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Deep mutational scanning reveals the
molecular determinants of RNA polymerase-
mediated adaptation and tradeoffs

Alaksh Choudhury 1,2 , Benoit Gachet1, Zoya Dixit1,3, Roland Faure 1,4,5,
Ryan T. Gill6,7 & Olivier Tenaillon 1,3

RNA polymerase (RNAP) is emblematic of complex biological systems that
controlmultiple traits involving trade-offs such as growth versusmaintenance.
Laboratory evolution has revealed that mutations in RNAP subunits, including
RpoB, are frequently selected. However, we lack a systems view of how
mutations alter the RNAP molecular functions to promote adaptation. We,
therefore, measured the fitness of thousands of mutations within a region of
rpoB undermultiple conditions and genetic backgrounds, to find that adaptive
mutations cluster in twomodules. Mutations in onemodule favor growth over
maintenance through a partial loss of an interaction associated with faster
elongation. Mutations in the other favor maintenance over growth through a
destabilized RNAP-DNA complex. The two molecular handles capture the
versatile RNAP-mediated adaptations. Combining both interaction losses
simultaneously improved maintenance and growth, challenging the idea that
growth-maintenance tradeoff resorts only from limited resources, and
revealing how compensatory evolution operates within RNAP.

Protein evolution has been traditionally understood as the process of
optimizing functions linked to a single trait1. However, over billions of
years, proteins and protein complexes have also evolved to control
multiple cellular traits. The molecular drivers for the evolution of
multi-trait proteins are more complex than those of single-trait pro-
teins, as multiple traits cannot be optimized simultaneously2.
Improving a trait often leads to tradeoffs in others3,4. However, it is not
known if tradeoff-associated traits are controlled by common residues
in the protein, or if they are partitioned into independent sectors or
modules5. An important example of amulti-trait protein complex is the
RNA polymerase (RNAP), which not only performs transcription but
also regulates cellular resource allocation through gene expression. In
response to changes in the environment, the RNAP helps allocate
resources for expressing genes pertinent to the environment and

determines the cell’s phenotype6. Through regulation, the RNAP con-
trols multiple traits that are associated with tradeoffs, as allocating
resources to certain functions may deviate them from others7,8. For
instance, under stringent regulation, the RNAP universally controls
resource allocation between growth and maintenance7,9.

The RNAP is themost frequently targeted protein complex for the
adaptive laboratory evolution of Escherichia coli in diverse environ-
ments, such as growth in minimal media, high temperature, tolerance
to industrial chemicals and antibiotics, long-term starvation, and silver
nanoparticles; and even in cells with extreme modification such as
genome size reduction by amillion basepairs10–19. Therefore, the RNAP
has garnered significant fundamental interest in understanding com-
plex clinical phenotypes, and industrial interest for strain engineering
in biotechnology and synthetic biology applications. RNAP is also a
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target for essential antibiotics, such asRifampicin against tuberculosis.
The fitness costs of the rifampicin resistance-conferring clinical RNAP
mutations may promote the emergence of extreme drug resistance
and multidrug resistance strains20–22. Therefore, understanding RNAP-
mediated evolution also has broad industrial and clinical significance.

Despite its ability to allow rapid adaptation in multiple environ-
ments, the sequence of the RNAP is highly conserved across all
domains of life23. Moreover, during ALE, the selected mutations spe-
cifically target residues that are broadly conserved24. According to a
dominant hypothesis, RNAP mutations rewire global transcription to
match the expression requirements for the specific selection
environment25. However, RNAP mutations are also often highly pleio-
tropic i.e., selected RNAP mutations have benefits across multiple
conditions. While some mutations in RNAP can improve growth on
multiple sugars3, others can promote cross-stress resistance12,26.
Alternatively, the mutations are also often involved in trade-offs27.
While improved growth can increase pH sensitivity, decrease motility,
and antibiotic persistence3; RNAPmutation-mediated improved stress
tolerance can decrease growth12,14. Due to the pleiotropy, it is difficult
to identify the specific cellular traits under selection and delineate the
true systems’ impact of adaptive RNAP mutations.

Previous studies have characterized a few RNAP mutations at sys-
tems andmolecular scales. At a systems level, RNAPmutation-mediated
adaptation and trade-offmay be associatedwith a global rebalancing of
resources3. For example, transcriptomic analysis of a couple of RNAP
mutations, which improved growth in minimal media with different
sugars, revealed a global rewiring of transcription to favor growth-
associated functions at the cost of genes associated with stress
response3. The global rewiring of transcription could be linked to
molecular changes in theRNAPwhich favors the expression of one class
of genes over the others. For instance, a few mutations selected for
improved stress tolerance and long-term starvation fall into a category
of RNAP mutations called “stringent” mutations12,14. Some RNAP strin-
gent mutations are known to impact the stability of one of the open
complex intermediates to favor the expression of stress-associated
genes over growth28. Would that mean, the growth-improving muta-
tions also act on the open complex stability? Although the RNAP has
been extensively characterized structurally and biochemically in vitro29,
its subfunctions, and interactions are not clearly associated with sys-
tems traits. Studying multiple mutations in multiple environments can
increase the predictive power of their systems’ effect and identify
tradeoffs27. However, due to a paucity of the characterizedmutations, it
is not known if tradeoff-associated traits are controlled by the same or
different molecular subfunctions; and if and how systems-level trade-
offs have influenced the evolution of the RNAP.

To build an RNAPmolecular function–systems phenotypemap, we
can characterize a large number of RNAP variants using high-
throughput deep mutational scanning or DMS. In DMS, the fitness of
thousands of variants is measured concurrently for a sequence of
interest30. Upon subjecting the library of variants to a selection pres-
sure, the frequency of variants changes due to their associated fitness.
The frequencies of beneficial variants increase and the deleterious ones
decrease. A log change in the variant frequency (measured using deep
sequencing) relative to the wildtype sequence provides a fitness esti-
mate.Mapping thefitness scores on the protein sequence and structure
provides significant insights into protein function and evolution
(Fig. 1a). When protein fitness is associated with cellular reproductive
success, DMS also provides insights into the systems impact of protein
mutations; such as collateral growth effects of protein misfolding, cost
of resistance, and effects of metabolite flux and toxicity31–33.

It is important to perform DMS for essential protein complexes,
such as the RNAP, in their native genomic context. Plasmid-mediated
DMS can be confounding due to changes in gene expression, copy
number effects, and loss of epigenetic regulation34. We recently
developed CRISPR/Cas9-mediated genomic error-prone editing

(CREPE) technology for deep mutational scanning of essential genes,
in their native genomic context in E. coli32. CREPE exploits Cas9-
mediated recombineering to replace a genomic target with an error-
prone PCR library to develop a variant library with high mutation
efficiency (~50–80%)32. The rich diversity allowed precise fitness esti-
mates to gain a mechanistic and biochemical understanding of anti-
biotic resistance targets32.

Here we apply CREPE to understand molecular determinants of
RNAP-mediated adaptation and tradeoffs (Fig. 1a). By analyzing adap-
tive mutation databases, we identified a region within the RpoB sub-
unit of the RNAP where mutations improved fitness in multiple
environments. We used CREPE to generate a rich library of 6000 var-
iants with mutations targeting this region and measured the fitness of
the variants in multiple environments. According to the dominant
GTME hypothesis, mutations in the RNAP allow for condition-specific
adaptation. We mapped the fitness, measured at a residue-level pre-
cision, to the target sequence and structure, and identified residue
clusters important for adaptation in different environments (Fig. 1a).
Adaption in some environments was associated with tradeoffs in oth-
ers. So, we were able to evaluate if tradeoff-associated traits were
controlled by common ormodular clusters of residues. Consequently,
we gained a mechanistic understanding of RNAP-mediated adaptation
and trade-offs; and crucial insights into the molecular drivers of
complex protein evolution.

