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Meteorological drivers of resource adequacy
failures in current and high renewable
Western U.S. power systems

Srihari Sundar 1 , Michael T. Craig 2,3 , Ashley E. Payne4,
David J. Brayshaw5 & Flavio Lehner 6,7,8

Power system resource adequacy (RA), or its ability to continually balance
energy supply and demand, underpins human and economic health. How
meteorology affects RA and RA failures, particularly with increasing penetra-
tions of renewables, is poorly understood. We characterize large-scale circu-
lation patterns that drive RA failures in theWestern U.S. at increasingwind and
solar penetrations by integrating power system and synoptic meteorology
methods. At up to 60% renewable penetration and across analyzed weather
years, three high pressure patterns drive nearly all RA failures. The highest
pressure anomaly is the dominant driver, accounting for 20-100% of risk hours
and 43-100% of cumulative risk at 60% renewable penetration. The three high
pressure patterns exhibit positive surface temperature anomalies, mixed sur-
face solar radiation anomalies, and negative wind speed anomalies across our
region, which collectively increase demand and decrease supply. Our char-
acterized meteorological drivers align with meteorology during the California
2020 rolling blackouts, indicating continued vulnerability of power systems to
these impactful weather patterns as renewables grow.

Access to reliable, or uninterrupted, and low-cost electricity underpins
human health, and well-being1. Designing a reliable system while
minimizing costs is the central objective of power system planning2.
Reliability partly depends on maintaining resource adequacy (RA),
which is the system’s ability to continually balance electricity supply
(or generation) and demand despite the occurrence of unexpected
events3. RA failures, i.e., times where demand exceeds supply oper-
ationally at bulk power systems (BPS) level, are often responsible for
large-scale rolling outages, e.g., in California in 20204 and Texas5 in
2021. These two events were caused by a combination of higher than
anticipated demand, due to a heatwave (in CA) and a cold snap (in TX),
and generator outages driven by extreme weather. This necessitated

intervention, like rolling outages, from the system operator to prevent
catastrophic consequences to the system.

Meteorology affects RA through effects on electricity supply and
demand. In BPS dominated by thermal electricity generators, surface
air temperature is the main meteorological driver of supply and
demand. Low and high surface air temperatures affect demand
through increased use of building heating, ventilation, and air con-
ditioning (HVAC) for heating and cooling, respectively6,7. Surface air
temperature also affects supply. Specifically, extreme heat increases
deratings of thermal power plants8,9 and solar photovoltaics, while
extreme cold and heat increases forced outage rates of thermal and
hydroelectric power plants10.
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Two trends complicate the link between meteorology and RA: (1)
increasing penetrations of wind and solar power, and (2) non-
stationary meteorology driven by natural variability and anthro-
pogenic climate change. Since wind and solar power are a function of
wind speeds and solar irradiance, increasing wind and solar power
penetrations will increasingly link electricity supply to these meteor-
ological variables. Wind speeds and solar irradiance exhibit significant
spatio-temporal variability11,12 and forecast and projection
uncertainty13,14, complicating RA assessment. Non-stationary meteor-
ology driven by intensifying climate change further complicates RA
assessment. As historical meteorology becomes increasingly non-
representative of futuremeteorology, RA assessment of future system
fleets will need to increasingly rely on projected futuremeteorological
timeseries to account for the transient nature of the current climate
state. However, generating high-quality meteorological projections
that account for climate change remains an active area of research
limited by methodological uncertainties, and computational power15.
Generating high-quality future meteorological timeseries is especially
challenging at the high spatio-temporal resolution (e.g., hourly) typi-
cally required for RA analyses16.

In response to these challenges, this paper aims to better under-
stand the meteorological drivers of RA, focusing specifically on RA
failures, and how increasing renewable generation affects those dri-
vers. Better understanding these relationships is crucial for several
reasons. First, the meteorology that drives (and co-occurs with) RA
failures will determine human health impacts, which can be highly
heterogeneous across space and socioeconomic groups17. Better
understanding the link between decarbonization and drivers of RA
failures can shed light on investment needs in BPS and communities to
mitigate possible health impacts and achieve more equitable out-
comes. Second, characterizationof historicmeteorological drivers can
guide in evaluating, selecting, and downscaling general circulation
models, which is essential for making informed adaptation invest-
ments in the power sector18,19. Third, oncemeteorological drivers of RA
failures are characterized, long-range probabilistic forecasting at the
subseasonal to seasonal scale can act as amore informed earlywarning
system for system operators and emergency preparedness
organizations20.

We characterize meteorological drivers of RA failures using
weather regimes. Weather regimes represent atmospheric circulation
as belonging to a finite number of states or patterns21,22. These states
are constructed by applying clustering techniques to variables repre-
senting large-scale atmospheric flows, e.g., geopotential height. The
resulting large-scale patterns have strong associations with surface-
level meteorological variables that directly affect the power system,
including extreme surface air temperatures23–25. These patterns indi-
cate several processes like temperature advection and subsidence
whichcan, under certain conditions, drive extreme events in thepower
system. Thepatterns persist over large spatial and temporal scales, and
unlike the high-frequency variations exhibited by surface meteorol-
ogy, the patterns’ spatio-temporal variations are better captured by
general circulation models (GCMs). Previous research has sought to
link the changes in frequency and return periods of these large-scale
patterns with the occurrence of extreme events under a changing cli-
mate using data from GCMs26–29. The spatial coverage of these large-
scale atmospheric circulation patterns makes them valuable analogs
for surface meteorology over large geographic regions. Using these
synoptic drivers in planning and operations can benefit system
operators when thinking about RA due to current and future systems’
increasing dependence on generation over larger areas and inter-
connected balancing authorities.

