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Deep flanking sequence engineering for
efficient promoter design using DeepSEED

Pengcheng Zhang 1,3, Haochen Wang1,3, Hanwen Xu1,3, Lei Wei1, Liyang Liu1,
Zhirui Hu2 & Xiaowo Wang 1

Designing promoters with desirable properties is essential in synthetic biol-
ogy. Human experts are skilled at identifying strong explicit patterns in small
samples, while deep learningmodels excel at detecting implicit weak patterns
in large datasets. Biologists have described the sequence patterns of pro-
moters via transcription factor binding sites (TFBSs). However, the flanking
sequences of cis-regulatory elements, have long been overlooked and often
arbitrarily decided in promoter design. To address this limitation, we intro-
duce DeepSEED, an AI-aided framework that efficiently designs synthetic
promoters by combining expert knowledge with deep learning techniques.
DeepSEED has demonstrated success in improving the properties of Escher-
ichia coli constitutive, IPTG-inducible, andmammalian cell doxycycline (Dox)-
inducible promoters. Furthermore, our results show that DeepSEED captures
the implicit features in flanking sequences, such as k-mer frequencies andDNA
shape features, which are crucial for determining promoter properties.

Promoters are core genetic elements that regulate gene expression1.
Designing synthetic promoters with desirable properties to precisely
control gene expression is a requisite for biosynthetic engineering and
gene therapy2,3. Strong or inducible promoters are indispensable for
achieving high transgene expression and maximizing the potency of
the treatment4–6. It has been believed that the properties of a promoter
are mostly determined by cis-regulatory elements7,8, i.e., transcription
factor binding sites (TFBSs), such as the –10/–35 elements in prokar-
yotes and the TATA-box in eukaryotes9,10. The sequence preference of
TFBSs is commonly summarized asmotifs and represented by position
weight matrices (PWMs). As the sequences and functions of TFBSs are
usually well known, most researchers design new promoters by
manipulating the combinations and arrangements of TFBS motifs11,12.
However, recent evidence has highlighted that TFBS flanking sequen-
ces also significantly influence promoter properties13–15. The roles of
the flanking sequence around TFBSs encompass various aspects,
including the influence of physicochemical properties such as DNA
shapes16,17, specific flanking sequence preferences by certain
TFBSs12,14,18, and the presence of potential low-affinity binding sites in
flanking regions that enhance TF binding15,19–21. It is difficult to

summarize these features into explicit promoter design rules; thus, the
optimization of flanking sequences is largely unexplored in current
promoter design approaches.

Recently, deep learning models have shown great potential in
both eukaryotic and prokaryotic promoter engineering10,22–24. By
capturing shared sequence patterns from a large number of natural
promoters, these models have been able to generate numerous de
novo constitutive promoterswith high diversity. However, thesedata-
driven deep learning models cannot address the demands of
designing promoters with specific properties such as inducible pro-
moters or tissue-specific promoters, as in nature there exist only a
handful of promoters or even just a single promoter with the desired
property for use in training25–27. Consequently, most synthetic pro-
moters used in practice were designed through expert prior knowl-
edge. For example, researchers may put TFBSs with related functions
into a backbone sequence and then optimize the sequence with
mutagenesis12,27,28. Such approaches lack instructive schemes for
optimizing flanking sequences that also affect promoter properties,
usually resulting in poorer-than-expected outcomes or painstaking
trial-and-error tests.
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Here, we propose DeepSEED (Deep learning-based flanking
Sequence Engineering for Efficient promoter Design), an AI-aided
flanking sequence optimization method for synthetic promoter
design. DeepSEED aims to integrate expert knowledge with the power
of data-driven models to facilitate efficient promoter design. Deep-
SEED is composed of two deep learning models: a conditional gen-
erative adversarial network (cGAN)29,30 that generates flanking
sequences based on preset sequence elements, and a DenseNet-LSTM-
based model (where LSTM denotes “long short-term memory”) that
predicts promoter properties. To design a synthetic promoter with
desired properties, users can—based on their prior knowledge—first
input any number of sequence elements (e.g., TFBSs) of interest at any
position as a ‘seed’, and then DeepSEED will generate the flanking
sequences based on the ‘seed’ to fit into the implicit patterns of pro-
moters. Subsequently, to evaluate the significance of flanking
sequences, we investigated distinct patterns of influence from the
flanking regions in the functional E. coli promoters using the predictor
model and saliency maps31. Additionally, we employed t-distributed
stochastic neighbor embedding (t-SNE) to further analyze and confirm
the relationship between promoter activity and DNA shape features in
the flanking sequences. Next, we applied DeepSEED to three different
promoter design tasks: prokaryotic constitutive promoters, prokar-
yotic IPTG-inducible promoters, and eukaryotic doxycycline-inducible
promoters. In all three cases, DeepSEED showed significant improve-
ment in achieving desired promoter properties with high success rates
by optimizing flanking sequences. The synthetic promoters generated
by DeepSEED showed high sequence diversity while preserving key
features, such as k-mer frequencies and DNA shape features. These
synthetic promoters demonstrated low sequence similarity to the
natural genomic and comparable edit distance to randomly flanking
sequences. Overall, these results underscored the crucial role of
flanking sequences in promoter activity and suggested DeepSEED as a
powerful AI-aided tool for designing synthetic promoters.

Results
Overview of the AI-aided flanking sequence optimization
method DeepSEED
DeepSEED constructed a probabilistic view to unify the expert
knowledge to define the ‘seed’ of promoters and deep learning
methods to fill up the flanking sequences that match the ‘seed’ to
improve the promoter performance. The promoter design problem
can be formulated in probabilistic terms as maximizing the joint
probability of the promoter sequence s and the target property T , i.e.,

max
s

P s,Tð Þ ð1Þ

The promoter sequence s is divided into two parts: ‘seed’
sequences m derived from expert knowledge and flanking regions of
‘seed’ f . By applying the chain rule, the following is obtained:

P s,Tð Þ=P m,f ,Tð Þ / P mjTð ÞP f jm,Tð Þ ð2Þ

The formula suggests that the maximization of the probability
could be achieved in two stages (Fig. 1a). The first term PðmjTÞ indi-
cates the process of assigning m compatible with the target property
according to expert knowledge (Stage I, Expert Knowledge Integra-
tion). The second term Pðf jm,TÞ represents optimizing flanking
regions f conditioned on the ‘seed’ sequences m and the property T
(Stage II, Sequence Optimization, see “Promoter design approach” in
“Methods”).

