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Ecological network analysis reveals
cancer-dependent chaperone-client
interaction structure and robustness

Geut Galai 1, Xie He 2, Barak Rotblat 1,3 & Shai Pilosof 1

Cancer cells alter the expression levels of metabolic enzymes to fuel pro-
liferation. The mitochondrion is a central hub of metabolic reprogramming,
where chaperones service hundreds of clients, forming chaperone-client
interaction networks. How network structure affects its robustness to cha-
perone targeting is key to developing cancer-specific drug therapy. However,
few studies have assessed how structure and robustness vary across different
cancer tissues. Here, using ecological network analysis, we reveal a non-ran-
dom, hierarchical pattern whereby the cancer typemodulates the chaperones’
ability to realize their potential client interactions. Despite the low similarity
between the chaperone-client interaction networks, we highly accurately
predict links in one cancer type based on another. Moreover, we identify
groups of chaperones that interact with similar clients. Simulations of network
robustness show that this group structure affects cancer-specific response to
chaperone removal. Our results open the door for new hypotheses regarding
the ecology and evolution of chaperone-client interaction networks and can
inform cancer-specific drug development strategies.

Cancer cells reprogram their metabolism to fuel proliferation, pro-
mote an undifferentiated state, drive metastasis, overcome metabolic
stress and communicate with the immune system1. Metabolic repro-
gramming is a hallmark of cancer and is executed by changes in the
expression levels of metabolic enzymes. The mitochondrion is a
metabolic hub playing a crucial role in metabolic reprogramming,
where chaperones* (Table 1; items in the glossary are starred on first
occurrence) service hundreds of clients, forming chaperone-client
interaction (CCI) networks. The effect of network structure on its
robustness* to chaperone targeting is key to developing cancer-
specific drug therapy. However, how CCI network structure varies
across different cancer tissues and how this variation affects robust-
ness remains unknown.

The vastmajority ofmitochondrial proteins are synthesized in the
cytosol and imported into themitochondria in an unfolded state, after
which they are folded by mitochondrial chaperones2. There are fifteen
mitochondrial chaperones, including ATP-dependent proteases,

catering to the folding and elimination of damaged and misfolded
mitochondrial proteins3. In caseswheredemand for chaperone activity
is higher than the available folding capacity, proteins will misfold,
aggregate, and be degraded2. The dependency of tumor cells on par-
ticular mitochondrial chaperones is exemplified by the biological
activity of small molecules targeting mitochondrial chaperones such
as TRAP14, HSPD15, ClpX6 and ClpP7, all of which are promising anti-
cancer compounds. Hence, predicting the consequences of targeting a
mitochondrial chaperone is essential for using mitochondrial chaper-
one inhibitors or activators in clinical settings. However, to make
predictions, we need a framework that allows quantifying variation in
CCI network structure across environments and linking structure to
robustness.

Ecological network* analysis is particularly suitable for analyzing
interaction variation across environments8. In parallel, it has been
argued that ecological theory can benefit cancer studies9–11. In this
regard, studying chaperone-client interactions is analogous to
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studying ecological species interaction networks. Like plant-pollinator
interactions, chaperone-client interactions form bipartite networks,
which describe links between two distinct sets of nodes12. In ecology,
the environment is a strong determinant of species interactions8,13.
Therefore, even when two species co-occur in multiple environments,
they may interact in one environment and not the other14,15. Analo-
gously, cancer types are distinct environments thatmaymodulate CCI
networks. Furthermore, linking structure to robustness is a long-
standing theme in network ecology. For instance, in mutualistic net-
works, redundancy in interactions, whereby multiple insects pollinate
the same plant increases network resilience because when one polli-
nator goes extinct, others can still pollinate the plant16. Hence,
understanding chaperone redundancy will enable designing ther-
apeutic protocols that will lead to the total collapse of the network or,
on the contrary, to the maintenance of network integrity while
affecting only a few proteins. Hence, delineating the interplay between
structure and robustness in different cancer environments is crucial
because controlling metabolic reprogramming via inhibitors that tar-
get specific chaperones may be cancer-specific.

Leveraging the framework of network ecology, we hypothesize
that interactions between chaperones and clients are enabled by their
biophysical traits alone. In this case, CCI should be similar across
cancer environments, and the misfolding of different mitochondrial
proteins should be tolerated similarly across cancer types. Hence,
inhibiting a specific chaperone is expected to lead to the collapse (e.g.,
protein misfolding) of similar proteins in different tumor entities. An
alternative hypothesis is that variation among cancer tissues implies
variation in metabolic demands and reprogramming. In this case, the
cancer environment dictates clients’ dependency on a chaperone,
resulting in a concomitant variation in CCIs, and, therefore, network
structure across cancers. Hence, targeting a specific chaperone will
lead to the collapse of different clients in different cancer types,
resulting in cancer-specific cellular fates17.

