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Statistical laws of stick-slip friction at
mesoscale

Caishan Yan 1, Hsuan-Yi Chen 2,3, Pik-Yin Lai 2,3 & Penger Tong 1

Friction between two rough solid surfaces often involves local stick-slip events
occurring at different locations of the contact interface. If the apparent con-
tact area is large, multiple local slips may take place simultaneously and the
total frictional force is a sum of the pinning forces imposed bymany asperities
on the interface. Here, we report a systematic study of stick-slip friction over a
mesoscale contact area using a hanging-beam lateral atomic-force-micro-
scope, which is capable of resolving frictional force fluctuations generated by
individual slip events and measuring their statistical properties at the single-
slip resolution. The measured probability density functions (PDFs) of the slip
length δxs, the maximal force Fc needed to trigger the local slips, and the local
force gradient k0 of the asperity-induced pinning force field provide a com-
prehensive statistical description of stick-slip friction that is often associated
with the avalanche dynamics at a critical state. In particular, themeasured PDF
of δxs obeys a power law distribution and the power-law exponent is explained
by a new theoreticalmodel for the under-damped spring-blockmotionunder a
Brownian-correlated pinning force field. This model provides a long-sought
physical mechanism for the avalanche dynamics in stick-slip friction at
mesoscale.

Stick-slip is a common phenomenon both in nature and in many
engineering applications. It is often observed in out-of-equilibrium
disordered systems as a yield response to a smoothly varying external
force and is characterized by intermittent bursts of irregular signals of
different amplitudes, durations, and separations that result from the
spontaneousdepinningofmechanical contacts or local rearrangement
of material bonds1–4. Among the stick-slip phenomena that have been
explored thus far, friction between two (rough) solid surfaces in con-
tact has attracted special attention5–9 partly because of its connection
with earthquakes, whose impact on our living conditions is often cat-
astrophic. Earthquake on faults is believed to be a result of frictional
stick-slip instabilities along pre-existing faults10–13.

A common feature of stick-slip events is their broad range of slip
sizes, manifest as power-law distribution of many orders of
magnitude4,12,13. Observations that many different systems behave in a
similar manner have prompted many theoretical, numerical, and

experimental investigations aimed at finding some common mechan-
ism or universal law underpinning these phenomena, which are also
referred to as avalanche dynamics4,12–15. Because of the complexity of
surface topologies and complex material parameters involved, our
fundamental understanding of stick-slip friction is often limited by
fewer directmeasurements of individual slip events andoversimplified
modeling and simulations conducted thus far12,13,16–19. It remains
unclear whether stick-slip friction is indeed operating at a critical
point, and if so, how the avalanche scaling is determined by the basic
features of the surface roughness landscape?

Experimental studies of the friction lawof solid interfaces, such as
those reported in refs. 5,6,11,20–22 involved a macroscopic solid sur-
face sliding against a rough substrate. Because the contact area of the
interface contains a large number n of random asperities, the mea-
sured frictional force fluctuations resulting from individual slips were
usually averaged out as 1=

ffiffiffi
n

p
. Consequently, these studies focused
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mainly on the macroscopic laws of friction, which involve aging of the
static friction coefficient and the velocity-dependence of the dynamic
friction coefficient5,6,21,22. Another type of experiment used an atomic
force microscope (AFM) to measure atomic-scale friction with a
nanoscopically sharp AFM tip sliding against a single-crystal
surface23–27. Because the contact area between the AFM tip and the
substrate is so small, only a single asperity is involved for a given slip
event. These AFM experiments thus studied single-asperity dynamics
without involving any collective effect ofmulti-asperity slips, which is a
key factor in understanding the collective stick-slip dynamics6,12,13.

In this work, we demonstrate that the hanging-beamAFM shown in
Fig. 1 below provides a versatile experimental framework at the mesos-
cale that is small enough to resolve individual slip events but is also large
enough to examine a broad range of slip sizes in a well-characterized
disorder landscapewith a single-slip resolution.With this framework,we
are able to resolve frictional force fluctuations generated by individual
slip events and provide a statistical description of stick-slip friction,
which bridges the gap between the microscopic behavior of individual
slips and the macroscopic laws of friction for solid interfaces.

