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Global mapping of RNA-chromatin contacts
reveals a proximity-dominated connectivity
model for ncRNA-gene interactions

Charles Limouse1, Owen K. Smith 2,4, David Jukam1,4, Kelsey A. Fryer1,3,
William J. Greenleaf 3 & Aaron F. Straight 1

Non-coding RNAs (ncRNAs) are transcribed throughout the genome and
provide regulatory inputs to gene expression through their interaction with
chromatin. Yet, the genomic targets and functions of most ncRNAs are
unknown. Here we use chromatin-associated RNA sequencing (ChAR-seq) to
map the global network of ncRNA interactions with chromatin in human
embryonic stem cells and the dynamic changes in interactions during differ-
entiation into definitive endoderm. We uncover general principles governing
the organization of the RNA-chromatin interactome, demonstrating that
nearly all ncRNAs exclusively interact with genes in close three-dimensional
proximity to their locus and provide a model predicting the interactome. We
uncover RNAs that interact with many loci across the genome and unveil
thousands of unannotated RNAs that dynamically interact with chromatin. By
relating the dynamics of the interactome to changes in gene expression, we
demonstrate that activation or repression of individual genes is unlikely to be
controlled by a single ncRNA.

Cell identity is determined by the precise execution of lineage-
specific gene expression programs1. These programs are controlled
by coordinated signals from regulatory DNA sequences, transcription
factors, histone modifications and variants, and 3D genome organi-
zation. The role of RNAs in modulating these programs is increasingly
appreciated2,3. Many classes of RNAs bind chromatin, collectively
termedhere, chromatin-associatedRNAs (caRNAs). These include long
non-coding RNA(lncRNAs)4,5, heterogeneous nuclear RNAs
(hnRNAs)6,7, enhancer-RNAs (eRNAs)8–10, transposable element (TE)-
derived RNAs11–14, and other chromatin enriched RNAs (cheRNAs)15,16.
Yet, the function of these RNAs on chromatin remains largely
unknown.

LncRNAs can orchestrate complex regulatory circuits, exempli-
fied by XIST, which acts as a core regulator of X-chromosome
inactivation17, and KCNQ1OT1 that mediates allele-specific silencing
of imprinted genes near its locus18,19. In addition to lncRNAs, other

classes of caRNAs have genome regulatory functions. For example,
eRNAs can affect the expression of neighboring genes through mod-
ulation of RNA polII elongation20,21 or recruitment of transcriptional
coregulators22,23. Nascent pre-mRNAs can interact with chromatin
binding proteins and locally regulate chromatin compaction6,24, and
TE-derived RNAs can silence immune response genes and hamper
T-cell effector functions25. Furthermore, many proteins involved in
controlling chromatin state26–30 and topology23,31 have RNA-binding
activity, suggesting additional roles for caRNAs in chromatin regula-
tion. Despite theseexamples,whichcaRNAshave gene regulatory roles
and their mechanisms of action remain to be determined32.

With the exception of a small number of caRNAs, we do not know
the genomic loci where these RNAs act. As a result, we do not under-
stand the network of interactions between caRNAs and genes or its
complexity. Transcription of both lncRNAs33,34 and regulatory
elements9,35–37 exhibits strong tissue specificity such that the ncRNA-
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gene interaction network is also likely cell-state dependent, although
this remains to be experimentally tested. Characterization of the net-
workof human caRNA-gene interactions at the full transcriptome scale
represents an important goal25,38–41.

Here, we used chromatin-associated RNA sequencing (ChAR-seq)
to map the RNA-chromatin interactome in H9 embryonic stem cells
and definitive endoderm42–44. From these data, we characterize the
global architecture of this interactome, present a predictive model for
most RNA-DNA chromatin interactions, and identify RNAs deviating
from this model. We generate a detailed caRNA-gene interaction net-
work that defines the set of caRNAs that interact with each gene based
on physical proximity. These interactions encompass lncRNAs and
many unannotated intergenic RNAs that may help prioritize specific
caRNAs for future functional validation. Through analysis of the
dynamics of the interactome during differentiation, we find that reg-
ulation of gene expression by individual caRNAs is very rare.

Results
To detect and map caRNA interactions with the genome, we per-
formed ChAR-seq42–44, a proximity-ligation method that captures and
sequences RNA-DNA contacts genome-wide (Fig. 1a). We performed
ChAR-seq in human H9 embryonic stem cells (ES) before and after
differentiation into definitive endoderm (DE) to understand how
changes in the caRNA-chromatin interaction network might relate to
activation or repression of cell state-specific genes. We validated our
cell differentiation systemby qPCR against cell-statemarker genes and
immunostaining, which revealed pure (>99%) ES and DE cell popula-
tions (Supplementary Fig. 1a, b, Supplementary Data 10)45.

We sequenced ChAR-seq libraries to obtain over 900 million
reads per cell state.We computationally split each read into a uniquely
mapping RNA- and a DNA-derived sequence (Supplementary Note 1,
Supplementary Figs. 2 and 3) and thereby obtained nearly 200 million
unique RNA-DNA contacts (Supplementary Fig. 1c).

We first analyzed the global compositionof the caRNApopulation
and found that caRNAs were enriched for non-coding RNAs, including
introns, long non-coding RNAs (lncRNAs) and other functionally het-
erogeneous non-coding RNAs (referred to here as ncRNAs) such as
small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs;
Fig. 1c, Supplementary Fig. 1d), consistent with previous studies4,46–48.
Wenormalized the caRNApopulation to expression levels by assigning
each RNA a chromatin association score, defined as its relative abun-
dance in the ChAR-seq versus total RNA-seq data (“Methods”). We
found that nearly all introns and half of all non-coding RNAs had over
3-fold enrichment on chromatin, in agreement with prior character-
izations of caRNA16,49, indicating that ncRNAs tend to have nuclear or
chromatin localization (Fig. 1d, Supplementary Fig. 1e, Supplementary
Data 2). LncRNAs are considered potential chromatin regulatory
RNAs3,50, yet our data indicate that non-intronic regions of lncRNAs
constitute approximately 3% of the caRNA population and less than 1%
when excluding the top 10 most abundant lncRNAs. This result
prompted us to perform a broad analysis of RNA-DNA interactions,
including all caRNAs, rather than focus exclusively on lncRNAs.

To compare the chromatin association patterns of exon- and
intron-derived RNAs, we generated RNA-DNA contact maps for exons
and introns (Fig. 1e). Our RNA-DNA contact maps were highly repro-
ducible (Supplementary Fig. 1f) and showed high correlation between
replicates and lower correlation between cell states, indicating that the
interactome is dynamic during differentiation (Supplementary Fig. 1g).
Across exons and introns, we uncovered several features of the RNA-
DNA interactome mirroring those described in our prior work on
Drosophilamelanogaster and by others43,49,51–53. First, we noted a higher
density of intrachromosomal compared to interchromosomal RNA-
DNA contacts, reminiscent of the properties observed at the DNA level
by Hi-C54, reflecting the chromatin organization into chromosome
territories55. Most RNA-DNA contacts occur close to the RNA

transcription locus with, on average, ~100-fold lower contact density
50–100 kb away from the transcription locus compared to the tran-
scription locus (Supplementary Fig. 1h). Finally, we observed three
classes of RNA-chromatin association patterns (Fig. 1f). (1) RNAs loca-
lizing predominantly at or near their transcription locus. (2) RNAs
localizing across the genome, as previously observed52,56. (3) RNAs
suchasXIST57 localizing across a single chromosome.We confirmedby
RNA fluorescence in situ hybridization microscopy that the nuclear
localization of select RNAs from these classes was consistent with their
classification by ChAR-seq (Supplementary Fig. 4, Supplementary
Data 10) and previous studies classifying non-coding RNAs by in situ
hybridization58–62. Altogether, these RNA-chromatin interactomes
identify numerous RNAs in different functional classes that dynami-
cally reorganize dependent upon cell state and demonstrate thatmost
caRNAs remain associated with chromatin near their sites of synthesis.

ChAR-seq identifies previously unannotated RNAs that bind
chromatin dependent on cell state
We identified previously unannotated RNAs that did not overlap
with any known genes (as of Gencode v29) in 14% of all RNA-DNA
contacts, a proportion similar to that of exons for annotated
RNAs (Fig. 1b). To characterize the nature of these unannotated
transcripts, we used the StringTie de novo transcriptome
assembler to identify individual transcription units (Fig. 2a)63. We
uncovered 30,442 loci with significant expression in ES or DE
cells (FPM > 0.1), which we hereafter refer to as unannotated
transcribed loci (UTLs) (Supplementary Fig. 5b, Supplementary
Data 1, Supplementary Data 3). Thus, the number of identified
UTLs exceeds the number of known transcripts expressed at
similar levels (22,475). We found that UTLs originated from
functionally diverse chromatin loci (Fig. 2b). (1) Some UTLs were
immediately continuous with the 3’ end of active genes (e.g.,
UTL69162) and were possibly the result of transcriptional read-
through, as reported in prior studies64,65. (2) Some UTLs over-
lapped with regulatory signals, such as high ATAC-seq or
H3K27ac levels (e.g., UTL69163). (3) Some UTLs overlapped with
TEs (e.g., UTL69657), in agreement with prior studies showing
that TEs are a source of RNAs that are associated with
chromatin11,12,25. (4) Finally, some UTLs did not have any of the
above features but had sequence similarity with known transfer
RNAs (tRNAs), snRNAs and other small RNAs66. Guided by these
observations, we classified the UTLs based on their proximity to
the 3’ or 5’ ends of genes, their overlap with transposable ele-
ments, snRNAs, or tRNAs, and their overlap with cis-regulatory
elements annotated in the Encode Registry of Regulatory
Elements67, yielding seven categories of unannotated RNAs
(“Methods”, Supplementary Data 3). Approximately 32% of the
reads coming from UTLs were classified as readthrough RNAs and
~27% as cis-regulatory element-derived (Fig. 2c). Over 60% of the
CRE-derived RNAs were from enhancer elements (Supplementary
Fig. 5a). Four percent of the UTL reads were repeat-derived
transcripts, roughly evenly distributed between LTR, SINE, and
LINE elements (Fig. 2c, Supplementary Fig. 5a). Overall, the
expression levels of UTLs were low, but similar to those of
lncRNAs (Supplementary Fig. 5c).

