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High-temperature electrothermal remedia-
tion of multi-pollutants in soil

Bing Deng 1,10 , Robert A. Carter1,10, Yi Cheng 1,10, Yuan Liu2,
Lucas Eddy 1,3,4, Kevin M. Wyss1, Mine G. Ucak-Astarlioglu5, Duy Xuan Luong1,3,
Xiaodong Gao6,7, Khalil JeBailey8, Carter Kittrell1, Shichen Xu1, Debadrita Jana6,
Mark Albert Torres6, Janet Braam 2 & James M. Tour 1,4,8,9

Soil contamination is an environmental issue due to increasing anthropogenic
activities. Existing processes for soil remediation suffer from long treatment
time and lack generality because of different sources, occurrences, and
properties of pollutants. Here, we report a high-temperature electrothermal
process for rapid, water-free remediation of multiple pollutants in soil. The
temperature of contaminated soil with carbon additives ramps up to 1000 to
3000 °Cas neededwithin seconds via pulseddirect current input, enabling the
vaporization of heavymetals like Cd, Hg, Pb, Co, Ni, andCu, and graphitization
of persistent organic pollutants like polycyclic aromatic hydrocarbons. The
rapid treatment retains soil mineral constituents while increases infiltration
rate and exchangeable nutrient supply, leading to soil fertilization and
improved germination rates. We propose strategies for upscaling and field
applications. Techno-economic analysis indicates the process holds the
potential for being more energy-efficient and cost-effective compared to soil
washing or thermal desorption.

Soil contamination is a pressing global environmental concern due to
the rapid expansion of industrial activities, mining tailings, overuse of
agricultural chemicals, and improper waste disposal1. Depending on
the pollution sources1, the common contaminants in soil include heavy
metals1,2 including lead (Pb), arsenic (As), zinc (Zn), cobalt (Co), cad-
mium (Cd), copper (Cu), mercury (Hg), and nickel (Ni), as well as
persistent organic pollutants (POP) such as polycyclic aromatic
hydrocarbons (PAH)3, polychlorinated biphenyl4, organochlorine
pesticides5, and total petroleum hydrocarbons6. Soil contamination
poses significant risks to both humanand ecosystemsby damaging the
water quality and the food chain7 and reducing land usability for
agriculture1,8. Urgent and efficient remediation practices are required
to address this issue.

Existing technologies for remediating heavy metal and POP-
contaminated soil include thermal desorption9, immobilization10, soil
washing11,12, advanced oxidation processes13, bioremediation14, and
others. While generally applicable, these methods face several chal-
lenges. First, their remediation speeds are usually slow due to the
intrinsic reaction and diffusion kinetics limits, which cannot keep up
with the increasing demand for immediate remediation15. Second,
multiple approaches are required to address co-contamination of soil
by heavy metals and organic contaminants, due to their varied
occurrences, speciation, and physical and chemical properties8. Even
worse, multiple pollutants may interfere or compete, reducing the
remediation efficiency16,17. For example, highly concentrated heavy
metals can inhibit microbial metabolism activities, thereby reducing
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the degradation efficiency of organic pollutants16. This necessitates
highly versatile remediation methods that can effectively address the
coexistence of multiple pollutants18, given the increasing occurrence
of co-contaminated soils14,19. Only a few methods exist that can
simultaneously remove heavy metals and POP, such as the photo-
catalysis process20,21, which removes the organics through oxidation
and themetal ions through reduction immobilization. Third, some soil
remediation approaches require high consumption of chemicals and
generate large wastewater streams11,12, which can burden the eco-
nomics and lead to secondary pollution.

Recently, electric heating has emerged as a rapid, energy-efficient
thermal treatment process for materials production22 and waste
management23. By designing the direct Joule heating process, metal
nanoparticles24 and high-entropy alloy nanoparticles25 were synthe-
sized through thermal shock, which has found widespread application
in the production of functional materials for energy storage26,27 and
catalysis28,29. Our group developed the flash Joule heating method for
converting carbon resources into graphene materials30. Furthermore,
the flash Joule heating process has been extended to include waste
management applications such as plastic upcycling31, critical metals
recovery32–34, and battery recycling35,36.

Here, we present a high-temperature electrothermal process
(HET) for the effective remediation of multiple pollutants in con-
taminated soil. By incorporating carbon conductive additives such
as environmentally friendly biochar, the soil temperature can be
rapidly increased to 1000 to 3000 °C as needed with a heating rate of
~104 °C s−1 using pulsed electric input, followed by a rapid cooling rate
of ~103 °C s−1. This high temperature allows for the removal of toxic
heavymetals, includingCd,Hg, Pb, Co, Ni, andCu,which are vaporized
and reduced to below regulatory levels. Simultaneously, persistent
organic pollutants such as PAH are graphitized, thereby being stable
and nontoxic. Due to the ultrafast processing time, the change of soil
particle size andmajor mineral composition remainminimal. Notably,
the rapid high-temperature treatment regulates some soil properties,

including an increased water infiltration rate and enhanced
exchangeable nutrient pool by rapid mineralization of soil organic
matter, leading to soil fertilization and improved germination rates by
20 to 30%. Unlike conventional thermal processes that rely on heat
transfer, HET directs most of its energy to the soil sample, with a low
energy consumption of ~420 kWh tonne−1. We propose the prototypes
for both ex-situ upscaling and on-site field application for deployment.
Life-cycle assessment and techno-economic analysis indicate that the
HET process could require less energy consumption and operating
expense compared to existing soil remediation techniques, such as
thermal desorption or soil washing. With its versatility in remediating
multiple pollutants, ultrafast operation within seconds to minutes,
relatively low energy demand and overall expense, and zero water
usage, the HET process would be a harbinger for near-future soil
remediation practice.