Results
Figure 1a shows theworking principle of the long-beamAFM. A vertical
hanging beam made with a thin rectangular cantilever beam is glued

onto the front end of a horizontal AFM cantilever with the normal
direction of the beamplane in parallel with theAFMscanning direction
(x-direction). The free endof thehangingbeam is coatedwith adropof
UV-cured glue mixed with 16wt% glass nanoparticles to increase the
compliance of the contact and at the same time, reduce adhesion to
the substrate. The end surface of the scanning probe in contact with
the substrate is milled by using a focused ion beam (FIB) so that it has
two specific shapes and dimensions: one has a line shape with
dimensions 34 × 3μm2 (“quasi-1D probe” with an aspect ratio 11:1,
Fig. 1b) and the other has a square shape with dimensions 12 × 12μm2

(“2D probe”, Fig. 1c) (see “Methods” below for more details).
The substrate used in the experiment is an ultra-fine silicon car-

bide sandpaper having an average grain size of 100nm, which is taped
onto a flat glass slide. Figure 1d shows an AFM topographical image of
the sandpaper surface, from which we find its RMS roughness to be
99.7 nm over an area of 10 × 10μm2 (see Supplementary Information
(SI) Section I.A for more details). The surface of the silicon carbide
sandpaper is hydrophobic, and its adhesion to the scanning probe is
small compared with the applied normal load under ambient condi-
tions (see SI Section II.B for more details). When the scanning probe is
placed against the sandpaper under a normal loadN and slides laterally
along the x-direction at a low-speed U, we measure the frictional force
F(x) between the two contact surfaces as a function of the scan
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Fig. 1 | Experimental setup and measurement of the frictional force curve. a A
sketch of the hanging-beam AFM for the measurement of the frictional force F(x)
between the end surface of the scanning probe and the substrate. b An SEM image
showing the side and end (inset) views of a quasi-1D scanning probe with an end
contact area of (34 ± 2) × (3.0 ± 0.5)μm2. c An SEM image showing the side and end
(inset) views of a 2D scanning probe with an end contact area of (12 ± 1) × (12 ± 1)
μm2. The end-view SEM image reveals that the thin cantilever beam is embedded in
the middle of the end portion of the scanning probe. d An AFM topographical
image of the ultra-fine sandpaper surface (10 × 10 μm2) with a nominal grain size of
100nm. The vertical grayscale indicates the surface height. The scale bar in b and
c is 20μm, and that in d is 2μm. eMeasured force trajectories F(x) as a function of

scan displacement x under three different normal loads: N = 100nN (blue curve),
500 nN (black curve), and 2400nN (red curve). For clarity, the black and red curves
are shifted upwards by 0.15μN and 0.5μN, respectively, which become their new
zero-points in the vertical axis. The measurements are made using the 2D probe at
the same scanning speed U = 100 nm/s. f Amagnified view of the force trajectories
in the blue-shaded region in (e). The blue downward triangles on the black curve
mark theonset of each individual slip event. The inset shows two stick-slip events in
the blue-shaded area of the black curve (at x≃ 51.1μm). Here k, Fc, and δf denote,
respectively, the dynamic spring constant in the steady state, the maximum force
needed to trigger a slip and force release during a slip. Source data are provided as
a Source Data file.Source Data.
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displacement x =Ut of the probe [Fig. 1e, f and Supplementary
Figs. 5–8 in SI Section I.D]. Because Young’s modulus of the
nanoparticles-embedded UV-cured glue (~3MPa) is much smaller than
that of the sandpaper substrate (see “Methods” below for more
details), the contact between the end surface of the probe and the
sandpaper is improved when the normal load N is applied in the range
studied.

Figure 1e shows how the measured force trajectory F(x) changes
with increasing normal load N. Because the scanning probe is under a
steady-state motion over the sandpaper, the measured F(x) fluctuates
around a constant mean for a given N. The variations of F(x) exhibit
different characters, however, for different N, as shown in Fig. 1f. At a
small load with N = 100 nN (blue curve), the measured F(x) varies
smoothly with displacement xmost of the time and large fluctuations
are observed only occasionally. This behavior indicates that the scan-
ning probe is under a continuous sliding, a regime which has been
studied in previous experiments5,8,27,28 (see SI Section II.G for more
experimental results). At an intermediate load with N = 500 nN (black
curve), F(x) shows sawtooth-like fluctuations with a slow linear accu-
mulation of force (stick) followed by a sharp force release (slip), which
is characteristic of the stick-slip motion.

Prandtl and Tomlinson (PT) proposed29–31 that the transition
from smooth (or continuous) sliding to stick-slip takes place when
(2π2Eb)/(k0λ2) > 1, where Eb and λ are, respectively, the height and
width of the potential trap associated with the surface roughness
and k0 is the effective (lateral) spring constant of the scanning
probe. The maximal lateral force Fc needed to overcome the energy
barrier Eb can be estimated as Fc = μcNm≃ πEb/λ27,32, where μc is the
friction coefficient associated with Fc. The PT model thus predicted
Nm > k0λ/(2πμc). For our system, we have k0≃ 0.48 N/m (see Fig. 3
below), the lower cutoff size of the grain clusters λ≃ 0.34 μm (see SI
Section I.A for more details), and μc≃ 0.26 (see SI Section II.C for
more details), and hence Nm > 100 nN. This estimate is consistent
with our observations.

