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The global costs of extreme weather that are
attributable to climate change

Rebecca Newman1 & Ilan Noy 2

Extreme weather events lead to significant adverse societal costs. Extreme
Event Attribution (EEA), a methodology that examines how anthropogenic
greenhouse gas emissions had changed the occurrence of specific extreme
weather events, allows us to quantify the climate change-induced component
of these costs. We collect data from all available EEA studies, combine these
with data on the socio-economic costs of these events and extrapolate for
missing data to arrive at an estimate of the global costs of extreme weather
attributable to climate change in the last twenty years. We find that US$ 143
billion per year of the costs of extreme events is attributable to climatic
change. The majority (63%), of this is due to human loss of life. Our results
suggest that the frequently cited estimates of the economic costs of climate
change arrived at by using Integrated AssessmentModelsmay be substantially
underestimated.

Extreme weather events have significant adverse costs for individuals,
firms, communities, and regional economies. Based on the available
data from the International Disaster Database (EM-DAT), the World
Meteorological Organization1 reports that there has been a sevenfold
increase in the reported disaster losses from extreme weather since
the 1970s.

While a part of this increase is due to increased reporting of dis-
aster damage (especially in lower-income countries/regions or coun-
tries/regions that were previously more isolated), and because of
increased exposure brought about by population growth and internal
migrations to more exposed urban and coastal areas, a part of it is
attributable to climate change. The most recent Intergovernmental
Panel on Climate Change Report2 notes it is virtually certain that there
is a climate change component in the increase in reported disaster
damage (at least of some types, with weaker evidence for others). The
detection of anthropogenic changes in the frequency, severity, spatial
location, and extent of extreme weather events is consequently
important.

Extreme Event Attribution (EEA) is a methodological approach
that examines the degree to which anthropogenic greenhouse gas
emissions had changed the occurrence of specific extreme weather
events that have indeed occurred. Using climate modeling tools, EEA
quantifies the causal link between anthropogenic climate change and

the probability and/or the intensity of specific extremeweather events
by focusing on their specific circumstances and characteristics. EEA
was first conceptualized by Allen3, who, together with some co-
authors, developed a method to analyze the contribution of climate
change to the risk of an individual weather event that could be clearly
defined and quantified. This approach was first implemented for the
2003 continental European heatwave4—an event that led to high
mortality, especially in France.

The EEA methodology compares the probability of an event that
occurredwith theprobability or intensity of the sameevent occurring in
a counterfactual world without anthropogenic emissions. From a
probabilistic perspective, a Fraction of Attributable Risk (FAR) metric is
calculated to describe what portion of the risk of an extreme weather
event occurring is the result of climate change.Methodologically, these
probabilisticmethodshavebeen approached fromboth a frequentist or
a Bayesian perspective5, with possibly important consequences for the
results thus obtained. We do not distinguish between these in our work
here, given the relative paucity of Bayesian attribution work. The attri-
bution approach based on FAR is known as the risk-based approach6.
The alternative intensity approach calculates what share of a specific
aspect of the risk (e.g., rainfall) was due to climate change. For instance,
the 2017 Hurricane Harvey’s climate change-induced economic costs
were analyzed by both risk-based7 and intensity-based8 approaches.
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The economic costs associated with extreme weather events can
bemeasured in twoways: First, these includedirect economic damage,
which occurs during or immediately after the event. Using flooding as
an example, where the hazard is heavy precipitation, direct economic
damage may include destroyed housing and roads, or lost crops.
However, an extreme weather event can also cause indirect economic
losses. These are declines in economic value-added because of the
direct economic damage. Examples of these indirect losses are wide-
ranging. For the flood example, they could include microeconomic
impacts such as revenue loss for businesses when access routes are
inundated by floodwater, meso-economic impacts such as temporary
unemployment in the affected area, or even wider-rangingmacroscale
supply-chain disruptions. These indirect economic losses can often
spill out beyond the affected area, and indeed even beyond the
affected country/region’s borders. Indirect losses may also have long
time lags, making them difficult to quantify. Generally, events that
cause more damage will also lead to more losses, ceteris paribus.
However, this relationship between direct damage and indirect loss is
nonlinear, with high-damage events causing disproportionately many
more losses aswell. Because of these difficulties in quantifying indirect
(flow) losses over a large variety of extreme weather phenomena in a
large diversity of countries/regions and economies (thereafter refer-
red to as countries for ease of exposition) and affected regions, this
paper only focuses on the more easily quantified stock of direct
damages.

By combining the data on direct economic damages, with the
attributable share of the risk, we can quantify the climate change-
attributable cost of these events. This attribution-based method for
calculating the costs of climate change (from extremeweather events)
differs fundamentally from other approaches to climate change cost
estimation. Those other approaches use macroeconomic modeling
embedded within climate models in various types of Integrated
Assessment Models (IAM).

Given some of the data deficiencies in terms of temporal and
spatial coverage, described in the following chapters, the purpose of
this paper is not to produce a definitive quantification. At the current
rate of progress in attribution research in meteorological science, we
are still years away from obtaining a thorough and reliable global
coverage of most socio-economically damaging extreme weather
events.Our ability tomeasure thedamage associatedwith these events
is also far from being sufficiently comprehensive or accurate. There-
fore, our aim is to demonstrate the use-value of the methodology,
rather than reach an unimpeachable set of estimates. As better EEA
studies and more thorough and exhaustive economic costs estimates
for extreme events become available over time, and the method is
refined, the precision of this approach’s estimates will increase in
tandem.

Here, we use the frequency approach to aggregate the global
economic damage from extreme weather events attributable to
anthropogenic climate change. For that, we collect data from all
available attribution studies with a frequentist analysis and extract
their FAR estimate.We then combine these FAR estimates with data on
the socio-economic costs of these events. While our research is not
directly comparable to the IAMs, it provides an additional form of
evidence that suggests that most IAMs are substantially under-
estimating the current economic costs of climate change.

Results
By examining the attribution information in conjunction with the
cost information, we can calculate the climate change-attributed
economic costs of extreme weather events. We first present these
costs for the events in the master dataset, and then the results we
obtain by extrapolating our findings to create a global estimate of
these costs.

Attributed costs for events in the dataset
From the 185 events in the dataset—a net of 60,951 deaths are attri-
butable to climate change—75,139 deaths that occurred due to climate
change in events that became more likely and 14,187 deaths in events
that have become less likely due to climate change. The net statistical
value of life cost attributed to climate change across the 185 events in
the master database is United States (US) $431.8 billion.

Anthropogenic climate change is responsible for a net $260.8
billion of economic damages across the 185 matched events (without
the extrapolation described in the next section). This is equivalent to
53% of the total damages recorded. More than 64% of the climate
change-attributed damages are connected to storms, which is expec-
ted given the high damages from events such as Hurricane Harvey.
Furthermore, 16% of the attributed damages resulted from heatwaves,
while floods and droughts are each responsible for 10%, and wildfires
account for 2% of the net attributed damages. Lastly, cold events,
calculated as a fall in climate change-attributed damages, are respon-
sible for only −2% of net attributed damages.

Extrapolated global climate change-related economic costs of
extreme weather
The results from extrapolating the attribution data across all global
economic costs from extreme weather events are described below for
the two extrapolation methods. Furthermore, we analyze the hetero-
geneity of globally attributed costs across time and event type.