Our research contributes to two literatures. The first literature
analyzes meteorological drivers in the power system, but does not
consider RA, a gap that we fill. Within this set, a few studies examine
meteorological drivers of periods of low renewable generation or high

net demand (demand minus renewable generation)30–33. Meteor-
ological drivers in these papers include surface meteorology and
atmospheric circulation during these periods. Further, other studies
describe weather regimes as drivers of renewable generation, varia-
bility, and net demand in the European power system34–36. The second
literature analyzes RA, but does not consider meteorological drivers, a
gap that we also fill. In this broad RA umbrella, studies quantify the
effect of using different RA metrics on reserve procurement
decisions37 and capacity values38. Other studies quantify the con-
tribution of generators39,40 and transmission41 to RA. A final group of
studies quantify system RA under changing generator and/or weather.
For instance, Turner et al.42 quantify RA changes (in probability and
magnitude) driven by decarbonization decisions and climate change
impacts on electricity demand and hydropower generation in the
Pacific Northwest.

To address these gaps, we answer the following research ques-
tions: What large-scale circulation patterns drive risk of regional
resource adequacy failures? And how do these drivers change with
increasing wind and solar penetrations? We define resource adequacy
(RA) as the ability of a power system to continually balance electricity
supply and demand3, and quantify RA on a probabilistic, hour-to-hour
operational basis. We conduct our study for the U.S. Western Elec-
tricity CoordinatingCouncil (WECC) footprint given its rapid growth in
wind and solar penetrations, aggressive wind and solar targets, and
recent resource adequacy failure43. Using a one-way impact analysis
that decides fleet investment to meet the standard resource adequacy
target (1 day in 10 years), identifies resource adequacy failures, and
findsmeteorological drivers of these failures for increasing renewables
penetrations, our research is the first to link weather patterns and
power systems operations in the United States, and the first to char-
acterize weather regimes driving RA failures.

Our analytical pipeline uses methods from power system and
synoptic meteorology domains (Fig. 1). We first construct fleets that
generate increasing levels of wind and solar electricity (hereafter
renewable electricity or RE) using a capacity expansion model (CEM)
(see Methods “Capacity expansion”). The CEM is a deterministic linear
program thatminimizes total system cost, which is the sumof the cost
of new capacity investments and the cost of electricity generation of
existing and new units. The cost of electricity generation is the sum of
fixed operations andmaintenance (O&M) costs and variable electricity
generation costs,which include fuel costs and variable O&Mcosts. The
CEM specifically optimizes new investments in wind, solar, 4-h elec-
tricity storage facilities, inter-regional transmission capacities, and
operations of existing and new units, and inter-regional electricity
flows. The CEM does not optimize investment in new thermal facilities
given its coupling with our RAM, which adds or removes thermal
facilities to reach a given reliability target. Investment and operational
decisions are subject to numerous generator- and system-level con-
straints, including hourly balanceof supply anddemandand electricity
flows, limited inter-regional electricity flows, hourly site-specific wind
and solar resource availability, engineering and economic-based unit
operations, and limited technology-specific investments. To capture
co-variability and extremes in electricity demand and wind and solar
generation,weuseobservedhourly electricity demand forWECC44 and
coincident spatially-differentiated RE capacity factors (see Methods
“Data description”). In our models we divide WECC into five con-
stituent sub-regions, as used by WECC in its Western Assessment of
Resource Adequacy report (ref. SI Fig. A.3)45. Between each pair of sub-
regions, we model transmission flows using the transport method,
which caps hourly inter-regional electricity flows between sub-regions
to afixed transmission capacity. Investment decisions in storage, occur
at the five-region level; in transmission, between each pair of regions;
and in wind and solar, at spatially-differentiated resource locations on
a roughly 30 by 30 km grid. RE penetration levels are enforced at the
WECC scale.
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We then quantify a RA profile for each fleet and each sub-region
from the CEM using a resource adequacy model (RAM), which simu-
lates stochastic forced outages of generators using a non-sequential
Monte Carlo sampling procedure and finds hours where there is a non-
zero probability of demand exceeding total available generation (see
Methods “Resource adequacy model”). We use empirically-derived
temperature-dependent forced outage rates for NGCC and hydro-
power facilities, constant outage rates for other generators, and donot
account for outages in storage units10,46. Storage assets are dispatched
on a chronological hourly basiswithin theRAmodelwithin eachMonte
Carlo iteration after dispatching all theother generators using a greedy
dispatch policy39,47. From the RAM, we obtain a timeseries of loss of
load probabilities (LOLPs) by hour of the year, whichwe refer to as the
RA profile. This RA profile is a function of short-term operations from
the RAM. Hours with LOLPs greater than zero indicate a risk of an RA
failure; we refer to these hours as RA risk hours or risk hours.

Finally, to characterize the meteorological drivers of RA failure,
wemap the 500 hPageopotential height (Z500) anomalies in these risk
hours to the western US summer weather regimes. These regimes are
constructed based on June–September daily Z500 anomalies from a
40 year period using self-organizing maps (SOM), and each regime is
represented by a characteristic weather pattern (WP) (see Methods
“Meteorological analysis”). The characteristic WPs show regimes with
varying Z500 anomalies over the region, ranging from positive
anomalies (high pressure systems, WP7) to negative anomalies (low
pressure systems, WP3) (Fig. 1 weather regimes panel). Each weather
regime produces different surface weather patterns, e.g., high pres-
sure anomalies in WPs 7 and 8 drive extreme heat events across the
Western US, as later illustrated in our results. The WPs corresponding
to regimes identified based on the risk hours characterize the large-
scale patterns contributing to RA failures. By running this integrated
modeling framework for four weather years (2016 through 2019) and

RE penetrations (Current, 30%, 45%, and 60%, see section “Scenarios”
for definition of RE penetration), we quantify the effect of increasing
renewables onmeteorological drivers of RA and the robustness of this
effect across independent weather years. While using four weather
years does not sample the full distribution of possible weather events
and associated impacts on RA and RA failures, it does cover over
35,000 hours and permits us to use observed hourly electricity
demand with coincidental wind and solar generation.