Results
A hotspot for adaptive mutations occurs in the RNAP
Recently two databases, the Resistome, and the E. coli mutation data-
base cataloged 5000 and 15000 mutations identified in adaptive
laboratory evolution respectively17,18. According to both studies, the
RNAP and more specifically the β subunit of the RNAP (RpoB) is the
most frequently targeted site for adaptive laboratory evolution to
diverse stresses17,18. Mutations in rpoB were selected in ~31% of the 178
evolution conditions; the most diverse compared to any other gene17.
We found that 40% of all known RNAP mutations were concentrated
within a 100 amino acid region between the positions 500–600
(Fig. 1b). Mutations within this “target” region were selected in more
diverse environments compared to any other region of the RNAP. The
conditions include improved fitness in minimal media with multiple
sugars such as glucose3, lactate10, and glycerol3, and in the presence of
different stresses including high osmolarity, hydrogen peroxide, and
butanol26, high temperature11, antibiotic resistance and cross-
resistance19, and silver nanoparticles15 (Fig. 1b). Due to its ability to
improve fitness in diverse environments, the target region is an ideal
model to study RNAP-mediated adaptation.

The region occurs close to the catalytic core of the RNAP and
contains residues that interactwith theDNA (non-template strand) and
the RpoC subunit of the RNAP (Fig. 1c).We estimated the conservation
score for RpoB using the consurf algorithm35. A higher Consurf grade
corresponds to high conservation and functional importance. The
target region had the highest Consurf score compared to the entire
RpoB protein (Krushkal Wallis H-test, KWH-test, p-value < 10^−16)
(Fig. 1d). Therefore, the target occurred in a highly conserved and
potentially functionally important region of the RpoB.

Using CREPE, we developed a library of ~6000 variants in the
target in wild-type E. coli, with single and multiple mutations per var-
iant (Supplementary Fig. 1a, b). We estimated the variant fitness in five
conditions with different sugars and stresses: M9 minimal media with
glucose, glycerol, and galactose, M9 minimal media with glucose and
high osmolarity (0.3MNaCl), andM9minimalmedia with glucose and
0.6% Butanol (Supplementary Fig. 1c, d, Supplementary Table 1). We
chose conditions in which RNAP mutations had been previously
reported. During the evolution, the variant frequency increases for
beneficial mutations and decreases for deleterious ones (Fig. 1a). We
measured the variant fitness as the slope for the log change in variant

Article https://doi.org/10.1038/s41467-023-41882-7

Nature Communications |         (2023) 14:6319 2



frequency, relative to a wildtype control (material and methods). We
validated the fitness using multiple methods (Supplementary Note 1).
To make inferences using mean growth-associated fitness and mean
stringent enrichment, we also verified that we sampled substitutions
with a broad range of physio-chemical properties in the target (Sup-
plementary Note 1 and Supplementary Fig. 1e, f).

Beneficial mutations show cross-environment adaptation
RNAP mutations are often pleiotropic as improved fitness in one
environment can impact fitness in other environments. At position 526,
the same mutation H526Y improves fitness in the presence of anti-
biotics and silver nanoparticles15,19 (Fig. 1a). At positions 545 and 546,
the same mutation improves growth in minimal media with different
sugars such as glucose, glycerol, and xylose3. Similarly, an osmoto-
lerantmutation at position 569 also improves fitness in the presence of
butanol, hydrogen peroxide, and at low pH26. RNAP mutations also
have trade-offs. Growth-improving mutations at residues 545 and
546 show decreased motility, decreased antibiotic persistence, and
decreased pH resistance3. We evaluated the extent of cross-
environment adaptation or tradeoffs by correlating the fitness of the
variants between environments. A correlation of fitness for beneficial
mutations between environments would suggest cross-environment
adaptation. Alternatively, positive fitness in one environment and
negative in the other, tomake a Y-shaped correlation, would signify the
presence of a tradeoff (Fig. 2a). The variant fitness was strongly

positively correlated across environments (Fig. 2b). Therefore, the
beneficial target mutations were generalist because they improved
fitness in multiple environments. The beneficial mutations likely
impacted a common global trait, as opposed to condition-specific
traits. We individually reconstructed several beneficial mutations and
found that each beneficial mutant had an increased growth rate in the
minimal media used for the adaptation experiment (Supplementary
Fig. 2a, b). Therefore, we posited that the target region was involved in
RNAP-mediated growth control.

The target region is involved in growth control and stringent
response
The growth rate is regulated by many mechanisms including the
stringent response8. In fast-growing cells, most of the cellular RNAP
transcribes growth-associated genes such as ribosome biosynthesis
genes. Upon experiencing stresses such as starvation, heat shock, and
nutrient downshifts, the stringent response redirects the RNAP by
inhibiting the transcription of growth-associated genes and activating
the expression ofmaintenance genes such as amino acid biosynthesis9.
We hypothesized that the target region may be involved in stringent
regulation. The lag i.e., the time required to adapt to nutrient down-
shifts is determined by the stringent response3,36. We found that all
reconstructed growth-improving RpoB mutants had significantly
increased lag times for glucose to acetate transition (Supplementary
Fig. 2c). Multiple growth-favoring RNAP mutants also had a delayed
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Fig. 1 | Mutations in the “target” sequence of the RNAP β subunit (RpoB)
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evolution mutation map of RpoB depicting mutations identified in different
environments (colored peaks), with the target region highlighted. Conditions
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induction of maintenance-associated (stringent response-induced)
amino acid biosynthesis gene hisG compared to the wild-type RNAP
(Supplementary Fig. 2d).

Therefore, we postulated that the target may also contain resi-
dues where mutations favor the stringent response and reduce
growth. Stringent mutations of the RNAP can be selected by imposing
amino acid starvation in the ΔrelAΔspoT strain of E. coli28. When E. coli
experiences external stress or starvation, there is an increase in the
concentration of the small molecule alarmone ppGpp. ppGpp and the
transcription factor DksA bind to the RNAP to induce conformational
changes in the RNAP9. These conformational changes activate the
transcription of genes important for maintenance/starvation response
such as amino acid biosynthesis9. Therefore, null ppGpp strains, such
as ΔrelAΔspoT strain of E. coli, with both ppGpp synthesis enzymes
(RelA and SpoT) deleted, are auxotroph for amino acids. ΔrelAΔspoT
strains of E. coli cannot grow inminimalmedia in the absence of amino
acids. Stringent mutations of the RNAP mimic the ppGpp-bound state
to escape the auxotrophy by constitutively activating the amino acid
biosynthesis genes (Supplementary Fig. 3a)28. Consequently, the
stringent mutations of the RNAP favor maintenance/starvation-asso-
ciated functions. We constructed a library of variants within the target
region in the ΔrelAΔspoT strain of E. coli. We observed significantly
more CFUs for the RpoB library in the ΔrelAΔspoT strain compared to a
non-edited control upon plating on minimal media without amino
acids (Supplementary Fig. 3b). We measured the variant stringent
enrichment (fitness) as a log change in variant frequency before and
after plating on M9-Glucose relative to the wild-type control (Supple-
mentary Fig. 3c). We identified 123 single (and ~418 total) stringent
mutations within the target, including previously described stringent
mutations (Supplementary Fig. 3b, c and Supplementary Note 1, 2,

Supplementary Table 2). The presence of stringent mutations within
the target suggested its role in the stringent response.

The stringent response regulates resources between growth and
maintenance. It is proposed that the resources are “limited”. Conse-
quently, favoring one objective is proposed to be associated with a
tradeoff with the other7 (also seen above for some growth-improving
mutations, Supplementary Fig. 2c, d). Upon correlating the growth-
associated fitness and stringent enrichment, we observed a tradeoff-
associated Y-shaped correlation (Fig. 2c). However, contrary to
expectation, we observed some mutations that were both stringent
and had significantly improved growth as well (Fig. 2c).

