Article

Extending on-surface synthesis from 2D to 3D by cycloaddition with C₆₀

Received: 4 February 2023

Accepted: 22 September 2023

Published online: 28 September 2023

Check for updates

Pengcheng Ding¹, Shaoshan Wang¹, Cristina Mattioli², Zhuo Li¹, Guoqiang Shi¹, Ye Sun \mathbb{O}^3 , André Gourdon \mathbb{O}^2 , Lev Kantorovich \mathbb{O}^4 , Flemming Besenbacher \mathbb{O}^5 , Federico Rosei⁶ & Miao Yu $\mathbb{O}^1 \boxtimes$

As an efficient molecular engineering approach, on-surface synthesis (OSS) defines a special opportunity to investigate intermolecular coupling at the submolecular level and has delivered many appealing polymers. So far, all OSS is based on the lateral covalent bonding of molecular precursors within a single molecular layer; extending OSS from two to three dimensions is yet to be realized. Herein, we address this challenge by cycloaddition between C₆₀ and an aromatic compound. The C₆₀ layer is assembled on the well-defined molecular network, allowing appropriate molecular orbital hybridization. Upon thermal activation, covalent coupling perpendicular to the surface via [4 + 2] cycloaddition between C₆₀ and the phenyl ring of the molecule is realized; the resultant adduct shows frozen orientation and distinct submolecular feature at room temperature and further enables lateral covalent bonding via [2 + 2] cycloaddition. This work unlocks an unconventional route for bottom-up precise synthesis of three-dimensional covalently-bonded organic architectures/devices on surfaces.

Constructing heterostructured molecular layers with atomic/molecular level precision and extending molecular engineering from two to three dimensions hold great importance for both fundamental science and application purposes in the fields of nanoelectronic devices, photonics, and quantum science¹⁻⁵. Although it is straightforward to pile up molecular layers by van der Waals (vdW) interaction or hydrogen bonding¹⁻⁵, assemblies based on noncovalent bonding often have lower thermal stability, conductivity, and mechanical properties compared with the covalently-bonded products⁶⁻⁸. As an efficient bottom-up approach, on-surface synthesis (OSS) defines a special opportunity to investigate intermolecular coupling at the sub-molecular level and has successfully delivered various covalentlybonded two-dimensional (2D) polymers9-15. So far, these systems have been all based on the lateral coupling of molecular precursors within a single molecular layer. Extending OSS from two to three dimensions requires not only the lateral coupling parallel to the substrate but also the covalent bonding perpendicular to the substrate, e.g., interlayer coupling between molecular layers, which is yet to be realized.

As the most representative fullerene, C_{60} and its derivatives have shown magnificent physical properties/potentials (e.g. pressure resistance of solid C_{60}^{16} , optical restriction of C_{60} solution¹⁷, superconductivity of alkali-metal doped C_{60} crystal¹⁸, magnetism of TDAE- C_{60} compound¹⁹); the chemical reactions of C_{60} with organic compounds have also sparked considerable interests^{20–22}. Especially, the unique 3D conjugated electronic structure and the geometric combination of pentagons and hexagons of C_{60} molecules make their reactions significantly distinct from those of graphene or planar polyaromatic molecules^{23,24}. The electron-deficient curved π conjunction allows C_{60} to form adducts with various dienes (e.g., cyclopentadiene, furan, anthracene) as a dienophile;^{23,25} due to the multiple non-planar reactive sites ([6,6] bonds), C_{60} is expected to act

¹School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. ²CEMES-CNRS, Toulouse 31055, France. ³School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. ⁴Department of Physics, King's College London, The Strand, London WC2R 2LS, UK. ⁵Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark. ⁶INRS Centre for Energy, Materials and Telecommunications, Varennes J3X 1P7, Canada. — e-mail: miaoyu_che@hit.edu.cn as a steric spherical "multi-plug" reactant^{20,26,27}. However, the closepacked arrangement of C₆₀ molecules²⁸⁻³² and their strong interaction with the substrates³³⁻³⁵ make the on-surface reaction of C₆₀ with other molecules rather difficult. Moreover, the coupling between C₆₀ and the targeting functional group(s) requires a specific spatial geometry^{25,36,37}. There is no precedent for the on-surface reaction of C₆₀ with aromatic compounds yet.