Here, we apply ecological network analysis to test CCI. We use a
set of CCI networks from 12 cancer environments. The chaperones and
their clients occur in all the networks, allowing us to investigate the
effect of the cancer environment on interaction redundancy and
structure. We specifically ask: (1) How do CCIs vary across cancers? (2)
Canwe use the structure of CCI in one cancer to predict interactions in
another? (3) What are the consequences of structural variation to the
robustness of the network in each cancer environment following the

removal of chaperones? We reveal a non-random and hierarchical
pattern whereby the cancer type modulates the chaperones’ ability to
realize their client interaction potential. Moreover, there is strong
niche separation* whereby groups of chaperones interact with distinct
clients. Nevertheless, there is still redundancy such that chaperones
interact with similar sets of clients. Redundancy enables predicting
missing CCI and increases the robustness of the networks to targeted
removal of chaperones. Niche separation, redundancy, and robustness
vary across cancer environments, highlighting the role of cancer type
in modulating chaperone-client interactions.

Results
Chaperone interaction patterns are non-randomly affected by
cancer type
Our networks encode interactions between 15 (Supplementary
Table S2) mitochondrial chaperones and 1142 client proteins across 12
cancer environments (Supplementary Fig. S5). All chaperones and
clients were present in all 12 networks. We estimated interactions
based on coexpression data while normalizing sample size across
cancer types (Supplementary Table S1). Comparison to protein inter-
action databases showed that our estimated interactions were sig-
nificantly supported by experiments (see “Methods” and
Supplementary Note 1).

We defined Pc as the total number of clients a chaperone c can
interact with across cancers. We calculated the level of specialization*
Sc of each chaperone c as Pc divided by the 1142 potential protein
clients, Sc = Pc/1142. A value of 1 indicates that the chaperone can
interact with all 1142 proteins. Specialization reflects variation in che-
mical and physical properties that enable chaperones to interact with
mitochondrial proteins independently of cancer. In ecological jargon,
chaperones with low values of Sc are broadly considered specialists,
and those with high values as generalists. Specialization ranged from
40 to 65% (55.5 ± 8.1%) (Supplementary Fig. S1A). Because in our sys-
tem, all clients were present in all cancers, the number of clients a
chaperone interacts with should be equal across cancers if only bio-
physical properties determine interactions. Deviation from uniformity
for a chaperone indicates that the cancer type affects its interactions.
To test this, we calculated cancer-specific specialization—the propor-
tion of proteins a chaperone interacts with in a given cancer environ-
ment—as Sαc = L

α
c =1142, where L

α
c is the number of links of a chaperone c

in cancer type α. Instead of uniform specialization, we find large

Table 1 | Glossary

Term Definition

Chaperone A mitochondrial protein that is part of the agents supporting proteostasis in the mitochondria3.

Client A mitochondrial protein interacting with a chaperone.

Ecological network A mathematical graph object that represents pairwise biotic interactions (edges)—such as competition, predation, pollination—between
multiple species (nodes)54. Networks can be depicted as matrices in which each row and column represent an entity, and matrix entries are
the links.

Niche The set of biotic and abiotic conditions within which an organism can perform biological functions. In the context of ecological interactions, for
example, hosts are the niches of parasites. Here, we consider a chaperone’s clients as its niche.

Niche overlap The degree to which two species overlap in the set of conditions they can exploit. For instance, the common set of prey of two predators. Here,
the set of clients that interact with two chaperones.

Niche separation The processes that drive two species to minimize overlap in their niches (e.g., due to competition). Here, the tendency of two chaperones to
interact with different sets of clients.

Nestedness A particular network organization in which the more specialist nodes interact with proper subsets of the more generalist ones12.

Realized niche The exploitation of a subset of all potentially exploitable resourcesdue to someenvironmental or biotic constraints. Here, the realized niche of a
chaperone is the subset of the clients with which it interacts.

Robustness One definition of the response of a network to perturbations27. Can be quantified by following the proportion of nodes remaining without links
following consistent node removal29.

Specialization The extent to which a species can exploit resources out of all available ones55. Here, the number of clients a chaperone interacts with out of all
clients.

Due to the interdisciplinary nature of this work, we provide definitions of key terms used in this paper.
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variability in chaperones’ interactions across cancers (Supplementary
Fig. S1B).