Modular residue clusters determine the growth and stringent
phenotypes
Some stringentmutations of the RNAPwithin the target are known to
decrease the stability of an initiation open complex intermediate to
inhibit growth-associated genes and activate amino acid
biosynthesis28 (Supplementary Table 3). Due to the observed trade-
offs, we hypothesized that both growth-improving and stringent
mutations within the target could be associated with open complex
stability-determining residues. We mapped the mean growth-
associated fitness and mean stringent enrichment on the target
sequence. As opposed to our hypothesis, the residues with high
growth-associated mean fitness and the ones with high mean strin-
gent enrichment rarely coincided (Fig. 3a, b). Rather we observed a
residue-level specificity for multiple positions i.e., if mean growth-
associated fitness was high, the mean stringent enrichment was low
and vice versa (Fig. 3a).

To uncover the molecular mechanisms underlying these selec-
tions, we analyzed the organizationof thefitness-conferringmutations
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Source Data file.
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within the RNAP structure. The target region interacted with the RNAP
RpoC subunit and the DNA (Fig. 3b). Univariate and multivariate ana-
lysis revealed that the growth-associated fitness was negatively cor-
related with distance from RpoC but not with distance from DNA
(Fig. 3c and Supplementary Table 4). In contrast, the stringent
enrichment was negatively correlated with distance from DNA but not
with distance fromRpoC (Fig. 3d and Supplementary Table 4). Despite
being associated with sequentially and structurally proximal residues,
each phenotypemay be controlled largely by a specific set of residues,
likely associated with different molecular interactions.

Internal target or target-DNA interactions determine the strin-
gent phenotype
We identified 123 unique single stringent mutations of the RNAP dis-
tributed across the target region (Fig. 4a). Stringent mutations of the
RNAP alter the stability of an initiation open complex intermediate28.

Amongst several other factors, the stability of the open complex is
determined by interactions with the non-template strand of the DNA37.
Accordingly,mutations in several DNA-proximal residues 532-534, 536-
538, and 543-544 led to the stringent phenotype (Fig. 4b and Fig. 4c). In
this cluster, substitutions in the hydrophobic residues to amino acids
with polar, charged, and bulky side chains, which could interfere with
DNA interactions, led to the stringent phenotype (with significantly
higher stringent enrichment compared to both synonymous muta-
tions and hydrophobic residues KWH-test, p-value = 10−8 and 10−3

respectively, Supplementary Fig. 4a, b). The cluster contained a beta-
turn with the Glycine 534. Unlike other hydrophobic residues, muta-
tion of this glycine to any other residue types (hydrophobic, polar, or
charged), resulted in stringent polymerases (Fig. 4c). The glycine
residue is important for the folding in the beta-turn motif38. This sug-
gested that residue 534, and likely the beta-turn motif, played a role in
the open complex intermediate stability.
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response. a Residue-wise mean growth-associated fitness for all mutations (green
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distance of the residue from the β’ RNA polymerase subunit (RpoC) (left), and
growth-associated fitness and the minimum distance of the residue from the DNA
(RpoC) (right). Source data are provided as a Source Data file.
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Mutations in another set of internal residues also led to the
stringent phenotype (Fig. 4b). Within this cluster, a mutation in the
tyrosine residue at position 563 is known to decrease open complex
intermediate stability28.Weobserved that the side chainof the tyrosine

residue had a predicted internal polar interaction within the target
region (Fig. 4d). Mutations that would disrupt the internal polar
interaction at position 563, including the open complex intermediate-
destabilizing mutation, were stringent (Supplementary Fig. 4c).

a

b

d

c

Internal Residues with >5 stringent mutations

e

DNA-proximal residues with >5 stringent mutations

R548

T563

N573
R557

T553

H551

H554

RpoC
(Bridge Helix)

DNA
Non-template

strand

  180OC

A532
L533

G534

G536
G537

L538
A543

G544

DNA 
Non-template 

strand

G536
G537

L533

A532
A543

G544

V547

T553

R557

N573

Stringent
Enrichment

St
rin

ge
nt

En
ric

hm
en

t
St

rin
ge

nt
En

ric
hm

en
t

Fig. 4 | Stringent mutations within the target. a Residue-wise distribution of
stringent enrichment for each variant (dots). Variants (blue dots) above the cut-off
(grey dashed line, Supplementary Fig. 3C) are stringentmutations of the RNAP. The
yellow triangles represent the mean enrichment score. b Internal (dark blue) and
DNA-proximal (light blue) target residues with greater than five unique stringent
mutations mapped on the target structure. c (Left) DNA-proximal residues with
high mean stringent enrichment (blue sticks). (Right) A bar plot (blue) of the
stringent enrichment score of non-synonymous (blue) and synonymous (red)
mutations in the residue G534 relative to the cutoff stringent-enrichment score
(greydashed line, Supplementary Fig. 3).Withineachbox, the horizontal black lines
represent median values, lower 25th percentile and upper 75th percentile bounds,
and the whiskers represent extreme values in the 1.5× interquartile range. There
were 28, 10, 64, 122, 4, 2, 40, 6, and 2 independent observations for variants top-
bottom in theplot. Anobservation represents an independentfitnessmeasurement
of a synonymous variant of the focal mutation in two biological replicates

(Supplementary Note 1). d (Left) Residues with high mean stringent enrichment
(blue sticks) with internal polar interactions (red lines). (Right) A bar plot (blue) of
the stringent enrichment score of non-synonymous (blue) and synonymous (red)
mutations for some highlighted residues relative to the cutoff stringent-
enrichment score (grey dashed line, Supplementary Fig. 3). Within each box, the
horizontal black lines represent median values, lower 25th percentile and upper
75th percentile bounds, and the whiskers represent extreme values in the 1.5×
interquartile range. There were 70, 2, 2, and 6 independent observations for T533
variants and 44, 42, 12, and 5 independent observations for R557 variants left to
right in the plot. An observation represents an independentfitnessmeasurement of
a synonymous variant of the focal mutation in two biological replicates (Supple-
mentary Note 1). e Residues with high mean stringent enrichment (blue) with red
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Similarly, in several other residues 548, 551, 553, 554, 557, 563, and 573
had predicted internally-interacting polar side chains and mutations
that disrupted the polar interactions were stringent (Fig. 4d and Sup-
plementary Fig. 4c). Therefore, the internal polar interactions also
determined the stringent phenotype by controlling the open complex
intermediate stability.

The internal residues, such as 563, that affected the open complex
intermediate stability were far away from the DNA-interacting resi-
dues. We posited that the distant residues possibly interacted with the
DNA-proximal residues. Previous work has also suggested allosteric
interactions between RpoC (BridgeHelix)-proximal andDNA-proximal
residues to effectuate stringent response39. Possible long-range inter-
actions can be inferred by measuring epistasis in double mutants. We
estimated the epistasis for all double mutants and evaluated if distant
residues had significant positive epistasis between them (Supple-
mentary Note 2, Supplementary Fig. 4d, e). We found significant
positive epistasis between the internal and DNA-proximal residues,
suggesting the presence of such long-range interactions (Fig. 4e,
Supplementary Note 2, and Supplementary Fig. 4d, e).