Although these RNAs were present in the total RNA popula-
tion, we found that all categories of UTLs were enriched on
chromatin (Fig. 2d, Supplementary Data 2) and were highly cell-
state-specific with 15-49% of UTLs up- or downregulated in the
caRNA and total RNA populations compared to only ~12% for
mRNAs and lncRNAs (Fig. 2e). We examined the cell-state speci-
ficity and chromatin localization of two UTLs by fluorescence
in situ hybridization and found that their localization was con-
sistent with their ChAR-seq signal (Supplementary Fig. 5d, Sup-
plementary Data 10). We generated RNA-DNA contact maps
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specifically for UTLs, which showed patterns similar to those
observed for exonic and intronic RNAs (Fig. 2f). We found both
UTLs, which were locally restricted near their locus and UTLs that

spread across the whole genome (Fig. 2g). This result prompted
us to perform a broad analysis of all RNA-DNA interactions,
including all caRNAs.
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Fig. 1 | Global mapping of RNA-chromatin interactions during stem-cell dif-
ferentiation. a Schematic of the strategy used to map RNA-DNA contacts across
the transcriptome and genome using ChAR-seq, highlighting the key steps of the
workflow.b, cComposition of the caRNAs identified by ChAR-seq compared to the
total RNA populationdetermined by total RNA sequencing.d Scatter plots showing
the chromatin association scores for individual RNAs originating from annotated
exons as a function of the RNA level in the caRNA population. Chromatin-enriched
and depleted RNAs were determined using DESeq2 (FDR 0.05, fold change
threshold 3x). Pie charts summarize the fraction of chromatin-enriched and
chromatin-depleted RNA in each functional RNA type. The numberswithin each pie
chart indicate the total number of RNAs in that category. e RNA-DNA contactmaps
in ES and DE cells for the top 200most abundant caRNAs (according to their mean

expression in ES and DE cells) on Chr7 andChr8. Maps are displayed at a resolution
of 1 RNA per row and 1Mbp of genome space per column. Color represents contact
density, defined as the number of contacts between an RNA and a genomic bin,
normalized for sequencing-depth and size of the genomic bin (CPKM: Contacts Per
Kb in target genomic region per Million reads). Contacts made by exonic and
intronic RNAs are shown in the left and right maps, respectively. f Interaction
profiles along the genome for SOX17, PVT1,MALAT1 andXISTexons, and for SOX17,
PVT1 and SLC26A3 introns, illustrating 3major classes of interaction profiles: RNAs
localized predominantly near their transcription locus (SOX17, PVT1 exons and
introns), spreading across a single chromosome (XIST), and across the genome
(MALAT1, SLC26A3 introns).
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Fig. 2 | Cell-state-specific unannotated RNAs make up a large fraction of the
caRNAs. a Schematic of the method used to catalog unannotated RNAs by iden-
tifying transcription units using StringTie2. b Genome tracks showing the chro-
matin context of 3 representative unannotated transcription loci (UTL). Left panel:
UTL69162 and UTL69163, respectively, downstream and antisense to RB1CC1, are
classified as readthrough RNA and CRE-derived RNAs. Right panel: UTL69657 is
classified asa repeat-derivedRNAdue to its overlapwith a LINE element. In both left
and right panels, the top 2 tracks display the strand-specific genome coverage of
the RNA-derived side of the ChAR-seq reads in ES and DE replicate 1 (+ strand ES in
dark blue, − strand ES in light blue, + strand DE in dark yellow, − strand ES in light
yellow). The next two tracks display the strand-specific genome coverage of the
total RNA-seq data. c Relative composition of the chromatin-associated UTLs in the

7 annotation classes. d Scatter plots showing the chromatin association scores for
individual UTLs and their abundance in the caRNApopulation. Chromatin-enriched
and depleted UTLs were determined using DESeq2 (FDR 0.05, fold change
threshold 3x). Pie charts summarize the fraction of chromatin-enriched and
chromatin-depleted UTLs in each category. Numberswithin each pie chart indicate
the total number of RNAs in that category. e Percentage of genes upregulated and
downregulated in DE vs ES cells in the caRNA transcriptome and for each RNA
category. Up- and downregulated RNAs were identified using DESeq2 (FDR 0.05,
fold change threshold 3x). f RNA-DNA contact maps in ES and DE cells for the top
200most abundant UTLs on Chr7 and Chr8, displayed at a resolution of 1 RNA per
row and 1 Mbp of genome space per column. g Genome-scale chromatin interac-
tion profiles of 4 UTLs showing similar localization patterns as annotated RNAs.
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RNA-DNA interactome dynamics is driven by caRNAs tran-
scription dynamics rather than relocalization of caRNAs
We next quantified the dynamics of the RNA-chromatin interactome
during ES-DE cell differentiation. To identify cell-state dependent
interactions, we binned the DNA contacts of each RNA into 100 kb or
1Mb intervals and performed a quantitative analysis analogous to
differential expression analysis to obtain the fold change of each
contact in ES versus DE cells and its associated statistical significance
(“Methods”). We filtered the data to only include contacts with at least

10 counts in at least two samples and tested ~100,000 exon-chromatin
contacts, ~300,000 UTL-chromatin contacts, and 1.6 million intron-
chromatin contacts (all at 100 kb resolution) for differential repre-
sentation in ES vs DE cells (Supplementary Fig. 6a). The corresponding
maps are shown in Fig. 3a. While we observed few dynamic RNA-
chromatin interactions far from the RNA transcription locus (TL) in the
exon and UTLmaps, zooming in on a 10Mb window around each RNA
TL at 100 kb resolution revealed widespread changes in the inter-
actome for all categories of RNAs. At 100 kb resolution, ~2% of
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interactions involving exons and ~7% of interactions involving introns
were up- or downregulated in DE versus ES cells (Fig. 3b). More sub-
stantial changes were observed at a lower resolution of 1Mb per
genomic bin (Supplementary Fig. 6b). Consistent with the high cell
state specificity of UTL expression discussed previously, UTLs also had
the most dynamic RNA-DNA contact maps, with very low correlation
between the ES and DE contact maps (Fig. 3b, Supplementary Fig. 6c).

The interactome dynamics during differentiation may be driven
by three non-mutually exclusive effects (Fig. 3c). First, an RNA may
increase or decrease in overall abundance, resulting in proportionally
increased or decreased binding levels on chromatin. Second, an RNA
may modulate its affinity for chromatin, for instance, through RNA
modifications or through changes in affinity with RNA-binding pro-
teins mediating its interaction with chromatin. Third, an RNA may
relocalize from one genomic site to another. The first two modes of
dynamics would result in similar binding profiles in ES vs DE cells,
albeit with an overall scale shift in binding levels. In contrast, the third
mode implies changes in the RNA-binding pattern to chromatin.

To test these models, we first compared the chromatin associa-
tion score of each RNA in ES versus DE cells. Remarkably, the chro-
matin association scores remained mostly unchanged during
differentiation, particularly for lncRNAs, with only 35 lncRNAs showing
evidence of changes in their chromatin affinity (Fig. 3d, left panel,
Supplementary Data 2). Surprisingly, a larger fraction of UTLs, when
compared to annotated non-coding RNAs (~8% of CRE-derived UTLs
and ~5% of intergenic and antisense UTLs), showed significant changes
in their chromatin association score between ES and DE cells (Fig. 3d,
right panel). Thus, while individual RNAs show different propensities
for chromatin interaction, this propensity does not change during
differentiation and seems to be a property of the RNA itself. This result
rules out model 2 for the majority of caRNAs.

Next, we examined whether the dynamics of specific interactions
between an RNA and a chromatin locus can be explained by the tran-
scriptional dynamics of the RNA itself. We compared the true differ-
ential contact maps to differential contact maps that would be
observed if the frequency of each RNA-DNA contact was proportional
to the total abundance of the corresponding RNAs in the caRNA
population (“Methods”). These two differential interaction maps were
highly similar (Fig. 3e). We further quantified the differences between
thesemaps by identifying specificRNA-DNAcontactswhose frequency
changes between ES vs DE cells at a greater level than explained by the
changes in RNA expression (“Methods”).We found no such contacts in
the exon-DNA interactome and a negligible number of them in the
UTL-DNA interactome (Supplementary Fig. 6d). Thus, the bulk of the
changes in the RNA-DNA interactome appear to rely on transcription
level regulation and expression differences in ES vs DE, rather than on
modulation of an RNA’s affinity for chromatin or changes in an RNA’s
contacts to different DNA binding sites.

A select number of RNAs interact broadly with the genome
We hypothesized that the dynamic RNA-DNA interactome contains a
mixture of (1) functional interactions linked to the regulatory activity

of the RNA on chromatin and (2) coincidental interactions due to
transient proximity of the RNA to chromatin, for instance, during
nascent transcription or diffusionwithin thenucleus.We thus analyzed
the contact patterns of individual RNAs to detect features consistent
with functional interaction, beginning with features at the chromo-
some scale. The nuclear speckle-associated lncRNA, MALAT1, and the
XIST RNA are two well-studied lncRNAs that act to regulate gene
expression broadly across the genome or throughout the X
chromosome56,62,68. Yet, it is not known which other RNAs have similar
widespread interaction patterns on chromatin.