Following the fact that chaperones interact with different sets of
clients and considering the evidence for the effect of cancer type on
chaperone interactions, we calculated the number of clients a cha-
perone interacted with in specific cancer out of all the clients it could
potentially interactwith,Rα

c = L
α
c =Pc. This is analogous to the concept of

realized niche* in ecology. We find a clear pattern in how cancer types
affect chaperones’ realized niche (Fig. 1). From the chaperone per-
spective: cancer environments affect the realized niche of chaperones.
For example, SPG7 interacts with a high proportion of the clients that it
can in thyroid cancer (THCA) butwith a lowproportion inbreast cancer
(BRCA). From the cancer perspective: chaperones vary in their realized
niche within the same cancer type. For instance, in breast cancer, the
CLPP chaperone realizes about 40%of its potential, while SPG7 realizes
about 15%. Put together, these two observations create a weighted-
nested* pattern18,19. That is, chaperones that interact with a small pro-
portion of their potential clients are subsets of those that interact with
a higher proportion (nestedness across rows); on the other hand,
cancer environments that enable chaperones to interact with few of
their potential substrates are subsets of those that enable higher pro-
portions (nestedness across columns). The pattern of weighted-
nestedness was non-random when compared to 1000 counterpart
networks assembled from networks in which chaperone-clients inter-
actions were shuffled19 (“Methods”; Supplementary Fig. S2). Moreover,
we found a similar non-random weighted nestedness in the level of
specialization across cancers, Sαc (Supplementary Fig. S1B).

Taken together, we find non-random structured variation in how
cancer environments mediate chaperone interactions. Specifically,
there is a distinct hierarchy in the specialization and realized niche of
chaperones and in how cancers mediate chaperone interactions.
Nestedness creates a core of chaperones that interact withmost of the
substrates that they can in a few cancer types (Fig. 1). We note that

unlike in ecological networks12,13,19,20, herenestedness is not a patternof
CCIs. Instead, it is a pattern in the realization of interactions across
environments.

Protein and chaperone expression do not explain cancer-
mediated interaction patterns
Nestedness could result from variation in protein expression levels
across cancers. That is, when the expression of proteins is high, then
chaperone expression should also be high to ensure the proper sup-
port of all their clients. This positive correlation in expression should
result in more interactions and concomitantly in higher specialization
and realized niche values (also see Discussion). To test this hypothesis,
we compared the distributions of median protein expression values of
the different cancers. The distributions were broadly similar between
cancers (Supplementary Fig. S3A), implying that hierarchy in realized
niche values is not the result of variation in protein expression across
cancers. From the chaperones’ perspective, variation in expression
should result in variation in their realized niche. Although chaperones
did vary in their expression levels across cancers, there were no sig-
nificant correlations between expression level and realized niche
values (Rα

c ) (Fig. 2, Supplementary Fig. S3B, Supplementary Table S3).
Overall, our data indicate that the expression levels of chaperones and
their clients cannot explain observed patterns in the realized niche and
specialization. One alternative hypothesis is that there is a gradient of
dependencies on the support for mitochondrial proteins between the
different cancers, where some cancers are highly dependent (e.g.,
KIRP) and others less (LUSC).

Chaperones interact with similar clients in different cancer
environments
The non-random variation in specialization and realized interactions
(Fig. 2) does not provide the complete picture because this analysis
ignores the identity of the clients. To further test the effect of cancer
type on chaperone interactions, we used the Jaccard similarity index to
compare the identity of the clients of each chaperone c between pairs
of cancer typesα and β (Jαβc ).We then calculated the partner-fidelity (Jc)
of each chaperone—an ecological measure of the similarity in inter-
action partnersof a species in different places21—as themedian of Jαβc of
each chaperone c (Supplementary Fig. S4A). Partner fidelity ranges
between 0 (a chaperone interacts with entirely different clients in each
cancer) and 1 (a chaperone interacts with the same clients across
cancers). We compared each chaperone’s observed partner fidelity Jc
with that expected at random using z-scores (sensu21; “Methods”). We
found that although the partner fidelity of chaperones was generally
low (range 0.15–0.45), it was still higher than expected at random
(z > 1.96) for all comparisons (Fig. 3a).

These results indicate that although chaperones tend to conserve
their interaction partners across cancers, they can only do so to a
limited extent. Hence, client identity could influence specialization and
realized niche. To test this, we correlated the median partner fidelity
with themedian realized niche of each chaperone (Fig. 3b).We found a
positive correlation (r = 0.64, P =0.0097), which is expected for cha-
perones with high realized niche values (e.g., CLPP or HSPE1) because
interacting with a large proportion of the possible clients inevitably
leads to high chances of interacting with the same clients. However,
the trend we uncover is not trivial for chaperones with low realized
niche values because the few clients a chaperone interacts with are not
necessarily the same. The positive correlation indicates that chaper-
ones that tend to interact with few of their potential clients do so with
distinct clients across cancers.