Expert Knowledge Integration: In Stage I, the maximization of the
first term PðmjTÞ is achieved by selecting ‘seed’ based on expert
knowledge that has been proven to be essential for achieving the tar-
get property T . In the next stage, we assume that ‘seed’ sequences are
fixed, defined as m*.

Sequence Optimization: Given m* determined in Stage I, Stage II
maximizes Pðf jm*,TÞ. According to the Bayes rule,

P f jm*,T
� � / P f jm*� �

P T jf ,m*� � ð3Þ

where the first term, Pðf jm*Þ, is related to the flanking sequence gen-
eration problem, inwhich one seeks the compatible flanking sequence
f based on m*. The second term, PðT jf ,m*Þ, is the probability of a
promoter property T for the given sequence s = ðf ,m*Þ.

A cGAN-based flanking sequence generation model was adopted
in DeepSEED to estimate P f jm*

� �
(see “Objective function” in “Meth-

ods”). Attention-based layers were applied because of their ability to
capture the widespread long-range interactions in regulatory codes. A
DenseNet-LSTM-based predictor was trained to evaluate the proper-
ties of input promoters, i.e., P T j f ,m*

� �
(Fig. 1b, Supplementary Fig. 1).

The genetic algorithm (GA) combining the cGAN generator and the
predictor was applied to maximize the probability of Pðf jm*,TÞ to
design synthetic promoters with target properties (Fig. 1c, Supple-
mentary Fig. 2a). These well-designed network structures and training
strategies help improve the performance of DeepSEED compared to
our previous methods22 (Supplementary Notes). In the following sec-
tions, we will demonstrate that DeepSEED can learn the implicit pat-
tern in flanking sequences and can design high-activity promoters
based on expert knowledge (Fig. 1d).

DeepSEED captures essential features of natural promoter
sequences
We first investigated the importance of flanking sequences in pre-
dicting promoter activity in silico.Wepredicted the expression level of
2000 functional E. coli promoters by the predictor model and clus-
tered their saliency maps31 (see “Saliency map analysis” in “Methods”).
As shown in Fig. 2a and Supplementary Fig. 3, we found that the –10
and –35 elements strongly influence promoter activity, as reported by
previous studies32. However, the influence of flanking regions is also
important. Each cluster showeddistinct patterns in flanking regions on
the saliencymaps, and the potential relationship of flanking sequences
to promoter activity is difficult to describe explicitly.

We then evaluated whether the DeepSEED architecture can cap-
ture the implicit patterns of flanking sequences at specific and entire
promoter regions. For E. coli promoters, we observed that the k-mer
frequency between natural and DeepSEED-designed sequences corre-
lated well (k = 4 to 6) across entire promoter regions (Fig. 2b, Supple-
mentary Fig. 4a). We further investigated the k-mer frequencies at the
distal and proximal ends of the promoter, as they exhibit different
k-mer patterns in natural sequences (Supplementary Fig. 4b), and the
results showed that DeepSEED successfully captured the k-mer fea-
tures on both ends (Fig. 2b). The k-mer frequency in designed Dox-
inducible promoterswithpreserved tetO sequences also showedahigh
correlation with natural sequences (Fig. 2c, Supplementary Fig. 4c).

DNA shapes are physicochemical features of DNA sequences that
contain structural information, such as the minor groove width
(MGW), roll, propeller twist (ProT), and helix twist (HelT)33. Appro-
priate DNA shapes near TFBSs could enable TF binding and thus
influence transcriptional activity34–36. We first examined the four kinds
of DNA shape features on the left side of twowidespread–10 elements,
‘TATAAT’ and ‘TATAAA’, in E. coli and found that DeepSEED-designed
promoters showed patterns more similar to those of natural pro-
moters than to random sequences at specific locations of the pro-
moter region (Fig. 2d). We further embedded DNA shape features of
whole promoter sequences by t-SNE (see “DNA shape analysis” in
“Methods”) and found that E. coli promoters in the training dataset can
be divided into two groups in the embedding space related to their
transcriptional activities, implying the strong dependence between
DNA shapes and promoter activities (Fig. 2e). Moreover, we noticed
that DeepSEED optimization can successfully move a promoter
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sequence from the low-activity region to the high-activity region in the
embedding space.

We also investigated the promoter sequences from the perspec-
tive of the DNA semantic sequence space (see “Semantic sequence
space” in “Methods”). Compared with promoter sequences of other
species in the training dataset, the DeepSEED-designed promoter
sequences andnaturalE. colipromoters areco-located in the same low-
dimensional space (Supplementary Fig. 5a). Furthermore, we demon-
strated that DeepSEED-designed promoters showed similar diversity
to natural sequences by comparing the editing distance distributions
(Supplementary Fig. 5b, see “Sequence similar diversity” in “Meth-
ods”), indicating that DeepSEED has the ability to generate brand-new
promoters rather than simply modifying natural promoters. All the
above results suggested that DeepSEED was able to capture essential
features of natural promoter sequences and direct the model to gen-
erate de novo high-activity promoters.

Design of constitutive promoters in E. coli
We first used DeepSEED to design constitutive promoters in E. coli. We
fixed the sequence and position of –10/–35 elements as ‘seed’
sequences (Fig. 3a). DeepSEED was trained on promoters from the
massively parallel reporter assay (MPRA) dataset37 to optimize flanking
sequences to improve the activity of promoters (Supplementary
Fig. 6a). Compared with natural E. coli promoters containing the same
–10 and –35 elements, DeepSEED-designed sequences were predicted
to have higher expression levels in silico (Supplementary Fig. 2b).