Results and discussion
Conceptof thehigh-temperature electrothermal process for soil
remediation
In the HET process, dry soil is mixed with conductive additives to
ensure good electrical conductivity. A high-voltage pulse input within
seconds controllably brings the soil to a typical temperatureof 1000 to
3000 °C as needed (Fig. 1a). At this high temperature, heavymetals are
carbothermically reduced and vaporized (Fig. 1b), and the vapors can
then be collected via the vapor extraction pipes (Fig. 1a), which are
commonly utilized in traditional thermal desorption remediation
techniques. The high temperature simultaneously destroys the POP.
For instance, PAH are carbonized to graphite (Fig. 1b), the most stable
form of carbon, which is a naturally occurring nontoxic mineral37.

We initially performed a proof-of-concept test for the HET process
on a bench scale (Supplementary Fig. 1). In a typical process, con-
taminated soil (c-Soil) was mixed with appropriate amounts of con-
ductive additive, such as carbon black (CB) and biochar. The c-Soil and
CBmixture was loaded into a quartz tube. The resistance of the sample
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Fig. 1 | Concept of the high-temperature electrothermal process (HET) for soil
remediation. a Schematic of the HET process, combined with vacuum extraction
well. The vacuum piping and insulation blanket remain standard to known thermal
remediationmethods, but in the case ofHET, the electrodesprovide a rapid voltage
pulse for electric heating, rather than long-duration heat injection. The soil is
premixed in place, with biochar or other conductive carbon to provide sufficient
conductivity. b Schematic showing the removal of heavy metals by reduction and

vaporization, and the removal of persistent organic pollutant (POP) by graphiti-
zation for PAH. c Current curve at an electric input of 100V for 1 s. d Real-time
temperature curve of the soil sample at an electric input of 100V for 1 s.
e Comparison of the HET with other thermal remediation processes, including
thermal conduction heating (TCH), electrical resistance heating (ERH), and steam-
enhanced extraction (SEE). While operated at lower temperatures, the latter
methods require long treatment periods.

Article https://doi.org/10.1038/s41467-023-41898-z

Nature Communications |         (2023) 14:6371 2



was regulated by compressing the graphite electrodes, which were
connected to a capacitor bank with a total capacitance of C =60 mF
(Supplementary Fig. 2). At a voltage of V = 100V, discharging time of
t= 1 s, and sample resistance of R = 1 Ω, the current curve showed a
maximum value of ~100A (Fig. 1c). Discharging the capacitor bank
brings the sample to a high temperature ranging from 1000 to 3000 °C,
depending on the applied voltages (Fig. 1d). The heating and cooling
rates were calculated to be ~1.08 × 104 °C s−1 and ~1.88 × 103 °C s−1,
respectively. The ultrafast heating is achieved through pulsed electric
input, while the rapid cooling is attributed to efficient heat dissipation
resulting from intense thermal radiation (Supplementary Fig. 3).
Degassing can occur during the HET process, resulting in resistance
variation and temperature oscillation (Fig. 1d).

The HET process is characterized by its high temperature
(1000–3000 °C as needed), which is significant higher than that of
conventional thermal desorption technologies (usually <400 °C), such
as thermal conduction heating (TCH)38, steam-enhanced extraction
(SEE)39, electrical resistance heating (ERH)40, and radio frequency
heating (RFH)41. This feature makes the HET capable of unique per-
formances that are not accessible by traditional processes (Fig. 1e).
First, the high temperature enables the simultaneous removal of heavy
metals and organic pollutants, whereas thermal desorption methods
are only suitable for the remediation of volatile or semi-volatile
contaminants9. Second, while thermal desorption is a physical process
that relies on volatilization as the main mechanism for removing
contaminants9, theHETprocess destroys organic contaminants in-situ,
converting them to naturally occurring nontoxic graphitic minerals.
Third, the high temperature of the HET process significantly accel-
erates both the reaction anddiffusion kinetics, allowing remediation to
be completed in seconds, which is substantially faster than the low- to

mid-temperature processes that take months or even years to
operate42.

Removal of toxic heavy metals by reduction and vaporization
The as-collected clean soils possess heavy metal concentrations far
below the regulation limits (Supplementary Fig. 4a). Considering the
different toxicity, disparate safety standards, and large variation in
hazardous levels among real-world contaminated sites for different
heavy metals43, the clean soil sample was co-contaminated by
simultaneously spikingwithmetal salts, primarilymetal chlorides: Cd
(~100 part per million, ppm), Hg (~300 ppm), Pb (~1000 ppm), Co
(~2000 ppm), Ni (~10000 ppm), and Cu (~10000 ppm) (Supple-
mentary Fig. 4b). The concentrations of heavy metals in the c-Soil
and the remediated soil (r-Soil) by HET were measured using
inductively coupled plasma optical emission spectrometry (ICP-OES)
after digestion, and the removal efficiencies were calculated. Most of
the heavy metals, including Cd, Hg, Pb, Co, Cu, and Ni, could be
vaporized at high temperatures (1000–3000 °C), irrespective of
their chemical forms being metal salts or elemental metals (Supple-
mentary Table 1, Fig. 2a).

We investigated the removal efficiencies of heavy metals at dif-
ferent voltages (Fig. 2b, Supplementary Table 2). The removal effi-
ciencies improved from 60V to 100V, owing to the higher
temperature resulting from a higher voltage (Supplementary Fig. 5).
However, excessively high voltages could lead to inhomogeneous
heating due to rapid degassing and large sample resistance variation
(Supplementary Figs. 5, 6), which slightly reduced the removal effi-
ciencies (Fig. 2b). At the optimized HET voltage of 100 V, the removal
efficiencies of all heavy metals were >80% in a single electric pulse
(Fig. 2c). The concentrations of heavy metals in CB were much lower
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than those in c-Soil (Supplementary Fig. 7), and hence the use of CB as
conductive additives would not introduce any significant error.