Using this analytical pipeline, in this work, we show that RA fail-
ures in WECC are driven by WPs corresponding to high pressure
anomalies (WPs 6, 7, and 8 in Fig. 1) over the region. These WPs cor-
respond to high surface air temperatures and low wind speeds across
WECC and with low solar irradiance in large areas with solar PV facil-
ities. Thesemeteorological conditions cause compounding impacts on
electricity supply and demand, ultimately resulting in risk of resource
inadequacy (i.e., RA failures). As renewable penetrations increase, the
risk of RA failures increasingly concentrates within the WP with the
highest pressure anomaly (WP 7).

Results
We divide our results into two sections. First, we quantify the effect of
increasing renewable penetrations on meteorological drivers of risk
hours for a single weather year (2019). Second, we repeat this analysis
to characterize meteorological drivers of risk hours across multiple
weather years at increasing renewable penetrations. We restrict our
analysis to the CAMX region for two reasons. First, NERC’s Long-Term
Reliability Assessment (LTRA) indicates CAMX is the most vulnerable
WECC region to resource adequacy failures in the near term, with
LOLH of 0.72 and 9.79 in 2024 and 2026 respectively in the 2022
assessment. By comparison, other regions inWECChave LOLHof up to
0.03 (2024) and 0.37 (2026), an order of magnitude less than CAMX.
Thus, understanding meteorological drivers of RA failures in CAMX

Fig. 1 | Analytical pipeline.We use a capacity expansionmodel (CEM) to construct
generator fleets with increasing renewable penetrations and different weather
years. Maps show the sizes and locations of facilities for 60% renewables penetra-
tion and 2019 weather. These fleets are input into a resource adequacy model
(RAM) toquantify hourly loss of loadprofiles (LOLPs), yielding a resource adequacy
(RA) profile (in this figure we only represent the RA risk hours). We then map the
risk hours in the RA profile to weather regimes, which we identify with self-

organizingmaps (SOMs) applied to 500hPa geopotential height (Z500) anomalies.
Depictedweather regimes are the SOMoutputs for extended summermonths, with
positive anomalies (high pressure systems) in the bottom left and negative
anomalies (low pressure systems) in the top right. By varying renewable penetra-
tions and weather years, we characterize meteorological drivers of risk hours. Red
arrows depicting attribution of risk hours to weather regimes is for illustrative
purposes only.
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canprovide significant near-termvalue todecisionmakers and serveas
a model for analyses in future regions. Our resource adequacy results
agree with the LTRA, as we find CAMX has at least 4x and 27x more
probability of resource adequacy failure than any other WECC region
in the current and RE penetration greater than 30% fleets respectively
across the years. Second, we find that in all but one scenario we ana-
lyze, and in all RE penetration greater than or equal to 30%, the CAMX
risk hours coincide with risk hours in other regions if failures occur in
other regions. Across the weather years, the current fleets correspond
to a RE penetration ranging from 9–9.4%, so we denote these fleets as
9% RE penetration in our results.

Meteorological drivers under increasing renewable penetra-
tions for the 2019 weather year
Using our CEM, we construct generator fleets in which RE generation
accounts for increasing percentages of annual demand. As renewable
penetrations increase from 9% (or current levels) to 60% of annual
demand, wind, solar, and storage capacities (at the interconnection
level) increase from 20 GW, 16 GW, 5 GW to 103 GW, 70 GW, and 7 GW
respectively, while NGCC capacities decrease from 49 GW to 35 GW
(Fig. 2, see SI Fig. A.8 for sub-regional regional capacities). Figure 3
depicts each system’s RA profile by showing the magnitude of hourly
LOLP and timing of risk hours. Across renewable penetrations, all risk
hours occur in the extended summer months (i.e., June through Sep-
tember or JJAS). Most risk hours occur between 4 and 8 p.m. Pacific
Standard Time (PST). As renewable penetrations increase from 9% to
60%, the number of risk hours decrease from 68 to 10 and increasingly
concentrate into the period between 6 and 8 p.m. PST. The decrease in
risk hours is driven by increasing available generation inmany hours of
the year, including in hours that previously had low LOLPs. In these
hours, increasing available generation results from wind and solar
capacity increases exceeding NGCC capacity decreases. Particularly,
the increasing storage capacity reduces risk in the early evenings. As
risk hours decrease, hourly LOLPs increase. For instance, as renewable
penetrations increase from 9% to 60%, maximum LOLPs increase from
0.27 to 0.63 (SI Fig. A.9b).

To attribute RA failures to WPs, we map each risk hour to the
prevailing weather regime, then quantify the number of risk hours and
cumulative LOLP in each regime (Fig. 4). The cumulative LOLP equals

the sumof LOLPs acrosshoursmapped to a givenweather regime, so is
a function of the number of risk hours in a given weather regime and
the LOLP in each of those hours. The cumulative LOLP also equals the
expected loss of load hours (LOLH) attributed to each regime. Using
either number of risk hours or cumulative LOLPmetrics, WPs 6, 7, and
8 predominantly drive RA failures across renewable penetrations
(Fig. 4). These WPs correspond to high pressure anomalies that cover
the entireWesternUS (as shown in Fig. 1). Of thoseWPs,WP8 accounts
for most RA failures, e.g., 39–50% of risk hours and 54–82% of cumu-
lative LOLP across renewable penetrations.