Target-Bridge Helix (BH) interaction determines the growth
phenotype
To understand the growth phenotype, we first looked at the Dis-
tribution of Fitness Effects or the DFE. The DFE is a histogram of the
frequency of themeasured fitness effect size. A DFE almost universally
shows an exponentially diminishing positive tail because beneficial
mutations are rare and account for ~0.01−1% of mutations1,40. On the
contrary, the DFE for the growth-associated fitness had a prominent
beneficial mutation mode (Fig. 5a). Amongst all unique single muta-
tions scored, 28.4%werebeneficial, 39.7%wereneutral, and 31.9%were
deleterious. It is important to mention here that, since the RNA poly-
merase is an essential gene, we cannot score null mutations. However,
even after excluding an average 20 to 30% null mutations by com-
paring different DFEs, the fraction of beneficial mutations should not
exceed 2%. Therefore, the large number of beneficial mutations sug-
gested a contrast between the protein-level and cellular-level impact of
the mutation. We posited that a partial loss of protein-level function/
interaction likely improved cellular-level fitness. Therefore, many
mutations that would appear in the (usually large) deleterious/slightly
deleteriousmode of the DFEmay have shifted to create the prominent
beneficial mode. We observed that at several positions all or almost all
(>95%) substitutions increased fitness (maroon arrows, Fig. 5b). Since,
at any position, substitutions are more likely to be deleterious than
beneficial, the observation further suggested that the improved fitness
may be associated with a partial loss of a subfunction or interaction.

Several but not all residues with high mean growth-associated
fitness clustered around the β-β’ (RpoB - RpoC) interaction surface
(Fig. 5c). The target region was proximal to a functionally important
motif in the β’ subunit of the RNAP, the Bridge Helix (BH). Target
residueswith highfitnessmeanclustered around thehighly conserved,
and known functionally-important residues of the BH41 (Fig. 5d). Two
conserved positively charged residues, H777 and R780, in the bridge
helix were in proximity to residues with high mean growth-associated
fitness (Fig. 5e). In each case, substitutions of the proximal residues to
positively charged residues, which would decrease target-BH interac-
tion due to repulsion to the positively charged BH residues, sig-
nificantly increased growth-associated fitness (Fig. 5e). Alternatively,
interaction-increasing substitutions, N573D and V558E, to negatively
charged residues significantly decreased the growth-associated fitness
(Fig. 5e). The residue F545 occurred in close proximity to a lysine,
K789, residue. Aromatic rings close to positively charged residues can
form cation-pi interactions. Mutations that may disrupt the possible
interaction also improved growth-associated fitness (Supplementary
Fig. 5a). Therefore, decreased target-BH interaction possibly improved
growth.

We used the antibiotic CBR703 to further validate if target-BH
interaction affected growth. The antibiotic CBR703 binds in the RpoB-
BH interaction interface and may strengthen the interaction to affect
RNAP function42. CBR703-resistant mutations decrease the RpoB-BH
interaction strength42. Therefore, if decreased target-BH interaction
increased fitness, resistance to CBR703 would correlate with growth-
associated fitness. The MG1655 strain has a very high minimum inhi-
bitory concentration (MIC) to CBR70343. Deleting the tolC gene
increases sensitivity to CBR70343. We reconstructed the rpoB variant
library in the Keio ΔTolC strain. We found 205 single CBR703-resistant
mutations in the Keio ΔtolC strain (Supplementary Fig. 5b, c). CB5R703
resistance, estimated as the log fold- enrichment for growth in
CBR703, correlated stronglywith the growth-associatedfitness (Fig. 5f,
Keio: ρ =0.5 and p-value < 10−16); and all except one resistance-
conferring residue had high mean growth-associated fitness (Fig. 5g).

Mutations in residues far away from the target-BH interaction
interface such as 572, 574, 532, and 535 (20Å from BH) increased
growth and caused CBR703 resistance (Figs. 5c, g). Similar to the
stringent phenotype, we observed significant positive epistasis
between the buried residues and the BH-adjacent residues (Fig. 5h and
Supplementary Fig. 5d, e). Therefore, long-range interactions likely
altered the BH-target interaction-controlled phenotype to affect
growth and CBR703 resistance.

Biophysically, CBR703-resistant RNAP variants, have increased
catalysis rate and resistance to regulatory pauses42. The correlation
between CBR703 resistance and growth suggested that improved
growth was associated with increased catalysis and pause resistance.
The BH controls catalysis by interacting with RpoB and the Trigger
Loop in theRpoC subunit44.Mutations inboth theBHandTrigger loop,
have been selected for improved growth in ALE experiments (Sup-
plementary Fig. 6a). To further test thehypothesis, we constructed two
mutations in the RpoC subunit, I774T and I755V, known to increase
catalysis rate and pause resistance42 (Supplementary Fig. 6b). We
observed that both mutations significantly improved growth com-
pared to the wild-type variant. This further validated that improved
growth may be associated with the increased transcription rate and
pause resistance

The growth and stringent phenotypes can be achieved
simultaneously
Mutations at certain residues both improved growth and led to the
stringent phenotype (Fig. 2c). Each phenotype is associated with resi-
dues involved in different interactions. The stringent phenotype was
associated with a loss of internal polar interactions (Fig. 4) and the
growth phenotype with decreased target-BH interaction (Fig. 5). We
next asked if mutations leading to the combined phenotypes affected
both interactions. The residue N573 had the highest number of such
mutations with the combined stringent-growth phenotype. The resi-
due 573 had a predicted internal polar interaction with residue C559
and was near a positively-charged BH residue R780 (Fig. 6a). Mutation
of N573 to target-BH interaction-decreasing positively charged resi-
dues, N573K andN573H, improved glucose-associated fitness, and that
to a negatively charged residue, N573D, decreased fitness (Fig. 6b). On
the contrary, the three mutations N573K, N573H, and N573D, which
would break the polar interaction were stringent. We reconstructed
theN573Kvariant and confirmed that the variant had improvedgrowth
and was stringent (Supplementary Fig. 7). Therefore, the loss of
both interactions leads to both improved growth and the stringent
phenotype, suggesting that each objective could be optimized
simultaneously.

To further verify the independent optimization of each trait, we
next looked at the double mutations. We first looked at double
mutations combining a stringent and a growth-improving mutation.
A majority, 70.3% (64/91), of such combinations had both
the growth-improving and the stringent phenotype (Blue, Fig. 6c).
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Of 138 double mutants with both high growth and the stringent
phenotype, 46% (64) variants were a combination of stringent and
growth-improving mutations (Blue, Fig. 6c). Additionally, 76.1%
(105) variants occurred in positions where one position had high
mean growth-associated fitness and the other had high mean strin-
gent enrichment (Pink and Blue, Fig. 6c). Growth-stringent double
mutants had both higher growth-associated fitness (KWH-test, p-
value < 10−16) and stringent enrichment (KWH-test, p-value < 10−16)
compared to combined synonymous mutations (Fig. 6d). Therefore,
residues clusters determining the growth and the stringent

phenotypes were modular, and combining growth-improving and
stringent mutations led to both phenotypes.

Residues associated with each phenotype are highly conserved
The growth-improving and the stringent phenotypes were each
associated with a partial loss of an interaction. The target region is
highly conserved, naturally. Therefore, each interaction may have
evolved to have functional importance. Particularly, the stringent
phenotype was associated with polar interactions in loops, and the
presence of polar interactions in (usually flexible) loops signifies
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Fig. 5 | Growth-improving mutations within the target. a Distribution of fitness
effects for the growth-associated fitness measures in M9 minimal media +Glucose
for all (blue) and synonymous mutations (orange). b Residue-wise distribution of
growth-associated fitness for beneficial variant (blue dots), synonymous variants
(gray dots), and deleterious variants (red dots) with the cut-off for beneficialfitness
score (top gray line) and deleterious fitness score (bottom gray line). c Residue-
level mean growth-associated fitness heatmap on the target structure, with
increasing fitness represented as a gradient from red to blue. d Residues with high
mean growth-associated fitness (green sticks), and highly conserved and func-
tionally important Bridge Helix (BH) residues (orange sticks). (Left) BH (bridge
helix) residues with charged side chains (blue sticks) and proximal target residues
with high growth-associated fitnessmeans (red sticks). e (Right) A bar plot (blue) of
mean growth-associated fitness for substitutions to amino acids with positively
charged (blue) and negatively charged (red) sidechains respectively. Within each
box, the horizontal black lines represent median values, lower and upper bounds