In addition to CB and biochar, other inexpensive carbonmaterials
with adequate conductivity can also be used as the conductive addi-
tives. For example, we demonstrated the applicability of metallurgical
coke (Metcoke), flash graphene30, and even plastic pyrolysis ash, a
byproduct of the plastic pyrolysis recycling process44 (Supplementary
Fig. 8). The useofplastic pyrolysis ash is particularly attractive because
of its low or even negative value45, minimizing thematerials cost of the
HET process. Moreover, the continuously growing plastic waste
streams provide an abundant supply for soil remediation purposes. As
a result of using carbon conductive additives, a significant amount of
residual carbon was left in the r-Soil (Supplementary Fig. 9). Based on
the particle size difference between soil and the introduced carbon, it
is easy to separate residual carbon from the soil by sieving. By using
Metcoke as an example, the separation of the treated soil and residual
Metcoke was realized, with the carbon recovery yield of ~92% (Sup-
plementary Fig. 10a–d). The recycledMetcokewas converted intoflash
graphene (Supplementary Fig. 11), which has better conductivity and
can be reused for the HET process (Supplementary Fig. 10e, f), greatly
reducing the materials consumption. We measured the soil carbon
content in the raw soil and the treated soil after separating carbon
conductive additives (Supplementary Fig. 12). The carbon content in
the treated soil is ~3.5%, comparable to the raw soil (~3.7%). The resi-
dual carbon additive can compensate for the organic carbon loss
during the HET process, resulting in a similar total carbon content in
the treated soil and raw soil. Other inexpensive carbon additives, such
as bituminous activated charcoal, could alsobe used for the separation
(Supplementary Fig. 13).

Unlike some physicochemical adsorption methods that rely on
sorbent capacity10, the HET process for heavy metal removal has no
capacity limit. By increasing the number of electric pulses, heavymetal
concentration in soil canbe continuously reduced. The concentrations
of all representative heavy metals were reduced to below California
HumanHealth Screening Levels for residential locales33 by two to three
electric pulses, each lasting only 1 second (Fig. 2d-i). The number of
pulses required depends on initial concentrations, safety thresholds,
and the vapor pressure of specific heavy metals. We further analyzed
the mass balance of heavy metals during the HET process. Using Cu
and Ni as examples, X-ray photoelectron spectroscopy (XPS) was
conducted to qualitatively determine their distribution. The Ni and Cu
peaks were clearly identified for the c-Soil (Supplementary Fig. 14a, b),
but no peaks were detectable for the r-Soil, indicating efficient heavy
metal removal (Supplementary Fig. 14c, d). Intriguingly, the heavy
metals were detected on the quartz tube side walls (Supplementary
Fig. 14e, f). Furthermore, we integrated a vacuum system to collect
evaporative heavymetals in a trap (Supplementary Fig. 15a), and found
that most heavy metals were either evaporated or deposited on the
quartz tube (Supplementary Fig. 15b). The evaporated or deposited
heavy metals can be captured and properly handled, preventing them
from being released into the environment. This process is compatible
with vacuum extraction wells to collect the vaporized contaminants
used in the traditional thermal remediation processes46,47.

Contaminated soil containing heavy metals exhibits a wide range
of speciation. We analyzed the influence of chemical species on the
removal efficiency (Supplementary Note 1). Depending on the thermal
properties of the heavymetal species, the elevated temperatures in the
HET process can initiate a sequence of reactions, including evapora-
tion, thermal decomposition, and carbothermic reduction. We here
considered Hg as an example. Under the HET process (Supplementary
Fig. 16a, b), representative Hg compounds such as HgCl2, HgO, and
HgSO4 can be converted to Hg at temperatures below 1200 °C. By
using a singleHETpulse, high removal efficiencieswere achieved for all
tested Hg species (Supplementary Fig. 16c, d): Hg (~90.4%), HgCl2
(~94.6%),HgO (~95.1%), andHgSO4 (~86.5%). This further demonstrates

the broad applicability of the HET method for remediating heavy
metal-contaminated soil.

Removal of PAH by graphitization
In addition to heavy metals, the HET process can also destroy POP. To
test this, we initially attempted to remediate PAH-contaminated soil
using pyrene, fluorene, and benz[a]anthracene as representative
compounds. The clean soil was spiked with individual PAH, and then
mixed with carbon black as a conductive additive. The HET conditions
for PAH remediation are listed in Supplementary Table 2, with a typical
maximum temperature of ~1500 °C (Supplementary Fig. 17). The PAH
in c-Soil and r-Soil after the HET treatment were extracted into an
organic phase using solvent extraction48, and the PAH concentrations
were measured using ultraviolet-visible (UV-Vis) spectrophotometry49

(Supplementary Fig. 18).
The UV-Vis adsorption spectra of pyrene show two characteristic

peaks at ~319 and ~333 nm (Fig. 3a). The intensity of these peaks pro-
gressively decreased with increasing electric pulses (Fig. 3a). After 3
electric pulses, the pyrene concentration was reduced to below the
preliminary remedial goals (PRG) of 2300 ppm (Ref. 3) (Fig. 3b).
Similarly, fluorene exhibits a characteristic adsorption peak at
~299 nm, whose intensity was greatly reduced after HET (Fig. 3c), and
to below its PRGof 2700 ppm (Ref. 3) by 3 electric pulses (Fig. 3d). The
same strategy applied to the remediation of benz[a]anthracene-con-
taminated soil (Fig. 3e, f), demonstrating the generality of the process.
Benz[a]anthracene has a low PRG of 0.62 ppm (ref. 3), which is beyond
the detection limit of UV-Vis spectrophotometry after 3 electric pulses
(Fig. 3f). In this case, gas chromatography-mass spectrometry (GC-MS)
was used for quantification, with the detection limit down to 0.001
ppm (Supplementary Fig. 19). After 6 electric pulses, the content of
benz[a]anthracene was reduced to below its PRG (Fig. 3f). In addition
to carbon black, other environmentally friendly carbon sources like
biochar could be used as the conductive additives and shows similar
effectiveness (Supplementary Fig. 20).