Chaperones demonstrate niche separation and redundancy in
client interactions
After testing the effect of cancer on chaperone-client interactions, we
now explore within-cancer effects on chaperone interactions. We
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Fig. 1 | Non-random patterns in chaperone realized niche across cancer envir-
onments. Each square depicts the number of clients a chaperone interacts with in a
specific cancer out of all the clients it could potentially interact with (Rα

c = L
α
c =Pc;

realized niche, see text). The cancer environment affects the realized niche of
chaperones, as is evident from the non-uniform colors in each row. Chaperones
vary in their realized niche within the same cancer type, as is evident from the non-
uniform colors in each column. The matrix is significantly weighted-nested, with a
core of chaperones with highly realized niche values in particular environments. A
coreof four cancer types and four chaperones (arbitrary selection) is depictedas an
example by the black square. Rows and columns are arranged by their marginal
sums. A similar weighted-nested pattern was found for chaperone cancer-specific
specialization (Supplementary Fig. S1B).

Article https://doi.org/10.1038/s41467-023-41906-2

Nature Communications |         (2023) 14:6277 3



compared the sets of clients that two chaperones x and y interact with
within each cancerαusing the Jaccard similarity index, Jαxy (“Methods”).
Jαxy ranges from 0 (the chaperones interact with complete discordant
client sets) to 1 (the chaperones interact with the same clients in the

same cancer). Jαxy values were low and also lower than expected when
compared to shuffled networks (Fig. 4a; See Supplementary Fig. S4B
forwithin-cancer distributions). Thispattern indicates ecological niche
separation, whereby chaperones have little overlap in their clients.
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between these two indices result in non-significant p-values for all chaperones (see
Supplementary Table S3).
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Fig. 3 | Comparison of client identities between cancers. a Distribution of the
similarity in client identities that a chaperone interacts with between two cancer
types calculated as Jαβc for observed (red) and counterpart shuffled networks (blue).
In the observed networks, 66 comparisons for 15 chaperones totaled 990 values of
Jαβc . In the shuffled networks, there are 1000values per observed value. Chaperones
tend to conserve interacting proteins to a limited degree but statistically

significantlymore thanexpectedat random.bEachdatapoint is a chaperone. x-axis
values are thepartnerfidelity Jc, definedas themedianof Jαβc (horizontal bars are the
range of Jαβc ). y-axis values are the realized niche Rα

c (vertical bars are the range of
Rα
c ). There is a positive and significant correlation (Spearman, two-tailed) between

Jαβc and Rα
c .
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Niche separation could weaken the robustness of the network to
chaperone failure because if a chaperone is not functional, then its
clients remain unsupported. On the other hand, robustness could be
increased if some redundancy exists in client identities, such thatwhen
a chaperone is not expressed, another can take its place. Indeed, the
distribution of Jαxy also had a long tail of high values (Fig. 4a; Supple-
mentary Fig. S4B), indicating that some chaperone pairs interact with
highly overlapping sets of clients. Therefore, while the vastmajority of
chaperone pairs interact with distinct sets of clients, a few pairs with
high redundancy may provide robustness to chaperone removal.

We investigated the interplay between niche separation and
redundancy by analyzing the group structure. Chaperones within the
same group interact more among themselves (redundancy) than with
others (niche separation). To perform this analysis, we considered the
12 cancers as a multilayer network in which each layer is a cancer-
specific CCI network. Groups are detected on all cancers simulta-
neously. This approach is more adequate than analyzing cancer types
separately because it considers all the clients a chaperone can interact
with across cancers, allowing us to detect niche separation and
redundancy across all chaperones and cancer types simultaneously.
Therefore, we can explicitly include the cancer type’s effect on the
division into groups.

We detected groups using a multilayer mixed-membership sto-
chastic blockmodel (SBM) with an efficient expectation-maximization

algorithm22 (see “Methods” for details). An SBM approach has been
applied to ecological networks23–25 but not to multilayer ones. Finding
community structure in multilayer networks requires finding hidden
patterns in the division into groupswhile considering the relationships
between the layers22,26. The chaperones were partitioned into two
groups (Fig. 4b). This division is biologically meaningful because one
group contains mostly co-chaperones while the other contains mostly
chaperones. This result was not affected by the choice of grouping
method (Supplementary Note 2).

CCI can be predicted between cancer types despite low
similarity in interactions
The SBM groups nodes based on information in multiple layers and
therefore allows measuring to what extent information in any layer α
helps us predict links in the same layer α or in any other layer β. To
predict links within the same cancer, we remove 80% of the observed
links and try to predict them using the remaining 20%. We predicted
links with high accuracy (0.59–0.71; diagonal in Fig. 4c). To predict
links between cancer types, we again hold out 80% of the links in
cancer α and try to predict the missing links using the remaining 20%
information from α plus all of the links from layer β. Here too, we
predicted links with high accuracy (0.83–0.98; off-diagonal in Fig. 4c).
The link prediction result is expected if cancer types have similar
chaperone-client interactions. Nevertheless, cancer types have highly
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Fig. 4 | Niche separation and redundancy in chaperone interaction partners.
a The Jaccard similarity index for each pair of chaperones in a specific cancer (Jαxy;
see text). The green and purple histograms depict values across all cancers for the
observed and shuffled networks, respectively. The observed distribution contains
1260 pairwise comparisons (105 pairwise chaperone comparisons in 12 cancer
types). The shuffled distribution contains 1000 values per observed comparison.
There is a mode of lower than random Jαxy, indicating that chaperones interact with
significantly different sets of clients within a cancer type. However, there is also a
tail with chaperone pairs that highly overlap in the clients they interact with.
b Using a stochastic blockmodel, we find that chaperones are partitioned into two
groups. Black and blue denominations are chaperones and co-chaperones,
respectively. c Because of the mixed membership structure of the multilayer SBM,