Then, we verified the properties of DeepSEED-designed sequen-
ces in vivo. Three widely used constitutive promoters adopted from
the Internationally Genetically Engineered Machine (iGEM) parts reg-
istry (BBa_J23119, BBa_J23118, and BBa_J23114, http://parts.igem.org/
Promoters/Catalog/Constitutive) with different –10 and –35 elements
were selected as the initial sequences to be optimized. The three
promoters showed high, medium, and low expression levels in vivo
(Supplementary Fig. 7). For each initial sequence, we kept the ‘seed’
sequences and designed 16 new sequences with DeepSEED (Supple-
mentary Notes). For the sake of comparison, we also generated two
control groups (Fig. 3b): the Control-1 group using random sequences
to extend the initial promoter sequences to 165 bp, the same length as
promoters in the training dataset, to prevent the effect of length on
promoter activity; and the Control-2 group in which the ‘seed’
sequences were maintained while randomizing all the other regions
(Supplementary Data 1). We analyzed the edit distance between the
initial sequences and the corresponding experimental sequences of
equal length. The DeepSEED-generated promoters showed sequence
differences of 51.39 ± 4.66%, 45.14 ± 3.63%, and 46.06 ± 5.23% com-
pared to the J23114, J23118, and J23119 initial sequences, respectively.
These differences were comparable to the randomly generated
sequences observed in the Control-2 group (52.31 ± 6.33%,
51.39 ± 3.55%, and 50.93 ± 6.42%, respectively; Supplementary Data 3,
see “Edit distance analysis” in “Methods”). Moreover, the results of the
BLAST search onDeepSEED-generated constitutive promoters showed
similar levels to random sequences, and lower similarity with the
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natural E. coli genome than the promoters designed by Alper et al.38

and most constitutive promoters from iGEM BioBrick standard parts39

(Supplementary Fig. 8a, see “BLAST search” in “Methods”).
We measured the constructed promoter activities in the LB

medium by the fluorescence intensity of downstream sfGFP. As shown
in Fig. 3c and Supplementary Fig. 9a, the promoter activities of the
Control-1 groupwerecomparable to thoseof the initial promoters. The
Control-2group showedahigher variance inpromoter activities due to
the introduction ofmore randomsequences. The high variability in the
activities of random flanking sequences in the Control-1 and Control-2
groups also indicated the importance of flanking sequences for pro-
moter activity. After DeepSEEDoptimization, the activities of synthetic
promoters in the DeepSEED group exhibited great improvement,
increasing by an average of 1.42-, 4.11- and 33.43-fold compared with
the Control-2 group based on the initial promoters BBa_J23119,
BBa_J23118, and BBa_J23114, respectively. We compared the DeepSEED
results with our previous whole sequence generation method22 and
found that DeepSEED showed an average 6.73-fold increase in

promoter activity (Fig. 3d, Supplementary Fig. 9b), suggesting that
compared to learning only the general patterns from training samples,
introducing expert knowledge such as the consensus motif in the
promoter region may help the model generate promoters with better
performance. In addition, we evaluated the activity of 21 synthetic
promoters (Supplementary Data 1) using the reporter gene mrfp, and
the results exhibited a strong correlationwith themeasurements using
sfgfp (Pearson r = 0.83, Supplementary Fig. 10a). We further assessed
the robustness of the DeepSEED-designed constitutive promoters by
testing a subset of them in two additional types of culturemedium:M9
and EZ-rich (Supplementary Fig. 10b, c, Supplementary Data 1).
Remarkably, these synthetic promoters with different initial −10 and
−35motifs consistently displayed high activity levels in diverse culture
conditions.

To exclude the possibility that the increase in promoter activity
is due to the generation of a second promoter rather than to flanking
sequence optimization, we analyzed the DeepSEED-designed pro-
moters with motif-finding algorithms to evaluate the existence of
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the alternative promoter within the flanking sequence (see “Second
promoter finding” in “Methods”). We found that the signals of
‘promoter structure’ motifs in flanking sequence regions were
almost always lower than those in the original regions (Supple-
mentary Fig. 11). Although some increasing signals in flanking
regions appeared, they were still much lower than those in the
strongest promoter BBa_J23119. The results indicated that Deep-
SEED did not generate alternative high-activity promoter structures
in flanking regions.

We plotted all the promoters and control samples in the DNA
shape embedding space (Fig. 3e). Most of the Control-1 and Control-2
samples were located in low promoter activity regions, which indi-
cated that random sequences in flanking regions failed to configure
the DNA shape for higher transcriptional activity. In contrast, Deep-
SEED optimized the flanking regions and generated highly expressed
DNA shape features. These results indicated that the improvement of
DeepSEED-designed promoters could partly be explained by the
optimization of DNA shape features in flanking regions.

Design of IPTG-inducible promoters in E. coli
In bacteria, the promoter contains not only the –10 and –35 elements
but also regulatory sequences that could be bound by transcription
factors to activate or repress gene expression, aswith the lac promoter
in the typical lac operon in E. coli40. The activity of the lac promoter is
repressedwhen the LacI protein binds to lacO sites, and the repression
can be relieved in the presence of lactose or its analogs, such as IPTG
(Fig. 1d). The lac promoter is widely used in synthetic biology as an
inducible promoter. We aimed to use DeepSEED to design new IPTG-
inducible promoters based on the LacI-DNA interaction pattern as
expert knowledge (Fig. 4a). Here, DeepSEEDwas trained on promoters
from the MPRA dataset37 to optimize flanking sequences to increase
transcription under induced conditions (Supplementary Fig. 6b).

Thenumber andpositionof the lacO sites are crucial for promoter
performance. Appropriate spacing between different lacO sites may
help to form a repression loop and further reduce leaky expression25,41.
Here, we adopted two, three, or four lacO sites at suitable positions
and spacing for LacI protein binding and loop formation25 to design
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promoters (Supplementary Fig. 12). We randomly chose 25 con-
stitutive promoters from the training samples as backbone sequences.
We identified –10 and –35 elements and their spacer lengths for each
sequence and adopted these features as well as the number and
position of lacO sites as expert knowledge for the generative model
(Fig. 4b). For each backbone sequence, we selected three sequences
that were predicted to have high activity for experimental validation
(Supplementary Notes). We compared the edit distance between the
designed and template sequences. The 2-lacO, 3-lacO, and 4-lacO
DeepSEED-generated promoters showed differences of 58.33 ± 4.08%,
60.11 ± 4.00%, and 61.84 ± 5.39%, respectively, which were similar to
the randomly generated sequences (62.82 ± 3.59%, 63.69 ± 4.37%, and
64.58± 4.40%; Supplementary Data 3, see “Edit distance analysis” in
“Methods”). These DeepSEED-generated promoters also exhibited low
similarity with the natural E. coli genome (Supplementary Fig. 8a; see

“BLAST search” in “Methods”). In addition, we directly substituted the
corresponding sequence with lacO sites on the backbone sequence as
the substitution control group and measured their activities in vivo.
The detailed sequences of promoters are provided in Supplemen-
tary Data 1.