The relative importance of WPs in driving RA failures is robust
across increasing renewablepenetrations for the 2019weather year. As
renewable penetrations increase from 9% to 60%, the number of risk
hours driven by WP 8 decrease from 27 to 5, respectively, while the
numbers of risk hours driven by WPs 6 and 7 exhibit an overall
decrease, from 21 to 3 and from 19 to 2, respectively. Increasing
renewable penetration has the opposite effect on cumulative LOLP
driven byWPs 7 and 8. As renewable penetrations increase from 9% to
60%, the cumulative LOLP driven by WP 7 increases from 0.3 to 1.1,
whereas cumulative LOLP driven by WP 8 decreases from 1.2 to 0.9
(Fig. 4). Cumulative LOLP driven by WP 6 shows an overall decrease
from 0.7 to 0.5 comparing 9 and 60% renewable penetrations.

Mechanistically, surface meteorology, not high-pressure anoma-
lies in the middle atmosphere, impact power system RA. To under-
stand how the high pressure anomalies in WPs 6, 7, and 8 drive RA
failures, we analyze surface meteorology corresponding to each
weather regime (ref. Methods “Meteorological analysis”). We find that
theseWPs correspond to positive surface temperature anomalies, and
mixed surface solar radiation and wind speed anomalies across large
regions of WECC (Fig. 5). Positive temperature anomalies lead to
higher than average generator forced outages and demand. Con-
currently, negative and low positive solar radiation anomalies lead to
lower than average solar generation. While surface solar radiation
anomalies are not negative across WECC in the 3 impactful weather
patterns, in WP 7, these anomalies are negative in the CAMX region
where a large fractionof solar capacity is installed (Fig. 1).WPs 6, 7, and
8 also exhibit negative wind speed anomalies in large portions of the
western US, and more notably so in WP 7. Each of these WPs include
surface meteorology anomalies that reduce RA at low and high
renewable penetrations, explaining the robustness of these three WPs
indrivingmostRA failures at renewablepenetrations ranging from9 to
60%. Of these three WPs, WP 7 increasingly drives total risk with
increasing RE penetrations as it has the large positive temperature
anomalies, largest negative solar anomaly over the Southwest, and
largest negativewind speed anomaly over the entire region.OtherWPs
do not exhibit the same combination of surface temperature, wind
speed, and solar radiation anomalies that WPs 6, 7, and 8 do,
explaining their relative unimportance in driving RA failures.

Meteorological drivers across different weather years
The above discussion examines drivers of RA failures across renewable
penetrations for a single weather year, 2019. Given significant inter-
annual variability in meteorology and climate, we repeat our above
analysis across four weather years (2016 through 2019) or the duration
of our combined data timeseries. This approach treats each meteor-
ological year as an independent observation, allowing us to quantify
the robustness of our results to different weather years.

Across weather years and RE penetrations, NGCC and wind
capacities output by the CEM do not significantly differ across years.
For instance, at 60% renewable penetration, NGCC capacities range
from 45 to 35 GW, and wind capacities range from 95 to 116 GW across
weather years (SI Fig. A.9a). Solar capacities exhibit a larger range
across weather years, e.g., ranging from 27 GW in 2017 to 70 GW in
2019 at 60% RE penetration, with low solar capacity coinciding with
high NGCC capacity (Fig. SI. 6a). Storage capacity also exhibits a larger

Fig. 2 | Installed capacities of different generation sources with increasing
renewablepenetrations for the 2019weather year.Thisfigure showsWECCwide
total capacities with color bars representing different RE penetrations.
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range, from 7 GW in 2019 to 19 GW in 2018. Our results regarding the
number of risk hours and maximum LOLPs are also largely insensitive
to different weather years. Specifically, across weather years, risk
hours decrease and maximum LOLPs increase between the current
fleet and higher RE penetrations (SI Fig. A.9b). For instance, in 2018,
risk hours decrease from 53 to 5 and maximum LOLPs increase from
0.3 to 0.96 when renewable penetrations increase from 9 to 60%. For
all the weather years and renewable penetrations, we also simulta-
neously calculate the expected unserved energy (EUE). This is the sum
of expected shortfall (in GWh) during each risk hour. SI Fig. A.10 shows
the EUE for the different systems with the effective shortfalls ranging
from 3.5 GWh to 4.6 GWh and 1.1 GWH to 3 GWh at 9% and 60% RE
penetrations respectively.

Meteorological drivers of RA failures are also robust to weather
years (Fig. 6). WPs 6, 7, and 8, which are high pressure anomalies,

drive most RA failures across all weather years. Collectively, these
WPs drive 87 to 100% of all risk hours and 96 to 100% of cumulative
LOLP across weather years. Furthermore, WP 7 emerges as an even
more dominant driver of RA failures in 2016 through 2018 than in
2019. In weather years 2016 through 2018, WP 7 accounts for
cumulative LOLPs of 84 to 100%of the respective scenario’s total risk
for renewable penetrations of 9 to 60%, compared to 13 to 43% in
2019 (Fig. 6b). When considering all days in the JJAS months, we find
that the number of days attributed to the extreme weather patterns
(WP 7 andWP8, but particularlyWP 7) are comparable to the number
of days attributed to intermediate weather patterns (such asWPs 4, 5,
and 6) (SI Fig. A.6). Moreover, among our study years, 2 years have
above trend line occurrences of WPs 7 and 8, and 2 years have below
trend line occurrences of WP 7. Despite the total number of days in
each WP and variability in occurrence frequency among the years

Fig. 3 | RA profiles and timing of RA failures. For the 2019 weather year and for
each renewable penetration, this figure shows, (i) hourly LOLPs across the entire
year (i.e., the RA profile) and (ii) the date and hour of day (in PST) when RA failures

occur, where the size of star is proportional to the LOLP and the legend shows
marker size for LOLP = 1. An LOLP of 0.1 indicates demand exceeds available
capacity in 10% of the 250 simulated trials in the RA model.
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analyzed, WP7 emerges as the more dominant driver at higher RE
penetrations across the weather years.