Herein, we report the cycloaddition of C_{60} and 3,5-bis(carboxylic acid)-phenyl-3-maleimide (BCPM, $C_{12}H_7NO_6$) and their adducts on Au(111) surface (Fig. 1). To electronically decouple C₆₀ from the substrate and especially provide an appropriate steric configuration for the coupling between the lowest unoccupied molecular orbital (LUMO) of C₆₀ and the highest occupied molecular orbital (HOMO) of BCPM, 2D ordered BCPM layer is constructed on Au(111) beneath C_{60} . As demonstrated by scanning tunneling microscopy (STM) imaging and density functional theory (DFT) calculations, interlayer [4+2] cycloaddition between C₆₀ and BCPM perpendicular to the substrate is triggered upon thermal activation. The resultant adduct, i.e., C₆₀-BCPM, shows obvious differences from pristine C_{60} , including the frozen orientation hence triangular sub-molecular feature observed at room temperature (RT), increased adsorption height, and distinct domain structure and reactivity. Especially, forming macrocycles with the hexamer rings with C6v symmetry dominated, lateral intermolecular [2+2] cycloaddition among C₆₀-BCPMs parallel to the substrate is evidenced. Using C₆₀ and BCPM as the first example, this work presents an unconventional strategy for bottom-up synthesis of 3D covalently-bonded organic architectures, extending OSS from 2D to 3D by cycloaddition reactions with fullerenes.

Results

Self-assembled network of BCPM on Au(111)

Extended honeycomb network of BCPM (Fig. 2a and Supplementary Fig. 1) self-assembles on Au(111) at 390 K. The network is tiled by flower-like units composed of six molecules, with $|\mathbf{a}| = |\mathbf{b}| = 27.2 \pm 0.2$ Å and an angle of 60° between the two vectors. Although the lateral molecular arrangement is similar to that formed on graphene epitaxially grown on Cu(111) (G-Cu)³⁸, close inspection (Fig. 2b) reveals a distinct morphology: even though the bis(carboxylic acid)-phenyl group of each molecule is imaged to be a rounded, inverted triangle in both cases, the maleimide ring on Au(111) shows three sub-protrusions (two of them being brighter than the third) instead of a circular bell as imaged on G-Cu. This morphology of BCPM on Au(111) resembles that on bare Cu(111)³⁹.

Based on DFT calculations, the bis(carboxylic acid)-phenyl group adsorbs in a flat geometry at a height of 3.4 Å above Au(111), while maleimide adopts a tilted configuration with the ring rotated by 20.5° from the horizon (Fig. 2c). The network is primarily stabilized by i) intermolecular double O-H···O hydrogen bonding within the flowerlike unit and ii) ligand bonding between the oxygen atom closer to the Au substrate in maleimide and Au atom enabled by the tilted maleimide ring hence the reduced O-Au distance (Fig. 2d, e). DFToptimized structural model (Fig. 2d) and its calculated image (Fig. 2b) are in good agreement with the experimental observations.

Fig. 1 | **Schematic illustration for the cycloaddition of C₆₀ and BCPM on Au(111).** Two-dimensional (2D) on-surface synthesis (OSS) is based on the dissociation/ formation of organic precursors' σ bonds at the planar active sites of precursors, allowing only lateral covalent bonding within a single molecular layer thus confining the synthesis to be 2D. In addition to the lateral covalent bonding, to extend OSS from 2D to 3D, covalent bonding perpendicular to the surface is also required. In this work, 3,5-bis(carboxylic acid)-phenyl-3-maleimide (BCPM, C₁₂H₇NO₆) molecules assemble into a 2D ordered honeycomb network on Au(111), where carbon, nitrogen, oxygen, and hydrogen atoms are in grey, blue, red, and white,

respectively. The C₆₀ layer is constructed on the BCPM layer. One C₆₀ sits on top of the phenyl ring of one BCPM, providing appropriate steric configuration for the coupling between the lowest unoccupied molecular orbital of C₆₀ and the highest occupied molecular orbital of BCPM. Upon thermal activation, [4 + 2] cycloaddition between the phenyl ring of BCPM and[6,6] bond of C₆₀ is triggered. Thanks to the multiple reactive sites of C₆₀, the resultant C₆₀-BCPM molecules can laterally bond with one another by [2 + 2] cycloaddition between[6,6] bonds of their C₆₀ heads. In this way, both lateral and vertical covalent bonding is realized, representing a prototype for 3D synthesis on surfaces.

Fig. 2 | **Self-assembled BCPM network on Au(111). a** Scanning tunneling microscopy (STM) image of an extended network of BCPM on Au(111), where the unit mesh is marked by a white rhombus ($V_s = -1250 \text{ mV}$, $I_t = -0.27 \text{ nA}$). **b** Close-view STM image (left) of BCPM on Au(111) presenting the sub-molecular resolution, in good accordance with the density functional theory (DFT)-calculated image (right); the inset shows the morphology of a single BCPM superimposed by the BCPM structural model ($V_s = +1250 \text{ mV}$, $I_t = +0.66 \text{ nA}$). **c** Top and side views of DFT-

optimized structural model of a single BCPM on Au(111), presenting the flatlyadsorbed bis(carboxylic acid)-phenyl group and the tilted maleimide group. **d** DFToptimized structure and (**e**) electron density difference map of BCPM network on Au(111) (the isosurface value is 0.01 e/Å^3), revealing that each BCPM molecule is anchored on the substrate with ligand bonding between the lower oxygen atom of its maleimide group and the substrate Au atom.