We found that after the direct substitution, sequences showed
different degrees of activity loss under the induced condition (Fig. 4c,
Supplementary Fig. 13-15). The average induced expression level was
reduced by 52.8%, 80.8%, and 97.1%with two, three, or four lacOdirect
substitutions, respectively. The loss of expression may be due to the
disruption of promoter structures by direct substitution, which is a
common problem in inducible promoter design42. In contrast, the
DeepSEED-designed promoter restored high expression levels and
could even outperform the original promoters (Fig. 4c, left). The
average expression level of DeepSEED-designed promoters under
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induced conditions decreased with increasing lacO site numbers but
showed 8.96-, 6.54-, and 47.96-fold increases compared with the cor-
responding substitution promoters with two, three, or four lacO sites,
respectively.Meanwhile, introducing lacO sites certainly generated the
ability to respond to IPTG. The fold-change of DeepSEED-designed
promoters showed great improvement with an increase in the number
of lacO sites (Fig. 4c, right). The average fold-change of the designed
promoters with two lacO sites was lower than that of the substitution
group, which was caused by the higher leaky expression level under
the uninduced condition. For designed promoters with three or four
lacO sites, eachhadon average 2.20- and 2.94-fold increases compared
with the corresponding substitution promoters. The results showed
that DeepSEED has the ability to design high-performance inducible
promoters with different lacO sites introduced. The DeepSEED-
designed promoters exhibited higher levels of leaky expression com-
pared to the corresponding substitution sequences on average (Sup-
plementary Fig. 16a). This can be attributed to the fact that the leaky
expression was not the primary focus during the design process, given
the lack of leaky expression training datasets. However, we success-
fully addressed this issueby introducing additional lacOsites, resulting
in a significant reduction in leaky expression and enabling the gen-
eration of high-performance promoters.

We further compared the performance of synthetic promoters
with two widely used IPTG-inducible promoters, placUV543 and
pLlacO144 (Fig. 4d). Almost all of the substitution promoters showed
low induced expression levels and thus are difficult to be employed for
synthetic biology applications. In contrast, DeepSEED-designed pro-
moters showed wide distribution with different induced expression
levels and fold-changes, which could satisfy various demands for fine-
tuning genetic circuits. Moreover, there was a trade-off in fold-change
and induced expression levels, with different numbers of lacO sites
(Fig. 4d, Supplementary Fig. 16b), suggesting that the performance of
syntheticpromoters couldbeeasily adjustedby altering thenumber of
lacO sites. We also tested a subset of DeepSEED-designed IPTG-indu-
cible promoters in M9 and EZ-rich culture medium (Supplementary
Fig. 10d, Supplementary Data 1). Remarkably, a number of the
designed promoters demonstrated higher induced expression levels
and fold-changes compared to the commonly-used pLlacO1 promoter.

We investigated the distribution of synthetic promoters in the
functional space by embedding the outputs of the penultimate layer in
the predictor model using t-SNE (Fig. 4e). We found that both back-
bone and substitution promoters were widely distributed in space,
while DeepSEED-designed promoters tended to fall in the high-activity
region. These results supported the notion that the generated flanking
regions were more compatible with the motif ‘seeds’ and target
properties.

Design of Dox-inducible promoters in mammalian cells
We further extended the DeepSEED model to mammalian cell data to
test its potential in designing eukaryotic promoters. Here, we focused
on the Tet response element (TRE) promoter45,46, one of the most
widely used inducible promoters in mammalian cells. Taking the Tet-
On systemas anexample, the transcription of the TREpromoterwould
be activated in the presence of the reverse tetracycline-controlled
transactivator (rtTA) protein, which binds to the tetO site in the TRE
promoter. When tetracycline or its analogs, such as doxycycline, are
added, the rtTA would be activated, and thus, gene expression would
be induced (Fig. 1d). The classic TRE promoter contains seven direct
repeats of tetO sites linked by repeated flanking sequences and has
been used in the Tet-On system since 199546. Previous engineering
approaches for the TRE system focused on altering key amino acid
residues in tetracycline-controlled proteins to achieve higher fold
changes between induced and repressed states47. However, the design
of the TRE promoter sequence progressed slowly due to the lack of an
effective optimization strategy.

We chose the Tet-On system as an example to validate the per-
formance of DeepSEED (Fig. 5a). We preserved theminiCMV promoter
sequence as well as the tetO sites as ‘seed’ sequences and then gen-
erated flanking sequences with DeepSEED. The generator model was
trained on the enhancer sequences in the HEK293 cell line from the
Human ACtive Enhancers to interpret Regulatory variants (HACER)
dataset48. During the training process, we annotated all known motifs
of sequences in the training dataset with the JASPAR database49 and
kept themotifswhilemasking their flanking sequences asmodel input.
DeepSEED aimed to recover their masked sequences to learn the
regulatory patterns within flanking sequences. To avoid the increase in
non-induced baseline expression, we removed all DeepSEED-designed
sequences with potential binding sites of other TFs (Supplementary
Fig. 6c). The detailed sequences of the in vivo validated promoters are
provided in Supplementary Data 1.

Due to the sequence length limit in the training data, we first
truncated theTREpromoterwith three tetO sites as the initial template
for flanking sequence optimization (Fig. 5b). After examining the
predicted promoter performance from the predictor model and fil-
tering out all sequences with knownmotifs, we obtained 12 optimized
promoters to test in vivo (Supplementary Notes). Though these
DeepSEED-generated sequences were very diverse from the 3-tetO
template promoter, as well as the low similarity with the Homo sapiens
genome (edit distance difference 67.15 ± 2.38%, Supplementary
Fig. 8b), 75% of them showed higher expression levels than the 3-tetO
template, with improvements of up to 2.46-fold (Fig. 5c, Supplemen-
tary Fig. 17a). Moreover, 50% of the designed promoters showed a
higher fold-change, with improvements of up to 1.41-fold. Four
designed promoter sequences showed improvement in both induced
activity and fold-change. It is worth noting that some designed 3-tetO
promoters even showed comparable induced activity to the whole-
length TRE promoter with seven tetO sites, but the length is only 54.4%
of the whole length. In addition, as the flanking sequences among tetO
sites were optimized to non-repeating sequences, the designed pro-
moter might have increased the DNA stability. These shorter pro-
moters could facilitate vector construction while maintaining
comparable promoter properties.