The surface meteorology associated with WPs 6, 7, and 8 in
weather years 2016–2018 show similar trends of positive temperature
anomalies, negative wind speed anomalies, and mixed solar radiation
anomalies in the Southwest as in 2019 (see SI Figs. A11–13). At higher RE
penetrations, the risk is attributed to fewer days. Sowe look at the daily
average temperature anomalies for these days (Fig. 7). Though these
days are driven by WPs 6, 7, or 8 across the weather years, they
represent different distribution of surfacemeteorological anomalies in
the different years. On the RA failure days, the temperature anomalies
across these four years show predominantly positive anomalies over
large portions of the region, but the magnitude, geographical location
and extent of the positive anomalies vary. Some days also exhibit
negative anomalies in some regions, but even on these days the
anomalies are positive in the California region. SI Figs. A.14 and A.15

show the surface solar radiation and wind speed anomalies for
these days.

Discussion
Maintaining power system RA, and reliability more broadly, faces
challenges from evolving supply- and demand-side technologies and
non-stationary meteorology. In response to these challenges, this
paper characterized meteorological drivers of RA failures by inte-
grating power system andmeteorological methods. We found that RA
failures inWECC are driven byweather patterns corresponding to high
pressure anomalies over the western United States.

The added value that our weather pattern approach gives over
just a surfacemeteorological analysis is that we are able to capture the
synoptic scale (1000–2500 km) drivers of the RA failure events. The
weather patterns can be used in different ways to incorporate
meteorological drivers of the power system in system planning as well

Fig. 4 | Risk hours and cumulative LOLP attributed to each weather regime in 2019. For the 2019 weather year, for each renewable penetration this figure shows
number of risk hours (blue lines) and cumulative LOLP (orange lines) attributed to each weather regime, where WPs correspond to Fig. 1.
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a

b c

Fig. 5 | Surface meteorological anomalies corresponding to each weather
regime. a Composites of surface temperature anomalies, b surface solar radiation
anomalies, and c 100m wind speeds anomalies for the 2019 weather year. The

composites are constructed based on the hours from the 2019 extended summer
belonging to each weather regime.

Fig. 6 | Risk hours and cumulative LOLP attributed to each weather regime
across all weather years. a Number of risk hours attributed to each weather
regime across the weather years with increasing RE generation levels;bCumulative

LOLP attributed to each weather regime across the weather years with increasing
RE generation levels.
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as operations, as we move to interconnected continental scale sys-
tems. For system planning purposes, current practices mostly involve
only using historical meteorological data with techniques like impor-
tance subsampling reducing computational costs by providing repre-
sentative periods to the capacity expansion model48. Our findings can
improve this subsampling process by providing a physical basis for
choosing the representative periods. Further, to make informed
investment decisions and maintain system reliability in the future,
system planning needs to use futuremeteorological data from climate
projections and the physics based subsampling procedure can help
here as well. Future climate projections from global climate models
have lower spatial and temporal resolution than required by power
system models. Incorporating this future climate data requires com-
putationally costly downscaling16. Our methods can reduce down-
scaling needs and associated costs by guiding selective downscaling of
certain time periods of interest, e.g., time periods with high pressure
anomalies in the Western US, to drive system planning and operation
models. This can help system planners understand further risks,
beyond resource adequacy, during these stressful periods. At the
operational level, system operators, utilities, power producers, and
communities can use the short-term forecasts at the days to weeks
timescale and long-range probabilistic forecasting at season-to-season
time scale to avoid scheduling maintenance and other related down

times when these patterns are expected to occur. These patterns are
characterized by their temporal persistence and ability to represent
meteorology at the synoptic scale during the occurrence of extreme
events. These characteristics make the WPs more suitable, as an
aggregate pointer to capture stressful periods for system operations,
than individual surface meteorological variables, which exhibit higher
spatio-temporal variations.

Rolling outages in California in the summer of 2020 support our
results. On August 14 and 15, the California Independent System
Operator (CAISO) instituted rotating electricity outages during an
extreme heat storm covering much of the WECC system4. These
rotating outages were necessitated by higher-than-predicted demand
and supply shortages. While we are not able to include 2020 in our
analysis due to data limitations, we can analyze atmospheric circula-
tion prevailing during August 14 and 15 using our reanalysis data
(Methods “Data description”).Wefind that the atmospheric circulation
on these 2 days exhibits a high pressure anomaly over the Pacific
northwest (SI Fig. A.16) and resembles the high pressure WPs in our
analysis. Our SOM identifies the circulation pattern on August 14 as
belonging to WP 8 and on August 15 as belonging to WP 7. Thus, the
CAISO rotating outage event provides real-world evidence for these
weather patterns driving RA failures, which we have also identified
through our analysis.

Fig. 7 | Daily surface temperature anomalies on days with RA failure events for RE penetrations from 30 to 60% across the weather years. Each panel in this figure
shows daily means of surface temperature anomalies on the RA failure days.
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While outages threaten humanhealth andwell-being regardlessof
prevailing meteorology, outages during extreme heat can be particu-
larly life threatening17. The robustness of high pressure anomalies
driving RA failures at renewable penetrations up to 60% suggests that
high temperature anomalies will continue to accompany RA failures.
Consequences of outages could have disproportionate impacts on
vulnerable populations49, particularly when they align with extreme
heat events50. Any disparities in outcomes during outages between
income groups could widen as upper income individuals increasingly
procure distributed energy systems. Our results indicate a long-term
need to ensure vulnerable communities have access to potentially
lifesaving cooling during outages, e.g., through investing in commu-
nity hubs at public buildings51.