At the high load limitwithN = 2400 nN≫Nm (red curve), the stick-
slip is predominated by a smaller number of large-amplitude slip
events with a dramatic increase of the force drop δf during each slip
and a large reduction of the slip incident rate, as shown by the red
curve in Fig. 1f. Similar effects were also observed in other AFM28 and
macroscopic5 stick-slip experiments. Under a large normal load, the
contact geometry at the solid interface may change significantly
because nearby individual micro-contact areas start to interact, and
some of themmay coalesce and become large ones33,34. As a result, the
scanning probe senses fewer but larger asperities, and the incidence
rate of slips is reduced compared to that at an intermediate N (see SI
Section II.E for more details).

In this study, we focus on the measurements in the intermediate
rangeof thenormal loadN = 200–600nN, inwhich the scanningprobe
remains at an “optimal contact”with the sandpaper so that it can sense
the full range of the rough landscape quasi-statically with negligible
wear (see SI Section I.D and Section II.E for more details). Individual
stick-slip events in this regime can be characterized by three quan-
tities:k, Fc, and δf, asmarked in the inset of Fig. 1f (see SI Section II.A for
more details). The slope k of the linear force accumulation defines the
dynamic spring constant of the scanning probe. When F(x) reaches its
localmaximal value Fc, someof thepinning sites in the contact area can
no longer be held by the asperities, such that they slip off with a
sudden release of the elastic restoring force δf. In this way, the local
contact regionmoves forward, and this process repeats itself when the
contact region becomes pinned again at a new position. Because the
pinning force field associated with the sandpaper is random, the three
quantities, k, Fc, and δf, all exhibit significant fluctuations, as shown by
the black curve in Fig. 1f. As will be shown below, at the optimal con-
tact, the stick-slip motion is at a critical point14,18, at which the mea-
sured k, Fc, and δf reveal universal statistical properties.

Figure 2 shows the measured probability density function (PDF)
P(fc) of the normalized maximal force f c = ðFc � hFciÞ=σFc

, where 〈Fc〉
and σFc

are, respectively, the mean and standard deviation of Fc. It is
seen that themeasured PDFs P(fc) for the quasi-1D probe (black circles)
and 2D probe (red triangles) overlap with each other, suggesting that
the measured P(fc) is an intrinsic property of the stick-slip friction on
the sandpaper and is not sensitive to the shape and dimensions of the
scanning probe used. The two sets of data can bewell described by the
generalized extreme value (GEV) distribution35,

Pðf cÞ=
1
β
ð1 + ξzÞ�ð1 + 1=ξÞe�ð1 + ξzÞ�1=ξ

, ð1Þ

where z = (fc − μ)/β is the standardized variable with

β= jξj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1� 2ξÞ � Γ2ð1� ξÞ

q
and μ = β[1 − Γ(1 − ξ)]/ξ being, respec-

tively, the scale and location parameters of the distribution function,
and Γ(x) is the gamma function. Equation (1) is used to model the
distribution of extreme values in a sequence of independent and
identically distributed random variables with zero mean and unity
variance so that the normalizedmaximal force fc is used as the random
variable in Eq. (1) (see SI Section II.D.1 for more details). The solid lines
in Fig. 2 show the fits of Eq. (1) to the data points with only one fitting
parameter ξ. For the data obtained with the quasi-1D probe (black
circles), we find ξ = −0.13 ± 0.06. For the data obtained with the 2D
probe (red triangles), we find ξ = −0.03 ± 0.05. For ξ = 0, Eq. (1) is
reduced to the Gumbel distribution, which has an exponential tail at
large values of z without an upper bound for the local maximal force.
Evidently, the data shown in Fig. 2 are not far from this limit. Figure 2
thus demonstrates that the maximal force Fc is a depinning force for
local slips, which follows the extreme value statistics.