correspond to the 25th and 75thpercentile, and thewhiskers extend to the extreme
values within the 1.5× interquartile range. The top and bottom dashed lines
represent the cutoff for beneficial anddeleterious fitness scores respectively. There
were 6, 2, 2, 28, 34, 10, and 4 independent observations for each variant left to right
in the plot. An observation represents an independent fitness measurement of a
synonymous variant of the focal mutation in two biological replicates (Supple-
mentary Note 1). f Correlation of growth-associated fitness with the enrichment
for CR703 resistance for target mutations. The dashed vertical and horizontal
lines represent the cut-off for beneficial growth-associated fitness and CBR703
resistance respectively. g Residues with greater than five CBR703 resistant muta-
tions (all spheres) and ones with high growth-associated mean fitness (green
spheres). h Residues with high growth-associated fitness (green sticks) with
red lines connecting two residues with significant positive epistatic interaction
(Supplementary Fig. 4 and Supplementary Note 2). Source data are provided as
a Source Data file.
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functional importance. We looked at conservation at different levels
of divergence, i.e., an alignment of RpoB sequences from proteo-
bacteria, and bacteria, and against representative sequences from
eukaryotes. Residues with high mean growth-associated fitness (12
of 13 residues with <5% variability), and high mean stringent
enrichment (16 of 17 residues with <5% variability) were highly
conserved in proteobacteria (Fig. 7a). In bacteria, while higher
variability was observed in growth-associated residues (8 of 13
residues with <5% variability), residues with high mean stringent
enrichment remained highly conserved (15 of 17 residues with <5%
variability). ppGpp-mediated Stringent response is also observed in
plant chloroplasts45. We observed that 15 of 17 residues were highly
conserved even in plant chloroplast RNAP. The stringent response is
absent in archaea and eukaryotes. In both eukaryotes and archaea,
the stringent phenotype-determining DNA-proximal motif between
residues 531–538 was absent. Therefore, we observed significant
conservation of growth-associated residues in proteobacteria and
stringent residues in stringent response-associated species across
kingdoms in bacteria and plant chloroplasts.

Partition of residues into modules allows compensatory
evolution
The two variable residues with high mean stringent enrichment were
T553 and N573 (Fig. 7a). However, in the case of T553, the only
observed substitution was T553S, which would still retain the polar
interaction. The other variable residuewasN573, wheremutations lead
to the combined growth-stringent phenotype (Fig. 6a, b). This varia-
bility suggests that having growth and stringent traits partitioned into
independent residues and interactions may provide an advantage of
compensatory evolution. If a mutation in one cluster improved a trait
at the cost of the other, a second mutation in the second cluster may
compensate for the cost (Fig. 6). The compensation likely provided
greater success for mutations in residue N573 compared to mutations
optimizing only one phenotype.

We looked at Rifampicin resistance mutations to test the com-
pensation hypothesis. Rifampicin is an essential drug against
tuberculosis20. Several stringent mutations in the target also confer
resistance to Rifampicin and have fitness costs20. Mutations within the
RNAP have compensated for the fitness defects and allowed resistant

BH-R780

Target-N573

Target-C559

a

c
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d

Fig. 6 | Some mutations are both growth-improving and stringent. a The resi-
due N573 (cyan sticks) with internal polar interaction (red line) with residue C559 is
close to BH positively charged residue R780. b A bar plot (blue) of mean growth-
associated fitness for substitutions to amino acids with positively charged (blue),
negatively charged (red), and synonymous substitutions (red). On the left, the top
and bottom gray lines represent the cut-off for beneficial fitness score and dele-
terious fitness score respectively. On the right, the dashed line represents cut-off
for stringent mutations. Within each box, the horizontal black lines represent
median values, lower and upper bounds correspond to the 25th and 75th percen-
tile, and the whiskers extend to the extreme values within the 1.5× interquartile
range. Therewere 34, 10, 4, and 2 independent observations for Glucose-associated
fitness (left) and 72, 2, 4, and 2 independent observations for stringent enrichment

(right) for each variant left to right in the plot. An observation represents an
independent fitnessmeasurement of a synonymous variant of the focalmutation in
two biological replicates (Supplementary Note 1). c Correlation of growth-
associated fitness and stringent enrichment of all double mutations (grey), and
ones with combined synonymous mutations (green), combined growth-improving
and stringent mutations (64, blue), and combined mutations on positions impor-
tant for growth and stringent phenotypes (41, pink. 105 total). d Box plots com-
paring stringent enrichment (left) and growth-associated fitness (right) of double
synonymousmutations (136 variants, blue) and double growth-stringentmutations
(91 variants, orange). The red line represents cut-off for stringent mutations (left)
and the cut-off for beneficial growth-associated mutations (right). Source data are
provided as a Source Data file.
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strains to propagate and exacerbate the Rifampicin resistance
crisis20–22. In a previous study,weobserved significant positive epistasis
amongst the double mutants in the target, with Rifampicin-resistant
mutations combined with neutralmutations32. We extracted this list of
compensatory non-resistant targetmutations from the previous study.
We found that the compensatory mutations had significantly higher
growth-associated fitness compared to synonymous mutations (KWH-
test, p-value < 10−16, Fig. 7b). Nearly 76% (271 of 356 total mutations) of
the mutations had high growth-associated fitness mean (Fig. 7b).
Rifampicin resistance mutations in residues H526 and S531, which
account for the majority of clinically known mutations in Myco-
bacterium tuberculosis46, show significant positive epistasis with mul-
tiple growth-improving residues within the target (Fig. 7c). Therefore,
the partitioning of functions in different clusters enables compensa-
tory evolution.

Discussion
Mutations in the RNAP provide access to complex phenotypes and are
frequently selected in adaptive laboratory evolution to diverse stres-
ses. RNAP mutations are highly pleiotropic3,26, which made it difficult
to identify the traits under selection during adaptive evolution. The
current dominant hypothesis is that RNAPmay rewire transcription for
condition-specific adaptation. However, within the scanned area, the
fitness of the beneficial RNAP mutations strongly correlated between
five diverse environments (Fig. 2). Not only were the same mutations
adaptive in multiple conditions, but the degree of adaptation for a
beneficial variant between conditions was also comparable (Fig. 2).
Therefore, a common underlying mechanism improved fitness across
conditions. The only commonality between the conditions was base
M9-media, and all reconstructedmutations hada higher growth rate in
M9 minimal media compared to wild-type (Supplementary Fig. 2).
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Therefore, during laboratory evolution selection may favor RNAP
mutations that impact global traits such as growth as opposed to
previously proposed condition-specific adaptation (Fig. 2). Similar
cross-environment adaptation has been reported previously for other
RNAPmutations3,10,26. Mutations within the region found during ALE in
other conditions also had high growth-associated fitness in our ana-
lyses (Supplementary Table 1). This suggests that the selection for
improved growth extends beyond our tested conditions.

Growth control is intricately tied to stringent regulation in E. coli.
Growth-improving mutations had a delayed stringent response (Sup-
plementary Fig. 2c, d). During the stringent response following an
increase in the levels of ppGpp, the binding of ppGpp and dksA to the
RNAP activates the expression of starvation/maintenance-associated
genes such as the ones involved in amino acid biosynthesis. By
imposing starvation for amino acids in ΔrelAΔspoT strain, we also
foundmultiple stringentmutations of the RNAP, that favor amino acid
biosynthesis with the trade-off of reduced growth (Fig. 2). The strin-
gent mutations mimic the ppGpp-bound state of the RNAP. Therefore,
they may also activate the expression of other maintenance functions
to again alter global traits. In line with our proposition that RNAP
mutations select for altered global traits, it is important to note here
that, stringent mutations of the RNAP have also been selected for
maintenance-associated adaptation to stresses such as long-term
starvation, tolerance, and resistance to antibiotics and chemicals12–14.