The high temperature can graphitize the carbon-containing pre-
cursors, as demonstrated in our previous reports on the synthesis of
flash graphene from various carbon sources30. The Raman spectra of
the PAH-contaminated soil after HET treatment exhibit strong 2D
bands (Supplementary Fig. 21), indicating the conversion of the carbon
additive and soil organic matter to graphitized carbon. Furthermore,
we conducted the mass balance measurement of PAH. We developed
an apparatus to collect the evaporated PAH (Supplementary Fig. 22a),
which are minor compared to the graphitized portion, clearly
demonstrating that PAH are removed by graphitization instead of
evaporative loss (Supplementary Fig. 22b-d).While graphitized carbon
is naturally occurring and non-toxic37, its chemical stability greatly
retards its microbial decomposition and essentially removes it from
the global carbon dioxide cycle50, contributing to the mitigation of
greenhouse gas emission.

Soil properties after the HET process
The soil properties after the HET treatment were assessed, as they are
significant for the soil reuse in agriculture. In this case, theHETprocess
employed for soil treatment was typically carried out at ~1500 °C for
1 s, which aligns with the requirements for PAH removal. Metcoke,
serving as the conductive additive, was eliminated through sieving
before measuring the soil properties. Firstly, we analyzed the physical
properties and mineral constitutes of the soil. The soil particle size
distribution was measured using a laser particle size analyzer (Sup-
plementary Fig. 23). The treated soil exhibits a slightly higher sand
composition compared to the raw soil, primarily attributed to soil
aggregation during the HET process (Fig. 4a). Both the raw soil and
treated soil were classified as sandy loam. Scanning electron micro-
scopy (SEM) was used to examine the morphology of the treated soil,
which revealed a fine powder feature that resembles the raw soil
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(Supplementary Fig. 24). Themain crystalline compositions of the raw
soil and treated soil were characterized by X-ray diffraction (XRD),
whereSiO2 andCaCO3 are themajor crystal components of the raw soil
(Fig. 4b). After theHETprocess, the SiO2 remainedprominent (Fig. 4b),
while the calcite was absent, presumably due to its thermal decom-
position into calcium oxide. The main composition of the treated soil
was further quantified by X-ray fluorescence (XRF), which shows that
various oxides underwent almost no change (Fig. 4c). The above ana-
lysis shows that, apart from the removal of contaminants, the mor-
phology, particle size, and mineral constituents of the treated soil
changed little by the HET process. We attribute this to its ultrafast
heating and cooling rates, as well as short heating duration.

Next, we evaluated the water infiltration on the raw soil and
treated soil at thebench scale.Water infiltration is crucial formanaging
agricultural water and replenishing groundwater from runoff51, where
high infiltration rates are typically linked to large, continuous, inter-
connected macropores52. With the same soil volume, the liquid
level decreased more quickly in the treated soil than in the raw soil
(Fig. 4d, e, Supplementary Fig. 25). The average infiltration rates for the
raw soil and treated soil were ~71 cmh−1 and ~111 cmh−1, respectively
(Fig. 4f). The enhanced infiltration rate observed in the HET-treated
soil can be ascribed to the increased sand ratio (Fig. 4a, Supplementary
Fig. 23), as water tends to flowmore rapidly through the large pores in
sandy soil compared to the smaller pores in clay soil53. Additionally, the
presence of residual carbon in HET-treated soil following the sieving
process (Supplementary Fig. 12) could contribute to soil porosity and
further facilitate water infiltration.

Finally, we conducted plant assays using broccoli sprouts to
demonstrate the applicability of the HET method for agricultural land
remediation (Fig. 4g). For the plant assay, the treated soil was mixed
with raw soil at a weight ratio of 1:1 (denoted as 50% treated soil), and
the raw soil was used as the control. The broccoli seeds were regularly
watered without additional nutrients. In other pots, vermiculite was
mixed into the soils to improve drainage. In both cases, the treated soil
showed a 20 to 30% higher germination rates than the raw soil
(Fig. 4h), indicating that the HET process might enhance plant growth.
To explain this, the exchangeable nutrient contents, including P, Ca, K,
Mg, Mn, Fe, and nitrate-nitrogen, in the raw and treated soil were

measured (Supplementary Figs. 26, 27). Note that the use of carbon
conductive additives in the HETprocess does not introduce significant
error in the measurement (Supplementary Fig. 28). Compared to the
raw soil, the exchangeable Fe, P, N, Mn, and Ca in HET-treated soil
improvedby4 to 103%,while K andMgdecreasedby 16 to 24% (Fig. 4i).
The slight decrease in exchangeable K and Mg may be attributed to
their higher volatility, leading to the evaporative losses, when com-
pared to other metals like Ca, Fe, and Mn. The dominant increase in
exchangeable nutrients canbe attributed to the rapidmineralizationof
soil organic matter by the high-temperature HET process54,55, con-
tributing to the increased germination rate.