The total climate change-attributed impacts, dictated by the
respective extrapolation methods, have varying degrees of similarity.
For heatwaves, the extrapolated estimates for deaths and damages are
very closely aligned—less than one percentage point between the
results from the twomethods. For other event types, thedisparities are
wider. Notably, storm damages contribute substantially to attributed
economic costs,making up over 60% of the total damages recorded in
the EM-DAT extreme weather event dataset. There are two data com-
parisons where the estimates differ widely (greater than ten percen-
tage points) between a global and continental approach: flood deaths
(45%) and storm deaths (132%). These discrepancies in flood cost cal-
culations occur because the FAR data points vary widely across attri-
bution studies. These flood results are significantly impacted by a
regional average FAR for floods in Africa of a decrease of 0.49,
meaning that an estimated 49% of the decrease of risk of flooding in
Africa can be attributed to anthropogenic climate change. Compara-
tively, the regional average FAR for floods in all other regions is posi-
tive, indicating an increase in risk resulting from climate change. This
has a relatively large impact on the regional extrapolation results as
floods cause a relatively high number of deaths in Africa and a com-
paratively low level of damages. This is a common pattern for disaster
mortality and damage in low-income countries9,10. Moreover, the dis-
crepancy between climate change-attributed deaths from storms is
primarily driven by a regional average FAR in Asia (0.81) at least 20
percentage points higher than the FAR in all other regions. This has a
notable impact on the results given the high number of storm-related
deaths inAsia.However, it is important to recognize that the twonoted
regional average FARs that impact these results are calculated from a
few data points—3 for floods in Africa and 1 for storms in Asia. Due to
the lack of data relating to important event-type and continental
combinations, the global average extrapolation method is used in all
the tabulations described below, to minimize over-reliance on a small
number of attribution studies.

The economic value of life lost to climate change-attributed
extremeweather is obviously very dependent on the assumed value of
statistical life. When using the US-UK mean Value of Statistical Life
(VSL; as described in the data section), the climate change-attributed
cost associated with mortality is a net US$ 1.79 trillion from the global
extrapolation method.
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The estimated global cost of climate change over the 2000–2019
period is summed up in Fig. 1. These results are calculated using the
global average FAR extrapolation method, which is less sensitive to
singular studies than the regional average FAR approach. In aggregate,
the climate change-attributed costs of extreme weather over
2000–2019 are estimated to be US$ 2.86 trillion, or an average of US$
143 billion per year.

In an alternative calculation, in which we used themedian FAR for
each type of event, instead of the average (mean) FAR, the results are
only larger:US$ 167billion. This larger result is somewhat surprising, as
our intuitionwas that larger events aremore likely to be investigated in
EEA projects, so that the median FAR should, in general, be smaller
than the average FAR. This is not actually the case, suggesting this
possible bias may be overstated.

This aggregate of US$ 143 billion, annually, is split across attrib-
uted human costs (statistical loss of life) of nearly $90 billion and
economic damages of $53 billion per year. The distribution of costs is
highly variable across years. The year with the lowest costs attributed
to climate change is in 2001 at $23.9 billion, while the year with the
highest climate-attributed costs is 2008 with $620 billion. The years in
which costs reach high peaks—notably 2003, 2008, and 2010—are
predominantly because of highmortality events. The events that drive
thesepeaks are the 2003heatwave across continental Europe; Tropical
Cyclone Nargis in Myanmar in 2008; and the 2010 heatwave in Russia
and drought in Somalia.

The aggregate result presented is subject to uncertainty given the
limited number of data observations and the exploratory nature of this
methodology. When considering a global FAR, for each type of
weather event, one standard deviation below and above the mean the
respective attributed cost per year is US$58 billion and US$228 billion,
respectively. Storms drive the largest difference, given their con-
tribution to absolute cost, however, the largest standard deviation is in
flood events.

The peaks in climate change-attributed costs differ when we look
solely at damages and exclude the statistical loss of life. The greatest
peaks in monetary damages occur in 2017 and 2005. Storm events in
the United States drive these—in 2005, Hurricanes Katrina, Rita, and
Wilma together caused $123 billion in attributed damages, and in 2017,
Hurricanes Harvey, Irma, andMaria were responsible for $139 billion in
climate change-attributed damages.

Figure 2 shows how total and climate change-attributed costs are
distributed across high (gross national income GNI per capita>USD
12,535), upper-middle (GNI per capita between USD 4046 and

US$12,535), lower-middle (GNI per capita between US$ 1036 and US$
4046), and low-income (GNI per capita <US$ 1036) countries. This
provides context for how different countries, especially the vulnerable
ones, are being impacted by climate change-induced extremeweather.
As per the available data, high-income countries have the highest cli-
mate change-induced economic costs at around 47% of the total. A few
elements drive this, the primary being the United States having high
asset exposure to storms.

However, the distribution of economic costs from extreme
weather events across low to high-income countries is also likely a
product of data availability and measurement. High-income countries
have more resources and expertise to gather economic data when an
extreme weather event occurs, while lower-income countries do not
have this same level of resource availability.

These extrapolated estimates for the climate change-induced cost
of extreme weather can be calculated as a proportion of gross
domestic product (GDP), as shown in Fig. 3. Using the global average
extrapolation method, the total economic cost, inclusive of damages
and statistical loss of life, can be presented as a proportion of annual
global GDP. This is not a direct comparison because GDP is a measure
of economicflow, i.e.,measured over a definedperiod, whilst damages

Fig. 1 | Climate change-attributed loss of life and damages from extreme
weather events. These are the globally aggregated data for climate change-
attributed impacts of disasters that were associated with extreme weather, using
data collected from the Emergency Management Database - EM–DAT. Total costs
represent the full estimate of the economic damages associated with an event,

while the climate-attributed costs represent only the portion for which climate
change is responsible. The combined bar represents the full cost, with the trans-
parent portion representing the (statistical) lives lost and the solid portion are
economic damages.

Fig. 2 | Value for loss of life (VSL) and economic damage from extremeweather
events by income group (2000–2019). The aggregated mortality and economic
damage costs for each country/region income group, using the 2020World Bank’s
income classification.
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and lossof life are a stockvariable, i.e.,measured atonepoint in time. It
is, however, still a measure of the relative importance of these shocks
on the affected economies. Climate change-attributed economic costs
from extreme weather events vary between 0.05% to 0.82% of global
GDP annually over the study period.

The limitations of comparing stock and flowwithstanding, we can
compare the annual average attributed costs for levels of GDP across
countries at varying levels of development. This shows that low-
income nations, as a cohort, experience the relative economic costs of
climate-attributed extreme events to a greater degree—at near an
average of 1% of GDP per annum, compared to 0.2% for high-income
countries, as shown in Fig. 4. This differential is almost entirely driven
by high levels of loss of life in lower-income countries, which may be
the result of fewer early warning systems and safety procedures in
place in these areas. In this context, we note our decision to use a
uniform Value of Statistical Life across countries. That, of course,
means that in lower-income countries, where mortality is highest, the
relative importance of the loss-of-lifemeasure is higher (as the value of
assets is lower). Moreover, a smaller difference in economic damages
may be the result of offsetting factors of higher-value assets in high-
income countries, although buildings and infrastructure are likely to

be more resilient to weather events. This finding uncovers disparity in
the costs of climate change, and a potential for inequality to become
further entrenched due to greater extreme events.

