. In this respect, our
memristor provides the source of randomness in τ as described by a

truncated Gaussian C2C probability distribution to guarantee the
topological non-triviality of the generated networks.

As shown in Fig. 2b, because τ varies from C2C that follows a
truncated Gaussian distribution, the probability of connection between
nodes can be adjusted by θ. Specifically, the probability of connection
between a virtual node and a subsequent one temporally separated by
physical time less than τmin is 1; in other words, a node must be con-
nected to Dmin subsequent nodes, where Dmin = τmin/θ. The probability
of connection between a virtual node and a subsequent one separated
by physical timemore than τmax is 0; in other words, it can by nomeans
be connected to theDmaxth node andbeyond after it, whereDmax = τmax/
θ. As shown in supplementary Fig. S4, the distribution of τ and therefore
the connection probability can be further regulated by pulse amplitude.

Memristor-inspired ‘probabilistic border and all-or-none con-
nection’ (PBAONC) complex network model
Basically, there are two approaches to generating a complex network
with non-trivial topological features: one is changing the connections
between nodes in pristine regularly connected networks57, and the other
is generating connections from scratch58. Inspired by the experimentally
observed dynamic behavior of our Pd/HfO2/Ta2O5/Ta memristor with
intrinsic variability, here we propose a ‘probabilistic border and all-or-
none connection’ (PBAONC) connection generation mechanism for
creating complex networks. Starting from an open ring lattice with N
nodes, a complex network in which each node forms connections with
its clockwise neighbors in an all-or-none (AON) fashion is created under
the PBAONC mechanism. To be specific, the clockwise neighbors of a
node are classified as either proximal or distal ones according to their
distances (measured in the clockwise direction) away from the node
under consideration. Each node is connected to all its proximal neigh-
bors but forms no connection with the more distal ones (i.e., AON). For
each node, the border between its proximal and distal neighbors is
probabilistically determined. Specifically, according to the experimen-
tally characterized distribution of the resistance decay time of the
memristor (Fig. 2a), the distance Di between node i and this border
(measured from node i in the clockwise direction) is sampled from the
following modeled distribution:

p Dð Þ=0 if D <Dmin orD >Dmax

p Dð Þ= A
σ
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D�μð Þ2
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and Dmax are the two bounds of Di, beyond which the probability
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Fig. 2 | Statistical analysis of the currentdecaytime. aProbability distributionsof
τ obtained in 10 sets of multi-pulse (1–10) measurements, each containing 1000
independent measurements (the same as in Fig. 1h). b Fitting of the probability
distributionof τobtained in single-pulsemeasurements (cyancurve) by a truncated
Gaussian function (purple curve). In between Dmin and Dmax, the probability

distribution function is a Gaussian function vertically translated by ε that ensures
unity of the probability of the entire sample space. The schematic shows that
longer/shorter τ sampled from the distribution (labeled as a yellow/blue star on the
τ axis) at the moment when a certain virtual node is created enables the formation
of connections with subsequent virtual nodes more/less temporally distant away.

Article https://doi.org/10.1038/s41467-023-41921-3

Nature Communications |         (2023) 14:6134 4



becomes zero. In between Dmin and Dmax, the probability distribution
function is a Gaussian function vertically translated by p0 that ensures
unity of theprobability of the entire sample space. Tosomeextent, this
network generation approach in which connections are sampled from
a distance-based probability distributionmimics axonal growth during
neuronal development59. After the sampling of Di, a specific constraint
is imposed that node N is the farthest node (measured from node i in
the clockwise direction) to which node i can connect, where N is the
total number of nodes on the open ring lattice (i starts with 1 at
the clockwise end of the open ring and increases in the clockwise
direction); in other words, if the gap of the open ring lattice is in the
clockwise latticepath from i to j, no connectivitywill be projected from
node i to node j even if the distance between them (measured from
node i in the clockwise direction) is smaller than the sampled Di. The
rationale behind imposing this constraint is the law of temporal
causality, that is, memristive virtual nodes produced chronologically
later should not influence early nodes. As a result, the PBAONC
networks are feed-forward or unidirectional. To avoid the appearance
of isolated nodes,we also setDmin to be nonzero, as illustrated in Fig. 3.
Comprehensive analyses of the characteristics of the PBAONC
complex networks as compared to the canonical Watts–Strogatz
(W-S) small-world (SW) network57, Erdős–Rényi (E-R) random
network60 and Barabási–Albert (B-A) scale-free network61 are provided
in the Supplementary Figs. S5–S8. Overall, our PBAONC complex
networks exhibit a certain degree of small-worldness, achieving
functional segregation and aggregation at the same time (seeMethods
and Supplementary Text).