we canmeasure towhat extent information in any layer helps us predict links in the
same (diagonal values) or another (off-diagonal values) layer. The y-axis and x-axis
are the predicted layer and the extra layer used to help the prediction, respectively.
We use 20% of the information from the predicted layer plus all of the information
from another layer, which can be the same layer (diagonal) or another (off-diag-
onal). Cell values are the area under an ROC curve, a common measure for evalu-
ating prediction accuracy. A value of 0.5 indicates that links can be predicted at
random (50% of guessing right). We predict links with high accuracy (range
0.59–0.71 in the diagonal and 0.83–0.98 in the off-diagonal).d Jaccard similarity of
the interactions between layers. Although layers are highly dissimilar, links are
highly predictable.
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dissimilar interactions (Fig. 4d). Therefore, despite the strong dissim-
ilarity in how chaperones interactwith clients across cancers, there are
still common patterns in the network structure that allow predicting
links. These structures likely result from similar biological constraints
common to all cancer types.

Network structure affects the robustness of CCIs to chaperone
removal
Aprimary goal of studyingnetwork structure is to understand its effect
on the robustness of the networks to perturbation27. A relevant ques-
tion in our case is how chaperone removal affects client interactions,
an analysis that can provide insights into cancer therapy. To explore
this question, we conducted an in-silico robustness analysis. While this
analysis is common in ecology16,28, it has not been done in the context
of chaperone-client mitochondrial networks. Our algorithm simulates
the targeting of particular chaperones and works as follows: In each
cancer type, we removed chaperones sequentially. When a client was
left without connected chaperones, it was removed and recorded as a
co-extinction.We then plotted the proportion of clients remaining as a
function of the proportion of chaperones removed. We calculated a
robustness score,T, as the area under the extinction graph (Fig. 5)29. To
explicitly link robustness to network structure, we removed chaper-
ones in four scenarios of removal order: (1) from the most to the least
connected; (2) most to least connected within module 1 and then
similarly withinmodule 2; (3) most to least connected withinmodule 2
and then similarly within module 1; (4) randomly, to obtain a bench-
mark control comparison within each cancer16. Scenarios (2) and (3)
directly link the modular structure to robustness. We expected that
within each cancer, robustness scores in scenarios (1)–(3) would be
lower than the random scenario and that the network would collapse
most rapidly (lowest T) in scenario (1).

In general, the networks collapsed faster in scenarios (1)–(3)
compared to random removal (Fig. 5). However, the cancer type
strongly affected network collapse. While removal order had little
effect on robustness in some cancer types (e.g., COAD, KIRC), in oth-
ers, the effect was strong (e.g., BRCA, LUAD) (Fig. 5). Robustness is
tightly linked to the general level of connectivity of the network.
Cancer types that increase chaperones’ realized niche value should be
more robust (e.g., KIRP) than those in which chaperones realize few of
their potential interactions (e.g., LUSC) (Fig. 1). We tested this

hypothesis by correlating the mean realized niche values ( �Rc
α) with T

for each removal scenario. These correlations were statistically sig-
nificant for all scenarios (Fig. 6). Therefore, the robustness of cancer
networks depends on the general connectivity level of chaperones and
the mesoscale group structure of chaperone-client interactions.

Discussion
The mitochondria play a crucial role in the metabolic reprogramming
of cancer cells30. The relationship between mitochondrial chaperones
and the clients they interact with is key to cancer cell proliferation31.
However, little was known about howmitochondrial CCI networks are
structured and how this structure varies across cancer types. Por-
traying CCI networks as ecological multilayer networks of species
interactions, we show that CCI network structure non-randomly
depends on cancer type. However, despite the cross-cancer varia-
tion, knowledge of CCI in one cancer type can help us predict CCI in
another. We also uncovered a group structure that provides redun-
dancy for client support with consequences for network robustness.
These results open the door for new hypotheses regarding the evo-
lution of CCI networks and can inform cancer-specific drug therapy
development.