Comparing the cost estimates with integrated assessment
models
There are several different approaches used to estimate the economic
impact of climate change, with the attribution-based method of this
research presenting an alternative option. The attribution-based
method is an event aggregation approach; it therefore differs sig-
nificantly from the macroeconomic methodology used in IAMs.
Commonly, IAMs characterize damages as a polynomial function of
the deviation of average annual temperature frompre-industrial times,
as done, for example, in the Dynamic Integrated Climate Economy
(DICE) model11,12. DICE approximates the damages from climate
change, as a proportion of the global economy, according to the
damage function shown in Eq. (1).

D Tð Þ=φ1T +φ2T
2 ð1Þ

Where T is the change in global mean surface temperature above the
pre-industrial threshold, currently estimated to be around 1.2 °C in
202013. To allow us to compare the results from attribution to those of
DICE, we used the parameters from the DICE 2016Rmodel:φ1 = 0;φ2 =
0.00236, and the same temperature deviation data. This approach
from DICE is not unique for IAMs. The Policy Analysis of the
Greenhouse Effect (PAGE)model, whichwasused in the SternReport14,
also calculates economic and non-economic damages from climate
change using a polynomial function. However, PAGE uses regional
temperature deviations rather than the global one15.

From this basic calculation, as per the DICE model, the assessed
global damages from climate change over 2000–2019 is estimated to
be US$ 4.04 trillion. Based on an aggregated event attribution
approach, the approximation in this research is $2.86 trillion, meaning
the DICE estimate is ~40% larger. The comparative calculations of cli-
mate change costs from DICE and the attribution-based approach, by
year, are shown in Fig. 5. However, these two metrics are not
attempting to measure the same quantity, with two key differences:

First, the IAMs produce a measure of decline in economic flow
(proportional to global GDP) while attribution-based estimates

Fig. 3 | Climate change-attributed loss of life and damages from extreme
weather events as share of aggregate global Gross Domestic Product (GDP).
These are the globally aggregated data for climate change-attributed impacts of

disasters that were associated with extreme weather, using data collected from the
Emergency Management Database - EM–DAT. These represent only the portion
which are attributable to climate change.

Fig. 4 | Climate change-attributed costs of extreme weather events as a pro-
portion of 2019 Gross Domestic Product by income classification. This figures
uses the 2020 World Bank’s income classifications and are based on the average
cost per annum over the 2000–2019 sample period.
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measure loss in economic stock. This is the same distinction between
damage and loss we described earlier.

Second, the attribution-based estimates solely measure the net
economic cost of extreme weather events caused by anthropogenic
activity, while IAM models attempt to estimate the overall annual loss
caused by climate change. This should include extreme weather costs
as well as many other types of costs and benefits from changing crop
yields, ocean acidification effects, sea-level rise and its attendant
impacts, environmental degradations and ecosystem disruptions,
spending on adaptation, and many other types of impacts.

These factors limit the comparability of the IAMs measures and
the attribution results. However, it is notable that extreme weather
events are only one category of the damages that are, in theory,
included in the DICE measure. The key limitation of IAMs, which is
highlighted through comparison with the attribution-based approach,
is that they account only for changes in average temperature rather
than the change in temperature distribution, and specifically in the tail
end of the distribution of weather-attributed. By focusing on the
deviation in the average temperature, the IAMs fail to capture changes
in extremes, plausibly the most important current impact of climate
change.

Nordhaus acknowledges that DICE, and other IAMs, generally
omit the impacts of extreme weather (as well as biodiversity, ocean
acidification, catastrophic climate risks, and more). The solution he
used to account for this limitation is to add 25% of the monetized
damages in the DICE model16. This is a very subjective adjustment,
which would assume that extreme weather accounted for a maximum
of $0.8 trillion ($0.55 trillion would mean that extreme events account
for the full value of the 25% adjustment to the DICE estimate) across
2000–2019, relative to the climate attribution-based figure of $2.86
trillion. This suggests a large underestimate that exhibits how DICE
fails to accurately assess the economic impacts of climate change from
extreme weather.

In addition, we can compare the attribution-based results to the
Framework for Uncertainty, Negotiation, and Distribution (FUND)
IAM, which is notably more complex than DICE. The FUND model
differs from DICE as it calculates damages at a sectoral level, with nine
sectoral damage functions operating across 16 regions of the world17.
The key sector of interest in FUND, for this research, is the stormsector
which is the only sector that is reflective of how climate change
impacts the economic cost of extreme events. The FUND model cal-
culates estimated damages (capital loss) andmortality for tropical and

extra-tropical storms. This is amore sophisticated inclusionof extreme
weather event costs compared to the DICE approach. As an example,
the total damages and mortality from tropical storms in FUND are
calculated for each region using Eqs. (2) and (3).

Total damage=α � GDP � ytoday
y1990

� �ϵ

½ð1 + δ � TÞγ � 1� ð2Þ

Total mortality=β � population � ytoday
y1990

� �η

½ð1 + δ � TÞγ � 1� ð3Þ

In the FUND model, the key inputs in the damage function are
temperature change over pre-industrial levels (T), per capita income
(y), current damage as a fraction of GDP (α), current mortality as a
fraction of the population (β), and incomeelasticities of stormdamage
(ϵ, η).

The MimiFUND web page, an accessible source for viewing the
FUND model and results, estimates current damages from tropical
cyclones as higher than the damages from extreme weather events
calculated in the attributed results18. FUND calculates the current
damage from tropical cyclones as, on average globally, 0.08% of GDP.
Comparatively, the climate change-attributed damages from storms
calculated in this research are 0.06% of GDP on average per annum.
Further, climate change-attributed damages from all extreme weather
events in the research equate to an average of 0.07% of GDP per
annum. The difference in the FUND tropical cyclone estimation and
the climate change-attributed costs of storms is an interesting com-
parison. Itmaybe adiscrepancy that can, to somedegree, be explained
by underestimated economic data recorded in EM-DAT the attribution
estimates use. Furthermore, FUND estimates the current mortality
from tropical cyclones to be on average 0.00015% of the population,
while attribution-based results estimate that storms on average have a
climate change-attributed mortality rate of 0.00009% per annum.
These inconsistencies are illustrative of how, especially when data is
lacking, it is beneficial to analyze multiple approaches to quantitative
research—with the macroeconomic IAMs and event attribution tech-
niques providing valuable contrasts.

Limitations of the attribution-based approach
This research explores the potential of an attribution-based method
for estimating the human-induced climate change costs of extreme
weather globally. Although event attribution has beenused tomeasure
the climate change-related economic impact of individual extreme
weather events before, thismethodology has not yet been extended to
a global approximation7,8,19,20. As such, this study does not provide a
silver-bullet approximation of the cost of extreme weather events.
There are important limitations of the attribution-based approach,
primarily due to restrictions on the quantity and quality of data. These
limitations are explored in detail below to highlight the progress
required so as to improve these estimations.