To systematically identify all RNAswith genome- or chromosome-
wide associations, which we termed type I and type II RNAs (Fig. 4a),
respectively, we developed two metrics, a trans-delocalization and a
cis-delocalization score (Fig. 4b and “Methods”). The trans-delocali-
zation score quantifies the tendency for an RNA to be found on
chromosomes other than its source chromosome. Similarly, the cis-
delocalization score assesses the tendency for an RNA to spread far
(over 10Mb away) from its locus on its source chromosome. To
account for expression, chromosome of origin and sample biases,
these scores were calibrated using mRNAs as a reference (“Methods”,
Supplementary Note 2, Supplementary Fig. 7). We reasoned that type I
RNAs must have high trans- and cis-delocalization scores, while type II
RNA must have a high cis-delocalization score but a low trans-deloca-
lization score. Thus, although other patterns may yield high delocali-
zation scores (e.g., an RNA that targets a single locus on a trans-
chromosomemay have a large trans-delocalization score), we can use
these metrics to screen for candidate RNAs with type I and type II
patterns.We found that lncRNAswith large trans-delocalization scores
(Fig. 4e, left panel) included MALAT1, the pTEFb-associated RNA, 7SK,
and the telomerase RNA component, TERC, which all have established
genome-wide chromatin regulatory functions, thus validating our
approach69–71.

We found that functionally distinct classes of RNAs had different
distributions of delocalization scores (Fig. 4c, Supplementary Data 4,
Supplementary Data 8, Supplementary Data 9). LncRNAs had a wide
range of delocalization scores, with a distribution of scores that mir-
rored those of mRNAs. In contrast, snRNAs, snoRNAs, tRNA-derived
and snRNA-derived UTLs had globally high cis- and trans-delocaliza-
tion scores, indicating that RNAs in these classes interact with loci
throughout their source chromosome and across the whole genome.
We observed the opposite behavior for CRE-derived RNAs and, to an
even greater extent, for readthrough RNAs, which hadmostly negative
cis- and trans-delocalization scores, demonstrating that these RNAs
tend to remain near their locus of origin. We also noted a negative-
shifted distribution of delocalization scores for introns of bothmRNAs
and lncRNAs (Supplementary Fig. 8a). In ES cells, for ~77% of individual
lncRNAs and 96% of individual mRNAs, the trans-delocalization scores
of their introns were lower than those of their exons (Supplementary
Fig. 8b). Thus, introns tend to remain in closer proximity to their
source locus.

Interestingly, repeat-derived RNAs had globally high cis- and
trans-delocalization scores in ES cells and low cis- and trans-

Fig. 3 | The RNA-DNA interactomedynamics are controlled at the transcription
level. a Differential contact maps showing the changes in the RNA-DNA inter-
actomeonChr8andChr11 during cellular differentiation for the same top200most
abundant exonic RNAs, intronic RNAs, and UTLs as those shown Figs. 1e and 2f. For
each RNA category, the left map shows the log2 fold change (LFC) in the frequency
of each RNA-DNA contact, as computed by DESeq2 (shrunken LFC estimates, see
“Methods”). x-axis resolution is 1Mb as in Figs. 1e and 2f. The right map shows a
zoom-in of the left differential map in a 10Mb window centered at the Transcrip-
tion Locus (TL) of each caRNA and displayed with an x-axis resolution of 100 kb.
b Quantification by RNA class of the percentage of interactions upregulated in DE
or EScells among all interactions tested in that class (interactionswith>10counts in
at least one replicate in ES or DE) at 100kb resolution (bottom panel). c Schematic

of 3 models that can explain changes in the DNA contact profile of an RNA during
differentiation. d Scatter plot showing the chromatin association score for indivi-
dual lncRNAs exons (left panel) and UTLs (right panel) in ES versus DE cells. All of
the caRNAs with an expression level above 0.1 FPM in both ES and DE cells are
shown. Pie charts summarize the fraction of RNAs with significantly higher chro-
matin association in ES or DE cells (fold change >3, FDR 0.05) and for each RNA
class. Numbers within the pie charts indicate the total number of RNAs in that class
(FPM>0.1) and the number of RNAs with differential chromatin association.
e Differential contact maps observed versus those explained by transcription
dynamics only for the 50 most abundant lncRNAs (left) and UTL (right) on ChrX.
Labeled genes are the top 12most abundant genes. x-axis resolution is 100kb and a
10Mb window centered around each RNA TL is shown.
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Fig. 4 | A select population of caRNAs interacts with the genome broadly.
a Schematic of the two types of binding patterns identified in this analysis: type I
RNAs localized across the genome (trans-delocalized RNAs), type II RNAs localized
throughout their source chromosome but absent on other chromosomes (cis-
delocalized RNAs). b Schematic definition of the trans- and cis-delocalization
scores. The trans-delocalization score quantifies the number of DNA contacts an
RNA makes on chromosomes other than its source chromosome (trans-contacts)
relative to the number of contacts on its source chromosome (cis-contacts). The cis-
delocalization score quantifies the number of DNA contacts an RNA makes over
10Mb away from its transcription locus (TL) relative to the number of contacts
within 10Mb of its TL. c Distribution of trans- (left) and cis- (right) delocalization
scores (geometricmeanover 2 independent replicatesper cell state) andby class of
RNA for exons (n = 23,436 RNAs) and UTLs (n = 19,069 RNAs). Error bars represent
themedian and 25–75% quartiles. d Fraction of RNAs within each class identified as
either delocalized or ultralocalized in regard to its trans- (left) or cis-chromosomal

contacts (right). e List of all lncRNAs identified as cis or trans-delocalized in either
ES or DE cells and candidate RNAs for type I or type II patterns. Heatmaps show the
RNA cis and trans-delocalization scores in ES and DE cells and their abundance in
the caRNA population. f Chromatin interaction profiles for two examples of cis-
delocalized RNAs (RMRP, VTRNA1-1), one example of cis-delocalized RNAs
(AP000915.2), and one non-delocalized RNA (CASC15). The yellow track shows the
observed ChAR-seq signal. The gray track shows the predicted interaction profile
based on the generative model with trans-contact rate prediction, as described in
Fig. 5 and Supplementary Note 4. g Scatter plot showing the cis- versus trans-
delocalization score for individual lncRNAs in ES cells (left) and UTLs in DE cells
(right, excludes tRNA-derived and snRNA-derived UTLs). Colored data points
indicate RNAs classified as delocalized (in either cisor trans), ultralocalized (in both
cis and trans), and RNAs with XIST-like behavior. The black line shows the linear
regression output.
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delocalization scores in DE cells (Fig. 4c). Thus, in ES cells specifically,
many repeat-derived RNAs tend to localize away from their tran-
scription locus. To identify RNAs with extreme association scores, we
applied an empirical Bayes method using mRNAs as a training set,
whichessentially identifiedRNAs in the 5%right-tail or the 5% left-tail of
the mRNA score distribution (Method, Supplementary Note 3). We
thus created a complete catalog of RNAs with candidate chromosome-
or genome-wide association patterns and another catalog of RNAs that
remain localized within a 10Mb window around their transcription
locus or on their own chromosome, which we termed ultralocalized
RNAs (from a cis- or trans-chromosomal perspective, Supplementary
Data 5). As expected, >50% of snRNAs, snoRNAs, tRNAs, and snRNAs
were classified as trans-delocalized and >70% of readthrough RNAs
were classified as ultralocalized (Fig. 4d). Surprisingly, out of 1289

ncRNAs above 1 FPM with sufficient signal to compute delocalization
scores (“Methods”), we detected only 22 lncRNAs (1.7%) with cis- or
trans-delocalized patterns in either ES or DE cells (Fig. 4d, Supple-
mentary Fig. 8c). In contrast, we found (excluding tRNA-derived and
snRNA-derived UTLs) 60 UTLs in DE cells and 836 UTLs in ES cells and
with cis- or trans-delocalization patterns, including 349 repeat-derived
RNAs, and several hundreds of intergenic or CRE-derived UTLs (Sup-
plementary Fig. 8c). The lncRNAs we characterized contained the
known broadly acting RNAs discussed above.

Importantly, we discovered candidate lncRNAs with potential
genome-wide regulatory functions, including the mitochondrial RNA
processing endoribonuclease RNA, RMRP, which is implicated in rRNA
maturation41,72,73, the Ribonuclease P RNA Component H1, RPPH1,
which is involved in tRNA processing74,75, two isoforms of the Vault
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Fig. 5 | RNA expression and genomic distance determine the RNA-DNA inter-
actome. a Schematic of the type of binding patterns identified in this analysis. An
RNA may localize at one or more discrete loci distinct from its transcription site
(Pattern type III, top track) or remain in a diffusion-constrained region around its
locus (neutral RNA, bottom track). b Components of the generative model used to
predict the ChAR-seqmaps. The number of contacts observed for an RNA at a DNA
locus is proportional to (1) an RNA-DNA distance-dependent contact frequency, (2)
the abundance of the RNA on chromatin, (3) a target locus-dependent bias (DNA-
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with a candidate affinity-driven interaction for the lncRNA JPX in DE cells. The
observed and predicted localization of JPX (top two tracks) at 10 kb resolution and
are compared using DESeq2, yielding a Log2 fold change (observed over model)
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driven interaction. d Observed contact maps, predicted contact maps, and
observed over model LFC maps computed using DESeq2 for the top 200 most
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nificantly above model (n = 33,653 interactions). Error bars represent the median
and 25–75%quartiles. The RNA-DNA travel distance is calculatedusing themapping
coordinates of the RNA and DNA side of the ChAR-seq read (“Methods”).
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RNA, VTRNA1-1 and VTRNA1-3, and a large number of UTLs. We vali-
dated the delocalization score analysis by directly examining the
ChAR-seq signal of theseRNAs, which revealed their association across
the genome (Fig. 4f). The delocalization of these RNAs was not
explained by their abundance. AlthoughMALAT1, 7SK, and RMRPwere
highly abundant, other delocalized RNAs were all below 10 FPM. Fur-
thermore, many abundant ncRNAs had low delocalization scores
(Supplementary Fig. 8d). To confirm that the broad patterns detected
by our delocalization score approach were not random or due to non-
specific interactions, we performed metagene analysis centered on
select genomic features.We detected enrichment of snRNAs at RNAPII
occupancy loci (Supplementary Fig. 8e), where MALAT1 and 7SK were
also enriched, consistent with the role of these RNAs in cotranscrip-
tional splicing and transcriptional elongation62,69. In contrast, VTRNA1-
1 was found at background levels at RNAPII-occupied loci, and RMRP
was depleted at these loci. Together, our data show that broadly
localized RNAs are rare among annotated lncRNAs, but we discovered
a large repertoire of UTLs with potential global chromatin regulatory
roles, specifically in ES cells.