Adsorption of C₆₀ on BCPM-coated Au(111)

 C_{60} molecules were then deposited onto the BCPM layer-covered Au(111) at room temperature (RT). At low dosages, C_{60} adorbs preferentially in the circular pores of the BCPM network and is imaged as a bright circular protrusion (Fig. 3a, b). DFT-calculated structural model (Fig. 3c) reveals that the six pairs of double hydrogen-bonded bis(carboxylic acid)-phenyl groups in each BCPM unit create a ring-shape corral (diameter of 13.9 Å) to confine a spherical C_{60} molecule in the center, with the center of C_{60} at 6.1 Å above Au. Based on the electron density difference map (Fig. 3d), there is significant electron transfer from the Au substrate to the bottom atoms of C_{60} . Consistent with the STM images, C_{60} molecules in the simulated image (Fig. 3e) show high contrast.

After all the pores of the BCPM network are occupied, further deposition of C_{60} at RT (without post-annealing) leads to a coating of the C_{60} layer on the BCPM layer. These C_{60} molecules follow the same symmetry and periodicity as the underlying BCPM network (Supplementary Fig. 2) and form a configuration with one C_{60} atop one BCPM (C_{60} -on-BCPM). The coverage increases with the C_{60} dosage until the BCPM network is fully covered (Fig. 4a, b). The DFT-optimized model shows that each C_{60} in the coating layer adsorbs exactly on top of the phenyl ring of one BCPM of the layer underneath, with C_{60} center

10.1 Å above the Au(111) surface (Fig. 4c). The C_{60} molecules on the BCPM layer are laterally confined by the tilted maleimide of BCPM and the guest C_{60} in the pores of BCPM network. The calculated molecular arrangement for the extended network (Fig. 4d) and their molecular morphology (Fig. 4e) fit the STM results well.

$\left[4+2\right]$ cycloaddition between C_{60} and BCPM layers

After annealing the C₆₀ layer on BCPM at 370 K for 30 min, two types of territories are observed (Fig. 5a). The brighter domain outlined by the cyan dashed line (D1) is distinct from the rest section (D2): i) although both show a similar close-packed arrangement as that of pristine C₆₀ on a bare Au(111)^{28,29}, linescans across the two domains show that C₆₀ in D1 is 3.5 Å higher than in D2 (Fig. 5b); ii) while D2 is rough with a large proportion of dim molecules and randomly-distributed bright ones, i.e., the typical structure for the disordered $2\sqrt{3} \times 2\sqrt{3}$ -R30° phase of C₆₀ on Au(111)²⁸, D1 is smooth, showing a uniform contrast; iii) surprisingly, even upon scanning at RT, distinct triangular sub-molecular feature of C₆₀ is observed from D1, suggesting that the C₆₀ are firmly frozen, adopting the same orientation (Fig. 5c). This is abnormal: intramolecular structure of pristine C₆₀ on Au(111) was only observed when quenching the molecules under cryogenic conditions;²⁹ at RT, pristine

Fig. 3 | Adsorption of C₆₀ on BCPM-coated Au(111) subjected to a small C₆₀ dosage. a Large-scale (V_s = +1250 mV, I_t = +0.28 nA) and (b) Close-view (V_s = -1250 mV, I_t = -0.42 nA) STM images of the surface, showing a host-guest structure with C₆₀ located in the pores of the BCPM network. c Top and side-view

structural model of a flower-like unit of six BCPM molecules hosting one C₆₀. **d** Electron density difference map (the isosurface value is 0.006 e/Å³), and (e), calculated STM image of the BCPM network with one C₆₀ in each pore.

 C_{60} molecules can only be imaged as featureless spheres on Au(111) due to their high rotational mobility at this temperature^{40,41}.