When examining methodological limitations, we note that
extreme event attribution is a young but rapidly expanding sub-field of
climate science. The literature is limited, methodologies are con-
tinuously being refined, and the field’s development faces some
methodological and epistemological challenges. Notable limitations
are the uneven geographical coverage of attribution studies and the
lack of attribution studies conducted on several important classes of
extreme weather events. These lacunae are significant, given the
relatively small number of attribution studies conducted overall.

Extreme event attribution studies aremore commonly conducted
in high-income countries, with lower-income regions barely repre-
sented in the literature. In our database, only 8% of the attribution
studies are conducted on extreme events in Africa, while over half of
the events studied are in either North America (23%) or Europe (25%).
In recent years, there has been a greater attempt to balance the

Fig. 5 | Economic costs from climate change attribution and the Dynamic
Integrated Climate Economy (DICE) model estimates. The total cost calculated
by the extreme event attributionmethod is shown relative to that calculated by the
DICE damage function, as total in gray, and only the DICE estimates for extreme
weather events (EWE) and other environmental damages in yellow.
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geographical distribution, particularly by the World Weather Attribu-
tion (WWA) network21. The WWA use the following human-based
threshold to determine which events to consider for study: the event
resulted in greater than 100 deaths, 100,000 people affected, or more
than half of the total national population affected22. In contrast with an
economic loss threshold, a human-based threshold leads to less bias
against low-income countries where physical assets are of lesser
value23.

Still, extrapolation based on the total average FAR per event type
leans over-proportionately on event probabilities from high-income
regions (and China). The data gaps in Africa, South America, and
Oceania, in particular, result in over-reliance on few data points in the
calculation of a regional average FAR, or the use of an imperfect sub-
stitute (e.g., the global average FAR). This is a notable limitation
because different regions of the world are subject to different climatic
systems and environmental conditions. Consequently, the FAR for
specific extreme weather events will differ by region and even more
locally within countries. Improved geographical coverage of event
attribution studies would improve the robustness of the methodology
presented, especially if this allowed for greater granularity in the
extrapolation method.

The second issue with event attribution data is the uneven spread
of research across different event types. About a third of all attribution
studies analyze the role of climate change in inducing heatwaves, the
best-represented event category. Comparatively, storms, which are
most important when considering the economic cost of extreme
weather, make up only 8% of the studies in this dataset. One reason
behind this discrepancy is the degree of difficulty associated with
attributing different event types. Heatwaves, and similarly extreme
cold events, generally result in the most reliable event attribution
estimates as the direct thermodynamic effects for these events are
comparatively straightforward24. In contrast, events such as agri-
cultural droughts are caused by several compounding factors—such as
precipitation, temperature, and soil moisture—making the attribution
process significantly more complex. Cyclones are also complicated to
model, which means that large-ensemble attribution studies of these
storms have only become feasible in recent years, though a high
computational cost for each simulation still persists24. As an example,
Tropical Cyclone Idai that hit Malawi and Mozambique in 2019, and
caused additional damage in Madagascar and Zimbabwe, was the
costliest cyclone to have hit Africa with record-setting intense winds
and rainfall, but even this event has not yet been analyzed in an
attribution study.

Beyond the spatial and event-type coverage deficiencies, the
framing of an event attribution study can induce large differences in
how the role of anthropogenic emissions is quantified. Different
framings would be appropriate for answering different questions25.
One such example, which gained significant attention, was the 2010
Russian Heatwave. Two seemingly contradictory event attribution
studies were conducted—one finding a negligible role of human-
induced climate change, and the other identifying a fivefold increase in
likelihood26,27. However, the framing of this event was central to this
difference. The first paper analyzed the change in intensity, whilst the
second analyzed the change in frequency. Moreover, subtle framing
differences—such as whether attribution is conditioned on the back-
ground atmospheric conditions (e.g., El Niño-Southern Oscillation), or
sea surface temperature conditions, or whether the counterfactual
removes a single factor (greenhouse gas emissions) or all anthro-
pogenic factors—can have a notable impact on the attribution
quantification6,28. More reassuringly, recent examination of the varia-
bility of results due to different methodologies used in the EEA studies
themselves suggest these results do not vary that much29.

An attribution study must also define the spatial and temporal
boundaries of the event being analyzed. These decisions ultimately
impact the final FAR that is calculated30,31. As long as these definitions

of the event in the attribution study align well with the extent of the
economic estimates produced by EM-DAT, this issue may not be as
important. However, given the paucity of attribution studies, and the
lack of detail about thegeographical spanof the EM-DATdatawe could
use, this was not always verifiably the case.

Commonly, event definition should reflect themain determinants
of the event’s impacts, as the authors seek to answer what role
anthropogenic climate change played in creating the economic and
societal impacts of an event6. For example, calculating a FAR using a
single-day rainfall measurement (rather than, say a 7-day aggregate
measure) may be preferable when a flood has caused devastation
because of the short burst of intense rainfall that caused water to
accumulate. For this study, attribution studies thatdefine events based
on the determinants of the most important human and economic
impacts are beneficial. There of course can be multiple impacts, and
these can be related to different event definitions. It is therefore not
always clear which impact should be used when defining the event
parameters. This is particularly salient for extreme events that are not
meteorological in nature, such as flooding (hydrological) and wildfire
(ecological), as these are also related to multiple climate parameters.

A closer geographical and temporal match between the FAR and
economic impact data recorded in the datasetmakes the calculation of
attributed costs more reliable. However, events are not always defined
in this way, as there may be barriers that prevent climate researchers
from using such impact-based definitions. For example, it is often
found that meteorological observational datasets are not extensive
enough—across time or space—to allow an attribution study based at a
specific locality or on a specific factor. Therefore, the event definition
sometimes must deviate from the boundaries of the actual impacts to
ensure the adequacy of data records6.

Finally, it could be argued that attribution studies using the
intensity approach, together with well-calibrated damage functions
(that define the functional relationship between damage and the
intensity of an event) might be a more appropriate input into our
analysis. Two reasons led us to prefer relying on FAR quantifications.
First, these are much more common in the attribution literature,
allowing us to expand our sample of events. Second, we do not have
well-calibrated damage functions, as these can be spatially and tem-
porally specific, and are unique to each type of event (even different
types of storms, for example, will necessitate different damage func-
tions) and the social and built infrastructure exposures and vulner-
abilities that differ substantially across locations32.

One possibility to account for the uncertainty associated with the
results is to generate a range of estimates basedon the identified range
of FARs. For example, we could make a similar calculation to the one
we present, but based on the lowest (or highest) FAR identified for
each category of hazard/region combination, rather than the average.
While this will create a range of estimates, we are not able to conclude
anything about the distribution function underlying this range. We
therefore see such a range as potentially misleading, and prefer not to
present these kinds of exploratory sensitivity analyses. However, since
all of our data arepostedpublicly, an interested reader can explore this
further, of course.

This research looked at events that became more or less likely to
occur due to anthropogenic climate change. However, there may still
be an embedded underrepresentation of events that have become less
likely because of human-induced climate change; maybe because of
publication bias, or because other factors that are associated with
event selection. This is because attribution studies are typically con-
ducted on major events, one that attracted the researchers’ attention,
and are not conducted at all on events that became mild because of
climate change or have not occurred at all. Since there have been no
recent occurrences for these events, it is impossible to quantify reli-
ably their economic costs. There is no way to overcome this bias, but
the available evidence seems to suggest that even before the main
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impacts of climate change have started to be felt, the importance of
these type of decreasing frequency or intensity events had been rela-
tively less prominent than that of increasingly likely ones.