While our characterized RNAs were identified as significantly
delocalized in cis but not in trans, we noted that among these RNAs, all
but XIST also had a high trans-delocalization score, albeit below the
FDR threshold for classification as trans-delocalized. Generally, across
all RNAs, the cis- and trans-delocalization scores were strongly corre-
lated, indicating that RNAs that localize broadly on their own chro-
mosomes also interact broadly with the rest of the genome (Fig. 4g).
Remarkably, XIST was the only exception to this rule and was the only
RNA which was simultaneously delocalized in cis and ultralocalized in
trans, consistent with its known localization throughout its source
chromosomeX (Fig. 4g).We concluded thatXIST is unique in these cell
types in its ability to interact with an entire chromosome while being
excluded from other chromosomes.

We next examined changes in RNA delocalization in different cell
states. We found that the delocalization scores were highly correlated
between ES and DE cells, even for RNAs that were differentially abun-
dant across cell states (Supplementary Fig. 8f).We thus concluded that
the extent to which an RNA interacts with chromatin far from its
transcription locus or on trans chromosomes is encoded in the RNA
itself or the position of its transcription locus relative to other genomic
features, rather than post-transcriptionally regulated.

RNA-DNA contacts occur in the vicinity of the transcrip-
tion locus
Engrietz et al. proposed a dichotomization of RNA-chromatin inter-
actions into proximity-driven and affinity-driven interactions2. The
former describes interactions occurring in a 2D or 3D distance-
bounded region around the transcription locus without specificity for
particular loci within that region. The latter describes RNA targeting
well-defined loci, irrespective of their distance to the RNA locus. Some
ncRNAs have been proposed to have affinity-driven interactions and
regulate transcription or 3D organization of chromatin at their target
loci3,76–78. These data motivated us to search the interactome for con-
tact patterns in which an RNA shows discrete peaks in its localization
profile that are not explained by proximity to its locus (Fig. 5a, top
panel, hereafter referred to as Type III patterns). Because standard
genomicpeak finding tools likeMACS279 are not appropriate for ChAR-
seq data, we instead developed a generativemodel, which predicts the
RNA-DNA interactome based on 3 features: (1) the total abundance of
each RNA on chromatin, (2) a DNA-locus bias which models the pro-
pensity for an RNA to be captured at this locus, independently of the
identity of that RNA, and (3) the distance between each RNA tran-
scription site and its DNA target loci (Fig. 5b, “Methods” and Supple-
mentary Note 4). As anticipated, the DNA-locus bias correlated with
ATAC-seq, likely due to a combination of biological factors such as
fewer RNA-DNA interactions existing in compact chromatin and

technical biases related to the accessibility of the ChAR-seq bridge
molecule. The DNA-locus bias also correlated with nuclear speckle
proximity as measured by TSA-seq80, revealing a possible increased
affinity for diffusing RNAs towards nuclear speckles. We trained our
generativemodel onmRNAs, as we reasoned thatmost mRNAs should
not have defined chromatin targets. We then used our final model to
generate a predicted contact pattern for each RNA, which effectively
provides a null hypothesis representing neutral patterns, where an
RNA interacts exclusively and non-specifically with neighboring loci
due to diffusion (Fig. 5a, model track). Thus, positive deviations from
the prediction (more contacts in the observed data comparedwith the
model prediction) provide evidence for peak-like interactions in type
III patterns.

In both ES and DE cells and for exons, introns, and UTLs, our
simple generative model produced RNA-DNA contact maps highly
similar to experimentally generated ChAR-seq RNA-DNA contacts
maps (Fig. 5d, Supplementary Fig. 9a). At 100 kb DNA locus resolution
and excluding RNAs previously identified as cis- or trans-delocalized,
we identified only ~0.2% of exon and ~0.7% of intron contacts that were
not explained by the model, irrespective of whether the RNAs were
mRNAs, lncRNAs, or ncRNAs (Fig. 5e and Supplementary Fig. 9b, c).We
detected only 11 and 9 lncRNAs in ES and DE cells, respectively, with
exons making contacts in the genome at loci not predicted by our
model (Supplementary Data 6). Our model also accurately predicted
changes in contact rates during differentiation (Supplementary
Fig. 9d). Thus, in contrast with prior studies76–78, we found no evidence
for type III patterns, where individual RNAs target distinct loci away
from their transcription site among the entire lncRNA population.

Interestingly, in contrast with that of lncRNAs, the interactome of
the UTLs differed more substantially from its prediction. Over 1% of
contacts involving 2283 distinct RNAs in ES cells and 2597 in DE cells
showed statistical evidence for affinity-driven interactions (Fig. 5e).
Readthrough RNAs had the largest number of such contacts followed
by CRE-derived RNAs (Supplementary Fig. 9c). This result suggests
that many unannotated RNAs, in particular regulatory elements
derivedRNAs, engage ingenomic contacts that cannotbeexplainedby
a diffusion process around the transcription locus.

To better understand the nature of these contacts, we examined
how far from the RNA transcription locus these contacts occurred
(Fig. 5f). We found that most of the significant contacts made by UTL
occurred within 100 kb of their locus (51% of all contacts), particularly
for readthrough RNAs, which made over 69% of their contacts within
100 kb of their locus (Supplementary Fig. 9e). In contrast, introns of
annotated RNAs showed deviations from the predicted patterns at
larger distances. Indeed, only 17% of contacts from introns that were
not predicted by the model occurred within 100 kb of their locus,
whereas 88% occurred between 100 kb and 10Mb. The difference in
distances between RNA loci and their significant DNA contacts
between annotated intron RNAs and unannotated RNAs suggests dif-
ferent types of interactions might be regulating RNA spread across
chromosomes. Because these length scales are reminiscent of those
involved in genome organization at the levels of TADs and A/B
compartments81–83, we examined the relationship between the RNA
localization patterns and the 3D organization of the genome.

The 3D genome organization enables contacts between RNAs
and distal chromatin loci
To examine how the 3D organization of the genome affects the loca-
lization patterns of individual RNAs on chromatin, we focused on a
small ~50 kb TAD on chr4q25, which is nested inside a larger 100 kb
TAD (Fig. 6a). Two genes are located at the inner boundary of the small
and large TADs: AC106864, an uncharacterized lncRNA, and the LARP7
gene, which is antisense to AC106864 and is highly transcribed in ES
cells. We examined the binding profile of AC106864 on chr4 and found
that most of the contacts of this RNA were within a few kb of its locus.
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We also observed two side peaks, labeled L1 and L2, that coincided
with the other edge of the small and large TAD. In contrast, our gen-
erative model predicted a small peak at L1 (likely due to the high
accessibility of this locus as revealed by ATAC-seq) and no signal at L2.
The fold difference signal of the observed data over the model con-
firmed that the two peaks at L1 and L2 were not explained by simple
diffusion of the AC106864 or accessibility biases. Interestingly, Hi-C
data showed two corner peaks characteristic of a chromatin loop
linking the LARP7 locus with both L1 and L2. This result suggests that
AC106864 localization at L1 and L2 might be mediated by the chro-
matin loop. It is also possible that AC106864 targets these loci through
other mechanisms, such as base pairing or association with RBP, that
are independent of genome folding. Yet this biochemically targeted
interaction is unlikely given that the introns of the overlapping mRNA
LARP7 also have contact peaks at L1 and L2. Together, these data
suggest that TAD organization influences the contact patterns of RNAs
and that chromatin looping enables distal RNA-DNA interactions.

This observation prompted us to ask whether the larger-scale
topological organization of the chromosome also influences RNA-DNA
contacts (Fig. 6b). ChAR-seq contact maps are naturally asymmetric in
that the y-axismaps each row to an individual RNA and the x-axismaps
each column to a genomic bin. To compare ChAR-seq to Hi-C data at
the chromosome scale, we collapsed one dimension of the Hi-C maps
into geneswhile keeping the other dimensionas genomicbins. In these
transformed Hi-C maps, each pixel represents the contact frequency
between the gene and a cognateDNAbin.Wedetected in theChAR-seq
maps the same plaid pattern found in Hi-C data resulting from the 3D
partitioning of the genome into twomajor compartments, the A and B
compartments, also associated with active and inactive chromatin,
respectively83. This pattern indicates that any individual caRNA tends
to have a specific compartment (either A or B) with which it interacts
preferentially. Equivalently, when one caRNA contacts a locus in, say,
the A compartment, it has a higher likelihood of contacting other loci
in the A compartment rather than in the B compartment. It was not
surprising that this pattern was not produced by our generativemodel
since only linear distance is encoded in the model. We concluded that
A/B compartments also modulate the long-range interactions of indi-
vidual RNAs with chromatin.