Anthropogenic climate change is already affecting weather and
climate, including by increasing surface air temperatures across the
Western United States52. Using the ERA5 reanalysis dataset, we find
some evidence for an increase in the frequency of weather regimes
with high pressure anomalies from 1981 through 2020 in the extended
summer months (SI Fig. A.7). During this period, WPs 7 and 8 (high
pressure anomalies over northwest) occur more frequently, while
someWPs like 3 and 4 (low pressure anomalies over northwest) occur
less frequently. Increasing trend of WP 7 over the last 40 years are
statistically significant (p values <0.05) based on a simple linear
regression with year as the independent variable and percent of days
with the WP as the dependent variable. Specifically, WP7 shows an
increase of 0.18 extended summer days per year. Given that we found
high pressure anomalies, particularly WP7, drive RA failures, their
increasingly frequent occurrence might result in more frequent chal-
lenges to maintaining RA. More rigorous analyses are needed to dis-
cern and attribute WP trends to aspects of the earth system dynamics,
including natural variability versus anthropogenic changes. Emerging
research has also found that the change in frequency of certain cir-
culation pattern can compound climate extremes driven by anthro-
pogenic warming53. So, better understanding how these impactfulWPs
will evolve and interact with a changing climate26 would better inform
the risk that climate change poses to RA.

Our research offers several opportunities for extensions. First, to
capture co-variability between supply and demand, our analysis is
limited to four weather years. To capture long-term climate variability,
future research could extend our analysis to multi-decadal timespans
usinghistoric data from reanalyses or future data fromclimatemodels.
Second, future research could also incorporate decarbonization-
driven changes on demand including electrification of residential
heating and charging of electric vehicles. These extensions face several
challenges, though, including estimating electricity demand with
bottom-up models and obtaining high spatio-temporal resolution cli-
mate model outputs. Third, we do not consider the availability of
flexible loads in our models, which can be an avenue for operational
adjustments by the system operator to prevent RA failures. Incorpor-
ating these demand side changes could reduce the risk in hours with
high failure susceptibility. Fourth, in linking specific weather patterns
to resource adequacy failures, our research suggests climate down-
scaling methods designed, trained, and/or validated on these types of
weather patterns could be highly valuable in bridging the disconnect
between climate and energy system modeling16. Additionally, our
results suggest RA analyses using future climate data could focus on
weather regimes documented here, which could enable a greater
computational focus on climate-related uncertainty.

Methods
Area of study
Our area of study is the Western Interconnection, which is the region
within the continental United States overseen by the Western Elec-
tricity Coordinating Council (WECC). We choose the WECC system for

its high existing wind and solar installed capacities, its strongwind and
solar resources, its large geographic areawhichmakes it susceptible to
large-scale meteorology, and its vulnerability to climate change in the
near-term. Climate change has already reduced system reliability in
WECC, with extreme heat and drought exacerbated by climate change
driving outages in California in 20204. We model WECC in terms of its
constituent sub-regions in a representation similar to the one WECC
uses in its western assessment of resource adequacy report. The five
sub-regions are CAMX, Desert Southwest, Northwest Power Pool—
Central (NWPP-Central), Northwest Power Pool—Northeast (NWPP-
NE), Northwest Power Pool—Northwest (NWPP-NW). Figure A.3 shows
the geographic regions which are within the sub-regions45.

Capacity expansion
We use a capacity expansion model (CEM) to create future WECC
generator fleets that meet increasing renewable generation require-
ments. We run the CEM for each analyzed weather year, capturing
coincident, spatially-resolved meteorology and hydrology for each
year. The CEM is a deterministic linear program that minimizes fixed
plus variable costs by deciding investment in wind, solar, 4-h utility-
scale battery storage, and inter-regional transmission, and operation
of existing and new generators, storage, and inter-regional transmis-
sion.Wind and solar capacity investment decisions occur at the spatial
resolution of our wind and solar resource data, i.e., on a 30 by 30 km
grid across WECC, while storage and transmission investments occur
at the five-region and inter-regional levels, respectively. Because we
couple the CEM with the RAM (described below), which adds or
removes thermal generators from each future fleet to meet a given
reliability target, we do not add thermal units or retire any existing
units in the CEM. Thus, the fleets generated from the CEM form a basis
for creating the final fleets used in our analysis. These final fleets are
obtained after the RAM adds or removes thermal generators.

The CEM includes numerous system- and generator-level con-
straints. At the system level, the CEM requires total generation tomeet
demand in each hour. To approximate system reliability standards, the
CEM includes a 13% planning reserve margin, which requires derated
capacity to exceed peak demand by at least 13%. Derated capacity
accounts for hourly wind and solar generation potential during the
peak demand hour, a fixed 5% forced outage rate for wind and solar
generators, and for temperature-dependent forced outage rates for all
other generator types (see SI Section 3.3 for forced outage rates
used)10. At the generator level, generation can vary between zero and
maximum capacities, following engineering and economic-based unit
operations constraints. Wind and solar generation is also limited by
hourly, spatially-specific wind and solar capacity factors (see “Data
description”). The CEM also decides and constrains hourly charging,
discharging, and state of charge of each existing and new storage unit.
To examine generator fleets with increasing RE penetrations, the CEM
requires totalWECC-widewindplus solar generation tomeet a percent
of total annual demand (see section “Scenarios” for specification of
target levels).

For computational tractability, we run the CEM in hourly intervals
for one representative time block per season, with seven sequential
days in each time block, and for days with peak annual demand, net
demand, and upwards hourly ramp. The representative days capture
typical operations and costs, while the peak days capture system
capacity and flexibility investment needs. Sampled representative days
per season minimize the root mean squared error between sampled
and seasonal net demand profiles. Within each time block, the CEM
dispatches regional hydropower generation based on historic year-
specific generation data.