The economic data used to quantify the global cost of climate
change-attributed extreme weather events in this study are subject to
an additional set of limitations. They reflect the current best-available
estimates, but there are possible limitations regarding the data’s
quality, coverage, and granularity.

The economic cost data used in this research underestimates the
true costs of climate change over the study period. Most importantly,
our estimates include only direct loss (damage) and not indirect loss
ones. These later losses are difficult tomeasure. This is the case, among
other examples, for productivity losses in a heatwave33. For example,
the Australian Climate Council attempted a thorough approximation
of the total economic impact of Australia’s southwestern heatwave in
200934. They estimated that the heatwave was responsible for up to
AU$800 million in indirect financial losses— predominantly caused by
power outages and transport system disruptions. This same event, as
recorded in EM-DAT, detailed no asset damages at all. An inventory of
events with the economic impacts differentiated into direct and
indirect economic losses, at a bare minimum, would give decision-
makers a better understanding of the wider economic impact of
anthropogenic climate change19.

The number of people affected by disaster events is recorded in
EM-DAT. With the global average extrapolation approach, we found
that climate change affected 1.4 billion people through extreme
weather events between 2000 and 2019. Affected, in line with the EM-
DAT definition, means requiring immediate assistance following the
event. This could range from an acute need for life-saving medical
attention and potentially sustaining life-long injuries, to the long-term
provision of basic survival resources, or just supply of very short-term
(hours or days) of emergency provisions. Clearly, there are significant
economic costs associated with these affected people, including
healthcare costs, costs of provision of other basic services such as
emergency shelters, and potentially other longer-term welfare costs.
However, given the extensive but imprecise range of costs that could
be associated with someone being classed as affected, using a single
monetary value for this group may be misleading. Therefore, these
costs are not included in our calculations, but form an additional
source of underestimation that is embedded in our results.

In addition, people can be adversely affected by an extreme
weather event in ways that do not include requiring immediate med-
ical assistance or basic survival needs. For example, people may suffer
from mental health impacts (e.g., post-trauma), the loss of access to
education, or the loss of their job if their place of employment is
harmed. These will not be counted as having been affected, under the
EM-DAT definition, yet suffer high economic loss. These costs are not
captured in any available dataset.

While the limitations of this approach are significant, this research
demonstrates how a more global approximation of the human-
induced extreme weather event economic costs could be con-
structed. Each of the limiting factors described above has the potential
to be reduced with more data collection and more research.

Discussion
This research relies on two elements—the level of anthropogenic
emissions and their consequential effect on climatic extremes (cap-
tured by the FAR), and the economic costs from extreme weather
events. Tominimize the climate change-attributed costs from extreme
weather in the coming decades, there would need to be increased
mitigation that will reduce the FARs, or an increased adaptation that
will reduce the economic costs associated with extreme events, or
preferably both.

Adaptation can make a considerable difference to the climate
change-attributed economic impact of extreme weather events right

now. Adaptationpolicies could include infrastructuredevelopment such
as building flood protection or improving early warning signal systems
for extreme weather events. A pertinent example of this, in our context,
has been implemented in continental Europe, where the 2003 heatwave
claimed upwards of 70,000 deaths, 55,400 of which were attributed to
climate change. The extremely high mortality of this event shocked
European countries into creating effective heatwave adaptation strate-
gies to prevent a repeatedhighvolumeofdeaths in the future. France, as
an example, introduced a heat warning system that is triggered after
three days of persistently high temperatures35. This systemcan enact the
closing down of schools and public areas, the operation of a public
heatwave helpline, and the opening of cool rooms in public buildings.
Thismadeamarked impact on the fatality of subsequent heatwaves. The
heatwave in 2019 was hotter than that of 2003 inmany locations, yet, in
France, there were less than 1500 deaths, compared to over 19,000 in
2003. This clearly demonstrates how a well-designed and implemented
adaptationpolicy canhelp reduce the climate change-attributed costs of
extremeweather significantly. The results of this research, we hope, can
provide an impetus to increase spending on climate change adaptation
policies as it clarifies some of their benefits, in terms of avoided harm. It
can also allow for better targeting of adaptation spending. This should
ultimately help reduce climate change-attributed economic costs from
extreme weather in the future.

For now, at the very least, more event attribution studies are
needed, and the geographical and event-type representationof studies
improved to align better with human impacts. This, in addition to
better economic data, will allow the approximation of the global cli-
mate change-attributed economic cost of extreme weather to be
improved, and thus form the basis for quantification of allocations
through the Loss & Damage Fund. As such, this attribution-based
method can also increasingly provide an alternative tool for decision-
makers as they consider key adaptations to minimize the adverse
impact of climate-related extreme weather events. This type of evi-
dence can also fill, potentially, an evidentiary gap in climate change
litigations that are attempting to force both governments and large
emitting corporations to change their policies36,37.

Methods
Allen3 suggested EEA as a method of comparing probabilities to
quantify the contribution of climate change to the probability of an
individual weather event occurrence. From this type of estimation, a
FAR metric is calculated to describe what portion of the risk of an
extreme weather event occurring is the result of climate change6. For
this methodological approach, the weather is simulated under the
current climate, and similarly, simulated under a counterfactual cli-
mate that is free from human greenhouse gas (GHG) emissions. This
provides information on the degree to which climate change has
altered the risk of event occurrence.

Economic costs of extreme weather disasters
An extremeweather phenomenon by itself is not a disaster, but when a
weather-driven hazard intersects with an exposed and vulnerable
population (i.e., populations with characteristics that make them sus-
ceptible to adverse hazard impacts2), the extreme weather event
becomes a disaster2. These events, when they occur, can cause a range
of economic impacts. The Intergovernmental Expert Working Group
on Indicators and Terminology Relating to Disaster Risk Reduction
provides a set of relevant definitions. Firstly, a disaster can cause
damageswhichoccur during and immediately after thedisaster. This is
a stock amount that is measured in physical units and describes the
total or partial destruction of physical assets, the disruption of basic
services, and damages to sources of livelihood in the affected area.
Relatedly, direct economic loss is the monetary value of these disaster
damages, for example, the monetary value of totally or partially
destroyed physical assets.
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Secondly, disasters can cause indirect economic losses, defined as
a decline in economic value-added because of direct economic loss
(damages) and/or other disruptions caused by the disaster. These
indirect losses can occur outside the disaster area and with a time lag
and are measured as a flow variable (per unit of time). Indirect losses
are more challenging to measure since they rely on developing a
counterfactual (a without-a-disaster scenario). Finally, impact is the
total effect of a disaster, including both negative effects (e.g., direct
losses) and positive ones (e.g., indirect economic gains). Impact
includes economic, human, and environmental impacts, including
death, injuries, disease, and other adverse effects on human physical,
mental, and social well-being. Some of these are intangibles that are
rarely measured systematically after disaster events. This research will
attempt to understand disaster impacts in aggregate and present them
in terms of monetary valuation, referred to as the total economic cost.
This is predominantly comprised of direct losses and the statistical
value of life lost, given the limitations of the data collected in EM-DAT.