We then integrated the flanking sequences of the well-performing
3-tetO promoters to design 7-tetO promoters (Fig. 5b). We validated
eight double-combination promoters and ten triple-combination
promoters by integrating two and three types of optimized 3-tetO
flanking sequences, respectively, in vivo. As a result, 77.8% of designed
promoters showed induced activity improvement compared with the
original 7-tetO-TRE promoter (Fig. 5d, Supplementary Fig. 17b, c), with
an average 1.13-fold improvement and a maximum improvement of
1.23-fold. A total of 83.3% of the DeepSEEDdesign promoters showed a
higher fold-change, with improvements of up to 1.61-fold. A total of
72.2% of the designed promoters showed improvement in both
induced activity and fold-change. It should be noted that the activity of
the original 7-tetO-TRE promoter is comparable to that of the very
strong constitutive promoters EF1A and CAGG in mammalian cells50;
however, DeepSEED was still able to improve promoter activity with-
out changing the main sequence architecture. We further evaluated
the function of the DeepSEED-designed 7tetO Dox-inducible pro-
moters in the HepG2 cell line. Despite the model being trained on the
HEK293 dataset, the majority of the designed promoters exhibited
consistent performance in both cell lines (Supplementary Fig. 18). All
the results suggested the necessity of optimizing flanking sequences in
designing eukaryotic promoters and again indicated the power of
DeepSEED to learn regulatory patterns within flanking sequences.

Discussion
In this study, we proposed DeepSEED, an AI-aided flanking sequence
optimization method for synthetic promoter design. DeepSEED divi-
ded the promoter design process into two steps: first setting ‘seed’
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sequences as model constraints based on expert knowledge and then
generating flanking sequences via a deep learning model trained on
big data. We demonstrated that this co-driven knowledge-data strat-
egy can capture the implicit patterns in flanking sequences and thus
gain the ability to efficiently optimize various types of promoters with
high performance. We analyzed the sequence similarity of DeepSEED-
design promoters to both the template sequences (edit distance) and
natural genome (BLAST search). The results showed that the
DeepSEED-designed promoters exhibited a comparable difference to
the randomly generated flanking sequences groups and a lower simi-
larity with the natural genome than the promoters designed by pre-
vious works38,39 (Supplementary Fig. 8, Supplementary Data 3). This
indicates the effectivenessof ourmethods indesigning novel synthetic
promoters, rather than merely copying the original sequences.

DeepSEED can be applied to design not only constitutive pro-
moters but also other types of promoters that have just a single or a
handful of natural references. The key to this success was that we did
not treat constitutive and inducible promoters as distinct objects.
Instead, we proposed a probabilistic view to unify these design tasks
into the same conditional optimization framework. The specific
desired promoter functions were encoded by the ‘seed’ sequences,
while DeepSEED was employed to optimize promoters as a whole to
better fit the general implicit pattern preference of active promoters.
Compared to previous whole sequence generation methods22–24,

DeepSEED, by incorporating expert knowledge, could be applied to
designing tasks with few training samples, such as inducible
promoters, etc.

This study reinforces the importance of flanking sequences in
determining promoter properties14. We emphasize the importance of
considering a wider range of flanking sequences in promoter design,
rather than solely focusing on the adjacent motifs18,51,52. DeepSEED
successfully learned the implicit patterns of flanking sequences, and
the results of saliencymaps and embedding space exploration showed
that the features extracted by DeepSEED are related to promoter
activity. Interpretability analysis is crucial for understanding gene
expression regulation53–55. While we have focused on the k-mer fre-
quencies and DNA shape features learned by our model to provide
partial explanations, the biological mechanisms underlying the flank-
ing sequence regulation remain unclear. The interpretability of deep
learning models remains a challenge14,56. With the rapid development
of interpretation methods of deep learning models56,57, it would be
possible to combine deep learning and biological experiments to
uncover how features of flanking sequences matter to promoter
properties in an explicit way to gain new expert knowledge.

We have experimentally validated the DeepSEED-designed pro-
moters in a plasmid system and demonstrated their functionality and
effectiveness in different cell types. However, in situations where the
synthetic gene expression cassette is integrated into the genome such
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as in CAR-T cell therapy58, the behavior of regulatory elements can be
influenced by their genomic context, including chromatin accessi-
bility, nucleosome arrangement, epigenetic modifications, etc16,59–62.
Therefore, further research and validation are necessary to assess the
performance of these AI-designed promoters within the genome
environment.

The current version of DeepSEED is specifically designed to
optimize the expression level of promoters, as there is a lack of suffi-
cient big data training sets for other functional properties. Whilemany
of the DeepSEED-designed inducible promoters successfully achieve
high induction rates by increasing the maximum induced expression
level, it should be noted that some of these promoters also exhibit
elevated basal expression levels, leading to compromised induction
rates. To overcome these limitations, future work needs to be done to
generate sufficient task-specific experimental data with high-
throughput techniques, such as massively parallel reporter assays63,
DeepSEED can be further trained on these datasets to address and
optimize other critical aspects of promoter engineering, including
leaky expression, sequence stability, cell type specificity, etc10. Using
such a strategy, it is also possible to further apply the DeepSEED fra-
mework to design other types of synthetic genetic elements in various
organisms.

Methods
Bacterial strain and plasmids
All bacterial transformations and fluorescence assays were performed
in the E. coli strain trans5α (TransGen, CD201) [F-, φ80d, lacZΔM15,
Δ(lacZYA-argF), U169, endA1, recA1, hsdR17(rk-, mk + ), supE44λ-, thi-1,
gyrA96, relA1, phoA]. All plasmid construction was carried out using
the NEBuilder HiFi DNA assembly reaction (NEB, E2621) according to
standard Gibson assembly. All E. coli promoter constructs were cloned
into the vector pTPR with a p15A origin of replication and chlor-
amphenicol resistance. A terminator DT5 was inserted at the 5′ end of
the E. coli promoter to avoid the influence of the upstream sequence,
and the insulator Riboj was inserted at the 3′ end of the promoter to
ensure that the same transcript was produced. The ribosomal binding
site sequence BBA_B0034 was used at the 5′ end of the sfgfp or mrfp
gene. Double terminators BBa_B0015 were used to terminate sfgfp or
mrfp gene transcription. For IPTG-inducible promoter constructs, an
additional LacI protein expressioncassettewas inserted at the 5′ endof
terminator DT5 in the opposite reading direction. For the Dox-
inducible two-plasmid system, pwx156 contains the reverse
tetracycline-controlled transactivator (rtTA), and pwx158 contains the
Dox-inducible promoter to express EYFP. The designed Dox-inducible
promoters replaced the original promoter sequence for activity mea-
surement. The detailed sequences of the plasmids used in this article
are provided in Supplementary Data 2.