When the scanning probe is pulled under a constant speed U, the
interface motion is accomplished by a continuous series of local wig-
gling of individual (microscopic) contact areas over the asperities on
the sandpaper via many individual stick-slip events of different sizes
across the entire (macroscopic) contact area. A sudden slip of the
contact interface takes place only locally for certain individual contact
areas where the asperity-induced pinning force can no longer balance

Fig. 2 | Statistics of the maximal depinning force.Measured probability density
function (PDF) of the normalized maximal force fc. The measurements are made at
the same scanning speed U = 100nm/s, and under the same normal load N = 500
nN, for both the quasi-1D probe (black circles) and 2D probe (red triangles). For
each set of data, the measured F(x) recorded ~2500 slip events over a traveling
distance x≃ 500μm. The black and red solid lines show, respectively, the fits of Eq.
(1) to the black circles with ξ = −0.13 ± 0.06 and to the red triangles with
ξ = −0.03 ± 0.05. The error bars show the standard deviation of the black circles.
Source data are provided as a Source Data file.Source Data.
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the continuously increasing elastic restoring force resulting from the
deformed solid interface (on the probe side). The local slip will be
stopped eventually by some large asperities in front of the moving
interface. As will be shownbelow (see theDiscussion Section below for
details), the measured force release δf is related to the interface dis-
placement δxs associated with each slip by δf≃ k0δxs, where k0 is the
static spring constant of the scanning probe, when it is completely
pinned at the interface.

The value of k0 can be obtained by measuring the frictional force
loop when the scanning probe is pulled to move back and forth for a
whole cycle against a smooth silicon wafer surface coated with a thin

layer of gold, as shown in Fig. 3. The gold-coated silicon wafer surface
has an RMS roughness of 1.0 nm over an area of 10μm× 10μm (see SI
Section I.A for more details). Before the probe starts to move, it is
pushed downward against the wafer surface under a normal load
N = 200nN, and the contact between the two solid surfaces is tight.
When the scanning probe advances (→) (or recedes (←)), it is stretched
first, causing a sharp linear increase (or decrease) in Fwith the distance
x traveled, as shown by the straight lines on the left (or right) side of
the force loops. From the slope of the linear curve, we find the static
spring constant k0≃0.66N/m for the quasi-1Dprobe (black curve) and
k0≃0.48N/m for the 2D probe (red curve). When the pulling force
reaches a critical value Fc, the interface de-pins and begins to move.
Because the substrate is smooth, only smooth sliding with small force
fluctuations, instead of stick-slip motion, is observed. This is shown by
the horizontal plateau on the top (or bottom) of the force loops.

Figure 4 shows themeasuredPDF P(δxs) of the slip length δxson the
sandpaper, which is the normalized force release δf/k0 during each slip.
In contrary to Fig. 2, the measured P(δxs) for the quasi-1D probe (black
circles) does not overlap with that for the 2D probe (red triangles), but
both sets of data can be described by a power-law distribution,

PðδxsÞ∼ ðδxsÞ�τ
: ð2Þ

Thevalueof thepower-lawexponent τ changeswith theprobegeometry
and dimensions, and we find τ= 1.12 ±0.10 for the quasi-1D probe and
τ=0.72 ±0.10 for the2Dprobe.Whenamesoscale scanningprobe slides
against the sandpaper under a proper normal load, the contact area
contains a finite number of asperities (say, 100–1000 asperities), and
stick-slip friction involves multi-asperity slips. For example, when a
strong asperity slips, it releases a large stress, which is partially
transferred to its neighboring asperities and triggers their slips. This is
anavalancheprocess,whichgives rise to abroad rangeof slip lengthsδxs
without a characteristic value4,12–15. The power-law exponent τ quantifies
the relative incidence between the large-sized and small-sized slips, i.e.,
more large-sized slips are detected for a smaller value of τ, and vice
versa. Figure 4 thus demonstrates that stick-slip friction indeed involves
avalanche dynamics so that the slip lengths (or sizes) δxs obey a power-
law distribution without a characteristic value (see SI Section II.D,
Section II.E and Section II.F for more experimental results).

Discussion
To explain the above experimental results, we now consider the force
release δf for a slip, which can be written as,
δf =

R
Aðxs Þσðx, y; xsÞdA� R

Aðxs + δxs Þσðx, y; xs + δxsÞdA, where σ(x, y; xs) is
the asperity-induced heterogeneous interfacial shear stress at the
contact surface of area A = LxLy and Cartesian coordinates (x, y), and xs
is the center-of-mass position of the contact surface with δxs being its
displacement during the slip. By introducing an effective hetero-
geneous interfacial tension hðy; xsÞ=