Given i) the greater height of molecules in D1 than that in D2, ii) the frozen morphology showing intramolecular features at RT, iii) the varied lateral arrangement of molecules compared with that before annealing (Fig.4), iv) and the presence of BCPM on the surface (the desorption temperature of BCPM from Au(111) of \sim 420 K is much higher than the applied annealing temperature), and v) the favorable steric configuration of one C₆₀ on top of one BCPM, thermo-activated coupling between C₆₀ and BCPM is rationalized. Confirmed by the frontier molecular orbital analysis, the orbital matching and the appropriate steric arrangement can enable [4+2] cycloaddition between[6,6] bond at the bottom of C₆₀ and the C atoms in parapositions of BCPM phenyl ring, forming a covalently-bonded adduct, i.e., C₆₀-BCPM (Fig. 5d and Supplementary Fig. 3). Top of C₆₀-BCPM is calculated as being 3.4 Å higher than that of pristine C₆₀ on Au(111), consistent with the experiments. Upon [4+2] cycloaddition, hydrogen bonding between C₆₀-BCPM is largely weakened compared with that between pristine BCPMs (details in Supplementary Fig. 4) and can be easily dissociated upon annealing, allowing C₆₀-BCPMs to rearrange into D1 while the pristine C60 (e.g. the guest C60 in the pores of BCPM network) to self-assemble into D2. Meanwhile, the cycloaddition confines the rotation of C₆₀, allowing the sub-molecular resolution at RT. The molecular feature (Fig. 5e) and lateral arrangement of C_{60} -BCPMs in the calculated STM image (Fig. 5f) match the experimental results, where the observed triangle-shaped intramolecular feature is attributed to the top[6,6] bond of C_{60} -BCPM.

Lateral covalent bonding of C₆₀-BCPMs

After forming C_{60} -BCPMs, the sample (as presented in Fig. 5) was further annealed at 490 K for 30 min. D1 remains the close-packed

structure. Considering the low diffusion barrier of C₆₀-BCPM on Au(111) (Supplementary Fig. 5), the well-maintained lateral arrangement is attributed to the intermolecular interaction among C₆₀-BCPMs. Interestingly, bright macrocycles emerge in D1, where the hexamer rings (HRs) are dominant (Fig. 6a and Supplementary Fig. 6). Each HR is composed of six protrusions, showing C_{6v} symmetry (Fig. 6b, c). Such macrocycles have been never observed from pristine C_{60} on Au(111). Linescans show that the HR's diameter is 16.8 Å (Fig. 6d); the center-to-center distance between two neighboring protrusions in an HR is only 8.4 Å, which is largely reduced comparing with that of C₆₀-BCPMs in D1 before annealing at 490 K. The largely reduced spacing suggests that C₆₀-BCPMs, in this case, do not interact by vdW as would be the case of isolated molecules, but covalently bond with one another. Moreover, the height difference between the HR and the less bright protrusions (Fig. 6a, b) is much less significant than the height difference between the D1 and D2 domains. Both the small spacing of C₆₀-BCPMs and the small height difference exclude the possibility of forming the HRs by mixing D1 with D2. The robust bonding among C_{60} -BCPMs in the HR is also demonstrated by successive STM scanning with gradually increased current and decreased voltage at RT (Supplementary Fig. 7): the ring-like morphology composed of six molecules is well reserved when the tip is quite close to the surface. We then analyzed the bonding among C₆₀-BCPMs within the HR by DFT calculations. The possibility of single bond between C_{60} -BCPMs is ruled out: when a single bond is set in the initial structures of two C₆₀-BCPMs or the HR, the second bond forms after optimization, indicating that single bond between C₆₀-BCPMs is not stable (Supplementary Fig. 8). The optimized structure reveals that the geometry of C_{60} -BCPMs in the HR accepts [2 + 2] cycloaddition between [6,6] side bonds of C₆₀ part (Supplementary Fig. 8 and Fig. 6e), consistent with C_{60} polymerization induced at high temperature and pressure^{42,43}. The

Fig. 4 | **Assembly of C**₆₀ **molecules on the BCPM layer on Au(111).** a Large-scale ($V_s = +1486 \text{ mV}$, $I_t = +0.75 \text{ nA}$) and (b) close-view ($V_s = +1250 \text{ mV}$, $I_t = +0.50 \text{ nA}$) STM images of the sample surface upon the further dose of C₆₀ after the BCPM pores are occupied, where the assembly of C₆₀ molecules presents the same symmetry and periodicity as the underlying BCPM network. c Top and side views of DFT- optimized structural model of the BCPM unit covered by C₆₀, where C₆₀ molecules

sit on the phenyl rings of BCPM and are laterally confined by the tilted maleimide groups. **d** Top and side views of the DFT-optimized structural model, and (**e**) its calculated STM image of the extended C_{60} -on-BCPM network on Au(111). C_{60} molecules on top of BCPM and in the network pore are shown in green and grey, respectively.

optimized structure, size, morphology, and contrast of HR composed of the six covalently-bonded C₆₀-BCPMs (Fig. 6f) are all consistent with the experimental results in Fig. 6a–c. This lateral [2+2] cycloaddition of C₆₀-BCPMs further distinguishes C₆₀-BCPM from pristine C₆₀. Moreover, the vertical [4+2] cycloaddition between C₆₀ and BCPM layers and this lateral [2+2] cycloaddition of C₆₀-BCPMs demonstrate the non-planar multiple covalent bonding capability of C₆₀ even upon OSS.