Memristive RC using PBAONC complex network reservoirs
As introduced previously, the brain is a powerful computing machine
using forbiddingly complex neural networks. One of these connec-
tionist models that exhibits state-of-the-art performance is the RC
model62,63. A reservoir is a high-dimensional non-linear dynamical
system where feed-in inputs are non-linearly transformed into a high-
dimensional state space in which different inputs are more easily
separable. One of the most prominent advantages of reservoir com-
puting is the simplicity of training that the reservoir itself is left
untrained and only the readout layer is required to be trained.
Although the exact weight distribution and sparsity are believed to

have limited influence on the reservoir’s performance, the best-
performing reservoirs have been shown to have spectral radii lower
than one64.

As for memristive reservoirs created through the time-
multiplexing procedure41, Du et al.43 have used different time-
multiplexing time slots for creating different component reservoirs.
The motivation was to enrich the reservoir dynamics and benefit from
device-to-device variation. Zhong et al.65 have used a fixed total num-
ber of virtual nodes and a fixed time-multiplexing time slot, and
investigated the optimal trade-off between the number of component
reservoirs and the number of virtual nodes per reservoir. The coupling
strength has effectively been tailored in these two cases. A more
general framework of network emulation based on a single dynamical
system with time-delayed feedback has recently been discussed by
several groups56,66,67. Among them, Stelzer et al.56,67 proposed theuseof
multiple delay loops with different delay lengths for constructing a
deep neural network whose interlayer connection topology can be
adjusted by the number of delay loops and the delay length of each
loop (with a fixed multiplexing time slot and total number of vir-
tual nodes).

Here, we will demonstrate new reservoirs made of our PBAONC
complex networks and implemented in dynamic memristors with
intrinsic variability. It is clear from the discussions in the last two
sections, multiplexing ourmemristor forN cycles with a fixed time slot
θ gives rise to various types of PBAONC networks: if N × θ ≤ τmin, an FC
network (as schematically shown in Supplementary Fig. S9) is created
because even the most temporally distant virtual nodes, the first and
the last ones, are coupled together; if θ ≥ τmax, then there are only
isolated virtual nodes because even the immediately adjacent nodes
are uncoupled; if τmin < θ <τmax, isolated virtual nodes are still likely to
exist. Situations in which θ > τmin are beyond our current focus. If
θ ≤ τmin and N × θ ≥ τmax, each node is coupled to a part of the subse-
quently emerged nodes that are temporally proximal. With the emer-
gence of a new virtual node in eachmultiplex cycle, the corresponding
temporal border between its proximal and distal neighbor nodes is
sampled from the τdistribution. Theworkflowof creating the PBANOC
complex network physically and the reservoir computing system
based on it are schematically shown in Supplementary Fig. S10 and
Fig. 4a, respectively.

D10=2

D1=9
D2=2

D4=2

D5=2

D6=4
D7=2

D8=2

D9=2 D3=2

Increasing Dmax
Dmax = 2 Dmax = N-1

Dmin = 2

Dmin = N-1

Increasing D
m
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AONC FCa b

Fig. 3 | Schematic of the generationof PBAONC complex networks. a Schematic
topologies of the PBAONC networks defined over the parameter space.
b Schematic of an N-node PBAONC complex network (N = 10) that are para-
meterized to Dmax =N-1 = 9 and Dmin = 2. Connections are displayed by thick lines.
The connection range of node i in the clockwise direction is shown schematically as
a thin solid concentric arc starting from the radial line through node i and covering
the otherDi nodes (The arrows on the lines between nodes indicate the connection

direction). For node9 (10) in this schematic, a part of the (thewhole) concentric arc
on the clockwise side of node 10 is dashed, indicating that no connection is pro-
jected fromnode 9 (10) to nodes covered by the corresponding dashed arc. For the
sake of simplicity, the connection (if present) extended from the first node to the
last node (i.e., the Nth one counted in the clockwise direction) is represented by a
short counterclockwise arrow covering the gap between them.
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We would like to point out that the weighted summation of the
reservoir outputs and the final classification in the testing process, as
well as the update of the weight matrix of the output layer in our
experimental protocol, are all performed on software. Nevertheless,
mixed dynamical and quasi-static memristive reservoir systems have
been demonstrated, where quasi-static memristive crossbar arrays
are used as the hardware substrate for the readout function50,68. The
workflows of training and testing our reservoir computing system are
shown in Supplementary Fig. S11.