R
Lx
dxσðx, y; xsÞ, we have

δf =
Z

Ly

dy½hðy; xsÞ � hðy; xs + δxsÞ�

’ �h∂xs
hiLyδxs ’ k0δxs,

ð3Þ

where the second relation of Eq. (3) is obtained by taking Taylor
expansion of the integrand to the first order and h∂xs

hi is averaged
over the region between xs and xs + δxs. The third relation of Eq. (3)
results from the onset condition for a local slip to occur31,36, when the
slope k0 of the external elastic pulling force, Fe(x0; xs) = k0(x0 − xs),
becomes equal to the local (downward) slope �h∂xshiLy of the
asperity-induced pinning force field,

FiðxsÞ=
Z

Ly

dyhðy; xsÞ: ð4Þ

Fig. 3 | Frictional force loops measured on a smooth silicon wafer surface. The
force loops are measured as a function of traveling distance x when the quasi-1D
probe (black curve) and 2Dprobe (red curve) are pulled to advance (→ ) and recede
(← ) for a whole cycle against a smooth siliconwafer surface, which is coated with a
thin layer of gold. The measurements are made under the same normal load
N = 200nN and at the same scanning speed U = 1μm/s. In the plot, k0 denotes the
slope of the force curve on the left and right sides of the force loop. Source data are
provided as a Source Data file.Source Data.

Fig. 4 | Statistics of the slip length. Log–log plot of the measured PDF of the
interface displacement δxs associated with each slip. The measurements are made
at the same scanning speed U = 100nm/s, and under the same normal load
N = 500 nN, for both the quasi-1Dprobe (black circles) and 2Dprobe (red triangles).
The solid lines show the power-law fits of Eq. (2) to the black circles with the power-
law exponent τ = 1.12 ± 0.10 and to the red triangles with τ =0.72 ±0.10. The error
bars show the standard deviation of the black circles. Source data are provided as
a Source Data file.Source Data.
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Indeed,wefind that thisonset condition is satisfiedduring the slip (seeSI
Section III.A for more details). Equation (3), therefore, establishes a
direct connection between the force release δf and slip length δxs.

The interface motion is stuck on the uphill of the pinning force
field Fi(xs) when the local (upward) slope, k0 =dFiðxsÞ=dxs > k0. In this
case, the elastic pulling force Fe(x0; xs) is balanced by the local pinning
force Fi(xs), fromwhich we obtain (see SI Section III.A for more details)

1
k
=

1
k0 +

1
k0

, ð5Þ

where k is the dynamic spring constant measured when the scanning
probe undergoes a steady stick-slip motion, as shown in Fig. 1f.
Equation (5) states that the interface is often partially pinned, and its
local (microscopic) slip allows the scanning probe to feel a local force
gradient k0. As the scanning probe sweeps over the sandpaper, it feels
different values of k 0 and the measured k varies correspondingly.

The inset of Fig. 5 shows themeasured PDF P(k) of the normalized
dynamic spring constant k/k0. The two sets of data for the quasi-1D
probe (black circles) and 2D probe (red triangles) have a similar shape.
The measured k/k0 varies in the range 0≲ k/k0≲ 1 and is peaked
around k/k0≃0.97. Equation (5) indicates that khas anupper bound k0
when the scanning probe is completely pinned (k0 ! 1, as shown in
Fig. 4), which explains the variation range of the measured k/k0. With
Eq. (5), one can subtract out the contribution of k0 from themeasured
k and obtain the local force gradient k0. Figure 5 shows the obtained
PDF Pðk0Þ of the normalized k0

=k0. The measured PDFs Pðk0Þ have a
heavy-tailed distribution and can be well described by a simple expo-
nential function, Pðk0

=k0Þ=b exp½�bðk0
=k0Þ�. Exponential-like PDFs,

which fall off much slower than a Gaussian, were observed in various
dynamically or spatially heterogenous systems37,38. From the fitting
result, we find the average value hk0i=k0 = 1=b ’ 7:1 (for black circles).
With k0 ’ ð2π2EbÞ=λ2 for a hypothetical sinusoidal pinning force field,
the PT model29–31 predicted that the transition to stick-slip motion
occurs when hk0i=k0>1. Figure 5 thus reveals that this condition is
satisfied for our system.