Upscaling strategies and field application potential
The removal of contaminants relies on the achievable temperature,
therefore maintaining a constant temperature is critical when scaling
up the HET process. Our analysis shows that the mass per batch could
be increased by linearly increasing the voltage or capacitance (Sup-
plementary Note 2). We have upscaled the sample mass to ~8 g per
batch, achieving a total treated soil mass of ~100 g with processing
time of <10min (Supplementary Note 2, Supplementary Fig. 29).

In our previous experiments, we utilized capacitors to supply
direct current for the HET process (DC-HET). An alternating current
(AC) source can also be used for the HET process (AC-HET). To avoid
electric overload, the AC-HET system comprises two circuit breakers
(Supplementary Fig. 30a, b). The standard AC electricity with a voltage
of 120V and a frequencyof 60Hzwasused. The removal efficiencies of
different heavy metals were found to be 40 to 80% after a single
electric pulse (Supplementary Fig. 30c). This efficiency is slightly lower
than that of DC-HET (Fig. 2b), presumably due to the lower tempera-
ture of the AC-HET process (Supplementary Fig. 30d). While the tem-
perature is limited by our accessible AC source (120V) in the
laboratory, increasing the voltage would improve the temperature
according to our calculations (Supplementary Note 2). The AC-HET
process is more suitable for scaling up. By using the AC-HET, we rea-
lized the remediation of pyrene-contaminated soil with amass of 100 g
per batch, with a retention time of ~1min, resulting in a potential
production rate of >100 kg day−1 in a laboratory scale (Supplementary
Fig. 31, Supplementary Note 2). The upscaled sample exhibited
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comparable pyrene removal efficiency to that of small-scale samples.
In industry, high voltage or even ultrahigh voltage technologies are
already established56,57, which could be introduced to further enhance
the removal efficiencies and volume per batch.

The HET could possibly be integrated into industrial upscaled
techniques such as belt roller for continuous processing (Supple-
mentary Note 2, Supplementary Fig. 32). Commercial scaling of the
flash Joule heating process is ongoing, with a production rate of 1
tonne per day at Q2 2023 (ref. 58). The developed equipment and
processes could be adapted for the HET soil remediation purposes.
Considering that soil removal from remote sites is costly, we also
propose the conceptual design of a tractor-attached HET unit (Sup-
plementary Note 2, Supplementary Fig. 33) and a field facility (Fig. 1a,
Supplementary Fig. 34) for on-site remediationwith no soil relocation.
Depending on the chosen upscaling strategy, the depth of soil reme-
diation may vary, ranging from tens of centimeters to several meters.
Considering the natural variability of moisture levels in field soil, we
assessed the applicability of the HET process for remediating soil with
varyingmoisture content, which shows that theHETprocess is suitable
for soil containing water up to 14% (Supplementary Note 2, Supple-
mentary Fig. 35).

Life cycle assessment and techno-economic analysis
The energy consumption of the HET process was evaluated. Thanks to
its direct heating, ultrafast heating/cooling rate, and rapid treatment
capabilities, the HET process is energy-efficient, with an estimated
electrical energy consumption of ~420 kWh tonne−1 (Supplementary

Note 3). The energy consumption of theHETprocess is comparable to,
or lower than, that of traditional thermal remediation techniques,
including SEE, TCH, ERH, and RFH59 (Supplementary Table 3, Supple-
mentary Fig. 36). The HET process is also more energy-efficient than
other innovative electricity-based remediation techniques, such as the
electrochemical method6 (Supplementary Fig. 36).

A comparative life-cycle assessment (LCA) was conducted to
evaluate the environmental impact and energy requirements of the
HET process in comparison to established methods for remediating
PAH-contaminated soil (Supplementary Note 4, Supplementary
Tables 4-5). Four scenarios were examined in this study (Fig. 5a,
Supplementary Fig. 37): HET process, thermal desorption60, soil
washing12, and chemical oxidation61. First, as expected, both the HET
process and thermal desorption show minimal cumulative water use
(CWU), whereas soil washing and chemical oxidation require sub-
stantial amounts of water (Supplementary Fig. 38a, Supplementary
Table 6). Second, the HET process demonstrates cumulative energy
demand (CED) of 3408 MJ tonne−1, which is slightly higher than
thermal desorption (2800 MJ tonne−1), but 38–58% lower than soil
washing and chemical oxidation (Supplementary Fig. 38b, Supple-
mentary Table 7).

Furthermore, a techno-economic analysis (TEA)was conducted to
assess practical applicability (Supplementary Note 4, Supplementary
Table 8). Due to its low materials and energy consumption, the HET
processhas an operating expenseof ~$43.3 tonne−1, which is lower than
the thermal desorption (~$45.7 tonne−1), soil washing (~$140.2 tonne−1),
and chemical oxidation (~$163.0 tonne−1) (Fig. 5b, Supplementary
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Table 9). Even with the inclusion of capital expense, the HET process
remained cost-competitive with other established methods (Fig. 5b).
With its versatility in remediating soil with multiple pollutants, high
degree of pollutant degradation, ultrafast operation speed within
seconds to minutes, relatively low energy demand and overall
expense, and zero water usage (Fig. 5c), the HET process shows pro-
mise for future soil remediation practices, complementing existing
thermal desorption and soil washing methods.