The caRNA-gene interactome preferentially links upregulated
caRNAs to upregulated proximal genes
Our results point to a model where RNA-chromatin association pat-
terns and their dynamics are restricted by (1) the caRNA expression
level, (2) the genomic distance from the RNA locus to the DNA target
and (3) the 3D chromatin topology. We wanted to determine whether
this result is compatible with the hypothesis that ncRNAs participate in
the regulation of cell-state-specific protein-coding genes.We reasoned
that RNAs with transcriptional regulatory roles are likely to be found
near their cognate gene, where they could modulate local chromatin
state, TF binding, RNA polymerase, or the activity of gene-proximal
regulatory elements. This colocalization hypothesis is consistent with
the better-studied ncRNAs with gene regulatory activity, including
XIST17, KCNQ1OT118, and HOTAIR84. Thus, we defined a proximal reg-
ulatory region (PRR) around each protein-coding gene, encompassing
+10 kb upstream and −90 kb downstreamof its TSS, andmeasured the
contact density of each caRNA at the PRR of each gene. Using this
approach, we mapped all the physical contacts between the
chromatin-associated transcriptome and protein-coding genes (here-
inafter referred to as the caRNA-gene interactome, Fig. 7a).

Consistent with the dynamics of the genome-wide RNA-DNA
interactome (Fig. 3a–d), the caRNA-gene interactome of >1 million
contacts was dynamic across differentiation. We detected most of the
differential contacts at genes near the RNA locus (Fig. 7b). For lncRNAs
only, we detected 340 differential contacts (~1% of all lncRNA-gene
contacts), but these involvedonly 57distinct lncRNAs, indicating that a
typical single lncRNA differentially contacts multiple genes (Fig. 7c, d).
The caRNA-gene interactome involving UTLs was more dynamic than
that involving annotated RNAs, consistent with the global interactome
dynamics, with up to 20% differential UTL-gene contacts between ES
and DE (Fig. 7d).

To identify potential regulatory caRNAs and their putative gene
targets, we classified each caRNA and each protein-coding gene as an
ES, DE, or stable caRNA or gene based on those cells (FDR cutoff 0.05,
Fold Change cutoff 3). We then examined the statistical associations
between the class (ES/DE/stable) of a caRNA, its cognate gene, and
their interaction. Figure 6e shows the top 20 most upregulated con-
tacts involving a lncRNA along with the cognate lncRNA-gene pair. We
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localization pattern (dark gray) of AC106864 on chromatin are shown with the log

fold difference between observed and predicted (purple). The observed and pre-
dicted localization patterns for LARP7 are shown in light orange and light gray.
ATAC-seq, H3K27ac and H3K4me3 tracks are also shown and indicate that L2 has
enhancer-like chromatin properties. b Comparison between ChAR-seq and Hi-C at
the chromosome scale. Dashed boxes highlight two example regionswhere the A/B
compartments plaid pattern is clearly visible in both Hi-C and ChAR-seq maps.
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noted that all the top 20 upregulated contacts in a given cell state
involved ncRNAs upregulated in the same state. This result is con-
sistent with our findings that the RNA-DNA interactome dynamics is
globally driven by transcriptional dynamics. Yet most of the nearby
genes for these differential contacts were not differentially expressed
in ES vs DE, suggesting that changes in the caRNA levels at these genes
do not affect their expression. Furthermore, the fold change in contact
rate during the ES to DE transition correlated with the fold change of
the expression of the source caRNA (Fig. 7f, left panel) but not with
that of the contacting protein-coding gene (Fig. 7f, right panel).

To further understand the relationship between gene expression
and the presence of a caRNA in the PRR of a gene, we examined how
many cell-state-specific contacts are made at cell-state-specific genes.
This analysis revealed that >97% of cell state-specific genes are not
contacted by lncRNAs in a cell state-specific manner (Fig. 7g, left
panel). Interestingly, however, over 50% of these genes are contacted
by at least one, and sometimes several, UTL specifically in one cell state
(and 15% with a CRE). In contrast, only ~25% of genes that are not cell-
state-specific were contacted by cell-state-specific UTLs. Thus, most
genes do not require cell-state-specific localization of a particular
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lncRNA in their PRR to alter their expression, but genes whose
expression is altered are likely to be contacted by a UTL in a cell-state-
specific manner. Together, our findings indicate that the presence of
an individual ncRNA near the gene TSS does not correlate with the
gene’s transcription. This result does not rule out a regulatory activity
of ncRNAs at protein-coding genes. It remains possible that multiple
inputs gate the target gene’s expression, including chromatin state,
transcription factors, and possibly several RNAs,which couldwash out
average correlations between caRNA-gene interactions and gene
transcription.

To identify patterns in the interactome that could reveal a reg-
ulatory structure, we compared the observed interactomedynamics to
that which would be expected should it be independent of the gene
expression dynamics (null model). We binned differential contacts in
three categories: (1) positive edges, where the contact dynamics were
positively correlated with the proximal gene dynamics (contacts that
increased in ES to genes that increased in ES, or contacts that increased
in DE to genes that increased in DE), (2) negative edges (contacts that
increased in ES to genes that increased in DE, or contacts that
increased in DE to genes that increased in ES), (3) neutral edges
(contacts that increased in ES or DE to genes that were neither ES or
DE genes).

We found that across all categories of caRNAs, the interactome
contained up to 1.8 times more positive edges (p-value < 0.05 by
bootstrap) and up to 1.3 times fewer negative edges (p-value < 0.05 by
bootstrap) than would be expected for a random interactome under
the null model (Fig. 7h, i). Thus, we conclude that although specific
RNAs are not the sole drivers of transcription activation or silencing at
any gene, the architecture of the interactome is consistent with an
overall positive regulation, where the presence of caRNAs is generally
associated with higher expression of the contacted genes.

Discussion
Understanding how caRNAs control chromatin state and transcription
is a long-standing problem. To date, only a few RNAs have been linked
to specific regulatory functions. In this work, we provide a global view
of the RNA-chromatin interactome that expands studies focused on
individual RNAs and uncovers general principles governing the archi-
tecture of putative ncRNA-gene regulatory networks.

First, we show that lncRNAs with promiscuous chromatin inter-
actions are rare. Given that we detected only a handful of lncRNAswith
such patterns, it is unlikely that uncharacterized lncRNAs have global

regulatory roles, such as those established for 7SK, MALAT1, XIST, or
TERC. However, we identified a larger repertoire of unannotated RNAs
with broad chromatin interactions, which contained many TE-derived
RNAs. These data reinforce the idea that transcriptionally active LINE,
SINE and LTRmay play key roles in chromatin regulation and highlight
the necessity to further explore the biology of transposable
elements84,85.

Second, it is noteworthy that all delocalized lncRNAs but TERC
and 2 uncharacterized ncRNAs (VAULT-RNA and AC073335) are known
RNA residents of the nucleolus (RMRP, RPPH1, 7SL, most snoRNAs) or
nuclear speckles (7SK, MALAT1, most snRNAs). SPRITE, a Hi-C-like
method that probes high-order chromatin interactions, showed that
the 3D genome is organized into 2 major hubs around the nucleolus
and nuclear speckles, where abundant long-range and inter-
chromosomal DNA-DNA contacts occur86. We hypothesize that the
proximity of these RNA loci to the genomic hubs may be important in
enabling interactions with dispersed genomic loci. This behavior is
reminiscent of XIST, whose location on the X chromosome defines
where heterochromatin spreading initiates17. We speculate that a
general principle may underlie these observations, where the interac-
tions of an RNAwith chromatin are constrained by the positionof their
transcription locus relative to other loci or to nuclear domains.

Third, we demonstrate unambiguously that no RNA behaves like
XIST and localizes throughout its own chromosome while being
excluded fromother chromosomes. Thus,while XIST sets expectations
for ncRNAs regarding their potential roles as regulators of transcrip-
tion and large genetic networks, XIST appears to be unique in its
localization pattern.

Fourth, excluding small RNAs such as snRNAs, snoRNAs, tRNAs,
and some UTLs as described above, we found no evidence across the
non-coding transcriptome for the widespread existence of trans
interactions or affinity-driven interactions as previously defined2.
Indeed, we demonstrated that a simple generative model, encoding
only for expression and RNA-DNA distance, accurately predicts the
contact patterns for each RNA. Thus, while acknowledging possible
false negatives for lowly expressed RNAs, we show that nearly all
interactions are proximity-driven. Our data does not differentiate
between RNAs that are tethered to chromatin via active transcriptional
complexes versus other mechanisms, such as nucleoprotein complex
interaction or base pairing. We anticipate that multiple different
mechanisms may act to retain RNAs in proximity to their sites of
synthesis. An important implication of our results is that across the