We found that the global traits of growth and maintenance were
controlled by two modular residue clusters, each associated with the
loss of a specificmolecular interaction (Figs. 4,5, and 7d). The coupling
of the improved fitness with a loss of molecular interactions led us to
an atypical distribution of fitness effects, with a prominent mode of
beneficial mutations (Fig. 5a). The higher fraction of beneficial muta-
tions occurs as molecular interactions can be decreased in multiple
ways (asmutations aremore likely to decrease than increase function),
as opposed to the rare beneficial mutations observed in previous
protein DFE40 that resort from rare gain-of-function.

What are the involved molecular interactions? The stringent
phenotype is known to be determined by the stability of an open
complex intermediate during initiation, controlled by target-DNA
interactions28,39. Accordingly, modifications in DNA-proximal residues
(within 10 Angstroms of the target) and internal pairwise interactions
(likely associated with open complex stability) were stringent (Fig. 4).
The growth-associated fitness was linked to a decreased interaction
between the target-BH (Fig. 5). The decreased target-BH interaction
increases the transcription elongation speed and pause resistance
during elongation42. Mutations in other regions of the RNAP known to
increase elongation and pause resistance also improved growth
(Supplementary Fig. 6). Similarly, growth-improving mutations in
other regions of the RNAP have also been found to have an increased
elongation rate and pause resistance42,47–49. Therefore, an increase in
catalysis and pause resistance increases the growth rate. An increase in
elongation speed may increase the concentration of free RNAP, which
is known to favor growth50. Additionally, transcriptional pauses are
known to limit elongation for growth-associated genes51. We cannot
completely exclude the possibility that the target-DNA and target-BH
interaction may alter multiple other steps during transcription49.
However, the functions controlled by the target-DNA/internal and
target-BH interactions have to be modular because upon combining
the loss of internal interaction and reduced target-BH interaction we
obtain variants with both an improved growth and the stringent phe-
notype (Fig. 6). If both interactions affected overlapping functions,
their independent optimization would not be possible.

It has always been thought that cells cannot improve both growth
and stringent regulation due to molecular-level and systems-level
constraints. At the systems level, it is proposed that the stringent
response controls the allocation of the “limited” resources between
growth and maintenance7 and a reallocation of the limited resources

causes tradeoffs3. However, the ability of cells to both improve growth
and have the stringent phenotype shows that resources may not be
limited between the two objectives at a systems level. Interestingly
other adaptive laboratory evolution experiments have led to evolved E.
coli that break growth-survival tradeoffs as well52. Several studies have
reported the presence of excess resource reserves in exponentially
growing cells53,54. However, if resources are not limited, why would the
improvement of one trait cause tradeoffs with the other? The tradeoff
is likely molecular. It is well known that the decreased open complex
intermediate stability of stringent mutations decreases transcription
initiation for growth-determining ribosome biosynthesis genes28.
Additionally, an increased transcription rate may increase free RNAP
availability, which is known to inhibit maintenance-associated genes
such as amino acid biosynthesis50.

The combined growth-stringent phenotype showed that the
growth-improving mutations can overcome the tradeoffs associated
with the stringent mutations and vice versa. Therefore, at a molecular
level, an increase in elongation rate may compensate for the decrease
in initiation for ribosome biosynthesis genes. In confirmation of this
hypothesis, in vitro studies indeed show that increased elongation
speed alters DNA supercoiling to increase open complex stability and
compensates for initiation defects of stringent mutations28. Evidence
of other in vitro feedback mechanisms between elongation and tran-
scription initiation also exists55.

Multiple clinical examples of the cell’s ability to overcome trade-
offs further demonstrate that multiple cellular traits can be optimized
independently2. Compensatory evolution is observed for growth-
impacting antibiotic resistance mutations and even observed in can-
cer. Stringent mutations at position 531 confer Rifampicin resistance
and cause growth defects56. The cost of resistance should prevent
resistance propagation. However, mutations within the RNAP can
compensate for the fitness defects to allow the propagation of resis-
tant strains20 and even promote the emergence of extremely drug-
resistant and multidrug-resistant strains20,21. We demonstrate that the
partition of the traits in different clusters provides the evolutionary
advantage of compensation (Fig. 7). The growth-improving mutations
of the RNAP compensate for Rifampicin resistance (Fig. 7). The control
of the tradeoff-associated traits by modular handles enables evolu-
tionary plasticity. Themodularity of functionmay extend to the entire
RNAP because compensatory interactions are observed even between
RNAP subunits20. Such “modules controlling different traits” could also
be relevant in other biological systems such as cancer where growth
and maintenance tradeoffs are also challenged57.

Within the scanned region of the RNA polymerase, we identified
modules for global growth and maintenance control, that may be
associated with transcription elongation and initiation respectively.
However, the RNA polymerase complex also undergoes environment-
specific conformational and functional changes to alter transcription.
While mutations in other regions of the RNA polymerase affecting
elongation speed/pausing and open initiation complex stability may
affect growth and maintenance (Supplementary Fig. 6), a condition-
specific adaptation via mutations in other regions of the RNA poly-
merase is also possible. Deep mutational scanning of the RNA poly-
merase in multiple environments and genetic backgrounds using
technologies such as CREPE provides a strong platform to discover
such residues and residue modules (Fig. 1a). In addition, the discovery
of such modules opens lucrative avenues for predictable cellular
control; with significant applications in drug design, to prevent pro-
pagation of antibiotic resistance, and enable strain engineering in
biotechnology and synthetic biology. RNAP is a top target for anti-
biotics.We candesign effective drugs anddrug combinations to target
the two interactions to simultaneously inhibit multiple vital global
traits i.e., growth and maintenance. In the case of Rifampicin resis-
tance, fitness defects are likely compensated by improving growth,
determined by a decreased target-BH interaction (and possibly
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increasing elongation rate and pause resistance). Therefore, we can
design drugs that strengthen target-BH interaction or alter transcript
elongation to overcome compensation.

Despite frequent variation in the laboratory, both the growth and
stringent phenotype-determining residues are highly conserved (Fig. 7).
Residues with high mean stringent enrichment are conserved even
across kingdoms i.e., in plant chloroplasts. Each residue is also asso-
ciated with an interaction and in each case the cells improved fitness by
losing the interactions. As opposed to the controlled laboratory evo-
lution, bacteria such as E. coli have naturally evolved to survive in fluc-
tuating environments such as in cycles of feast and famine58. Most
growth-favoring and stringent mutations were specialists for either
growth or stringency and were associated with a tradeoff with respect
to the other objective (Fig. 2). Such specialist mutations with one
objective optimized at the cost of others may be counter-selected in
fluctuating environments2. While the counterselection of specialists
explains the residue conservation of most residues, it does not explain
the conservation (specifically within proteobacteria) of residues such as
N573 where mutations optimized both objectives.

The growth-determining and stringent residues and their asso-
ciated interactions likely have functional importance, as residue con-
servation is also a strong predictor of functional importance35. Since,
each phenotype is associated with a loss-of-function, it is likely that the
functions associated with each residue cluster is important for survival
in thewild. The residuesmay be important for regulation. In addition to
performing transcription, the RNAP also regulates global transcription.
Regulation requires a change (activation or repression) of gene
expression in response to a change in the environment. However, the
maintenance functions such as amino acid biosynthesis are con-
stitutively activated in the stringent variants. Therefore, the stringent
mutations lose the ability to regulate gene expression in response to
starvation, suggesting the regulatory role of the stringent residues.
Similarly, the target-BH interaction may regulate growth. The small
molecule ppGpp is known to regulate transcription elongation for
growth-associated ribosome biosynthesis genes by increasing
pausing59,60. The pause-resistance of the growth-promoting mutations
likely bypass these regulatory pauses to promote growth. Therefore, we
propose the described residues and the associated interactions may
have a regulatory function. The dissonance between residue conserva-
tion and laboratory-determined fitness suggests that the associated
function is not important in the controlled selection environment and
even provides a significant fitness advantage. Similar loss-of-regulation
has been previously selected in multiple laboratory evolution
experiments61–63. However, further biochemical, transcriptomic, and
computational characterization of the mutations is required to under-
stand the functional/regulatory role of the residues. We also need to
characterize the mutations in a common background because the
ΔrelAΔspoT background may introduce unpredictable global changes.