Cell line and transfection
HEK293 (293-H, from Invitrogen) and HepG2 (from the Institute of
Basic Medical Sciences of CAMS) cell lines were used to test the Dox-
inducible system.HEK293 andHepG2 cells were cultured inDulbecco’s
modified eagle medium (DMEM) with 4.5 g/L glucose (GIBCO,
11965118) supplemented with 10% FBS (GIBCO, 16000-044), 1× NEAA
(GIBCO, 11140050), and 0.5× penicillin-streptomycin (Solarbio, P1400)
at 37 °C and 5% CO2. Lipofectamine LTX (Invitrogen, 15338100) was
used for HEK293 transfection, and Lipofectamine 3000 (Invitrogen,
L3000150) was used for HepG2 transfection following the manu-
facturer’s protocol. In transfection experiments, approximately
∼1.8 × 105 cellswith 1mL culturemediumwere seeded into eachwell of
12-well plates to be ~70% confluent after being grown for∼24 h. For the
observation of Dox-inducible systems, transfection with 600 ng of the
plasmids carrying design promoters with expression cassette and
600 ng of the plasmids carrying the reverse tetracycline controlled
transactivator (rtTA) gene were performed in the wells of a 12-well

plate. Before transfection, the culture medium containing 1 µg/ml Dox
was used to induce the expression of the promoter. Cells were har-
vested 24 h after transfection before flow cytometry analysis.

Assay of E. coli promoter strength
All of the E. coli promoter activity was measured based on the
expression of the sfgfp gene. And 21 constitutive promoters mea-
sured by the mrfp gene were shown in Supplementary Fig. 10a and
Supplementary Data 1. The strain containing the target promoter
plasmid was cultured overnight (16 h) in 5ml LB medium supple-
mented with 50 µg/ml chloramphenicol at 37 °C in a shaker at
220 rpm for promoter activity validation. The overnight cultures
were diluted 1:100 in fresh Luria–Bertani (LB) medium supplemented
with 50 µg/ml chloramphenicol in triplicate. For inducible pro-
moters, a final concentration of 0.1mM IPTG was added to the
mediumwhen diluted. After incubating for another 6 ~ 8 hours, 150 ul
of culture was added to a flat-bottomed 96-well microplate (Corning
3603), and the measurements of the optical density at 600 nm
(OD600) and fluorescence (relative fluorescence units [RFU]; sfGFP:
excitation at 485 nm and emission at 520 nm; mRFP: excitation at
584 nm and emission at 607 nm) were repeated with the Varioskan
Flash (Thermo). The background fluorescence was measured using
150 µl fresh LB medium and a strain harboring a promoterless plas-
mid. The strength of the promoter was defined as the average
fluorescence/OD600 after subtracting background fluorescence.
The process of evaluating promoter activity in M9 (Coolaber
SL0060) and EZ-rich (Coolaber MK0100) culture medium was per-
formed in the same manner as in the LB medium. All the constitutive
and IPTG-inducible promoter sequences with their promoter activity
in E. coli were shown in Supplementary Data 1.

Flow cytometry and data analysis
Cells were trypsinized 24 h after transfection and were then cen-
trifuged at 300 × g for 5min at room temperature. Then, the cells were
washedwith phosphate-buffered saline (PBS) once and resuspended in
1x PBS in a total volume of 300 µl. Next, the cells were analyzed using
LSRFortessa (BD Biosciences). The excitation lasers (Ex), emission fil-
ters (Em), and photomultiplier tube (PMT) voltage used for respective
fluorescent protein measurements are as follows: TagBFP (Ex: 405 nm
laser, Em: 450/50 filter, PMT: 350V for HEK293; 300V for HepG2).
EYFP (Ex: 488 nm laser, Em: 530/30 filter, PMT: 200V). For each sam-
ple, ∼1 × 105 cell events were collected for downstream analysis. For
data analysis, raw data were filtered through the FlowAI plugin to
remove bad-quality data. Cells with a TagBFP intensity between 1 × 104

and 5 × 104 (HEK293 cells) and 8 × 102 and 5 × 103 (HepG2 cells) were
selected containing the proper concentration of rtTA proteins. The
EYFP mean was the activity of the designed promoters. Three inde-
pendent biological replicates were performed for each promoter. All
the Dox-inducible promoter sequences with their promoter activity in
the HEK293 and HepG2 cell lines were shown in Supplementary Data 1.

Experimental dataset for model training
Three high-throughput datasets were used for training the DeepSEED
model. A detailed description of datasets and training data generation
are as follows:

Johns. This dataset was obtained from Johns et al.37. Briefly, the author
defined the regulatory sequence as 165 bp upstream of the gene start
codon. The regulatory library was cloned into a p15A vector and
transformed into E. coli MG1655. RNA-seq was performed to measure
the activity of each sequence. The RNA-seq dataset contained a total of
29,249 regulatory sequences from 184 prokaryotic genomes. The
functional 165 bp sequences with the activity label were selected in the
training process of both constitutive and inducible E. coli promoter
design.
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HACER. This dataset was obtained from Wang et al.48. The dataset
contains enhancer sequences froma largenumberofhumancell types.
From the HEK293 cell line dataset, we randomly obtained 150 bp
sequences in each enhancer region and finally got a total of 26,604
enhancer sequences to train the generator in the Dox-inducible pro-
moter design task.

Ernst. This datasetwasobtained fromErnst et al. 64. The dataset targets
15,720 regulatory regions and tiles at 5-nucleotide resolution in two
human cell types. The RNA-seq datasetwasused to train the predictors
in the Dox-inducible promoter design.

Promoter design approach
The promoter design problem can be formulated from the probability
perspective. The designed sequence is denoted as s∼ps, where ps

represents the natural sequence distribution. The optimization aim is
to maximize the joint probability of the promoter sequence s and the
target property T , as shown in Eq. (1).