This approach, then, does notmeasure indirect losses. Thesemay
be significant. For example, the 2023wildfires inCanada have imposed
significant economic losses not only on Canadian cities impacted by
the air pollution the fires generated, but they adversely impacted vast
swathes of the densely populated North-East region of the United
States (including New York City). None of the approaches discussed
therein can account for these indirect losses, even though these could
conceivably be orders of magnitude larger than the original damage
wrought by these events (and were likely much larger in this
specific case).

A challenge in aggregating damage data across international bor-
ders is the question whether damages have equal value in different
countries. This problem is clearest formortality. Typically, governments
explicitly or implicitly attach a value of statistical life (VSL) to risk-of-
mortality calculations, and these VSLs can be dramatically different
across different countries. In low- and lower-middle-income countries
(countrieswithGNIper capita <USD1026 andUSD3995, respectively), a
human life can be saved for a relatively much lower cost compared to
upper-middle or high-income countries, so fiscally constrained gov-
ernments in such countries typically use a much lower VSL in their
policy decisions. However, we choose to use an identical value for a life
anywhere. In this case, the flipside of this problem is to ask whether the
monetary value of asset damage can be similarly aggregated inter-
nationally. Clearly, a $1 of value in a very wealthy country/region is a lot
less consequential than a $1 in a very poor one. So as to clarify this
further, we thereforepresentmost of our results also separately for low,
low-middle, high-middle, andhigh-incomecountry groupings.Noy9 and
Wilson and Noy38 provide more discussion of this issue and propose an
alternative approach, which relies on a measure similar to Disability-
Adjusted Life Year (DALY), instead of monetary values. However, the
main argument for using a monetary unit of account herein is that our
results are thencomparable toothers (for example, in the IAMs) andcan
also form a basis for Loss and Damage calculations.

Besides notmeasuring indirect losses, we also emphasize that the
monetarymeasureweuse (aggregating lossof life anddirect damages)
disregards any concerns about distributional consequences, even
though these may very well have a significant impact on well-being.
Ourmeasure is purely utilitarian, but it could be enhancedwith explicit
assumptions about the specifications of the individual utility functions
and the aggregate social welfare function. These kinds of approaches,
however, will require a possibly controversial set of ethical and mod-
eling choices.

Using event attribution to estimate the economic costs of cli-
mate change
Allen3 proposed that EEA enables differentiating economic losses from
extreme weather between those that are caused by natural variability
and those caused by past anthropogenic activity. Frame et al.7

suggested how this approach can attribute climate change-induced
economic costs when both a fractionof attributable risk and economic
cost inputs are available for a set of individual events. The approach
they used is straightforward—multiply the fraction of attributable risk
by the estimated economic costs. With some assumptions about
aggregation and generalizability of the calculated FARs, this same
process canbe replicated acrossdifferent types of economic impacts—
including deaths, and even indirect losses—to provide individualized
assessments of the climate change-attributed value of each of these
impacts of extreme weather events. Frame et al.20 estimated climate
change-attributable insured costs ofmajorflooding events inAotearoa
New Zealand based on the aggregation of attributed costs from 12
major flooding events. Some recent papers have looked at counting
mortality and morbidity from heatwaves and attributing these to cli-
mate change39–41.

Here, we aggregate all the relevant EEA studies (see details below),
and their corresponding economic impact assessments and then
extrapolate from these to obtain an overall estimate of the climate
change-attributed impact of all recent extreme weather events glob-
ally, for which economic impact estimates are available. We then
compare these estimates to some of the existing assessments of the
current costs of climate change from the IAMs.

Other methods for estimating the global economic impact of
climate change
Most attempts to quantify the global impact of climate change use
IAMs. Well-known, well-regarded, and equally well-criticized examples
include DICE12 and FUND42. The IAMs, typically, link the economic
system with the climate system by using damage functions that
express the economic impact of climate change as a function of a
global or regionalmeanof annualmean temperature43. This, of course,
captures the change in the mean, but not in the tail ends of the dis-
tributions of extreme weather44. Therefore, these models tend to
include the costs of extreme weather using ad-hoc additional mod-
ification to the damage function, or they are omitted entirely12,45–47.

Of course, comparing the IAMs to our approach using FARs is
problematic, since the two are aiming to measure different quantities.
IAMs model the economy and measure the decline in the flow of
economic activity over time because of climate change—a very differ-
ent approach to ours. Our argument is not a criticism of the IAM
approach, per se, what we suggest is that the adjustments IAMs typi-
cally make to account for the impact of extreme weather events are
significantly understated.

Given the limited availability of FAR studies, our approach cannot
be applied across every extreme weather event. Consequently, the
global applicationwepursue here relies on the extrapolation of known
FAR values to other events for which there are no EEA studies, and a
reliance on patchy economic data, to assess impacts (we discuss these
data limitations further in the following sections). Van Oldenborgh
et al.22 argue that, with the current stock of EEA studies, we should
consider the possible selection biases in the availability of EEA studies.
Generally, events with higher human and economic impacts will be
more likely to be analyzed, events in high-income regions and more
densely populated areas aremore likely to receive attention, and event
types that become less likely because of climate change may be
underrepresented in the analyses as well22,48.

However, given the fundamental importance of empirical evi-
dence to drive an informed climate change policy response, we use
aggregation and extrapolation based on available knowledge, while
acknowledging the limitations and inherent biases that might detract
from the accuracy of such an exercise. Implicitly, we assume that the
significant disaster events for which attribution studies are available
are representative of the other damaging disasters of the same type,
occurring in the samegeographical region. Given the lack of a superior
alternative, we see this is as an acceptable approach. We argue that all
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current approaches to estimate the costs of climate change are limited
by their methodological straightjackets.

Indeed, we argue below that the conventional IAM assessments is
even less robust, and underestimates many of the most important
impacts associated with extreme weather. This makes the exploration
of an alternative and complementary cost estimation method funda-
mentally important, even if this method has its own flaws.

Dataset collection and terminology
The fraction of attributable risk (FAR) is a metric that describes the
portion of the risk of the extreme weather event for which anthro-
pogenic climate change is responsible. When the risk of an event has
increased due to anthropogenic GHG, it is calculated as shown in Eq.
(4). This can be referred to as the fraction of attribution risk (FAR).

FAR= 1� P0

P1
ð4Þ

P0 = Probability of a climatic event without anthropogenic GHG
present.

P1 = Probability of the event occurring within the current climate
system (with anthropogenic GHG).

A FAR value of 1 means that the event would not have been pos-
sible in the absence of anthropogenic climate change.While a FAR of 0
indicates that climate change had no influence on the probability of
the event occurring49. More information on the data collection pro-
cedures we used is available in the Supplementary Information File.

To assess the economic cost of mortality, we utilize Value of
Statistical Life (VSL) calculations; this is the standard approach inmany
policy decisions (for example, about road improvements for safety).
The VSL describes a marginal rate of substitution between money and
mortality risk in a defined period50 and the VSL estimates differ very
dramatically across countries51. The VSL we use here is an average of
two VSL estimates used by the governments of the United States and
the United Kingdom. The first is the United States Department of
Transportation estimate for 2020, which sets the VSL at US$ 11.6 mil-
lion, which itself is an average of VSL estimates from across the aca-
demic literature52. The second estimate is from the UK Treasury, which
assesses the VSL to be £2 million, estimated from average values from
survey data looking at representative samples of the population53.
According to Viscusi54, the non-US median VSL is $7.36 million
(adjusted to 2020 USD). For this study, the benchmark result of US$
7.08million per life lost is used, which incidentally is not very far from
the non-US median reported by Viscusi55. For simplicity, and more
importantly on equity grounds, we use this same VSL for deaths in
every country/region, and every year, implying that death has an
equivalent economic value regardless of the time and place in which it
occurred.