We found a non-random pattern of weighted nestedness in the
number of clients chaperones interact with across cancers. Weighted
nestedness requires variation and order in that variation in both cha-
perones and cancer types18. We did not detect an effect of chaperone
or protein expression levels on the chaperone’s realized niche. Hence,
the mechanism underlying variation in the realized niche (rows in
Fig. 1) remains an openquestion for future research. A nested structure
can arise if core chaperones are crucial for supporting essential pro-
teins that must be sufficiently functional in all cancer types—as is the
case of CLPP and HSPE1—while other chaperones are necessary only in
particular cancer types to complement the function of clients sup-
portedby the core chaperones. Supporting this hypothesis is the result
that chaperones with a large realized niche also tend to conserve their
interaction partners across cancer types. A possible explanation for
cancer-mediated variation (columns in Fig. 1) is that chaperone clients
are not exclusively dependent upon them except in a particular can-
cer type.

We found that chaperones were separated into two distinct
groups. This result is supported by a previous study inwhichweused a
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single CCI network that ignored the cancer environment32 and an
additional analysis using unsupervised learning (Supplementary
Note 2). Groups represent chaperones that interact similarly with the
same clients, whom themselves interact with similar chaperones22,23,33.
In ecology, one mechanism underlying group structure is trait
matching, which emerges via coevolution34. In the world of proteins,
grouping can emerge if there is amatch in the biophysical attributes of
chaperones and their clients. The fact that the groups emerge across
cancers indicates that the cancer environment likely has a negligible
effect on selection pressures that underlie chaperon-client coevolu-
tion. Another non-mutually exclusive hypothesis is that chaperones
within the same group have complementary functions because more
than one is needed to complete the folding process35,36. Yet another
possible explanation is that selection is likely to favor redundancy
because if a chaperone becomes a limiting factor, another can take its
place. On the other hand, group structure also implies the specializa-
tion of a group of chaperones on a group of clients. In community
ecology, this pattern of limited niche overlap* has been consistently
found23,37.

The interplay between specialization on the one hand and
redundancy on the other, as manifested by group structure, has
implications for network robustness. In most cancer types removing
chaperones first from Group 1 resembled removal by a high-to-low
degree.Moreover, inGroup 1, therewas a positive correlation between
the chaperones’ realized niche and robustness. Hence, chaperone
removal will collapse more proteins. Group 1 contained a high pro-
portion of co-chaperones, suggesting that co-chaperones contribute
the most to the network’s robustness. This makes them ideal candi-
dates for drug therapy targets if the goal is to collapse the whole CCI
network.

Ecological theorywas used to order cancers byphenotypic axes in
the “oncospace”11. This idea highlights the differences between can-
cers, supporting the cancer-dependent patterns we discover in the
nestedness analysis. Nevertheless, we also showed that despite the
nested pattern and the substantial dissimilarity in how chaperones
interact with clients across cancers, there are common, hidden pat-
terns in the CCI structure that allow predicting interactions in one
cancer type based on another. This result can be harnessed to guide
experiments for detecting specific unobserved CCI. Such predictive
ability is also a tool that can help researchers understand how drugs
that target CCI in one cancer may operate in another. From a basic
science point of view, our findings can be used to guide studies aiming
at discovering the biophysical features of proteins dependent upon a
specific chaperone. In addition, these results allow for inferring pos-
sible redundancies between different chaperones.

We inferred interactions from coexpression at the mRNA level.
However, genes may have evolved to be coexpressed for reasons dif-
ferent than a physical interaction or dependency, as is the case for the
P53 target gene induced by DNA damage38. Additionally, while coex-
pression may indicate an interaction, it is important to acknowledge
that a notable proportionof those interactionsmight be false positives
or false negatives. Nevertheless, coexpression remains a powerful
method for estimating interactions39.Moreover, weobtained empirical
support that coexpression-based CCI, on the transcript level, is enri-
ched in CCI based on protein-protein interaction data (see Supple-
mentary note 1).

Robustness analysis is an in-silico approach that provides a first
insight into stability. For instance, while inhibitors of HSP70 and
HSP90 were identified and showed promising results in preclinical
models, they are not routinely used in the clinic for cancer treatment as
single agents40. RNA-based therapeutics hold thepromiseof being able
to target any gene in the clinic41. In this case, deciding on the best
target is key for successful treatment. Our analysis predicts which
proteins will be most affected when targeting a particular mitochon-
drial chaperone in a particular cancer type and the potential network-
wide cascading effects of targeting a chaperone. Nevertheless, our
analysis does not capture the full spectrum of processes that operate
in nature42. For instance, when a chaperone is removed, rewiring can
occur such that another takes its place43. In addition, the importance of
proteins varies across cancers. Future computational and experi-
mental studies that consider these assumptions are needed to identify
chaperones that can be used as targets for cancer therapy.