Methods
Materials
Carbon black (Cabot, Black Pearls 2000, average diameter ~10 nm),
metallurgical coke (SunCoke Energy), biochar (Wakefield, Amazon),
and plastic pyrolysis ash (Shangqiu Zhongming Eco-Friendly Equip-
ment Co., Ltd in Shangqiu City, Henan, China) was separately used as
conductive additive. The Metcoke and Plastic Ash were ground using
a mortar and pestle before use. The heavy metal salts used were
HgCl2 (99.999%, MilliporeSigma), Pb(NO3)2 (99.999%, Milli-
poreSigma), CoCl2·6H2O (98%, MilliporeSigma), NiCl2 (98%, Milli-
poreSigma), and CuCl2 (97%, MilliporeSigma). Cd metal
(Mallinckrodt Chemical) and HCl (37%, MilliporeSigma) were used to
synthesize CdCl2. The Cd metal was dissolved into 1M HCl, and the
CdCl2 was precipitated by evaporating the solution. Clean soil was
collected from the Rice University campus, which did not require
pre-heating to remove the residual water or moisture. The soil is
classified as sandy loam according to the particle size scales. We
analyzed the heavy metal content in the clean soil and found it to be
well below the safety threshold (Supplementary Fig. 4a). We con-
taminated the clean soil with the above heavy metal salts at a con-
centration of Cd (~100 ppm), Hg (~300 ppm), Pb (~1000 ppm), Co
(~2000 ppm), Ni (~10,000 ppm), and Cu (~10,000 ppm). The organic
contaminants used were pyrene (98%, Acros Organics), fluorene
(98%, Acros Organics), and benz[a]anthracene (MilliporeSigma).
Conductive additives and the contaminated soil were mixed using a
ball miller (MSEsupplies, PMV1-0.4 L) for 30min at 300 rpm. We

designated the contaminated soil as c-Soil and the remediated soil
as r-Soil.

HET equipment and process
The electrical diagram and picture of the HET system are shown in
Supplementary Fig. 2. For the small-scale sample, a mixture of c-Soil
(~134mg) and CB (~66mg) with a total mass of ~200mg was loaded
into a quartz tubewith inner diameter (ID) of 8mmandouter diameter
(OD) of 12mm. Two graphite electrodes were loosely fit in the quartz
tube to permit outgassing and avoid contamination from the metal
electrodes during the HET process. The tube was then placed on the
reaction stage (Supplementary Fig. 2c) and connected to the HET
system (Supplementary Fig. 2b). The reaction stage was put into a
desiccator with mild vacuum (~10mm Hg) to facilitate degassing
(Supplementary Fig. 2d). The resistance of the sample was controlled
by compressing the electrodes. A capacitor bank with a total capaci-
tance (C) of 60 mF was charged by a DC supply, which can reach a
voltage up to 400V. A relay with programmable ms-level delay
timewas used to control the discharge time. Discharging the capacitor
brings the sample to a high temperature. The detailed conditions for
the HET process are listed in Supplementary Table 2. After the HET
treatment, the apparatus was rapidly cooled to room temperature.

For the enlarged sample, a mixture of c-Soil (~5 g) and Metcoke
(~3 g) was loaded into a quartz tube with ID of 1.6 cm andOD of 2.0 cm
(Supplementary Fig. 29e). A large-scale HET equipment with
C =0.624 F was used (Supplementary Fig. 29a). For the further
enlarged sample, a mixture of c-Soil (~100 g) and Metcoke (~30 g) was
loaded into a quartz tube with ID of 4.7 cm and OD of 5 cm (Supple-
mentary Fig. 31). An AC source was used to supply the electricity input
using an AC-HET system (Supplementary Fig. 30). The concentration
of heavy metals or organic contaminants in soil was measured before
and after the HET process to determine the removal efficiency of
contaminants. CAUTION: There is a risk of electrocution if this
equipment is usedwithout proper safety constraints. Safety guidelines
are listed in the Supplementary Information (Supplementary Fig. 2).
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Characterization
SEM imageswere obtained using a FEI Quanta 400ESEMFEG systemat
5 kV. XRD patterns were collected using a Rigaku D/Max Ultima II
system configured with a Cu Kα radiation (λ = 1.5406Å). XPS analyses
were conducted using a PHI Quantera XPS system at a base pressure of
5 × 10−9Torr. Elemental spectra were collectedwith a step size of 0.1 eV
with a pass energy of 26 eV. All the XPS spectra were calibrated using
the standardC 1 speak at 284.8 eV. Raman spectrawere acquired using
a Renishaw Raman microscope (laser wavelength of 532 nm, laser
power of 5mW, 50× lens). The temperature was measured using an
infrared (IR) thermometer (Micro-Epsilon) with a temperature range of
1000 to 3000 °C and a time resolution of 1ms. UV-Vis measurements
were carried out on a Shimadzu UV-3600 Plus spectrophotometer.
Thermogravimetric analysis (TGA) was conducted in air with a heating
rate of 10 °Cmin−1 using the Q-600 Simultaneous TGA/DSC equipment
from TA instruments.

XRF was performed using a Panalytical Axios Cement XRF
equipment. The test materials (raw soil and soil after HET treatment)
were crushed until at least 90% of the material passed a #325 sieve
(44 µm). The weight and flux amount of each sample were docu-
mented, and the specimens were then prepared into glass beads by
fusion using a Katanax K2 Prime. Samples were heated in platinum
crucibles to 1000 °C for 15min while being rocked back and forth for
dispersion. Fused lithium metaborate/lithium tetraborate and lithium
nitratewere used asfluxing agents. After fusion, the platinumcrucibles
containing the samples were poured into platinum molds to form
beads. The fused beads were then automatically fed into the XRF via
the sample loader for continued analysis. The SuperQ analytical soft-
ware used the documented weights of each sample and its flux weight
to generate molar quantitative results.