Data for individual extreme weather events were matched, where
both a FAR and economic data had been collected. These events were
collated to form the dataset that provides the basis for our empirical
analysis. The available data were refined to ensure the master dataset
contained the best-available estimates for each included event.

When events with multiple attribution studies were available, the
Scimago Journal Rank (SJR), in the year of publication, was used as a
proxy for the research quality. The SJR impact factor was sourced from
https://www.scimagojr.com/; it represents the rank of a journal’s sci-
entific influence and is calculated from a weighted measure of the
citations a journal receives. The weighting is determined by the pres-
tige of the publishing journal from which a citation originates54. We
acknowledge, of course, that this procedure is not full proof, and
papers that are sometimes considered better are published in lower-
ranked journals. However,wewanted touse analgorithm thatdoes not
require any subjective judgment.

A FARmeasurement for a specific event is consideredpreferable if
it comes froma higher SJR publication. For rapid studies conducted by
the World Weather Attribution network, there was no recorded SJR as
they are not refereed but are done by a large group of specialized
climate scientists. Therefore, the average of the SJR impact factor
scores for all other studies in the database was used as a rank forWWA
studies when comparing them to others. When there are multiple
attribution studies for the sameevent, with the same SJR, the preferred
FAR was that with the closet spatial and temporal match to available
economic data (as FARs candiffer based on temporal and spatial event
definition). When the scale is matched closely to economic data, the
attribution of the cost will be more accurate.

The final dataset includes 185 events spanning 2000–2019. These
events are gathered from 118 event attribution studies, as many attri-
bution studies cover more than one event. Figure 6 depicts the hier-
archical criteria applied in choosing the sample of attributed extreme
weather events used to determine the FAR for analysis in this study,
which is applied to the 2nd level of extreme events in the figure, that is
4864 events with human and/or economic costs recorded in EM-DAT.

Methodological approach
Allen3 states that “If [climate change] has trebled the risk over its ‘pre-
industrial’ level, then there is a sense in which [climate change] is ‘to
blame’ for two-thirds of the current risk….” (p. 891). This framing
suggests that if anthropogenic climate change has made an extreme
weather event three times more likely, then climate change is
responsible for two-thirds of the economic cost caused by the set of
similar events. Put differently, two out of each three events of the same
class, and with the same calculated FAR, were caused by climate
change, while the third would have happened even in a pre-industrial
climate. Consequently, for each event (i) in the master database, we
use Eq. (5) to estimate that individual event’s climate change-attributed
economic cost.

CCcosti = FARi � costi ð5Þ

Applying this approach to all events in the master dataset provides an
estimation of the climate change-induced costs associated only with
this specific list of events. To generate an estimate of the global cost of
climate change from extreme weather events, we used the FARs from
attribution studies in the dataset we collected and all the economic
cost of extreme weather events across 2000–2019 recorded in EM-
DAT. The events are limited to heatwaves, floods, droughts, wildfires,
and storms, implicitly employing the EM-DAT definition of an extreme
event. For inclusion in EM-DAT, an extreme event is one for which at

Fig. 6 | The sampling method. Of the whole ‘universe’ of extreme weather events
(EWE), 6135 EWE are recorded by the EmergencyManagement Database (EM-DAT).
If these 4864 recorded quantities for damages/deaths, but only 185 were matched
with at least one of the 357 papers on attribution included in the CarbonBrief
database.
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least one of the following three criteriamust be fulfilled: (1) 10 ormore
deaths; (2) 100 or more people affected/injured/homeless; or (3)
declarationby the countryof a state of emergencyand/or an appeal for
international assistance.

Two extrapolation methods were used—a global average extra-
polation method and a regional average method. The global average
extrapolation method relied on obtaining an average FAR for each
specific type of event occurring anywhere from the FAR results
recorded in the dataset. This event-type average FAR was then multi-
plied by the economic costs and mortality of all the relevant events in
EM-DAT over the 2000–2019 period. The average FARs are calculated
from individual attribution studies in the dataset (118 observations)
rather than the FARs from the 185 individual events. This is because
some studies cover a large number of events. Calculating an average
FAR with each event as an individual data point would lead to much
greater weight being placed on a smaller number of multiple-event
studies.

The regional average extrapolation method was conducted by
calculating an average FAR per event type and per continent. This was,
similarly, calculated from individual attribution studies rather than
events. This regional average FAR was then multiplied by the relevant
event-type and region-specific events in the EM-DAT database and
subsequently aggregated. This (partial) accounting for differences in
how climate systems influence extreme weather across different
regions is clearly an advantage of the regional approach. However,
there are no, or very few, FAR studies for some event-type and con-
tinental combinations. For example, only one study examined a heat-
wave in Africa, so a regional extrapolation result relies solely on this
one study, creating potentially an over-reliance on one modeling
approach.

Furthermore, where there are no available attribution studies, for
example, on storms in Europe, the global average for that event type is
used as a substitute to fill in this data gap. There are significant number
of event-type-region combinations for which this global compromise
was necessary. The difference between the two methods, therefore, is
not as large as it probably should be. In the future, with a more
extensive set of attribution study results, it would clearly be preferable
to use an approach that distinguishes between types of events, their
location (even within continental-size regions), and potentially even
their magnitude.

Extreme event attribution data
Of the 185 extreme weather events, the risk of 154 of these events
increased because of anthropogenic climate change, while another 24
events were associated with decreased risk, and the risk of the
remaining 7 events was unchanged (FAR =0). These events cover the
period from2000 to 2019. Notably, 77% of these events occurred after
2013, because EEA studies have been conducted increasingly fre-
quently only in recent years. Given the rapid evolution of the EEA
methodology, the dominance of more recent studies in our dataset
means the FAR records used for the results reflect mostly the higher
quality, recent EEA research practices. A significant number of events
are recorded for 2015 because of the study by Zhang et al.56, which
covers a large spatial and temporal scale. With a larger dataset, we
would have been able to place greater weight on more recent FARs, to
reflect their higher reliability. However, our approach relies on a sig-
nificant time span (in this case, 20 years) to account for the stochastic
component in these event occurrences. If we were to place greater
weight on, say, the last 5 years in the dataset, then our results will
depend on what actually (stochastically) happened in those 5 years.

The geographical coverage of the matched attribution results
included in the dataset is also important to note, as there are sig-
nificant deficiencies in some regions. The studies cover Africa (10% of
the studies), Asia (28%), the Americas (24%), Europe (20%), and Ocea-
nia (18%). North and South America are collected here as one grouping

because there are very few FARs calculated for South America. The
events in South America make up only 5% of the total matched events
in the dataset (7 events in the aggregate across all event types). The
matched events span 52 different countries. Events in China, the Uni-
ted States, New Zealand, the Philippines, Japan, the United Kingdom,
and Australia combined make up over half (54%) of the total dataset.
Similarly to the time-series coverage, this is impacted by attribution
studies covering multiple events in a defined region, including Zhang
et al.56 that covered 26 cyclones across the Western North Pacific.