To conclude, our analysis provides a starting point for under-
standing variation in CCI network structure across cancer types and
how structure affects network robustness. It has been argued that
cancer research could benefit significantly from ecological and evo-
lutionary theories9,10. Here, we apply theory and methodology from
network ecology to study variation in CCI across cancer environments.
By applying ecological analysis of environmental variation in ecologi-
cal interaction networks and the link between structure and
robustness8,27 we provided insights into how chaperone interactions
vary across cancer types, with consequences for chaperone targeting.
Our study and approach canguide studies that aim to discover CCI and
those that aim to test the effects of chaperone inhibitors in cancer
therapy.

Methods
Data acquisition
Gene level transcriptome profiling (RNA-Seq) data (in the form of
HTSeq-FPKM) was downloaded from The Cancer Genome Atlas
(TCGA) using the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov). Of these data, we kept only the expression levels of
mitochondrial proteins as listed according to the MitoCarta 2.0
database.
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Coexpression analysis and network construction
Using the raw data of each cancer tissue, we calculated a Spearman
correlation between the expression levels of 15 mitochondrial cha-
perone genes and 1142 genes belonging to their potential protein
substrates, using all available samples for that tissue. We created a
chaperone-client interaction matrix (network). Chaperone-client pairs
that were significantly correlated after Bonferroni correction for mul-
tiple testing received a value of 1, and non-significant correlations
received a 0 (no interaction).

Cancer types varied in their sample size (SupplementaryTable S1),
which cancreate biases in the statistical power fordetecting significant
correlations. To ensure a fair comparison between all cancer types, we
performed a bootstrap analysis to match the sample size of each
cancer type to that with the least number of samples (Kidney Renal
Papillary Cell Carcinoma, n = 288). For each cancer type, we drew 288
transcriptome samples at random without replacement (1000
attempts) and reconstructed the chaperone-client network using
Spearman correlations (as described above). A correlation that was
classified as significant andpositive in at least95%of thebootstrapping
attempts was considered as an interaction. The results of this analysis
are in Supplementary Table S1, and the networks are drawn in Sup-
plementary Fig. S5.

Nestedness analysis
We calculated weighted nestedness as the largest eigenvalue of a
matrix, ρ19. This method is particularly suitable for comparing amatrix
to its shuffled counterparts (see below for details on shuffling). Spe-
cifically, given a set of weighted interactions, the matrix with the
highest weighted nestedness is that in which the distribution of matrix
cell values produces the largest ρ19.

Community detection: detecting groups of chaperones
Community detection is a broad term for a suite of methods that
cluster nodes to communities (also called groups, or modules)44. We
used two different approaches to detect groups of chaperones and
clients: stochastic blockmodeling (SBM) andmodularity basedonflow
dynamics. These twoverydifferentmethods provided almost identical
node groups. We focus on SBM because this is an inferential rather
than a descriptive method45, which also enables link prediction (see
below). We therefore present the methods and results of the SBM in
the main text and refer the reader to Supplementary Note 2 for an
extended discussion on modularity.

The general idea behind the SBM approach is that nodes are
similar if they share the same kind of connection patterns to other
nodes. Hence, nodes are grouped based on equivalence. In stochastic
equivalence, nodes are equivalent if they connect to equivalent nodes
with equal probability44,45. For example, two chaperones are equivalent
if they both interact with equivalent clients with equal probability.
There are multiple implementations of SBM for monolayer23,46 and
multilayer22,26 networks, with some variations, but all take the same
approach.

For this analysis, we used the 12 cancer types together, effectively
creating a multilayer network in which each layer was a chaperone-
client interaction network of a given cancer type. We detected groups
using a multilayer mixed-membership SBM algorithm called
multitensor22. This is a probabilistic method that assumes an under-
lying structure for L layers (in our case, L = 12 cancers) consisting of K
overlapping communities. The model provides for each node a mixed
membership vector of size K, which represents the probability that the
node will be a member of each group (hence the mixed membership
term). Typically in SBM-type models, nodes are assigned to a single
group by choosing the group membership with the highest prob-
ability. In directed networks, each node i gains two membership vec-
tors, ui and vi, which determine group membership for outgoing and
incoming links, respectively (for undirected networks, u = v). To

consider the bipartite nature of the layers, we used a directed network
with links going from the chaperones to the clients. Using a directed
network creates a distinction between the different sets of nodes
(chaperones and clients), effectively setting the probability of links
within the same node set in u and v to 0. As noted in the original paper,
using directed networks bears a close mathematical relationship to
models that generate bipartite weighted graphs22.

For each layer α, aK ×K affinitymatrixw(α) describes the density of
edges between each group. The expected number of edges in layer α
from i to j is then given by the bilinear form:

MðαÞ
ij =

XK

k,l = 1

uikvjlw
ðαÞ
kl : ð1Þ

Multitensor and other SBM models26 require the number of
groups to be predefined. We set the range of the number of groups to
K∈ (2, 15) (there are 15 chaperones). Because SBM models are prob-
abilistic, the output includes a maximum-likelihood estimate, which
we can use to choose the optimal number of communities. For each K,
multitensor uses an expectation-maximization algorithm(EM) to find
the maximum likelihood of the group assignment. However,
maximum-likelihood estimates will always increase with an increase in
thenumber of parameters. Therefore, we use the Bayesian Information
Criterion (BIC) to penalize for the increase of parameters and avoid
overfitting communities. We chose the K with the lowest BIC score,
which gives us K = 247.