Sample digestion and ICP-OES measurement of heavy metals
concentration
The standards (Cd, Hg, Pb, Co, Ni, and Cu) were purchased from Mil-
liporeSigma (1000mgL−1 in 2wt% HNO3). HNO3 (67–70wt%,
TraceMetalTM Grade, Fisher Chemical), HCl (37wt%, 99.99% trace
metals basis, MilliporeSigma), H2O2 (30wt%, for trace analysis, Milli-
poreSigma), and ultrapurewater (MilliporeSigma Aldrich, ACS reagent
for ultratrace analysis) were used for sample digestion. The soil sam-
ples were digested using a modified method from the standard set by
the Environmental ProtectionAgency (EPA),USA62. Briefly, the samples
(~50mg) were added to 2mL of HNO3 (67–70wt%, 1:1 with water) and
heated to 95 °C for 2 h. Then, 2mL of H2O2 (30wt%, 1:1 with water) was
added and heated to reflux at 95 °C for 2 h. Next, 1mL of HCl (37wt%)
and 5mL of H2O were added, and the mixture was heated at reflux for
15min. The acidic solution was filtered to remove any undissolved
particles using a sand core funnel (Class F). The filtrate was then
diluted to a range within the calibration curve. ICP-OES measurement
was conducted using a Perkin Elmer Optima 8300 ICP-OES system.
Prior to measurement, the ICP-OES equipment was carefully cali-
brated. All samples were measured 3 times to obtain standard devia-
tions. The removal efficiency (R) of heavy metals is calculated
according to Eq. 1,

R =
c c� Soilð Þ×m c� Soilð Þ � cðr� SoilÞ×mðr� SoilÞ

cðc� SoilÞ×mðc� SoilÞ × 100% ð1Þ

where m(c-Soil) is the mass of c-Soil used for HET, c(c-Soil) is the
concentration of heavy metals in c-Soil, m(r-Soil) is the mass of r-Soil
after HET, and c(r-Soil) is the concentration of heavy metals in r-Soil.

Solvent extraction of PAH and content determination by UV-Vis
spectrophotometry
Calibration curves for pyrene, fluorene, and benz[a]anthracene were
prepared by dissolving a known amount of the analyte in ethanol

(100%, Decon Laboratories). The solvent extraction method used was
modified from the EPA, USA43. The extraction solvent consisted of
1:1 v:v ethanol:dichloromethane (99.5%, Fischer Chemical). Soil sam-
ples (~10mg) were mixed with the extraction solvent (~5mL) and dis-
persed by sonication for 5min (Cole-Parmer Ultrasonic Cleaner). The
resulting solution was filtered using a sand core funnel (Class F) to
remove residual soils. The clear filtrate was then diluted with ethanol
until the analyte concentration was within the calibration range. Ana-
lyte concentration was determined by UV-Vis measurement using a
Shimadzu UV-3600 Plus spectrophotometer. This method was vali-
dated by spike recovery on each analyte. All the samples were mea-
sured three times to obtain the standard deviations.

GC-MS measurement of PAH
A standard solution of common PAH was purchased from Agilent
(Product #G3440-85009), which included 10μgmL−1 of benz[a]
anthracene. A serial dilution was performed to calibrate the con-
centration to the integrated area of the corresponding peak (ranging
from 10 ppm to 0.001 ppm), using the same solvent system for analyte
sample extraction. The samples were analyzed using an Agilent 8890
GC system, outfitted with a low-bleed J&W HP-5ms capillary column
(30m length, 0.25mm internal diameter, and 0.25 µm film thickness).
The samples were quantified using an Agilent 5977BMSD. A carrier gas
of He was used (3.95 psi pressure), with an initial oven temperature of
80 °C held for 2min, then ramped to 280 °C at a rate of 8 °Cmin−1, and
held at 280 °C for 2min, for a total run time of 29min. An injection
volume of 1 µL was used, with an Agilent 5190-3983 inlet liner. A high
(320 °C) inlet temperature was used to facilitate heavy PAH vaporiza-
tion, and a pulsed splitless injection mode (pulse pressure 50 psi for
0.7min, followed by purge flow to split vent of 50 psi for 0.75min to
reduce sample-to-sample contamination) to maximize the amount of
heavy PAH present in the sample to be transferred onto the column.
The transfer line to theMSDwasmaintained at 320 °C tomaximize the
analyte signal. To further lower the limit of detection, single ion
monitoring at 228m/zwas used. Benz[a]anthracene and chrysene have
identicalm/z and fragmentation patterns, and similar retention times,
so deuterated chrysene was used to distinguish the peaks. Good line-
arity in the calibration curve was observed (Supplementary Fig. 19b).
Analysis of samples and calibration curve were carried out in triplicate
to afford standard deviations.

Soil particle size distribution measurement
Toprepare the samples, we added 1.0 g of raw soil and treated soil into
separate 5.0mL0.1MHCl solutions. The carbonate inside the soilswas
removed by reacting with HCl using an ultrasonic bath (Cole-Parmer
Ultrasonic Cleaner) for 15min. Then, the samples were centrifuged
(Adams Analytical Centrifuge, 2 g, 5min) and washed three times with
ultrapure water (MilliporeSigma Aldrich, ACS reagent for ultratrace
analysis). Next, 2.0mL of 35wt% H2O2 solutionwasmixed with the soil
in a 90 °C water bath for 45min to remove the organic matter63. After
another round of centrifugation and water washing three times, the
soil particles dispersed in the water were added into the Laser Particle
Size Analyzer (ZEN 3600Zetasizer Nano,Malvern,Worcestershire, UK)
for particle size measurement. Based on the measured data, we cal-
culated the ratio of clay (<2 μm), silt (2–50 μm), and sand (>50 μm) in
the soil by analyzing the particle size differences.