By construction, the dataset contains six types of extreme
weather events. Notably, 52% of the attribution results in the master
database are associated with high-temperature phenomena—heat-
waves, droughts, or wildfires (31%, 16% and 4%, respectively). The
remainder are either hydrological events–specifically floods (37%) and
storms (5%)—or cold waves (6%).

In the initial search, we identified 112 weather events with at least
one associated FAR, but which did not have matching economic data.
A majority of these (51%) were heatwaves, since the science of attri-
bution is well-established for heat events but measuring the economic
impact of heatwaves is challenging and is rarely undertaken. After all,
the main impact of heatwaves, aside from mortality, is their indirect
losses in theflowof economic activitywhich are substantially harder to
identify and measure than damages (stocks). These under-measured
heatwave losses include economic disruptions due to disturbed
hydroelectricity distribution, transport failures, ongoing harm to
agricultural crop yields and health, and harm to the natural
environment57,58. Moreover, a further 25% of events without economic
data are droughts—with the majority occurring in Africa—which is
reflective of the geographically uneven distribution of disaster cost
records between lower and higher-income regions.

All the events included in the dataset have at least one FAR
associated with them. Of the 185 events, 47 have multiple relevant
attribution studies. For each, the best FAR was selected based on the
spatial and temporal match between the FAR study and the available
economic data (see more details in the data collection section). The
distribution of FAR attribution results is shown in Fig. 7. The peak at
0.3–0.4 is predominantly due to flood events—which make up 80% of
the attribution results in this range.While 90%of the events with a FAR
of between 0.7 and 1 are related to high temperatures, namely heat-
waves, droughts, and wildfires. Interestingly, half of the attribution
results with a zero or negative FAR are floods, while 32% are, less
surprisingly, cold events. The remainder are three drought events with
a zero FAR.

To allow a global extrapolation of climate change-attributed costs
to be made, a global average FAR for each event type has been

Fig. 7 | Fraction of Attributable Risk (FAR) distribution across matched attri-
bution results. This figure shows the number of attribution events for each dif-
ferent FAR range, by the type of weather event.
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calculated. On average, 77% of the risk of heatwaves occurring over the
study period is due to anthropogenic climate change. Floods show the
greatest distribution range and are the only event type where attri-
bution results span both increasing and decreasing risk due to climate
change. The global average FAR for floods, however, is 19%. Similarly,
as for droughts (44%), wildfires and storms each have a FAR of 60%;
however, these are calculated from a small number of data points.
Lastly, on average, cold events are calculated as having a decreasing
risk (−79%) because of climate change.

An average FAR per-continent per-event type has also been cal-
culated to reflect the lack of uniformity in the global climate system
(Fig. 8). There were very few, or any, matched attribution results to
form the basis of a regional average FARs in many continent-type
combinations.

Economic data
The following section describes the features of the economic cost data
collected regarding the events in the master dataset that is based on
EM-DAT—the most comprehensive global database of disaster
impacts. EM-DAT defines a disaster event as one that surpasses a
clearly defined threshold of damage caused (10 people dead, 100
people affected, an official emergency declaration, or a request for
international assistance). As such, what is missing is a large number of
small disasters, whose frequency may have risen because of anthro-
pogenic climate change. An alternative database that does aim to
capture these high-frequency low-impact events, Desinventar, is not
available globally (Desinventar is collected andmanaged by theUnited
Nations Disaster Risk Reduction Office).

While for disasters more broadly, EM-DAT records deaths, dis-
locations, people affected, and monetary damages, here we use only
the mortality metrics and monetary damage (if these are recorded).
The other components include such a diversity of outcomes (from
dislocation lasting just a few days to permanent and significant phy-
sical and mental injuries), are often inconsistently collected, and are
missing formany disaster events, that we have decided to ignore them
in our analysis. As such, our aggregation only includes death and
damage (as defined earlier).

In the dataset, 114 of the 185 events have mortality estimates.
Thirty-nine of these events are responsible for at least 100deaths each,
nine eventswithmore than 1000 lives lost, and four are responsible for

the deaths of over 10,000 people—a heatwave in Russia (> 55,000
deaths), a drought in Somalia (20,000 deaths), a heatwave in France
(> 19,000 deaths), and a cold event in the United Kingdom (27,500
deaths). The total number of deaths recorded from the events in this
dataset is 151,083, equivalent to a statistical value of life lost ofUS$ 1.07
trillion (using a VSL of $7.084 million).

Of the 185 events included in the dataset, 115 events have esti-
mates for the economic damages caused. Across these 115 events, the
total disaster damages stand at US$ 492.2 billion. The event with the
highest damage recorded in this list of events is Hurricane Harvey in
theUnited States in 2017, atUS$ 100.3 billion. Harvey provides a useful
exampleof someof themurkiness indefinitions. EM-DATclassifies it as
a tropical storm, and indeed the name refers to the hurricane. How-
ever, by far most of the damage was caused by the flood which the
rainfall that camewith the hurricane generated. The attribution papers
that analyzed the event focusedon the changing likelihoodor intensity
of the rainfall event, and not on the storm (measured and classified by
windspeed). We follow the EM-DAT classifications, since these are
available for all events, but note that these distinctions are not always
immediately apparent.

Eighty-four of the events have estimated damages greater than
US$ 100million, and 8 of those are over US$ 10 billion. A small number
of events in the dataset have insured loss estimates associated with
them (48 out of 179). These data are heavily skewed to small number of
countries, notably the United States, New Zealand, Australia, and
Japan, as well as China. The restricted quality and quantity of data
collection in low-income countries is one underlying reason for this,
but it is also symptomatic of higher insurance penetration rates in
high-income countries. Insurance costs from Hurricane Harvey in the
United States and Hurricane Maria in Puerto Rico have the highest
insurance payouts at US$ 31.7 billion each ($30 billion in 2017 US
dollars).

For all of these events, indeed for all the events we analyze here,
the causes of the damage are complex, and are not just due to the
hazard itself. The 2010 heatwave in Russia is a good example. In
Moscow, mortality mostly arose from air pollution frompeat fires that
occurred in the surrounding area. The fires occurred due to a combi-
nation of drought and heat, but also the legacy of a Soviet policy of
draining bogs, widespread ignition by humans, and confusion and
inaction following a new Russian policy shift that had just transferred

Fig. 8 | Regional average Fraction of Attributable Risk (FAR) by event type. This figure depicts the mean and the range of FARs matched, per weather type and by
region. The number on the top of each vertical line represents the number of events for that region-type combination.
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wildfire control from the national to the regional governments. Our
analysis, however, assumes a ceteris paribus world in which all other
pre-conditions still exist, but the amount of GHG in the atmosphere is
pre-industrial. Clearly, one should view this counterfactual as a
thought experiment, rather than a realistic scenario, since without the
industrial revolution of the last 150 years, nothing in our world would
have been the same.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data generated in this study have been deposited in theHarvard
Dataverse database [https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/N3ED1N]. The data are available under
unrestricted access. More description of the data processing in this
study are provided in the Supplementary Information File.
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