A desired reservoir should exhibit a fading memory, that is,
the effect of the previous reservoir state on a future state should
vanish gradually as time passes62. Practically, this property is
assured if the reservoir weight matrix W is scaled so that its
spectral radius ρ(W) (i.e., the largest absolute eigenvalue) satisfies
ρ(W) < 164. Theoretical analyses have also shown that a reservoir
has an optimal active state if the ρ(W) is close to 169. Accordingly,
in constructing a theoretical model of reservoir, the random
weights are routinely drawn from a uniform distribution over
(-ε,ε) which are then rescaled to a spectral radius less than
unity69,70. As aforementioned, however, though weights are not
designed intentionally in our approach, they are naturally present
in our physically implemented complex network. Because each
virtual node in our physically implemented PBAONC reservoir is
connected to its subsequent ones within its resistance decay time
with connection strengths decreasing with temporal separation,
we here assign distance-dependent weights to these edges in the
simulation. Specifically, the weight is linearly decreased from 0.2
(connection to the immediately following node) as the connected
node is farther away. For any node i, if i +Di ≤ N, the weight of the
connection to its border node becomes zero; otherwise, the
weight of the connection to node N is 0:2

Di
ðDi + i� NÞ. Contour plot

(Fig. 4b) shows the ρ(W) of the PBAONC complex network reser-
voir as a function of Dmax and N. It is seen that as the number of
nodes increases the optimal value of Dmax where the ρ(W) is

closest to 1 reduces, and with Dmax = 8 there are a comparatively
wider range of N (20 ~ 30) over which the reservoirs can have their
ρ(W)s close to 1. By contrast, the ρ(W) of the PBAONC FC network
(N < Dmin) reservoir is larger than 1 and increases with the number
of nodes (Fig. 4c). This large performance gap (as reflected by the
proximity to unity) between the PBAONC complex network and
fully connected network under this more physically realistic
weight assignment scheme indicates that memristive reservoirs
have much room for improvement through the generation of
complex networks. The importance of device variability that
underpins the generation of complex network topology is also
illustrated in Fig. 4c. It can be seen that the trivial AONC regular
networks (Dmin= Dmax = 8 or 2) without randomness in their con-
nectivity patterns have ρ(W)s that are less proximal to unity
compared to that of the PBAONC complex network, though not as
significant as the contrast between the PBAONC complex network
and the PBAONC FC network.

Experimentally, different temporal sequences of voltage pulses as
inputs to our physically implemented PBAONC complex network
reservoir give rise to different trajectories of current evolutions (illu-
strated in supplementaryFig. S3b, c). The reservoir state is represented
by the instantaneous currents obtained when each of the N virtual
nodes appears (I- if this virtual node is excited by a voltage pulse).
These current values are then linearly weighted through an output
weight matrix Wout and summed together to obtain the output of the
reservoir computing system.

Here, we test the time series information processing ability of
our PBAONC complex network reservoir in short-term memory
(STM) task, parity check (PC) task and spoken-digit recognition
task. The STM task is a memory recall task, where the reservoir
processes the original time series into a format from which the
input values at some time delay in the past can be reconstructed.
Details of the STM task implementations are provided in Meth-
ods. The memory capacity (MCSTM) can be quantified by the sum
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of the square of the correlation between the output yk(t) and the
delayed input u(t-k) over all delays as follows:

MCSTM =
X1

k = 1

Cor2 yk tð Þ,u t � kð Þ� �
ð2Þ

In addition to the fading memory property, the nonlinear
dynamics of the reservoir is also crucial that it allows for linear
separability of different inputs, as can be assessed using the PC task.
The PC task aims to reconstruct the result of a binary parity operation
(e.g., addition operation) over previous inputs up to some delay in the
past (e.g., yPC m, kð Þ= Pk

j =0 u m� kð Þ mod2ð Þ as the target output). The
memory capacity (MCPC) is calculated according to Eq. (3):