We formulate the CEM using the General Algebraic Modeling
System54 and solve it using CPLEX55. For the full CEM formulation and
description, see SI Section 2.
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Resource adequacy model
To quantify resource adequacy on an hourly and annual basis, we
combine a Monte Carlo-based non-sequential state sampling proce-
dure with an optimization-based sequential storage dispatch proce-
dure. The state sampling procedure randomly samples forced outages
at each generator within every WECC sub-region in each hour of the
year 250 times via Monte Carlo simulation (see SI Section 3.2 for jus-
tification of sample size). This results in 250 independent capacity
curves for the year, each of which are paired with observed hourly
demand for the year. Like in the CEM, forced outages are a function of
location-specific ambient air temperatures for thermal and hydro-
power plants10, are a constant rate of (0.05) for solar andwind plants46,
and are assumed to be zero for storage and transmission (see SI Sec-
tion 3.3 for forced outage rates used).

Within each sub-region, for each capacity curve after storage
dispatch occurs, we identify hours where any sub-region has a loss of
load event (where sub-regional demand exceeds available sub-regional
generation). For these hours we run a simple network flow optimiza-
tion problem to determine inter-regional transfers within each Monte
Carlo iteration. The optimization objective is tominimize the total cost
of energy transfer along the lines and cost of energy not served within
the sub-regions, with constraints imposed on line limits and energy
available for export from each sub-region (see SI Section 3.1 for
transmission optimization formulation). Following this procedure, we
obtain an RA profile for each sub-region, which is the hourly loss of
load probability (LOLP) time series. This RA profile contains the frac-
tion of Monte Carlo iterations which resulted in a loss of load event in
eachhour.We refer to any hour with a LOLP >0 to be a risk hour. As we
find the LOLP time series, we also simultaneously calculate the
expected hourly shortfall time series and the total expected unserved
energy (EUE). The expected hourly shortfall is the sum of (load −
generation) for those trials when load exceeds generation, divided by
the total number of trials. EUE is the sum of this hourly expected
shortfall.

Unlike our RAM, our CEM does not account for stochastic outa-
ges. Instead, the CEM aims to produce a resource adequate system by
enforcing a planning reserve margin. To facilitate resource adequacy
comparisons across future systems output by our CEM, our RAM
adjusts the generation fleets in CAMX for each case we model so that
each fleet’s annual resource adequacy achieves a target value. Speci-
fically, the RAM iteratively adds or removes NGCC capacity in CAMX
then calculates annual resource adequacy until the annual loss of load
hours (LOLH =∑(LOLP)) is 2.4 in each case. This target value reflects the
real-world 1-in-10 reliability standard widely adopted by utilities. Due
to high computational time taken to obtain the RA profiles and apriori
unknown number of addition/removal trials of NGCC capacity, the
iterative procedure is performed with 50Monte Carlo samples at each
stage. This means that the final fleets all do not have an exact
LOLH= 2.4, but vary between LOLH= 2 to LOLH= 2.6. After each gen-
eratorfleet is adjusted, theRAMestimates the fleet’s hourly and annual
resource adequacy. We use CAMX as the sub-region of interest as it
shows highest LOLH across the scenarios modeled and the timing of
RA failure in other regions coincide with RA failures in CAMX.

Inputs to the RAM include the generator fleets output by theCEM;
hourly surface air temperatures; and forced outage rates. The CEM
provides location and sub-region specific installed capacities for all
generators and storage. The CEM has various generators, but in going
from CEM to RAM we retain these generators as such, but combine—
pumped hydro, batteries, fuel cell to storage type; and geothermal,
different types of waste, biomass, and other small fossil generators
other type.

Prior to the stochastic simulation procedure, we calculate the
hydroelectric generation for each scenariowithin each sub-region. For
each of our five regions in WECC, we obtain monthly hydropower
generation fromEIA-923data, then calculate sub-regional contribution

proportional to installed capacity. To estimate hourly generation, we
then carry out a greedy dispatch procedure for each month. The
algorithm first quantifies hourly electricity demand not met by every
generator other than hydropower and storage units (i.e., residual
demand). The algorithm then dispatches hydropower units on a con-
secutive hourly basis. In each hour, the algorithm sets regional
hydropower generation equal to theminimumof residual demand and
regional total installed hydropower capacity, provided cumulative
monthly generation through each hour doesn’t exceed monthly gen-
eration limits. Any leftover monthly generation in the month is redis-
tributed to all hours proportional to electricity demand minus wind
and solar generation (i.e., net demand).

Meteorological analysis
Weather regimes. To characterize meteorological drivers of risk
hours, webegin by identifying theweather regimes and corresponding
circulation patterns that coincide with risk hours. To identify weather
regimes in our study region (WECC), we use self-organizing maps
(SOMs), which is an unsupervised neural-network-based clustering
technique. Unlike other hierarchical and non-hierarchical clustering
techniques, SOMs cluster input data into nodes that forma topological
representation in which node proximity indicates their similarity.
Previous studies have identified weather regimes with SOMs in other
contexts, e.g., to quantify the frequency and persistence of weather
regimes associated with heat waves56 and extreme precipitation
events57 in a warming climate.

We create our SOMs using seasonal anomalies of the daily average
500 hPa geopotential height (Z500) for the extended summer season
(June through September, or JJAS) from 1981–2020. We analyze an
extended summer seasonbecauseour risk hoursoccur in June through
September, so we focus on the warmest months of the year without
narrowly constraining our SOMs to a small subset of months. We use
Z500 because it captures synoptic-scale atmospheric processes and
their relationshipwith surfacemeteorology, is persistent overmultiple
days, and is widely used for weather typing in the US and
Europe25,32,58,59. To produce the SOM, we use the MiniSom Python
package60 with the following parameterization: grid shape of 3 rows
and 3 columns, a gaussian neighborhood function, sigma (i.e., spread
of neighborhood function) value of 1, learning rate of 0.1, and 5000
training iterations. These parameter values provide a concise weather
regime representation that balances quantization and topographic
error (see SI Section 4). SI Fig. A.6 shows the total number of days
attributed to each weather pattern over the 40 year period used to
train the SOM. Since the objective of weather patterning is not to get
an equal number of elements in each node, but to cluster weather
patterns based on similarity, the number of days assigned to all
weather patterns are not equal.