Discussion

The interlayer [4+2] cycloaddition of C₆₀ and BCPM is distinct compared with the reported OSS strategy: the OSS reported previously (e.g. Ullmann, Glaser coupling) is based on the dissociation/formation of organic precursors' σ bonds at the terminal of molecular precursors, which can be achieved by intermolecular lateral coupling on surfaces⁹⁻¹⁵, thus allowing 2D synthesis only; the present case forms covalent bonding between adjacent molecular layers based on the rehybridization of π orbitals of the reactants. Such cycloaddition is also different from that of BCPM with graphene, where cycloaddition occurs between C = C of maleimide of BCPM and graphene, involving both [2+2] and [4+2] cycloaddition with different pairs of carbon atoms of graphene hexagons³⁸. In the present system, cycloaddition between C₆₀ and BCPM maleimide is not observed. Although the energy barrier of their [2+2] cycloaddition in the gas phase (1.3 eV) is only 0.1 eV higher than that of [4+2] cycloaddition between C₆₀ and BCPM phenyl ring (Supplementary Fig. 3 and Supplementary Fig. 9), the tilted maleimide on Au(111) makes its cycloaddition with C_{60} unfavorable.

We performed climbing image nudged elastic band (CI-NEB) calculations to understand the cycloaddition pathways. For [4+2] cycloaddition between BCPM and C₆₀ on Au(111) (Supplementary Fig. 10a), the two bonds between the $C_{60}[6,6]$ bond and the two carbon atoms at the para-positions of BCPM phenyl ring (marked as A and B, respectively) are not formed synchronously: C-C bond with Carbon A on the BCPM's phenyl ring forms first (transition state, TS), and then the second C-C bond with Carbon B forms (final state, FT); this is different from cycloaddition of C₆₀ with benzene where the two bonds of [4+2] cycloaddition form simultaneously. In TS, Carbon A and B locate at 3.6 Å and 4.3 Å above the Au(111), respectively, i.e., being lifted by 0.2 Å and 0.9 Å compared with the geometry of pristine BCPM on Au(111). The phenyl ring after cycloaddition becomes non-flat and distorted. We compared the energy barrier for cycloaddition of C_{60} with benzene, benzene-1,3-dicarboxylic acid, N-phenylmaleimide, and BCPM (Supplementary Fig. 11), revealing that the equipped carboxylic acid and maleimide groups on the phenyl ring of BCPM can decrease the [4+2] cycloaddition barrier. Moreover, the Au(111) surface further reduces the reaction barrier from 1.28 eV in the gas phase to 1.21 eV.

For the lateral [2+2] cycloaddition between the[6,6] side bonds of C₆₀ of two C₆₀-BCPMs (Supplementary Fig. 10b), the barrier is 1.87 eV (0.66 eV higher than that of the [4+2] cycloaddition). According to DFT calculations, the HOMO-LUMO gap of C₆₀-BCPM is 0.23 eV smaller than that of C₆₀ and the energy barrier of [2+2] cycloaddition (in gas phase) for C₆₀-BCPM is also 0.16 eV lower than that of C₆₀ (Supplementary Fig. 12). In this regard, [2+2] cycloaddition among C₆₀ parts of C₆₀-BCPMs is promoted compared with the case of pristine C₆₀.

Fig. 5 | **Interlayer [4 + 2] cycloaddition between C**₆₀ and **BCPM on Au(111). a** Large-scale STM image after annealing the C₆₀-on-BCPM network at 370 K for 30 min, showing two types of territories where D1 is the regular and bright domain outlined by the cyan dashed line and D2 represents the dark and less ordered section ($V_s = -1250 \text{ mV}$, $l_c = -0.28 \text{ nA}$). **b** Linescan across the two territories marked by the blue arrow in panel a, showing a height difference of 3.5 Å ($V_s = -1250 \text{ mV}$,

 $I_{\rm t}$ = -0.28 nA). **c** High-resolution STM image of D1, showing the intramolecular structure of C₆₀. **d** Top and side views of the structural model of C₆₀-BCPM and pristine C₆₀ (grey) on Au(111), showing the height difference consistent with the linescan. **e** The calculated STM image and (**f**) structural model of the close-packed C₆₀-BCPM structure, i.e., D1, on Au(111), where the top [6,6] bonds highlighted in purple correspond to the observed triangle-shaped intramolecular feature.