Our observations showa crucialdichotomyof adaptive laboratory
evolution. On one hand, the controlled environment can select for a
loss of function, putting into question the ecological relevance of
mutations identified in adaptive laboratory evolution. However, on the
other hand, combining adaptive evolution with high-throughput
approaches such as ours, can in turn help us discover these interac-
tions and functional modules. Beyond our analysis of the RNAP, the
CREPE-based approach can be used to study other complex protein
systems. High-throughput fitness estimates in the native genomic
context allow us to successfully extrapolate the biochemical under-
standing of complex proteins to a systems understanding of pheno-
typic traits to build sequence-cellular fitness maps.

Methods
Media recipe
All cultures for genome editing experiments were performed in
Lysogeny broth (LB). All adaptation experiments were performed in

M9minimalmedia prepared by adding 20mL 5XM9salts (BD 248510),
2mLGlucose (20%), 200 µLMgSO4, 10 µLCaCl2, andThiamine to afinal
concentration of 0.01% in 98mL water. In the selection with different
sugars, 20% Galactose and 20% Glycerol were used. For selection with
different stresses, we added NaCl to a final concentration of 300mM
for high osmolarity and Butanol to a final concentration of (0.6% v/v).
For fluorescence measurements for induction of stringent response,
the media was supplemented with 0.2% Cas amino acids.

Strains, plasmids, and cloning methods
All evolution experiments and mutant validation were done in
Escherichia coli strain MG1655 substrain K12. The ΔrelAΔspoT library
was prepared using the strain MG1655 CHN 188: rph-1 ΔrelA::FRT
ΔspoT::Kan. We worked with two ΔtolC strains tolC::Tn10 and
ΔtolC::Kan from the KEIO collection64. We used the gRNA and repair
template describedpreviously44.Weused the pCREPEplasmidwith the
cas9+lambda Red recombination+mutL-E32K integrated into the same
plasmid backbone from our previous study for Cas9-mediated
recombineering. The gRNA plasmid, where the gRNA was expressed
under the J23119 promoter, was purchased from Addgene (https://
www.addgene.org/71656/),whichwas a gift fromDr. RyanGill’s lab.We
cloned the spacer (Supplementary Table 5) into the plasmid for the
Cas9-mediated recombineering. We constructed the template for the
error-prone PCR libraries in the pSAH031 backbone (https://www.
addgene.org/90330/), which was a gift from the Dr. David Savage’s
lab65. We cloned the target region for the error-prone PCR using CPEC
assembly. We amplified the target region with 250 base pairs of end
homologies in the pSAH031 backbone using the primers F_rpoB_W1
and R_rpoB_W1 (Supplementary Table 5) and the backbone using
F_pSAH_rpoB and R_pSAH_rpoB (Supplementary Table 5) using the
Kapa Biosystems high-fidelity polymerase (catalog #07958897001).
Subsequently, we replaced the wild-type sequence in the error-prone
plasmid with 250-bp-long gblocks (Eurofins) with the synonymous
PAM mutation (SPM) using CPEC cloning (Quan & Tian, 2011).

For CPEC cloning, we used 12.5μl (with at least 100 ng of the
backbone) of an equimolar insert: backbone mixture, and 12.5μl of
NEB 2× Phusion Master Mix (catalog #M0530). We used the following
PCR protocol: 98 °C-30 s, 10× (98 °C-10 s, 65 °C-10 s, 72 °C-90 s) and a
final extension at 72 °C for 120 s followed by a hold at 12 °C. All
amplifications were performed using Kapa Biosystems high-fidelity
polymerase (catalog #07958897001). 10μl of the CPEC reaction was
dialyzedusing a 0.45-micron dialysismembrane. The dialyzed reaction
mixture was transformed into commercial Top10 competent cells.
After 1 h of recovery, the cells were plated on LB agar plates with the
appropriate antibiotics.

Error prone PCR and construction of repair template
We constructed the error-prone PCR libraries using the Agilent Gen-
eMorph II Random Mutagenesis Kit (Part #200550). We used the pri-
mers RpoB1_mut_f and RpoB1_mut_r to amplify the target region
(Supplementary Table 5). For the PCR we used 10 ng of the template
plasmid. We then amplified the target region using the following
protocol: 95 °C-2 min, 30× (95 °C-30 s, Tm-30 s, 72 °C-1 min), and final
extension: 72 °C-1 min. Following the error-prone PCR, 1–2μl of NEB’s
DpnI (Catalog # R0176L) was added directly to the PCR, and the
reaction mix was incubated for 2 h at 37 °C. The error-prone PCR
template was purified using Qiagen’s gel purification kit (Catalog
#28704). The purified PCR product was cloned into the pSAH03
backbonewith theflanking 250bphomology armsusing theNEBuilder
HiFi DNA assembly kit (catalog #E2621) using the manufacturer
guidelines for reaction setup. The NEBBuilder assembly reaction mix
was then transformed into Lucigen Elite E. cloni electrocompetent cells
(catalog #60061) and plate several dilutions of the transformation
reaction on LB agar + kanamycin (the antibiotic marker for pSAH03).
After overnight growth at 37 °C, 50,000–100,000 colonies were
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collected by scraping the plates in liquid LB. The plasmid-error-prone
PCR library was then extracted using the Qiagen Miniprep extraction
kit (Catalog 27104) following the instructionmanual. The donor library
repair template was amplified using 10 ng of the plasmid template and
the primers F_rpoB_W1 and R_rpoB_W1 (Supplementary Table 5). We
performed the PCR using the KAPA HiFi polymerase (catalog
#07958897001) following theManufacturer’s guidelines.We amplified
the library using the following protocol: 95 °C-2 min, 15× (98 °C-20 s,
Tm-15 s, 72 °C-1 min), and final extension: 72 °C-5 min. To avoid over-
amplification,we performedonly 15 PCR cycles. After the PCR,weused
agarose gel extraction and purification using the Qiagen gel extraction
kit following the manufacturer’s protocol.

Cas9-mediated recombineering
Cas9-mediated recombineering was used to introduce genomic
mutation following the heat-shock protocol66. Desired E. coli strains
with the pCREPE plasmid were grown at 30 °C overnight. In the
morning, overnight cultures were diluted 100-fold into fresh media.
The cultures were grown at 30 °C until mid-log optical density (mea-
sured at 600nm) of 0.4–0.5. The cells were placed in a shaking water
bath set at 42 °C to induce the lambda Red recombination operon and
mutlL-E532K gene. Then the heat-shocked cells were placed on ice
immediately and chilled for 15min. The chilled cells were centrifuged
at 7500 × g at 4 °C for 3min. The pellet was washed with 25ml ice-cold
10% glycerol solution by resuspending and centrifuging at 7500 × g at
4 °C for 3min thrice. After the washes, the cells were finally resus-
pended in ice-cold 10% glycerol concentrated to 150-fold compared to
the starter culture volume (~250uL for a 50mL culture). Dialyzed
mixtures of the repair template with the gRNA were electroporated
into 50μl of the competent cells at 1.8 kV. The cells were finally
recovered for 3 h at 30 °C in 1mL LB and subsequently plated on LB
agar plates with chloramphenicol and 100ug/mL spectinomycin (the
resistance marker for the gRNA plasmid). The plates were grown
overnight at 30 °C. Subsequently, ~50,000 colonies were scraped and
stored as glycerol stocks for the subsequent selection experiments.