Infiltration rate test
The water infiltration rate test was conducted in a laboratory scale
using a tubewith an inner diameter of 8mmas the container. A sponge
was used to hold the soil samples, allowing for fast penetration of
water (Fig. 4d, Supplementary Fig. 25). The water could penetrate the
sponge rapidly and did not affect the infiltration test of the soil. Both
the raw soil and HET-treated soil, with the same volume, were placed
on top of separate sponges. 2 cm of water were then gently added on
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top of the soil. The liquid levels were recorded at different times, and
the infiltration rate was calculated using the Eq. 2,

infiltration rate =H=t ð2Þ

where H is the liquid level in cm and t is the time in h.

Plant growth
Broccoli sprouts were grown under 16-h light (2.2mWcm−2)/8-h dark
cycles at 21 °C in Rice University BRC green house. The raw soil was
sterilized by heating it at 120 °C for 2 h. HET-treated soil was mixed
with the sterilized raw soil (w/w = 1:1) for plant growth, which is
denoted as 50% treated Soil. The sterilized raw soil was used as a
control, denoted as raw soil. Before being placed in the container, raw
soil or treated soil was mixed with water to obtain the appropriate
moisture level. Then, 9 seeds were placed on the wet soil for gemina-
tion and growth monitoring. Coffee filters were placed in the soil
container to prevent cross-contamination between treated soil and
raw soil. The germination rate was calculated by counting the sprouts
based on the number of seeds used. We repeated this experiment
three times.

Exchangeable nutrients measurement
The exchangeable P, Ca, K, Mg, Mn, and Fe in raw soil and treated soil
were extracted using theMehlich-3 reagent64. The extract is composed
of 0.2MCH3COOH,0.25MNH4NO3, 0.015MNH4F, 0.013MHNO3, and
0.001Methylenediaminetetraacetic acid (EDTA). 1 g of soil samplewas
added to 10 g of the extract at a soil-to-solution ratio of 1:10. The
mixture was shaken immediately on a horizontal shaker for 5min.
Then, the sample was centrifuged (Adams Analytical Centrifuge, 2 g,
5min), followed by filtration using a sand core funnel (Class F) to
remove any undissolved particles. The filtrate was diluted to the
appropriate concentration using 2wt% HNO3 within the calibration
curve range. The P, K,Mg,Mn, and Feweremeasured using inductively
coupled plasma mass spectrometry (ICP-MS) with a Perkin Elmer
Nexion 300 ICP-MS system. Periodic table mix 1 for ICP (10mgL−1,
10wt%HNO3,MilliporeSigma)was used as the standard for the ICP-MS
measurement. Due to interference fromAr, Ca cannot bemeasured by
ICP-MS. Therefore, Ca was measured by ICP-OES using a Perkin Elmer
Optima 8300 ICP-OES system. Ca standard (1000mgL−1, 2 wt% HNO3,
Millipore Sigma) was used for the ICP-OES measurement.

The soil nitrate-nitrogen serves as an indicator of available nitro-
gen for plants. The soil nitrate content was measured using ultraviolet
second-derivative spectrophotometry to exclude the effect of soluble
organic nitrogen in the soil65. 1 g of soil sample was added to 10 g of
ultrapure water (MilliporeSigma Aldrich, ACS reagent for ultratrace
analysis) for the nitrate extraction. The mixture was immersed in an
ultrasonic bath (Cole-Parmer Ultrasonic Cleaner) for 15min. Nitrate
standard solutions (0.5 ppm, 1.0ppm, 2.0 ppm, 4.0 ppm, 10ppm)were
prepared by dissolving an appropriate amount of NaNO3. The UV
spectra were acquired using a Shimadzu UV-3600 Plus spectro-
photometer (Supplementary Fig. 27a). Then, the second-derivative
spectra were computed using Origin 2019 (Supplementary Fig. 27b).
The second-derivative absorbances at 223.2 nm were used to deter-
minate the nitrate content. The good linearity of the calibration curve
demonstrates the effectiveness of this method (Supplementary
Fig. 27c). The nitrate in raw soil and HET treated soil was extracted
using DI water. 1 g of soil sample was added to 10 g of DI water, and the
mixture was shaken for 5min. Then, the sample was centrifuged
(Adams analytical centrifuge, 60 rpm, 5min), followed by filtration
using a sand core funnel (Class F) to remove any undissolved particles.
Finally, the filtratewasdiluted to a concentrationwithin the calibration
curve range.

Soil carbon content measurement
The soil carbon content was measured using a ECS 4010 – CHNS-O
Elemental Combustion System. Before the measurement, 1.0 g of soil
samplewas treatedwith 10mLof 0.1MHCl in an ultrasonic bath (Cole-
Parmer Ultrasonic Cleaner) for 15min to remove inorganic carbon
(e.g., carbonate). Subsequently, the sample was dried at 105 °C to
prepare for themeasurement. Acetanilidewas used as the standard for
calibration. Both the raw soil and the treated soil, after removing car-
bon additives through sieving, were subjected to carbon content
measurement. Analysis of samples was carried out in triplicate to
afford standard deviations.

Life-cycle assessment and techno-economic analysis
The aim of the LCA and TEA is to assess water usage, energy demand,
and expense associated with various soil remediation scenarios,
including the implementation of the HET process. The scope of the
system considered here includes two primary steps: raw materials
production and processing. Transportation is not accounted for in this
analysis, and it assumes a lab-scale HET process without further scal-
ing. The functional unit used for evaluation is the remediation of 1
tonne of PAH-contaminated soil. The life-cycle inventory is provided in
Supplementary Tables 4–9. Energy input of the HET process was
measured experimentally, while ISO-compliant GREET database values
or data from literatures are employed to calculate CWU, CED, and
expenses.

Data availability
The data supporting the findings of the study are available within the
paper and its Supplementary Information. The source data generated
in this study have been deposited in the Zenodo database under
https://doi.org/10.5281/zenodo.8162061. Source data are provided
with this paper.
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