Under the mean-field approximation, the stick-slip motion of the
scanning probe may be envisioned as a result of its center-of-mass (at

position xs) moving in a random pinning force field Fi(xs) in Eq. (4)
under the influence of Fe(x0; xs), where x0 =Ut. The equation ofmotion
of xs(t) can be written as

m
d2xs

dt2
+ γ

dxs
dt

= k0ðUt � xsÞ � FiðxsÞ, ð6Þ

where m and γ are, respectively, the effective mass and damping coef-
ficient of the scanning probe, and Fi(xs) > 0 is a random pinning force
field. Equation (6) is an extension of the PTmodel, which laid down the
foundation for our understanding of stick-slip instabilities. In the
original PT model19,29–31, the external pinning (or frictional) force field
Fi(xs) was assumed to be of a sinusoidal form for a single crystalline
surface. For many rough surfaces of practical interest, however,
Fi(xs) > 0 is a random force field. Because disorder has many different
forms, modeling a realistic random force field that can be compared
directly with the experimental results remains a challenging task. Here
we show that because the asperity-induced frictional force acting on a
mesoscale scanningprobe is a running averageof the individual pinning
forces resulting from a finite number of asperities at the interface,
the resulting force field Fi(xs) is Brownian correlated39, i.e.,
hjFiðxsÞ � Fiðx0

sÞj2i=2Djxs � x0
sj, whereD is ameasure of the fluctuation

amplitude of Fi(xs) (see SI Section III.B for more details). The Brownian
correlation is a general feature of the random pinning force field and
has been used in the Alessandro–Beatrice–Bertotti–Montorsi (ABBM)
model4,15,40 to describe the avalanche dynamics of domain walls in soft
magnets.

Equation (6) canbe transformed into the timeevolution of the slip
velocity v(t) ≡ dxs/dt can be obtained by solving the dimensionless
form of Eq. (6) (see SI Section III.B for more details)

d2V
dt2

+ γ0
dV
dt

= 1� V +
ffiffiffiffi
V

p
ηðtÞ, ð7Þ

where V = v/U, γ0 = γ=
ffiffiffiffiffiffiffiffiffiffi
mk0

p
, t has a unit of

ffiffiffiffiffiffiffiffiffiffiffiffi
m=k0

p
, and η(t) is a

Gaussian white noise with hηðtÞηðt0Þi=2D0δðt � t0Þ, and

D0 =D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk3

0U
2

q
. For D0 > 1, Eq. (7) gives rise to stick-slip motion. We

numerically integrate Eq. (7) using the Euler–Maruyama method,
following the protocol adopted in ref. 15. A slip starts at a zero

acceleration (dVdt ðt =0Þ=0) and a very small positive speed V(t =0)≪ 1
and stops when V first becomes negative at t = Ts. The slip length δxs is

thendefined asδxs �
R Ts
0 Vdt.With repeated slip events, weobtain the

PDF P(δxs) in the parameter space ½γ0,D0�.

In the under-damped regime (γ0 ≤ 2), wefind P(δxs) obeys a power-
lawdistribution, PðδxsÞ∼δx�ϵ

s , whenD0 > 1. An example is shown in the
inset of Fig. 6 (see SI Section III.C and Section III.D for more numerical
results). As shown in Fig. 6, the power-law exponent ϵ is well described
by the relation, ϵ = τ � κ=D0 with κ = 2.0 ±0.2, and saturates at the
asymptotic value, τ = 1.20 ±0.05, when D0 ≫ 1. The error bar of the fit-
ting parameters quoted here represents the confidence interval that
we obtain from the fitting. Figure 6 also reveals that the value of γ0 has
little effect on the power-law distribution of slip lengths so long as the
system remains in the under-damped regime, i.e., when γ0 ≤ 2. A similar
relation was also found in the ABBM model, where the power-law
exponent ϵ is well described by the relation, ϵ=3=2� ð1=2Þ=ðD0γ0Þ15
(see SI Section III.E for more details).

In the over-damped case, the power-law exponent ϵ can be ana-
lytically derived, and the second term is interpreted as a finite velocity
correction. In the under-damped regime, the obtained asymptotic
value of τ = 1.2 is smaller than that predicted by the ABBM model
(τ = 3/2)4,15 for the over-damped avalanche dynamics. This difference
may be explained by the fact that the under-damped system has less
dissipation, andmore slip eventswith larger slip lengths are observed.

Fig. 5 | Statistics of the local force gradient.Measured PDF of the local force
gradient k 0 of the pinning force field. In the plot, the value of k0 is normalized by k0.
The measurements are made at the same scanning speed U = 100nm/s, and under
the samenormal loadN = 500nN, for both the quasi-1Dprobe (blackcircles) and 2D
probe (red triangles). The error bars show the standard deviation of the black
circles. The solid line shows an exponentialfit, Pðk 0

=k0Þ=b exp½�bðk0
=k0Þ�, to all the

data with b =0.14 ± 0.02. The inset shows the PDF P(k) of the normalized dynamic
spring constant k/k0. Source data are provided as a Source Data file.Source Data.
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Thepredicted value of τ = 1.2 in the strongpinning regime (withD0 ≫ 1)
is very close to the experimental result for the quasi-1D probe, and
thus the model described by Eq. (6) provides a long-sought physical
mechanism for the avalanche dynamics in stick-slip friction. Note that
the relation, ϵ= τ � κ=D0, as shown in Fig. 6, is obtained only
numerically, and we have not been able to derive the relation analy-
tically from Eq. (6) up to now. Further theoretical study is needed.