Selection experiment in different liquid media
Adaptation in minimal media with different sugars and stresses was
performed using serial dilution. Two independent glycerol stocks (to
make independent biological replicates) with the rpoB libraries were
thawed and a preculture was started by diluting 1mL of the glycerol
stock in 50mL M9 Glucose minimal media for 4–5 h. Bottles with
50mL of media with different sugars and stresses were preheated at
37 °C. When the OD of the preculture reached an OD of 0.2, we
inoculated two bottles with each sugar or stress condition with an
independent preculture to a 32-fold dilution. Then we followed the
growth of each culture (Supplementary Fig. 4). When the cells reached
an OD of 0.2, we re-diluted the cells 32-fold in fresh cultures. So,
between each serial dilution, we had 5 generations of growth. The
serial dilution was performed for 30 generations, with dilution and
sampling at every 5 generations (Supplementary Fig. 4).

Selection for the stringent phenotype and CBR703-resistant
mutants
We constructed the RpoB library in the ΔrelAΔspoT and the KeioΔrelA
libraries respectively. Before selection, three glycerol stocks for each
library were thawed. The three glycerol stocks were mixed and
recovered in LB at 37 °C for four hours. After the recovery, several
dilutions for each library were plated on agar plates with their
respective selection media. The stringent mutants were selected on
M9 minimal media plates supplemented with Glucose. Selection for
CBR703mutants wasperformed on LB plateswith 8 ug/mLof CBR703.
A 100uL sample of the cells was boiled before selection for sequen-
cing. Around 10,000 colonies were scraped after selection and gly-
cerol stocks were saved for subsequent analysis.

Next-Generation sequencing
DNA for next-generation sequencing was extracted using the boiling
protocol. 50 uL of the cell sample for each condition was washed twice
with PCB. For washing the cells were centrifuged at 7500 g and then
resuspended in 1mL PBS. The resuspended pellet was boiled at 100 °C
for 10min and placed on ice immediately. Subsequently, the target
regionwas amplified for sequencing, and to attach the next-generation
sequencing adapters using the RpoB_nextgenseq_for and RpoB_next-
genseq_rev primers (Supplementary Table 5). The PCR was performed
using KAPA HiFi polymerase with a reactionmix containing 5 uL of the
cell extract, 0.25 uLof 100mMprimers, 25 uLofKAPApolymerase, and
water to make the reaction up to 50 uL. We amplified the library using
the following protocol: 95 °C-2min, 15× (98 °C-20 s, Tm-15 s, 72 °C-
1min), and final extension: 72 °C-5min. To avoid overamplification, we
performed only 15 PCR cycles. The sequencing was performed using
paired-end 2 × 150 np sequencing on the Illumina NextSeq platform.

Growth curves
Growth curves were determined using a high-precision technique
developed in-house and using a microplate reader. For the in-house
machine, we used a lab-made tubidometer with quasicontinuous and
parallel measurements for cultures in 15ml glass culture tubes. The
overnight cultures were diluted 1/1000 in 5mL cultures and OD was
measured at 30 °C at 200 rpm using a phototransistor every 10 s for a
range of emitter light intensities. Appropriate intensities were used to
determine the growth curves67.

To estimate growth rates for reconstructed strains, overnight
cultures for eachmutant inM9minimalmediawere diluted 1/1000 and
dispensed in 96-well plates for a volume of 200 uL of media for the
growth estimate. The OD600 was measured every at 37 °C with shak-
ing over 24 h using the Tecan microplate reader.

Fluorescence measurements
To estimate growth rates for reconstructed strains, overnight cultures
for each mutant in M9 minimal media were diluted 1/1000 and dis-
pensed in 96-well plates for a volume of 200 uL. The OD600 and
fluorescence wasmeasured every 2min at 37 °C with shaking over 15 h
using the Tecan Infinite M200 PRO microplate reader. For GFP-based
reporters, we used an excitation wavelength of 480nm and an emis-
sion wavelength of 510 nm.

Data analysis
Within the code, we used custom packages: Python 3.7 and packages
within Python SciPy, SciKitLearn, Numpy, and Pandas.

Preprocessing. All analysis was performed using a custom analysis
pipeline for CREPE44. Paired-end reads weremerged using the Usearch
Mergepairs algorithm68. Then, the assembled reads were aligned with
the wild-type sequence as the reference using the usearch_global tool
from the usearch package68. The alignment generated a text file with a
detailed output, from which the alignment was used to identify the
mismatches. Then using the unique mismatches/sequences, we
obtained the value counts for each variant. We then used a custom
code to extract the amino acid changes32.

Clustering and filtering of data. Often, mutations are introduced
during the PCR steps of library preparation and during the
sequencing itself. Therefore, several mutations detected in the
dataset are not variants present during the selection but an artifact
of errors introduced. The frequency of such errors is low and the
sequences associated with such errors can be clustered with their
possible parent sequence. As a control, we sequenced regions
around the target which were not mutated. We determined the
average error rate associated with the sequencing prep using
these regions of the sequence. Subsequently, we wrote a custom
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algorithm to cluster the possible error-associated sequences with a
parent.

We further filtered the data to eliminate reads that may be erro-
neous. Since we targeted an essential gene RpoB, the occurrence of
stop codons would be impossible. Therefore, the stop codons pro-
vided another way of identifying the frequency of erroneous sequen-
ces. Wemade the distribution of frequency associated with sequences
with stop codons. Only sequences with frequencies above the 99th

percentile of this distribution were used for all analyses.

Estimation of fitness for liquid cultures. The fitness scores were
estimated using a previously described algorithm by Rubin et al.,
201769. Briefly, the count of each variant (i) was divided by the count of
the wild type (wt) to get a frequency ratio at a time point t:

pi,t =
ci +0:5
� �

cwt,t +0:5
� � ð1Þ

where c designates the counts. Then we regress in Mi,t;

Mi,t = log pi,t

� � ð2Þ
We performed weighted linear least squares regression with the

weight (Vi,t)
−1;

Vi,t = 1= ci,t +0:5
� �

+ 1= cwt,t +0:5
� � ð3Þ

Fitness was estimated as the slope of the regression line.

Enrichment estimates. The enrichment for ΔrelAΔspoT and the
KeioΔrelA libraries was estimated using our previously built pipeline
(https://github.com/Alaksh/CREPE-Analysis-Code). The scores were
calculated using previously described algorithms by Rubin et al.69 for
fitness estimates with two-time points (pre-and post-plating on selec-
tion media):

fitness,f = log
ci,sel +0:5
� �

cwt,sel +0:5
� �

 !

� log

�
ci,input +0:5

�

�
cwt,input +0:5

�

 !

ð4Þ

where Ci is the total count for a variant “i” in the library and Cwt is the
total count for the wild-type reference in the library. “Sel” signifies the
counts obtained after selection on rifampicin, and “input” signifies
counts before selection. For each score, we estimated an error using a
Poisson approximation.

Standard error = sqrt
1

ci,sel
+

1
cwt,sel

+
1

ci,input
+

1
ci,input

 !

ð5Þ

Structural analysis
All structural analysis was performed using version 4.6.0 – Build
27.20.100.9664. We used the PDB model 6B6H70 for all structural
analysis, and structure 4ZH243 was used for CBR703 bound structures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data has been deposited at the Europen Nucletide
Archive (ENA) and are accessible through the project accession num-
ber PRJEB59215. The sequencing data can also be accessed at DRYAD
database: https://datadryad.org/stash/share/pMgkxJauRphu1eU49Xyx
LOznG6zakpHaWBgLqzCcL-Y. The processed data is accessible with
theDryand link: https://datadryad.org/stash/share/ZfUDt7kbGXPGw4_
tl_roBQ2okJde3oKFftqgAwYlF0o. Source data is provided with the
paper. Source data are provided with this paper.

Code availability
The code used to analyze the data is available at Zenodo (https://
zenodo.org/record/80340940) 71.
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