Expert knowledge determines motifs related to target properties,
which we note asm. Other regions are defined as flanking regions and
can be denoted as f . Then, the designed sequence can be split into:

s = m,fð Þ ð4Þ

Therefore, our objective can be written as follows:

max
m,f

Pðm,f ,TÞ= max
m,f

P mjTð ÞP f jm,Tð ÞP Tð Þ

/ max
m,f

P mjTð ÞP f jm,Tð Þ ð5Þ

The first factor refers to the process of assigning ‘seed’ sequences
compatible with the target property according to expert knowledge.
The second factor represents the flanking region distribution condi-
tioned on ‘seed’ sequences and the property. We first optimized the
first term and then optimized the second term fixing m at the
optimal value.

Objective function
Themaximization of the first factor is achieved by selecting the strong
motifs responsible for the desired property, such as high or inducible
transcriptional activity, according to curated observations and dis-
coveries from laborious biology experiments. These motifs were
assigned with the highest confidence, resulting in defined sequences
and positions. One benefit of determining unique motifs here was to
simplify the objective by reducing the optimizable variables to only
flanking regions f . We denote the assigned motifs as m*; then, the
objective is to maximize:

max
f

P f jm*,T
� �

ð6Þ

Since m* has been decided in the previous section, according to
the Bayes rule in probability theory:

max
f

P f jm*,T
� �

= max
f

P f jm*
� �

P T jf ,m*
� �

P T jm*
� �

/ max
f

P f jm*� �
P T j f ,m*� � ð7Þ

We use pf jm* to denote the natural distributions of flanking
regions conditioned onm*. Suppose that there are K kinds of flanking
region combinations f 1,:::,f K .

max
f

P f jm*� �
P T jf ,m*� �

= max
i

P f ijm*� �
P T jf i,m*� �

ð8Þ

Notably, K is extremely large; for example, K =4100 when the
length of concatenated flanking regions is 100 bp. To approximate
pf jm* , a generative neural network G was trained to approximate the
sample distribution, i.e., pg ∼pf jm* , where

f i =G m*,z
� � ð9Þ

where z is a latent variable in the generative model.
Given the large search space, we narrow it to the output sequen-

ces of G. To simplify this equation, all flanking regions generated by G
are treated as equivalently important, with the probability of p0, while
the probability of other combinations is zero. Therefore,

max
i

Pðf ijm*ÞPðT jf i,m*Þ

()max
z

p0P T jG m*,z
� �

,m*
� � ð10Þ

where the term PðT jGðm*,zÞ,m*Þ is the probability of the target prop-
erty given the generated sequence. We use F to denote that the pre-
dictive model of properties T and F is trained separately. When
optimizing to enhance the property, the objective function is:

max
z

FðG m*,z
� �

,m*Þ ð11Þ

DeepSEED generative and predictive networks
The flanking regions are generated through the generator G while
preserving predeterminedmotifs. The input is the concatenation ofm*

and z, and then we feed forward the input to a linear layer, and the
results are reshaped into Xm 2 Rn×dk , where n represents the number
of samples and dk denotes the channels. To embed the long-range
dependency between regions into the network, we utilize the multi-
head attention mechanism to learn the genetic element semantics in
both the generator and discriminator models. The multi-head atten-
tion operation can be written as:

MultiHead Xm,Xm,Xm

� �
= concat ðhead1,:::,headoÞ,

headi = softmax
XmAi

QðXmAi
K ÞTffiffiffiffiffiffi

dk

p
 !

XmAi
V ð12Þ

where we denote the learnable parameters as Ai
Q,Ai

K ,Ai
V . After pas-

sing one attention layer, two resblock layers with convolution opera-
tions are added to further extract features. TheWGAN-GP architecture
is chosen to alleviatemode collapse during the training process. Let us
define the discriminator in cGANs asD. The loss function of cGANs can
be described as follows:

LcGAN = Ef IogD m,fð Þ½ �+ Ez Iog 1� D m,G m,zð Þð Þð Þ½ � ð13Þ

Following similar tasks in image generation such as Pix2Pix30, we
add one L1 loss, which can be written as:

LL1 = Ef ,z f � G m,zð Þ
�� ���� ��� �

ð14Þ

The final optimizing object in implicit pattern learning is:

G= argmin
G

max
D

LcGAN + λLL1 Gð Þ ð15Þ

We take E. coli constitutive promoter design as an example. The
training dataset contains 165 bp functional E. coli promoters with dif-
ferent TSSs from the library. We filtered these promoters by finding the
regions from distal to TSS larger than 75 bp, finding promoters
restricting−10 and−35 regions to 1–21 bpand25–45 bpupstreamofTSS
with the spacer region length ranging from 10-24 bp. The input of the
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DeepSEEDgenerator is the combinationofone-hot sequenceencodings
with determined motifs, where regions other than these motifs are set
to random vectors. For the discriminator, the input is the concatenate
of one-hot encodings with motifs and the generated sequences. The
batch size of the training samples is 32, and we trained the model for
50,000 batches with the Adamoptimizationmethod. The learning rate,
beta1, and beta2 were set to 0.0001, 0.5, and 0.9, respectively.

Accurate predictions of target properties are crucial to optimize
the flanking regions. Predictions of biological properties with a deep
learning model often suffer from the overfitting problem, requiring a
carefully designed network architecture. The first layer of the Deep-
SEED prediction model was 1d convolutional kernels with 64 output
channels to capture regional information. Then, we added the long
short-termmemory (LSTM)65 architecture to capture the relationships
between regions. To extract potential long-range relationship factors
leading to the target properties, we adopted the DenseNet66 archi-
tecture to efficiently improve the network depth. We set 4 dense
blocks with 2, 2, 4, and 2 dense layers in each block. The growth rate
was set to 32. Each dense layer contains two convolutional layers, the
kernel sizes of 1 and 3. Finally, we added one fully connected layer to
predict the property of interest (Supplementary Notes).

Optimization through the genetic algorithm
The objective function is shown in Eq. (11), as mentioned above. We
utilized the genetic algorithm (GA) to optimize the objective function.
TheGA67module in the skoPythonpackagewas adopted to implement
the genetic algorithm. The optimization process using the genetic
algorithm from step t to t + 1 can be written as:

zt + 1 =GA zt ,T ,G
� � ð16Þ

We set the number of seeds in GA to 5*1024 with a mutation
probability of 0.005. We set the epochs of GA optimization to 100 for
each task. We used the “vectorization” mode in the sko package to
facilitate optimization.