Fig. 7 | The caRNA-gene interactome preferentially links upregulated caRNAs
to upregulated genes. a Representation of the caRNA-gene interactome as a
matrix containing the number of contacts between an ncRNA (row) and the prox-
imal regulatory region (PRR) of a protein-coding gene (column). Only cis interac-
tions are shown for simplicity. b caRNA-gene interactome in ES and DE cells for the
50most abundant lncRNAs (top) andUTLs (bottom) onChr11 (left). Expanded view
of the interactome for 50 protein-coding genes upstream and downstream of each
caRNAPRR (right). Expandedmaps are shown for the true interactome signal (Obs),
the generative model prediction (Mod), the log2 fold change of the observed over
model (Obs/Model), and the interactions significantly enriched in the observed
over themodel (Sig, p-value < 0.05 and LFCobs,model > 0)as described in Fig. 5c, d
(“Methods”). c Volcano plot showing the differential lncRNA-gene contacts is ES
versus DE cells. Each data point is a contact between a lncRNA and the PRR of a
protein-coding gene. log2 FoldChange of contact rate inDE versus ES cells (LFC_ES,
DE) and False Discovery Rate adjusted p-values were computed with DESeq2 as in
Fig. 3a, and colored contacts are those with an adjusted p-value <0.05. d Quantifi-
cation of the percentage of cell-state-specific contacts for each class of caRNA
relative to the number of contacts tested for that class (top) and number of distinct
caRNAs involved in these contacts (bottom). Cell-specific contacts were defined as
those with an adjusted p-value < 0.05 and LFCES,DE > 1.3 by DESeq2. e Top 20
lncRNA-gene contacts upregulated in ES (left) and DE cells (right) in the observed
data (blue circles). Most of these contacts are also predicted to be among the 20
most upregulated contacts by the generative model (purple circles). f Scatter plots

showing for each differential contact the relationship between the change in con-
tact rate during differentiation (LFCES,DE) and the change in the chromatin levels
of the involved caRNA (left) and in the expression of the cognate protein-coding
gene (right). Differential contacts were defined as in (d). Only differential contacts
involving exons of lncRNAs or UTLs are shown. g Percent of protein-coding genes
targeted by one ormore dynamic contact with a lncRNA (left panel), a CRE-derived
RNA (middle panel), or any UTL (right panel, excluding tRNA- and snRNA-derived
NARs). Protein-coding genes are grouped (x-axis) according to whether their
expression is upregulated in ES, DE, or stable during differentiation asmeasured by
total RNA-seq (DEseq2, FDR 0.05, fold change threshold 3x). Colors indicate whe-
ther the protein-coding gene is targeted by a single (light colors) or several (dark
colors) caRNAs with which the interaction is upregulated in ES (blue shade) or DE
(yellow shade). Some genes are targeted by several caRNAs, which include both ES
and DE upregulated interactions (purple). h Top two rows: Percentage of interac-
tions upregulated in ES targeting a protein-coding gene upregulated in ES (positive
association) or targeting a protein-coding gene upregulated in DE (negative asso-
ciation). Bottom two rows: similarly, for interactions upregulated in DE cells. i Fold
enrichment of the fraction of positive associations in the observed interactome,
compared to a randomized interactome, where the differential expression state of
the target genes is shuffled. All 54,642 gene-gene interactions where the gene of
origin was differentially expressed (p =0.05) were used. Error bars indicate 95%
confidence intervals by bootstrap (10,000 bootstrap). Error bars not overlapping
with x-axis indicate p-value <0.05 by bootstrap.
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non-coding transcriptome, chromatin regulatory activities are essen-
tially limited to nearby genes. Our observations are consistent with
previous studies of lncRNAs that demonstrate a propensity for locali-
zation near the transcriptional locus and cis-regulation of gene
activity58,87–89.

Several modes of regulatory activity are compatible with
proximity-driven interactions, yet our work brings important refine-
ments to the proposed models. If an ncRNA serves as a platform to
locally recruit histone-modifying complexes, as proposed for many
lncRNAs, we show that the dimensions of the domain around the RNA
transcription locus where this activity occurs are solely determined by
the RNA expression. The same local constraints apply if an ncRNA
operates via a decoymechanism, whereby it evicts specific remodeling
complexes from chromatin through competitive or inhibitory asso-
ciations with these complexes90.

To our surprise, we observed a general lack of correlation
between the dynamics of the RNA contacts at a given gene and the
dynamics of the expression of that gene. This observation challenges
models proposing that the activation or silencing of a gene may be
controlled by a single ncRNA18,23,77,84,91. Instead, our data indicates that
most ncRNAs do not have gene regulatory activity or favor someof the
more complex proposed models, for example, involving coordinated
inputs from a ncRNA and the local chromatin environment. One such
model, the “junk mail model,” posits that caRNAs interact with chro-
matin remodeling complexes and keep them poised and in check until
other local conditions are satisfied48,92 (such as the deposition of a
specific chromatin modification or binding of a transcription factor).
The junk mail model is compatible with our observations. Another
possibility, which we termed the “democratic RNA model,” is that the
distributed activity of multiple, weakly influential ncRNAs, rather than
that of a single, strongly influential ncRNA, determines the overall
regulatory output of RNA-chromatin interactions at a gene. The lack of
a strong correlation between RNA interaction and gene expression
indicates that testing the functions of individual RNAs in gene reg-
ulation may be challenging, and evaluating RNA regulatory roles will
require combinatorial perturbations of RNAs and putative effectors at
specific loci.

We found that an increase in interaction frequency between a
specific ncRNA and a target gene is more likely to correlate with an
increase in target gene expression than one would expect should the
ncRNA-gene contacts and the gene expression be uncorrelated with
one another. Three scenarios may explain this result. First, this may
merely reflect increased accessibility during chromatin activation and
a higher likelihood of crosslinking nearby RNAs. Second, theremay be
local coregulation of nearby ncRNAs and genes, for instance, through
shared regulatory elements. Third, it is possible that the default
activities of caRNAs are: (1) a decoying of the silencing machinery, as
proposed by the junkmail model, in the context of PRC2 eviction93, or
(2) recruitment of transcription activators such as the CREB-binding
protein30. These two effects would also give rise to a positive correla-
tion between caRNA presence at a gene and the transcriptional output
of this gene.

Asmentioned previously, we did not identify lncRNAs localized at
defined genomic targets in trans beyond the interactions explained by
the expression levels of these lncRNAs and the distance to their tar-
gets. This finding will need to be reconciled with themodels proposed
for a few ncRNAs, such asDIGIT or RMST, which have been reported to
broadly colocalize with BRD3 at endoderm differentiation genes, and
SOX2 at genes that control pluripotency and neurogenesis,
respectively77,78,91. Given that lncRNAs and eRNAs are highly cell state-
specific33,34, the architecture of the caRNA-chromatin interactomemay
be qualitatively different and perhaps contain more trans interactions
in further differentiated cells. Additionally, we cannot exclude the
possibility that our analysis missed affinity-driven trans interactions
due to sequencing-depth limitations, in particular for lowly expressed

ncRNAs. Thus, deeper sequencing or more powerful statistical fra-
meworks may reveal weak deviations from the model at more loci.
However, the fact that our analysis reveals broad differences in the
contactome between ES and DE cells gives us confidence that any
undetected deviation from the model must be more subtle than the
contactome changes related to cellular differentiation.

This work presents a global analysis of caRNA-chromatin inter-
action and establishes that caRNAs predominately operate locally
through diffusion and genome conformation-driven interactions. We
anticipate this work will direct the efforts in the non-coding RNA field
by providing data-informed priors on the localization of RNAs and a
simple model predicting where non-coding RNAs may act. Future
studies to identify the proteins mediating these RNA-chromatin
interactions will be necessary to inform the interplay between caRNA
and RNA-binding proteins in the control of transcription and
chromatin state.

Methods
Human H9 ES cell culture
H9 hESCs cells (ES cells) were obtained from Wicell (cell line WA09)
and cultured on Matrigel hESC qualified matrix (Corning 354277) with
mTeSR1 medium (StemCell Technologies 85850) according to manu-
facturer’s protocols and as described in Loh et al.45. Briefly, 6-well
plates were preparedwithmatrigel by adding 1mL ofmatrigel (diluted
in serum-free DMEM/F-12 according to lot dilution factor) to each well
and polymerized for 1 h at room temperature. DMEM/F-12 was aspi-
rated and replaced with 1.5mLmTeSR1 warmed to room temperature,
and then 2 µM of 10mM ROCK inhibitor (Y27632-Dihydrochrolride)
was added to each well. H9 hESCs (~3–5 million cell aliquots) were
thawed and immediately diluted by dropwise addition of 10mL pre-
warmed mTeSR1, spun at 200×g for 5min, and gently resuspended in
1.5mL mTeSR. Then, 0.5mL of cells were added to each well and
placed at 37 °C. Media was replaced daily with 2mL fresh mTeSR1 per
well. When colonies were ~70% confluent and started to touch each
other, cells were passaged as colonies. Each well was washed with 1x
PBS, 1mL of Versene-EDTA was added, and cells were incubated at
37 °C for 5min. Colonies were detached, broken up with gentle
pipetting, and resuspended in mTeSR1 at a 1:5 to 1:10 dilution. Then,
0.5mL of cells was added dropwise to each well containing 1.5mL
mTeSR1 and coated with matrigel prepared as described above
(without ROCK inhibitor).

Differentiation into definitive endoderm
Colonies were seeded from 1:10 dilution on day 0 into four 15 cm
dishes with matrigel, two for maintenance as ES cells and two for dif-
ferentiation into Definitive Endoderm (DE) cells. ES cells were main-
tained as above with daily mTeSR1 media replacement. For
differentiation, cells were treated with 10 µMROCK inhibitor on day 0,
and their media was replaced on day 1 with DE induction Media A
(GibcoCat#A3062601) andonday 2withDE inductionMediaB (Gibco
Cat# A3062601). On day 3, cells were harvested for ChAR-seq. In
addition to the 15 cm dishes used for ChAR-seq, cells were also seeded
andmaintained as ES cellsordifferentiated intoDE cells in 6-well plates
with poly-L-lysine coated coverslips under matrigel, and collected at
the same time for immunofluorescence analysis. Cells were also dif-
ferentiated in 6-well plates for RNA-seq and ATAC-seq.