As demonstrated by our experimental results and DFT calculations, thanks to the multiple reactive sites of C₆₀, both the vertical covalent bonding via interlayer [4+2] cycloaddition between C₆₀ and the phenyl ring of BCPM and the lateral covalent bonding between the C_{60} heads of C_{60} -BCPMs via [2+2] cycloaddition are constructed, representing a prototype of 3D synthesis on the surface. We further considered the possibility of constructing BCPM-C₆₀-BCPM and C₆₀-BCPM-C₆₀ covalently-bonded sandwich for BCPM-C₆₀-BCPM-C₆₀ repeated multiple layers. Based on the DFT calculations (Supplementary Fig. 13), C₆₀ with its bottom already bonded with BCPM is still able to react with BCPM atop of it by cycloaddition; BCPM with its phenyl/maleimide ring bonded with C₆₀ can still offer the other free conjugated ring to have cycloaddition with C₆₀. Following this pattern, 3D covalently-bonded organic architectures/ devices with extended/controlled thickness could be bottom-up fabricated via cycloaddition reactions in principle, employing fullerenes and organic compounds with multiple conjugated rings like Lego pieces with two connectors. Considering the less surface-confinement effect hence higher freedom of the molecules as well as the possible unfavorable orientations of the formed isomers, the experimental realization may be challenging, requiring fine control and further exploration.

3D covalent bonding has been realized by cycloaddition of C_{60} on Au(111). The carboxylic acid groups of BCPM enable the formation of

a well-defined template for C₆₀, while the out-of-plane maleimide group enables strong adsorption of the molecules on the substrate. The configuration of C₆₀ on BCPM allows appropriate molecular orbital hybridization between them meanwhile the tilted maleimide group of BCPM restrains the lateral diffusion of C₆₀, enabling covalent bonding perpendicular to the surface via interlayer [4+2] cycloaddition upon thermal activation. The cycloaddition is demonstrated by the increased adsorption height, the distinct domain structure, and the frozen orientation hence the triangular submolecular feature at RT, distinct from pristine C₆₀. Moreover, the rotation-frozen C_{60} in C_{60} -BCPMs, their close-packed molecular arrangement, and the multiple non-planar reactive sites of C₆₀ allow, upon elevated annealing, a next-step lateral [2+2] cycloaddition of C₆₀-BCPMs to form macrocycles, further distinguishing the difference of $C_{60}\mbox{-}BCPM$ and pristine $C_{60}\mbox{-}Moreover,$ both C_{60} and BCPM are able to have a second cycloaddition along the direction perpendicular to the surface. Allowing both vertical and lateral covalent bonding, this work unlocks an efficient route for bottom-up synthesis of covalently-bonded 3D organic framework on surfaces via cycloaddition of organic compounds with fullerenes--the steric multiplug reactants, thus extending OSS from 2D to 3D. The strategy of interlayer covalent bonding may innovate the design of robust heterolayered materials for engineering cutting-edge devices with molecular precision.

Fig. 6 | **Lateral [2 + 2] cycloaddition of C**₆₀-**BCPM. a** Large-scale ($V_s = -1250 \text{ mV}$, $I_t = -0.26 \text{ nA}$) and (**b**), close-view ($V_s = -1250 \text{ mV}$, $I_t = -0.29 \text{ nA}$) STM images showing the hexamer rings (HRs) after annealing C₆₀-BCPM on Au(111) at 490 K for 30 min. **c** High-resolution STM of an individual HR. **d** Linescans along the blue and green arrows in (**b**), showing the size of the HR compared with the periodicity of C₆₀-

BCPM in D1. **e** Top and side views of the DFT-optimized structure of an HR on Au(111), where the six C_{60} -BCPM molecules are covalently bonded via [2 + 2] cycloaddition. **f** Calculated STM image of an HR, showing consistent morphology as observed experimentally.

Methods

Experimental details

All experiments were performed in an ultrahigh vacuum (UHV) chamber equipped with a variable-temperature Aarhus scanning tunneling microscope. The typical base pressure of the UHV chamber was 1×10^{-10} mbar. The Au(111) substrate was cleaned by repeated cycles of argon ion sputtering (1000 eV) and annealing (at 770 K). BCPM compound and C₆₀ were sublimated from the crucibles of a low-temperature evaporator at 330 K and 470 K, respectively, onto the surface kept at RT. All STM images were collected in the constant current mode at RT.

Calculation methods

DFT calculations were performed using the Vienna ab initio simulation package (VASP)⁴⁴. The interaction between electrons and ion cores was described by the projected augmented wave (PAW) method⁴⁵ with a plane-wave cutoff energy of 400 eV. The exchange and correlation effects between electrons were treated by Perdew-Burke-Ernzerhof (PBE) exchange-correlation density functional⁴⁶. The vdW correction was performed using the zero damping DFT-D3 method of Grimme⁴⁷. The BCPM network, BCPM network with C₆₀ hosted in the pores of that network, and the steric assembly of C₆₀ on atop of BCPM were calculated in a 9×9 supercell on the Au(111) substrate. The close-packed arrangement of the C₆₀-BCPM adduct was calculated in a $2\sqrt{3} \times 2\sqrt{3} - R30^{\circ}$ supercell on Au(111). The hexamer ring composed of six C₆₀-BCPMs was calculated in a 16×16 supercell on Au(111). The Cl-NEB calculations⁴⁸ for [4 + 2] cycloaddition between C₆₀ and BCPM and [2 + 2] cycloaddition between the C₆₀-BCPMs were performed in a