Our results reveal that seemingly chaotic stick-slip friction at
mesoscale obeys the statistical laws that are often associated with the
avalanche dynamics at a critical state. These statistical laws remain
invariant in the range of normal loads studied (see SI Section II.D for
more details). In particular, we find that the measured PDFs of the slip
length δxs, the maximal force Fc needed to trigger local slips, and the
local force gradient k0 of the pinning force field are statistically inter-
connected. The broad distribution of k0 indicates that the stick-slip
dynamics of the contact interface is caused primarily by fluctuations in
the pinning force field. Slips with a larger slip length are lower-
probability events,which require a larger value of k0 (or larger asperities)
to hold the local contacts and a larger value of Fc to de-pin them; both
have a lower probability in their distributions. The proposed under-
damped spring-blockmodel under a Brownian-correlated pinning force
field captures the essential physics of the stick-slip friction atmesoscale.

Methods
Assembly of the scanning probe
The assembly of the scanning probe is conducted under a high-
magnification stereo-microscope using amicro-manipulator system. A
rectangular silicon beamwith a length ℓ≃ 90μm,widthw≃ 35μmand
thickness t≃ 2μm is glued to the front end of a commercial AFM
cantilever (CSC37, MicroMasch) using a UV-curable glue (NOA 81,
Norland). The hanging beam plane is made perpendicular to the can-
tilever plane, and its intersection with the cantilever orients parallel
with the long axis of the cantilever, as shown in Fig. 1b, c. Once the
beam is glued to the cantilever, the free end of the hanging beam is
enclosed by a drop of the UV-curable glue mixed with 16wt% silicon
dioxide nanoparticles of mean size ~20 nm, which is then cured by
exposure to a UV light. Finally, the glue part of the hanging beam is
milled using a FIB (Helios G4Dualbeam, ThermoScientific) to generate

a flat rectangular end surface with the desired dimensions. The end
surface of the hanging beam is made at an angle of 11° with respect to
the cantilever surface so that it will remain horizontal (parallel to the
substrate) when the probe is mounted to the AFM cantilever holder.

The Young’s modulus E of the UV-cured glue (together with the
nanoparticles) is measured using a conical AFM tip. In the AFM mea-
surement, amillimeter-sized dropof theUV-cured glue is deposited on
a coverslip. By pressing the AFM tip against the glue surface, we obtain
a force-indentation curve F(δ), as shown in Fig. 7. Because of the sur-
face adhesion between the AFM tip and the UV-cured glue, the mea-
sured F(δ) in the advancing and receding directions does not overlap
and show some hysteresis. The surface adhesion has less effect on the
measured F(δ) in the advancing direction, which is well described by
the Sneddon contact model41,

F =
πE

2ð1� ν2Þ tanðϕÞðδ � δ0Þ2, ð8Þ

where ν is the Poisson ratio of the glue, ϕ is the half-cone angle of the
conical AFM tip, and δ0 is an offset of the indentation depth δ. By
taking ν = 0.5 and ϕ = 20°, we obtain a good fit to the data with
E = 3.0MPa. This value of E is much smaller than Young’s modulus of
the sandpaper and the hanging beam (~170GPa42). As a result, the glue-
coated scanning probe provides better compliance at the contact
when it is pushed against the sandpaper under a normal load.
Meanwhile, mixing the nanoparticles into the glue reduces the
adhesion of the probe to the sandpaper and strengthens the
mechanical properties of the glue43.

As shown by the SEM image in Fig. 1b, the end surface of the
vertical silicon beam in the quasi-1D probe is covered by some uneven
spotty surface texture, indicating that the end surface of the silicon
beam is covered by a layer of the UV-cured glue and does not protrude
through the glue. Because the end surface of the glue drop initially
added to the free end of the vertical silicon beamhas a limited size, it is
quite difficult to cut a square end surface out of the glue drop alone
with a size over 10μm. To fabricate a 2D probe with dimensions of
12 × 12μm2, we cut the glue drop slightly deeper so that a small portion
of the vertical silicon beam is also cut through. As a result, both the

Fig. 7 | Measurement of the Young’s modulus of the UV-cured glue. A typical
force-indentation curve F(δ) is obtainedwhen a conical AFM tip is pressed against a
nanoparticles-embedded UV-cured glue surface with indentation depth δ. The
black and red curves are obtained, respectively, when the AFM tip advances and
then retracts from the glue surface. The measurements are made at a constant
speed of 0.64μm/s. Thewhite solid line shows a fit of Eq. (8) to the black curvewith
E = 3.0MPa and δ0 = − 37 nm. Source data are provided as a Source Data file.-
Source Data.