DNA shape analysis
Four kinds of DNA shape, minor groove width (MGW), roll, propeller
twist (ProT), and helix twist (HelT), were estimated by the prediction
model33. In Fig. 2d, DNA shapes on the 5’ end of the ‘TATAAT’motif and
‘TATAAA’motif were estimated by the model, then the distributions of
four kinds of DNA shapes were calculated. In Fig. 2e & 3e, the DNA
shapes of high- and low-activity promoters in the training datasets,
Control-1 group promoters, Control-2 group promoters, andDeepSEED
group promoters were calculated. Then, four kinds of DNA shapes of
each promoter were combined to form a DNA shape feature vector. All
the feature vectors were encoded by the unsupervised learning model
Deepinfomax68, and then the encoded features were projected into
2-dimensional space by the dimension reduction algorithm t-SNE.

Second promoter finding
To prevent the model from generating the second promoter in a
165 bp sequence, we checked the RNA polymerase binding possibility
in a sequence. To be more specific, the −10 motif, −35 motif, and their
spacing length were taken into consideration as ‘promoter structure’.
The −10 motif and −35 motif were combined with a 17 bp spacer
sequence, and then the sequence was scanned with Find Individual
Motif Occurrences (FIMO)69 to check whether the combined motif
appeared in the sequence. The p-value of the combinedmotifmatched
in the position of the sequences is shown in Supplementary Fig. 11.

Saliency map analysis
We calculated the saliency map features31 of 2000 functional sequen-
ces by using the predictor model. The saliency map of each sequence
represents the contribution of each nucleotide to the predicted

activity. Then, the 2000 saliency maps were clustered into seven
clusters by k-means. Last, 30 sequences in each cluster were randomly
selected to represent the cluster (Fig. 2a, Supplementary Fig. 3).

Semantic sequence space
The semantic sequence space was defined as the space representing
the semantic information directly obtained from the DNA sequence. A
total of 2000 natural promoter sequences in E. coli, 2000 promoter
sequences generated by DeepSEED, and 14,700 promoter sequences
from 147 different prokaryotic species37 were used to define the
semantic sequence space. All the sequences were first encoded by
Deepinfomax68, and then the encoded features were projected into
2-dimensional space by the dimension reduction algorithm t-SNE
(Supplementary Fig. 5a).

Sequence similar diversity
The sequence similar diversity is defined as the edit distance dis-
tribution between sequences from different sequence groups. 60
random sequences, 60 natural sequences, and 60 cGAN-generated
sequences in E. coli were selected. The random sequence similar
diversity was calculated by the edit distance between each sequence in
the random sequence group and each sequence in the natural
sequence group as well as the cGAN-generated sequence group. Then
all the calculated edit distances formed the edit distance distribution,
which could be written as:

Pr = ed seqi,seqj

� 	
,i 2 r,j 2 g or n

n o
ð17Þ

Where Pr represents the edit distance distribution of the
random sequence group, ed represents the edit distance calculation,
r represents sequences in the random sequence group, g represents
sequences in the generated sequence group and n represents
sequences in the natural sequence group. The natural and cGAN-
generated sequence similar diversity were calculated in the same way
(Supplementary Fig. 5b).

Edit distance analysis
We analyzed the edit distance between the flanking regions of
experimentally validated sequences and the template sequences in our
study. Specifically, for E. coli constitutive promoters, we utilized the
short J23119/J23118/J23114 promoters as respective template sequen-
ces. In the case of IPTG-inducible promoters, we employed the
sequenceswithin the substitution group as the template sequences for
each group. For dox-inducible promoters, the original 3-tetO func-
tional sequenceswere used as the template. It is important to note that
the percentage of difference was calculated solely based on the length
of the flanking sequences. The difference of edit distance between
experimental sequences and template sequences could be:

s =
ed seqexp,seqtem

� 	
flanking seqð Þ

ð18Þ

Where s represents the difference scores, ed represents the edit dis-
tance between two input DNA sequences, seqexp represents experi-
mental sequences, and seqtem represents template sequences.
flankingðseqÞ represents the length of flanking regions in the seq. All
edit distances, percentage differences and sequences can be found in
Supplementary Data 3.

BLAST search
We performed a BLAST search to compare all the experimentally
validated sequences. The E. coli promoter sequences were compared
against the E. coli K12 genome (taxid: 83333), while the Dox-inducible
promoter sequences were compared against the Homo sapiens gen-
ome (taxid: 9606). The blastn algorithmwas usedwith default settings
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(comparing somewhat similar sequences), except for setting the
e-value expect threshold to 1000 to allow for broad comparison. To
establish control groups, we utilized promoters designed by Alper38

and the majority of constitutive sigma70 promoters in iGEM
BioBrick39. Additionally, random sequences were generated using the
probability distribution {A:0.25, C:0.25, G:0.25, T:0.25}. All of the
e-values and sequences are shown in Supplementary Fig. 8 and Sup-
plementary Data 3.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment. More information was pro-
vided in the Reporting Summary file.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The promoter sequences generated and tested in this study are avail-
able in the Supplementary Data 1 and 3. The plasmid sequences used in
this study were provided in the Supplementary Data 2. Source data are
provided in this paper. The raw data files for flow cytometry analysis
were deposited to the Zenodo repository and are available at “zenodo.
8307150”. This work utilized several published datasets. Datasets pro-
posed by Ernst et al. were used to construct the training set of the
predictor in eukaryotic promoter design “GSE71279”. Enhancer datasets
of the HEK293 cell line called HACER were used to construct the
training set of the generator in eukaryotic promoter design [http://
bioinfo.vanderbilt.edu/AE/HACER/]. Potential promoters in bacteria
proposed by Johns et al. were used to construct the predictor and
generator in prokaryotic promoter design [https://static-content.
springer.com/esm/art%3A10.1038%2Fnmeth.4633/MediaObjects/
41592_2018_BFnmeth4633_MOESM4_ESM.xlsx]. The motif sequences in
JASPAR database were used to find the potential binding sites in
flanking sequences [https://jaspar.genereg.net/]. Source data are pro-
vided in this paper.

Code availability
The computer source code is available from the public GitHub repo-
sitory at https://github.com/WangLabTHU/deepseed. The source code
was deposited to the Zenodo repository and is available at https://doi.
org/10.5281/zenodo.830715070.
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