Immunostaining
Cells were cultured in 6-well plates on poly-L-lysine coated coverslips
under matrigel and maintained as ES cells or differentiated into DE
cells as described above. Cells were washed three times with PBS and
fixed with 2% PFA in PBS added directly to the wells for 10min at room
temperature. The PFA solution was aspirated, cells were washed three
times with PBS, and permeabilized with 0.1% Triton X-100 in PBS for
5min at room temperature. Coverslips were transferred to parafilm-
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coated staining chambers, washed with PBS, and blocked with Anti-
bodyDilutionBuffer (AbDil, 150mMNaCl, 20mMTris-HCl pH7.4, 0.1%
Triton X-100, 2% BSA, 0.1% Sodium Azide) for 30min at room tem-
perature. Samples were incubated in primary antibody for 30min at
room temperature (Rabbit anti-Nanog (Bethyl Labs, A300-397A) 1:500,
Goat anti-Sox17 (R&D Systems #AF1924) 1:1000, Rabbit anti-Sox2
((D696) XR(R), Cell Signaling, 3579 T) 1:500, Rabbit anti-FoxA2, (EMD
Millipore, 07-633) 1:500, diluted in AbDil), washed three times with
AbDil, and incubated with secondary antibodies conjugated to Goat
anti-Rabbit Alexa-647 (Thermo-Fisher A32733) and Donkey anti-Goat
Alexa-568 (Thermo-Fisher A11057) (1:1000 diluted in AbDil) for 30min
at room temperature. Cells were washed with AbDil three times,
stained for 5min with 10 µg/mL Hoechst-33342 in PBS, and washed
with PBS with 0.1% Triton X-100 before being mounted (20mM Tris-
HCl pH 8.8, 0.5% p-Phenylenediamine, 90% glycerol) onto slides and
sealed with nail polish. Samples were imaged with an IX70 Olympus
microscope with a Sedat quad-pass filter set (Semrock, S-000831) and
monochromatic solid-state illuminators. Cellswere imagedusing a 40x
objective. At least 10 images per coverslip were captured using 0.2-µM
z-stacks. Maximum intensity projections were processed with Cell-
Profiler (3.1.8) to identify nuclei based on the Hoechst signal and to
measure the mean intensity of each channel. Histograms of mean
nuclear intensity for each marker were plotted in R.

qPCR
For qPCR, RNA was extracted from each well of a 6-well plate con-
taining ES or DE cells (~1 million cells per well) using 1mL Tripure
reagent and according to the manufacturer’s protocol. RNA was
treated with DNase (TURBO DNase; Ambion) for 1 h at room tem-
perature, followed by isolation with a minElute RNA Cleanup Kit
(Qiagen). RNA concentrations were measured by Nanodrop, and
total RNA integrity was assayed using an Agilent Bioanalyzer. All
RNAs had an RNA integrity number (RIN) greater than 9.0. Then,
0.5–1 µg of RNA was reverse transcribed with random hexamer
primers using SuperScript III reverse transcriptase (18080-051;
Invitrogen) according to the manufacturer’s protocols. First-strand
cDNA was diluted 1:10 in nuclease-free H2O and amplified using
gene-specific primers that had been tested for amplification effi-
ciencies >90% and to amplify a single product. Real-time PCR was
performed using the Powerup SYBR Master Mix (ThermoFisher) for
40 cycles (94 °C 15 s, 55 °C 30 s, 68 °C, 1 min) on an ABI ViiA 7 Real-
Time PCR Machine with cycle thresholds (CTs) determined auto-
matically and with all samples in triplicate. Experimental genes were
normalized to the PBGD gene, with relative expression levels cal-
culated using the 2ΔΔCT method, and the transcript level fold-change
in DE versus ES cells was calculated. If a gene’s expression was too
low to detect via qPCR, these undetermined Ct values were assigned
a value of 38 to provide a conservative overestimate for use in the
calculation of expression change. Oligonucleotide primer sequen-
ces are listed in Supplementary Data 10.

RNA-seq
For RNA-seq, RNA was extracted from each well of a 6-well plate
containing ES or DE cells using 1mL Tripure and the Direct-Zol RNA
Extraction kit (Zymo Research) according to the manufacturer’s
instructions. RNA concentrations and quality were assayed as descri-
bed for qPCR. For each sample, 2.5 µg of RNA was treated with DNase
(TURBO DNase; Ambion) for 1 h at room temperature, followed by
isolation with an RNA Clean & Concentrator-25 kit (Zymo Research).
Then, 1 µg RNA was converted to ribosomal depleted cDNA libraries
ready for sequencing using the TruSeq Stranded Total RNA Library
Prep Human/Mouse/Rat kit (Illumina) according to themanufacturer’s
instructions. Samples were uniquely dual-indexed using IDT for Illu-
mina TruSeq RNA UD Indices. The four biological replicates from both

conditions (ES and DE cells) were pooled and sequenced at low read
depth on a MiSeq (2 x PE75) at the Stanford Functional Genomics
Facility to assess quality and on 1 lane of the HiSeq4000 (2 x PE150) at
NovoGene (Sacramento, CA). All reported analysis was generated
using the HiSeq dataset.

ATAC-seq
Cells for ATAC-seq were differentiated as described above and col-
lected by dissociating in Versene, followed by resuspension in warm
mTeSR media. Cells were transferred to 15mL conical tubes and cen-
trifuged at 200×g for 5min. The pellet was resuspended in DPBS, and
cells were counted and immediately processed. ATAC-seq was per-
formed as previously described using the OMNI-ATAC protocol94 with
slight modifications. Briefly, ~100K cells were resuspended in 50 µL
cold ATAC-Resuspension Buffer (10mM Tris-HCl pH 7.4, 10mM NaCl,
3mMMgCl2, 0.01% Digitonin, 0.1% Tween-20, and 0.1% NP40 in water)
and incubated on ice. Cells were washed with 1mL cold ATAC-RSB
(without NP40 and digitonin) and centrifuged at 500×g for 10min at
4 °C. The pellet was resuspended in a 50 µL transposition mixture (2x
TD buffer and 2.5 µL transposase) from the Illumina Nextera DNA
Library Prep Kit and incubated at 37 °C for 30min in a thermomixer at
1000RPM. Libraries were purifiedwith the DNAClean&Concentrator-
5 Kit (Zymo Research) and PCR amplified with barcoded primers. The
amplification cycle number for each samplewasmonitoredbyqPCR to
minimize PCR bias. PCR amplified libraries were purified with the
MinElute purification kit (Qiagen) and excess primers and large
(>1000 bp). DNA fragments were removed by AMPure XP bead selec-
tion (Beckman Coulter). Four biological replicates from each cell type
(ES and DE) were pooled and sequenced at low read depth on a MiSeq
(2 x PE75) at the Stanford Functional Genomics Facility to assess
quality and on 1 lane of the HiSeq4000 (2 x PE150) at NovoGene
(Sacramento, CA). All reported analysis was generated using the HiSeq
dataset.

ChAR-seq library preparation
ChAR-seq libraries were prepared according to the published
protocol42, as briefly described below. All reagents used were
RNAse-free.

Cell fixation and nuclei
About 10 million cells were harvested from a 15 cm dish with Versene
and fixed in 3% formaldehyde for 10min at room temperature. For-
maldehyde was quenched with the addition of 0.6M glycine for 5min
at room temperature, then 15min on ice. Cells were pelleted for 5min
at 500×g at 4 °C, washed with 10mL ice-cold PBS, and resuspended in
~5–10mL PBS. Cell concentration was measured, and cells were ali-
quoted in batches of 10 million cells in 1.5mL tubes. Aliquots were
spun for 5min at 500×g at 4 °C, the supernatant was removed, and
pellets were flash-frozen in liquid nitrogen and stored at −80 °C until
library preparation.

Cell lysis and nuclei preparation
Frozen pellets were resuspended in 500 µL ice-cold lysis buffer (10mM
Tris-HCl pH 8, 10mM NaCl, 0.2% Igepal-CA 630, 1mM DTT, 1 U/µL
RNaseOUT, 1x protease inhibitor) and incubated for 15min on ice.
Nuclei were washed (throughout the protocol, nuclei were washed
indicates the following steps: spinning for 4min at 2500×g, discarding
of supernatant, resuspension and mixing in the indicated wash buffer,
spinning for 4min at 2500×g, and aspiration of the wash buffer) with
500 µL of lysis buffer without Igepal, RNaseOUT, or Protease Inhibitor,
then resuspended in 400 µL of 0.5% SDS (10mM Tris-HCl pH 8, 10mM
NaCl, 1mM DTT, 0.5% SDS, 1 U/µL RNAseOUT), and incubated for
10min at 37 °C. SDSwas then quenched by adding TritonX-100 to 1.4%
final concentration and incubating for 15min at 37 °C.
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In situ biochemistry steps for RNA-DNA proximity ligation
To fragment RNAs, nuclei were pelleted and resuspended in 150 µL
fragmentation buffer (0.25x T4 RNA ligase buffer, 1 U/µL RNAseOUT)
and exposed to heat for 4min at 70 °C.To dephosphorylate RNA 5’
ends, nuclei were washed twice (in 800 µL PBS then 800 µL 1x RNA
ligase buffer, with the first spin omitted for the first wash and PBS
added directly to the previous reaction), resuspended in 150 µL
dephosphorylation mix (1x T4 PNK buffer, 1 U/µL T4 PNK, 1 U/µL
RNAseOUT), and incubated for 30min at 37 °C. To perform RNA-
bridge ligation, nuclei were washed twice as above and resuspended in
200 µL RNA-bridge ligation mixture [1x T4 RNA ligase buffer, 25 µM
annealed ChAR-seq bridge (top strand: /5rApp/AANN-
NAAACCGGCGTCCAAGGATCTTTAATTAAGTCGCAG/3SpC3/; bottom
strand: /5Phos/GATCTGCGACTTAATTAAAGATCCTTGGACGCCGG/
iBiodT/T; individual strands ordered from IDT DNA), 10 U/µL
T4KQRNAligase2, 1.5 U/µL RNAseOUT, 20% PEG-8000] and incubated
overnight at 23 °C on a thermomixer at 900 RPM. To perform first-
strand synthesis, nuclei were washed twice as above and resuspended
in 250 µL of first-strand synthesis mixture (1x T4 RNA ligase, 8 U/µL
Bst3.0, 1mM of each dNTP, 1mM DTT, 1 U/µL RNAseOUT), and incu-
bated for 15min at 23 °C, 10min at 37 °C, and 20min at 50 °C. Bst3.0
was inactivated by adding 8 µL of 0.5mM EDTA (15mM final con-
centration), 14 µL of 1% SDS (0.5% final), and incubating for 10min at
37 °C. SDSwas thenquenchedwith 43 µLof 10%TritonX-100 (1.3%final
concentration) for 15min at 37 °C. Next, to perform genomic diges-
tion, nuclei were washed twice and resuspended in 250 µL of DpnII
reaction mixture (1x T4 RNA ligase, 3 U/µL DpnII, 1mM DTT, 1 U/µL
RNAseOUT) overnight at 37 °C on a thermomixer at 900 RPM. DpnII
was inactivated in the same manner as Bst3.0 inactivation. SDS was
quenched as above. Next, to perform bridge-DNA ligation, nuclei were
washed twice and resuspended in 250 µL of ligation mixture (1x T4
DNA ligase, 10 U/µL T4 DNA ligase, 1 U/µL RNAseOUT) for 4 h at 23 °C.
T4 was inactivated by adding 8 µL of 0.5M EDTA (15mM final con-
centration). Finally, to perform second strand synthesis, nuclei were
washed twice (PBS then 1x cDNA buffer 10mM Tris-HCl pH 8, 90mM
KCl, 50mM (NH4)2SO4), and resuspended in 250 µL of second strand
synthesis mix (1x cDNA buffer, 0.5 U/µL E. coli DNA PolI, 0.025 U/µL
RNaseH, 1mM of each dNTP, 1mM DTT) for 1.5 h at 37 °C.