MCPC =
Xk= 10

k = 1

Cor2ðyout m, kð Þ,yPC m, kð ÞÞ ð3Þ

For the PBAONC complex network reservoirs, contour plots
(Fig. 5a, b) show the ratios ofMCSTM andMCPC to those of the reservoir
madeof PBAONCFCnetwork, respectively, as functions of the number
of virtual nodes (N) and Dmax (τmax/θ). It is seen that large MCs are
mainly achieved around Dmax = 8 and N = 20 ~ 30, where ρ(W)s closest
to 1 are achieved according to our weight assignment scheme (Fig. 4b).

To expand the reservoir size or simply generate a set of reservoirs
with the same network parameters for each component reservoir
(simple reservoir set),multipledevices canbeusedbasedondevice-to-
device (D2D) variations where the reservoir state is represented by the
collective states of all devices43. The RC performance can be further
improved by using different Dmax parameters for each generated
reservoir (mixed reservoir set). Details of the implementations of the
simple and mixed reservoir sets are provided in Methods. Figure 5c, d
show the contour plots of the ratios ofMCSTM andMCPC measured for
the simple reservoir set to those of the reservoir made of PBAONC FC
network, respectively, as functions of the number of virtual nodes (N)
generated by each single device and Dmax (τmax/θ). As expected, multi-
device simple reservoir sets have improvedMCs compared to those of

single-device reservoirs thanks to D2D variation. Four mixed reservoir
sets, each with 600 total nodes and containing several best-
performing individual PBAONC complex network reservoirs (see
Methods), are also investigated. As shown in Fig. 5e, f, these mixed
reservoir sets achieve even larger MCSTM and MCPC, with mixed reser-
voir set parameterized to have 24 virtual nodes for each of the 25
component reservoirs (r ×N = 25 × 24= 600) having the largest MC,
where r is the number of memristors. We use this best-performing
mixed reservoir set in the isolated spoken-digit recognition task (see
Methods), as shown in Fig. 5g. Figure 5h shows the confusion matrix
obtained experimentally during testing. Overall, a recognition rate as
high as 99.5% can be achieved in ourmixed PBAONC complex network
reservoir set. In addition to D2D and C2C variations, this mixed
reservoir set further benefits from the richness of temporal dynamics.
Nevertheless, our observations (Fig. 5e, f) indicate that respectable
performance can already be achieved by simply increasing the number
of component reservoirs (stillmuch lesshardwareoverheadcompared
to that of the conventional parallel feeding procedure) and engineer-
ing complex network topology into each individual reservoir (keeping
θ ≤ τmin and N × θ ≥ τmax).

Discussion
In conclusion, we have demonstrated the potential of simultaneously
harnessing both the dynamicnature of the emergingmemristor device
and the intrinsic stochasticity in its dynamics for the on-demand
generation of our co-designed PBAONC complex networks with
desired topological features, echoing an emerging trend in the field of
connectionist AI towards evolving the architectures or topologies of
neural networks (architecture engineering). In this memristive imple-
mentation approach, the entire topological complexity of the PBAONC
complex networks can be folded into the temporal domain by reusing
the memristor device repeatedly in a time-division multiplexed man-
ner, and the network connectivity is developed with the emergence of
new virtual nodes over timeas a temporal unfolding of thememristor’s
dynamics. Though perfect homogeneity, in addition to mitigated
hardware overhead, has been viewed as one of themain advantages of
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using a single dynamical node as a complex system56, our approach
actually benefits from exploiting the intrinsic C2C variability of the
memristor’s resistance decay dynamics in generating non-trivial net-
work connectivity patterns. In particular, the generated PBAONC
complex networks exhibit a certain degree of small-worldness, a fea-
ture that is ubiquitous across biological (e.g., the brain), technological,
and social networks, and accounts for the optimal balance of func-
tional segregation and integration in the brain network. Finally, we
have illustrated the advantages of our memristive PBAONC complex
networks in thebrain-inspiredRC tasks. Experimental results show that
the MC of the memristive complex network reservoir is increased to
209.8% of that of the memristive FC network and respectable perfor-
mance boost in speech recognition tasks compared to conventional
reservoirs implemented trivially as FC networks, which may be
accounted for by their nontrivial topological features (e.g., a certain
degree of small-worldness and close-to-one ρ(W)). This work may
represent a paradigm shift in neuromorphic computing or machine
learning withmemristors and serves as a springboard formore studies
and applications of the intrinsic physical nature ofmemristors, such as
dynamics and stochasticity, for new computing architectures.