 9×9 supercell on Au(111), with 12 and 11 images inserted between the initial and final states, respectively. The Brillouin zone was sampled through the Monkhorst-Pack scheme with $3 \times 3 \times 1$ mesh for the $2\sqrt{3} \times 2\sqrt{3}$ -R30° supercell and only Gamma point for the other cells with lattice parameters larger than 20 Å. In the structural relaxation, all structures were optimized until the residual forces were found smaller than 0.02 eV/Å. In the CI-NEB calculations, the force criterion was 0.05 eV/Å for each image. The Tersoff-Hamman method was employed for the calculations of the STM images⁴⁹.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper [and its supplementary information files]. All other data supporting the study are available from the corresponding author upon request. Correspondence and requests for materials should be addressed to M.Y.

References

- 1. Blunt, M. O. et al. Guest-induced growth of a surface-based supramolecular bilayer. *Nat. Chem.* **3**, 74–78 (2011).
- Korolkov, V. V. et al. Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays. *Nat. Chem.* 9, 1191–1197 (2017).
- Cojal Gonzalez, J. D., Iyoda, M. & Rabe, J. P. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes. *Nat. Commun.* 8, 14717 (2017).

Article

- 4. Li, J. et al. Three-dimensional bicomponent supramolecular nanoporous self-assembly on a hybrid all-carbon atomically flat and transparent platform. *Nano Lett.* **14**, 4486–4492 (2014).
- Bouju, X., Mattioli, C., Franc, G., Pujol, A. & Gourdon, A. Bicomponent supramolecular architectures at the vacuum-solid interface. *Chem. Rev.* 117, 1407–1444 (2017).
- 6. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. *Science* **355**, eaal1585 (2017).
- Qiu, X. F. et al. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. *Angew. Chem., Int. Ed.* e202206470 (2022).
- Guan, X., Chen, F., Fang, Q. & Qiu, S. Design and applications of three dimensional covalent organic frameworks. *Chem. Soc. Rev.* 49, 1357 (2020).
- Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).
- Li, X., Zhang, H. & Chi, L. On-surface synthesis of graphyne-based nanostructures. Adv. Mater. 31, 1804087 (2019).
- Cui, D., Perepichka, D. F., MacLeod, J. M. & Rosei, F. Surfaceconfined single-layer covalent organic frameworks: design, synthesis and application. *Chem. Soc. Rev.* 49, 2020–2038 (2020).
- 12. Wang, T. & Zhu, J. Confined on-surface organic synthesis: Strategies and mechanisms. *Surf. Sci. Rep.* **74**, 97–140 (2019).
- Dong, L., Liu, P. N. & Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 48, 2765–2774 (2015).
- Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. *Nat. Chem.* 4, 215–220 (2012).
- 15. Kinikar, A. et al. On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents. *Nat. Synth.* **1**, 289–296 (2022).
- Regueiro, M. N., Monceau, P. & Hodeau, J.-L. Crushing C₆₀ to diamond at room temperature. *Nature* **355**, 237–239 (1992).
- Tutt, L. W. & Kost, A. Optical limiting performance of C₆₀ and C₇₀ solutions. *Nature* 356, 225–226 (1992).
- Wang, R.-S., Peng, D., Hu, J.-W., Zong, L.-N. & Chen, X.-J. Orientational ordering and electron-phonon interaction in K₃C₆₀ superconductor. *Carbon* **195**, 1–8 (2022).
- Stephens, P. W. et al. Lattice structure of the fullerene ferromagnet TDAE-C₆₀. Nature **355**, 331–332 (1992).
- Zhu, S. E., Li, F. & Wang, G. W. Mechanochemistry of fullerenes and related materials. *Chem. Soc. Rev.* 42, 7535–7570 (2013).
- Jia, L., Chen, M. & Yang, S. Functionalization of fullerene materials toward applications in perovskite solar cells. *Mater. Chem. Front.* 4, 2256–2282 (2020).
- 22. Shan, C. et al. Functionalized fullerenes for highly efficient lithium ion storage: structure-property-performance correlation with energy implications. *Nano Energy* **40**, 327–335 (2017).
- Diederich, F. & Thilgen, C. Covalent fullerene chemistry. Science 271, 317–324 (1996).
- Lu, X. & Chen, Z. Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. *Chem. Rev.* **105**, 3643–3696 (2005).
- Yang, T., Fukuda, R., Cammi, R. & Ehara, M. Diels–Alder cycloaddition of cyclopentadiene and C₆₀ at the extreme high pressure. *J. Phys. Chem. A* **121**, 4363–4371 (2017).
- Kräutler, B. & Maynollo, J. A highly symmetric sixfold cycloaddition product of fullerene C₆₀. Angew. Chem., Int. Ed. 34, 87–88 (1995).
- Lin, H. S. & Matsuo, Y. Functionalization of [60] fullerene through fullerene cation intermediates. *Chem. Commun.* 54, 11244–11259 (2018).
- Altman, E. I. & Colton, R. J. The interaction of C₆₀ with noble metal surfaces. Surf. Sci. 295, 13–33 (1993).