Surface meteorology. While daily Z500 anomalies are a meaningful
variable for weather regime identification via SOMs, the power system
is directly affected not by Z500 but rather by surface meteorological
variables. Thus, we study surface meteorology corresponding to the
weather regimes as well as surface meteorology on the RA failure days
for the different years. For eachweather regime identified by our SOM,
wemake composite maps of hourly anomalies in surface temperature,
surface solar radiation, andnear surfacewind speed. Tocalculate these
hourly anomalies, we calculate the JJAS seasonal hour-of-day mean of
surface weather data for each year (yielding 24 mean values for each
year), then subtract this seasonal hour-of-day mean from each hourly
data point within the years. We analyze anomalies within the year
rather over the 40-year period as our models work with a yearly time
series and that the investment decisions aremade to cater to that year.
Using the hourly anomalies, we construct composite maps for the
weather years (2016–2019) in a two step process. First, we map each
day from the extended summer months to a weather regime by
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passing daily Z500 anomaly into the SOM. Second, for every hour of
each day that belong to each weather regime, we average the hourly
surface meteorology anomalies to get the composite surface meteor-
ological anomalies under each weather regime. For solar radiation
anomaly composites, we choose only the daylight hours regionwide (6
a.m. to 8 p.m. PST) to avoid biasing the composites toward the hours
with very low solar radiation. To capture surface meteorology directly
driving the RA failure days, we find the unique days when these events
occur across the fourweather years analyzed at REpenetrations of 30%
or more, and plot the mean surface meteorology anomaly in those
days. Here too, for solar radiation anomalies we use only the
daylight hours.

Data description
Demand data. We get hourly sub-regional electricity demand from a
database of screened and imputed data based on observed demand44.
Due to limited availability of observed hourly electricity demand, the
database provides four full years of balancing authority (BA) level
demand from 2016 through 2019, and sub-regional demand is con-
structed by aggregating demand fromBAs within each sub-region (ref.
SI Section 2.6.1). Though there are techniques to backcast electricity
demand based on meteorological and societal factors, these methods
exhibit large errors, particularly in predicting extreme demand
values7,61. Since demand extremes are a major factor in RA, we opt for
observational rather than backcasted demand values.

ERA5 reanalysis data. Given that identification of weather regimes
requires long-term (multi-decadal) weather data, we use reanalysis
weather data for our analysis. Specifically, weobtainweather data from
the ERA5 reanalysis dataset62. The weather data used for surface
meteorological anomalies and weather pattern identification for each
weather year coincides with the weather data used to drive the power
system models for the corresponding weather year. We choose ERA5
because it provides wind speeds at 100 m above surface at hourly
resolution, unlike other reanalyses products63. ERA5 is alsowidely used
in power systems and synoptic meteorology research24,34,35. From
ERA5, we specifically obtain near-surface air temperature (t2m); dew-
point temperature (tdps); air pressure (sp); zonal and meridional sur-
face wind speeds (u10 and v10); downward shortwave solar radiation
at the surface (ssrd); and zonal and meridional wind speeds at 100m
level (u100 and v100). We obtain each data field at hourly temporal
resolution and 30 km spatial resolution.

Capacity factors. We derive solar capacity factors directly from the
surface downwelling shortwave radiation data for a EFG-
Polycrystalline silicon photovoltaic module using the formulation
described by Jerez et al.64 (see SI Section 1.1). We calculate wind
capacity factors using the formulation described by Karnauskas et al.65

and the composite 1.5MWIEC class III turbine from the SystemAdvisor
Model66 (see SI Section 1.2).

Technology and costs. We obtain operational costs for existing gen-
erators from the NREL Annual Technology Baseline (ATB) moderate
technology development scenario for 203067, and fuel costs from the
EIA annual energy outlook for 202068. For new units which the CEM
determines investment in, we obtain capital costs from the ATB.

Scenarios
To capture the effect of increasing renewable penetrations on
meteorological drivers of reliability, we run four scenarios of increas-
ing wind plus solar penetrations: 9 (based on the current fleet), 30, 45,
and 60%. These scenarios are enforced in the CEM by constraining
constraining annual wind plus solar generation to equal to a percen-
tage of annual electricity demand. Given significant inter-annual
variability in meteorology and climate, we run our modeling

framework for each renewable scenario for each year of available
electricity demand data (2016 through 2019). This approach treats
each meteorological year as an independent observation, allowing us
to quantify the robustness of our results to different weather years.

While our results are based on fleets built for specified renewable
penetrations, we have also explored publicly available datasets for
understanding the plausibility of the fleets we have obtained. One of
these, the WECC anchor dataset (ADS), provides generator fleet and
hourly load and renewable generation shapes for 2032. The ADS
renewable penetration percent is 32% with total installed capacity of
60GW in utility scale solar PV and 38GW of on-shore wind generation,
which falls within our renewable penetration and installed generation
ranges studied. While our methods can also be applied to that dataset
to understand the meteorological drivers, we have not done so in this
paper for conciseness.

Data availability
Meteorological, power systemoutput from themodels, and code used
to create the final figures in the manuscript are available via
Zenodo69. Source data are provided with this paper.

Code availability
Code for the CEM and RAM used in this study is available online via
Zenodo70.
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