Methods
Device fabrication
The dynamic memristor was fabricated into a 2 × 2μm2 cross-point
structure on a silicon substrate with 300nm thermally grown silicon
oxide on it. 20-nm Ta was deposited first on the substrate by radio
frequency (RF) sputtering and patterned by photolithography as the
bottom electrode. Photolithographically patterned Ta2O5 (5 nm) and
HfO2 (10 nm)were then deposited by RF sputtering. Finally, the 50-nm
top Pd electrode was deposited and lithographically patterned.

Electrical measurement
Cyclic quasi-DC voltage sweep measurements were performed by the
Keysight B1500A semiconductor analysis system. TheKeysight B1530A
waveform generator/fast measurement unit was used to perform the
pulse measurements. Using a two-probe (W tips) configuration, DC
and pulsed voltages were applied to one electrode with the other
electrode grounded.

For the STM and PC tasks, we use a binary time series input with a
stochastic “0” or “1” component in each time step. In any time step, the
corresponding series component is multiplied with a randomly gen-
erated (fixed throughout the processing task) binary mask matrix
(functionally equivalent to a synapticweightmatrix) of the size ofN × 1,
where N is the number of nodes in the reservoir, thereby producing a
new N-dimensional vector. By time-division multiplexing, each virtual
node is updated using the corresponding vector component of the N-
dimensional vector. At the end of each time step, all virtual nodes have
been updated and the reservoir reaches a new state, ready to process
input in the next time step. Experimentally, the “0” and “1” vector
components of the N-dimensional vector signal are represented by
1-ms voltage pulses of the intensities of 3 V and 5 V, respectively, with
an interval θ between successive pulses (θ is also referred to as the
multiplex cycle duration). As such, a time series component is held for
a duration ofN × θ afterwhich the component in the next time stepwill
be processed by the reservoir. As discussed in the main text, various
types of PBAONCnetwork reservoirs can be generated bymultiplexing
a singledynamicmemristor, dependingon thenumber ofmultiplexing
cyclesN (i.e., the number of virtual nodes) aswell as themultiplex cycle
duration θ. The reservoir’s transient dynamical response is read out by
an output layer (implemented in software), which are linear weighted
sumsof the reservoir node states (i.e., I-s). Note that amajor advantage
of RC is fast training because only weights in the linear readout layer
need to be trained, while the connections in the reservoir remainfixed.
The training is also performed using software.

For the isolated spoken-digit recognition task, the inputs for the
reservoir are 64-frequency channel sound waveforms of isolated spo-
kendigits (0–9 in English) from theNISTTI46 database. 450out of 500
audio samples in the TI-46 database are selected for training, and the
remaining 50 samples are used for testing. We use 25 devices to
implement the RC system. Input signal through each independent
channel is binarized to a 36-time step 0/1 time series. The series
component in each time step is multiplied by a randomly generated
binarymaskmatrix of the size of 24 × 1, which is represented by a train
of 3 V or 5 Vpulses (1ms in duration). Though θs (or pulse intervals) for
each device in the mixed reservoir set can be different, their transient
dynamical responses in the samemultiplex cycle are aligned with each
other in the software for further processing.

Complex network performance indicators
The calculations of all network topology indicatorswere performed by
the Python library NetworkX.

Mixed reservoir set
The total number of virtual nodes for eachmixed reservoir set is 600. It
can be seen from Fig. 5a–d in themain text that high-quality reservoirs
can be found mainly at Dmax∈ {6, 7, 8, 9} in the parameter space.
Therefore, our approach to constructing a goodmixed reservoir set is
using many reservoirs with Dmax∈ {6, 7, 8, 9} and supplementing with
other reservoirswithDmax∈ {3, 4, 5, 10, 11, 12, 13, 14} to benefit fromthe
richness of temporal dynamics. The parameters defining the four
mixed reservoir sets tested in this work are shown in Table 1.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the SupplementaryMaterials. Additional data related
to this paper is available from the authors upon reasonable
request. Source data are provided with this paper.
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