- Schull, G. & Berndt, R. Orientationally ordered (7×7) superstructure of C₆₀ on Au(111). *Phys. Rev. Lett.* 99, 226105 (2007).
- Li, H. I. et al. Surface geometry of C₆₀ on Ag(111). *Phys. Rev. Lett.* **103**, 056101 (2009).
- Hashizume, T. et al. Intramolecular structures of C₆₀ molecules adsorbed on the Cu(111)-(1×1) surface. *Phys. Rev. Lett.* **71**, 2959 (1993).
- Liu, C. et al. Molecular orientations and interfacial structure of C₆₀ on Pt(111). J. Chem. Phys. **134**, 044707 (2011).
- Hunt, M. R. C., Modesti, S., Rudolf, P. & Palmer, R. E. Charge transfer and structure in C₆₀ adsorption on metal surfaces. *Phys. Rev. B* 51, 10039 (1995).
- Lu, X., Grobis, M., Khoo, K. H., Louie, S. G. & Crommie, M. F. Charge transfer and screening in individual C₆₀ molecules on metal substrates: a scanning tunneling spectroscopy and theoretical study. *Phys. Rev. B* **70**, 115418 (2004).
- 35. Wang, L.-L. & Cheng, H.-P. Rotation, translation, charge transfer, and electronic structure of C_{60} on Cu(111) surface. *Phys. Rev. B* **69**, 045404 (2004).
- Cao, Y. et al. Why Bistetracenes are much less reactive than pentacenes in Diels–Alder reactions with fullerenes. J. Am. Chem. Soc. 136, 10743–10751 (2014).
- Fernández, I. & Bickelhaupt, F. M. Deeper insight into the Diels–Alder reaction through the activation strain model. *Chem. Asian J.* **11**, 3297–3304 (2016).
- Yu, M. et al. Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition. *Nat. Chem.* 12, 1035–1041 (2020).
- Wang, S. et al. On-surface decarboxylation coupling facilitated by lock-to-unlock variation of molecules upon the reaction. *Angew. Chem., Int. Ed.* 60, 17435–17439 (2021).
- Uemura, S., Sakata, M., Hirayama, C. & Kunitake, M. Fullerene adlayers on various single-crystal metal surfaces prepared by transfer from L films. *Langmuir* 20, 9198–9201 (2004).
- 41. Wang, L.-L. & Cheng, H.-P. Density functional study of the adsorption of a C_{60} monolayer on Ag(111) and Au(111). Surf. Phys. Rev. B **69**, 165417 (2004).
- 42. Blank, V. D. et al. High-pressure polymerized phases of C_{60} . Carbon **36**, 319–343 (1998).
- Álvarez-Murga, M. & Hodeau, J. L. Structural phase transitions of C₆₀ under high-pressure and high-temperature. *Carbon* 82, 381–407 (2015).
- Hafner, J. Ab-initio simulations of materials using VASP: Densityfunctional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).
- Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* 59, 1758–1775 (1999).
- Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77, 3865–3868 (1996).
- Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).
- Henkelman, G. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2010).
- 49. Tersoff, J. & Hamann, D. Theory of the scanning tunneling microscope. *Phys. Rev. B* **31**, 805–813 (1985).

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21473045, M.Y.; 51772066, Y.S.; 52073074, Y.S.;

Article

22272041, M.Y.), and State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (2021TS08). F.R. is grateful to the Canada Research Chairs program for partial salary support.

Author contributions

S.W., P.D., and M.Y. designed the project; C.M. and A.G. synthesized the BCPM compound; P.D., S.W., Z.L. and G.S. conducted the assembly/ reaction of C60 and BCPM on Au(111)/STM imaging; P.D. and L.K. performed the calculations; P.D. and M.Y. analyzed and interpreted the results; P.D., M.Y., Y.S., L.K., F.R. and F.B. wrote/revised the manuscript.

Competing interests

The authors declare no competing interests.

Ethical approval

This manuscript complies with the Ethics and inclusion guidelines of the Nature Portfolio Journals.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-41913-3.

Correspondence and requests for materials should be addressed to Miao Yu.

Peer review information *Nature Communications* thanks Carlos Lima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2023