Fig. 6 | Numerically calculated power-law exponent of the slip length dis-
tribution. The data are obtained for three different values of γ0 in the under-
damped regime: γ0 =0:5 (black circles), γ0 = 1 (red upward triangles), and γ0 = 2 (blue
downward triangles). The solid line shows a fit, ϵ = τ � κ=D0, to the data points with
τ = 1.20 ± 0.05 and κ = 2.0 ± 0.2. Inset shows the obtained PDF P(δxs) of the slip
lengthδxs from thenumerical simulations of Eq. (7) atD0 = 500 and γ0 = 1 with a total
of 1.5 × 104 slip events. The red solid line shows a power-law fit, PðδxsÞ∼ δx�ϵ

s , to the
data points with ϵ = 1.20± 0.03. The error bars show the standard deviation of the
black circles. Source data are provided as a Source Data file.Source Data.
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vertical silicon beam and UV-cured glue remain on the same end sur-
face, but the silicon beam itself does not stick out of the end surface.
From the SEM image (end view) of the 2D probe shown in Fig. 1c, we
find that the end surface of the vertical silicon beam has a sharp image
without the uneven spotty surface texture associated with the glue
layer, as shown in Fig. 1b. When the 2D probe is (spring) loaded onto
the sandpaper, the end surfaces of the silicon beam and glue are both
in close contact with the sandpaper surface. Because the contact area
of the silicon beam (2 × 12μm2) is small compared with the total con-
tact area (12 × 12μm2) of the 2D probe and the two contact regions as
springs are connected inparallel, the siliconbeam’s contribution to the
contact compliance, which is proportional to the contact area fraction,
is also small (<17%). Therefore, the exposure of the vertical silicon
beam in the contact area should not play an essential role in deter-
mining the contact mechanics of the 2D probe.

Figure 8a showsanAFM topographical imageof the end surfaceof
the 2D scanning probe used. The AFM image reveals that the end
surface of the canning probe has some horizontal stripes with a typical
width of sub-micrometers. These stripes are caused by the horizontal
parallel milling with the FIB. Because the orientation of these parallel
stripes is parallel to the scanning direction of the 2D probe (see the
SEM image of the 2D probe in Fig. 1c), their influence on the stick-slip
motion of the scanning probe (if any) will be minimal. As shown in
Fig. 8b, the root-mean-squared (RMS) roughness of the end surface of
the 2D probe is 20.5 nm over an area of 6μm×6μm. This RMS
roughness is about five times smaller than that of the sandpaper sur-
face (99.7 nm over an area of 10μm× 10μm). Therefore, we conclude

that the asperities at the interface resultmainly from the rough surface
of the sandpaper, and the rough end surface of the scanning probe
plays a less important role. In fact, the experimental findings reported
above are the general features of stick-slip friction at the mesoscale,
and they are valid even though some of the asperities at the interface
come from the rough end surface of the scanning probes.

The entire hanging beam probe has flexibilities and, as a whole,
acts as a spring so that the contact area between the end surface of the
probe and the substrate is spring-loaded when a normal load N is
applied. In this case, any small angular mismatch θ between the two
parallel contact surfaces can be treated as a weak spring connected in
series with the probe, which can be self-aligned under the normal load
N. This self-alignment effect can be estimated using the equation,
N = knðL=2Þ tanθ ’ knðL=2Þθ, where kn is the spring constant of the
cantilever in the normal direction, and L is the length of the contact
area perpendicular to the scanning direction. Given that
N = 200–600nN, kn≃0.7N/m, and L≃ 34μm, we have θ≃ 2N/
(knL)≃ 1.0–2.9°. With the focused ion beam, we were able to assemble
the hanging beam probe with its end surface in parallel with the can-
tilever towithin 1°. The above estimate thus suggests that the scanning
probe can indeed maintain close contact with the substrate when the
normal load N is in the working range of this study.

Other details about the sample characterization and experimental
methods are given in SI Section I.

Data availability
Source data for the figures in the main text and supplementary infor-
mation are provided in this paper. Raw data generated in this study are
available from the corresponding author (P.T.) upon request. Source
data are provided in this paper.
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