Link prediction
The stochastic formulation of SBMs forms generative models, which
can be used for inference44,45. The multitensor22 and similar models
developed for multilayer networks26 group nodes based on informa-
tion contained in multiple layers. They therefore provide a mathema-
tically principled way to define the interdependence between layers
and measure to what extent information on one layer helps us predict
links in another.

In all link prediction analyses, we set the number of communities
to 2 since this was the best grouping according to the BIC score. To
predict links within the same cancer, we calculateMα

ij in a focal layer α
to predict the existence of an edge between i and j. We hold out 80%of
the observed edges and use the other 20% of the information to do the
prediction. To predict links in one cancer using information from
another,we alsohold out 80%of the links froma focal layerα, and then
use the remaining 20% fromα, plus all of the links from another layer β
to predict the retained links.

At the current state-of-the-art22,26, it is impossible to predict
missing links in α using solely information from β because multilayer
SBM models use matrix factorization, which requires partial informa-
tion from the target layer. However, by holding out 80% from α, we
ensure that the analysis is insightful because leaving only 20% of links
makes prediction challenging.

For both within- and between-layer predictions, we repeated the
process 20 times,with 5-fold cross-validation.We evaluated the quality
of link prediction using the area under the ROC curves48 and averaged
results across the 20 runs. The diagonal AUC values in Fig. 4c are for
the within-layer prediction, and the off-diagonal ones are for the layer-
pair prediction.

Network shuffling
Wewanted to ensure that the network properties we find for empirical
networks (e.g., nestedness, similarity in interactions, Jaccard indices)
are not a result of random processes but rather are biologically sig-
nificant. Hence, we compared the results of empirical networks to
those obtained from analyses of 1000 counterpart shuffled networks.
This is a common procedure in the study of ecological networks49–51.
We shuffled the interaction values of each CCI matrix using the
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‘curveball’ algorithm52, which constrains the number of client asso-
ciations (for chaperones) and chaperone associations (for proteins) to
that observed in the empirical networks. This algorithm is highly
conservative, making it difficult to detect statistically significant
results; or, in other words, it increases the likelihood of type II error53.
This increases our confidence that the statistically significant results
we find are true biological processes.

Using the shuffled networks, we determined the statistical sig-
nificance of weighted nestedness using a one-tailed test, as is common
in ecological networks19,50. We compared the empirical ρ to its shuffled
counterparts using the following formula:

p� value=
countðρshuf f led >ρobservedÞ

Nsimulations
ð2Þ

To calculate the statistical significance of measures at the node
level (i.e., the Jaccard index calculations), we used z-scores as follows21.

zi =
Jempirical
i � avgð Jshuf f ledi Þ

SDð Jshuf f ledi Þ
, ð3Þ

where avgð Jshuf f ledi Þ and SDð Jshuf f ledi Þ are the mean and standard
deviation of the Jaccard index obtained from the shuffled networks.
Hence, a positive (negative) z-score suggests that similarity is higher
(lower) than expected from random CCIs. The significance of each
empirical value was determined at the 0.05 level: a z-score >1.96 or <
−1.96 indicates that the index is greater or lower than the random
expectation, respectively.

Software development
The software in this paper was implemented using R programming
language (version 4.1) and Python (version 2.7) with Linux environ-
ment. Network analysis was done using the R packages ‘bipartite’
(version 2.15) and ‘vegan’ (version 2.5-7).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Gene level transcriptome profiling (RNA-Seq) data (in the form of
HTSeq-FPKM) was downloaded from The Cancer Genome Atlas
(TCGA) using the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov). Human protein expression data was downloaded
from the string-db.org data base (v11.5) and from published papers.
These data and the processed network data are available in figshare
(https://doi.org/10.6084/m9.figshare.22779755.v2). The data under-
lying the figures and tables are provided in the Source Data file and on
figshare. All code and data are also available on the GitHub repository:
Galai, G., He, X., Rotblat, B. & Pilosof, S. Ecological network analysis
reveals cancer-dependent chaperone-client interaction structure and
robustness in the mitochondria, authors, title (this paper), https://
github.com/Ecological-Complexity-Lab/cancer-networks, https://doi.
org/10.5281/zenodo.8245737, 2023. Source data are provided with
this paper.

Code availability
All code and its description are available in the following GitHub
repository: https://github.com/Ecological-Complexity-Lab/cancer-
networks.
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