DNA isolation and shearing
Reverse crosslinking was carried out by adding 31.25 µL of 10% SDS,
31.25 µL 0.5M NaCl, 9 µL of 20mg/mL proteinase K and incubating
overnight at 68 °C. DNAwas purified by phenol chloroform extraction,
ethanol precipitated, and resuspended in 130 µL TE (10mM Tris pH 8,
0.1mM EDTA) buffer. DNAwas sheared with a Covaris S220 to target a
mean fragment size of ~200 bp (175 peak incident power, 10% duty
factor, 200 cycles/burst, 180 s). Fragment size distribution was quality
controlled on an Agilent High Sensitivity DNA Bioanalyzer.

Isolation of biotinylated molecules, on-beads adapter ligation,
and on-beads PCR
Molecules containing the biotinylated bridge sequence were isolated
using 150 µL of MyOne Streptavidin T1 dynabeads. To bind bridge-
containing molecules, beads were washed with 750 µL tween wash
buffer (TWB, 10mM Tris pH 8, 0.5mM EDTA, 1M NaCl, 0.05% Tween-
20) and resuspended in 130 µL 2x bead binding buffer (10mM Tris pH
8, 2M NaCl, 0.5mM EDTA) and 130 µL sheared DNA sample, then
incubated at room temperature for 15min with agitation. To remove
unbound DNA, beads were washed twice with 750 µL TWB (with
incubation at 50 °C for 2min with agitation during the first wash), then
resuspended in 40 µL TE buffer. DNA ends were prepared for ligation
by adding 7 µL of NEBNext End Prep Buffer and 3 µL NEXext End Prep
enzyme mix and incubating for 20min at room temperature and
30min at 65 °C. Adapters were ligated using the NEBNext Ultra II
Ligation module according to the manufacturer’s protocols. Beads

were washed twice as above and resuspended in 50 µL PCR amplifi-
cation mix (25 µL 2x NEBNext High Fidelity master mix, 2.5 µL 10 µM
Universal Primer, 2.5 µL 10 µM indexing primer, 20 µL H2O). The PCR
reactionwasperformedusing the following program (1 cycle: 98 °C for
30 s; 5 cycles: 98 °C for 10 s, 65 °C for 75 s). Beads were magnetically
collected, and the supernatant containing amplified DNA was trans-
ferred to a clean 1.5mL microcentrifuge tube. The amplified libraries
werepurifiedusingmagnetic SPRI beads at a ratioof 1:1 and elutedwith
31 µL 10mM Tris-HCl, pH 8.

Side qPCR & off-bead PCR
To determine the number of additional cycles of PCR amplification to
perform, 5 µL of purified library from on-bead PCR, 6 µL 2x NEBNext
High Fidelity master mix, 0.5 µL 10 µM Universal primer, 0.5 µL 10 µM
indexing primer, and0.33 µL 33x SYBRGreenweremixed and added to
a qPCR well and cycled on an ABI ViiA 7 Real-Time PCR Machine with
the following parameters (1 cycle: 98 °C for 30 s; 25 cycles: 98 °C for
10 s, 65 °C for 75 s). The number of off-bead PCR cycles to performwas
determined by finding the number of cycles such that the fluorescence
intensity is about one-third of the plateau intensity at the PCR
saturation. The remaining 25 µL of the library was combinedwith 30 µL
2x NEBNext High Fidelity master mix, 2.5 µL 10 µM universal Primer,
and 2.5 µL 10 µM indexing primer. Each sample was then cycled as
above for the number of cycles determined by the side qPCR.

Library clean-up and sequencing
To purify the amplified library, high molecular weight fragments were
bound to Ampure beads by adding 0.6x volume of the PCR reaction of
Ampure beads and collecting the supernatant. Low molecular weight
fragments were purified by adding 0.1875x the volume of the super-
natant transferred to obtain a final ratio of 0.9x beads:slurry. DNA was
eluted in 33 µL 10mM Tris pH 8. Library concentration was assessed
using a Qubit dsDNA High Sensitivity kit, and size distributions were
determined using an Agilent High Sensitivity DNA bioanalyzer. Sam-
ples were pooled and sequenced on 1 lane of an Illumina HiSeq4000
platform (2x PE150) to assess library quality, then later deeply
sequenced on 2 lanes of an Illumina NovaSeq platform at NovoGene
(Sacramento, CA). All reported analysis was generated using the
NovaSeq dataset. Replicates 1 and 2 of ES and DE ChAR-seq libraries
were prepared at different times and each sequenced separately on 1
NovaSeq lane.

ChAR-seq data processing and generation of pairs files
Demultiplexed fastq files from the ChAR-seq data were processed
using a custom Snakemake pipeline (https://github.com/straightlab/
charseq-pipelines), outputting pairs files containing the RNA and DNA
coordinates of each RNA(cDNA)-DNA chimeric read and relevant
annotations for each RNA-DNA contact. A summary of the pipeline
workflow is depicted in Supplementary Fig. 2. For full details of the
processing pipeline, see SupplementaryNote 1. Briefly, readswere PCR
deduplicated using clumpify.sh v38.84 (BBMap suite), low-quality
reads (Q < 30) were removed, and sequencing adapters were trimmed
using Trimmomatic v0.38. Paired-end reads were merged using Pear
v0.9.6 when possible, and reads containing a single instance of the
ChAR-seq bridge sequence were identified using chartools v0.1, a
customChAR-seq reads preprocessing package released as part of this
study (https://github.com/straightlab/chartools). Reads were split into
a rna.fastq and dna.fastq file corresponding to the sequences of the
RNA (cDNA) and DNA side of the chimeric molecule using chartools.
Reads with either the RNA or DNA side shorter than 15 bp were
removed using chartools and reads whose RNA side aligned to a rRNA
sequence by Bowtie2 were filtered out using Picard. DNA reads were
aligned to hg38 using Bowtie2, and RNA reads were aligned to hg38
using STAR and Gencode v29 annotations. RNA reads were assigned
specific genes using tagtools (https://github.com/straightlab/
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tagtools), a package released as part of this study. Geneswere assigned
an RNA type (either mRNA, lncRNA or ncRNA) based on the Genco-
deV29 gene type field and the lookup table in Supplementary Data 7,
which we used to simplify the original Gencode classification. ncRNA
genes were assigned a subtype, as indicated in Supplementary Data 7,
to break down this group into functional classes. Pairs files containing
for each read the mapping coordinates of the DNA, the RNA, and the
most likely gene of origin were produced using chartools pairup
function. Separate pairs files were produced for reads whose RNA was
annotated by tagtools as exonic, intronic, or intergenic. pairsfiles were
filtered using a bash script to remove multimapping reads and reads
with low mapping scores on either the RNA (STAR Q < 255) or DNA
(Bowtie2 Q < 40) side. Reads whose RNA overlapped with the hg38
ENCODE blacklist or that could not be attributed to a single known
gene or genomic locus were also removed.

RNA-seq data processing
RNA-seq reads were processed using a Snakemake pipeline mirroring
theChAR-seqpipeline, but all of theoperations related to theDNA-side
of the reads were skipped. In brief, demultiplexed fastq files were
deduplicated, sequencing adapters were removed, paired mates were
merged as described for ChAR-seq reads. Reads that aligned to a rRNA
sequence by Bowtie2 were filtered out using Picard. Reads were
aligned to hg38 using STAR and were annotated with tagtools using
the Gencode V29 gene models. Reads with low mapping scores (STAR
Q < 255), reads that could not be attributed to a single known gene or a
single locus, and reads that overlapped with a locus on the ENCODE
blacklist were discarded.

ATAC-seq data processing
Illumina Nextera Adapters were removed using a custom Python
script. Reads were aligned to the hg38 using Bowtie2. Duplicates were
removed with Picard. Mitochondrial reads or reads with Bowtie2
MAPQ score <30 were removed using SAMtools. All replicates were
similar, so their alignment files were merged to increase library com-
plexity (>100millionmapped reads per cell type) and produce a single
bigwig file per cell type used to display the ATAC-seq tracks and a
single bam file to determine ATAC-seq peaks. ATAC-seq peaks were
identified in each cell line using HMMRATAC v1.2.10.

Chromatin association scores
We defined the chromatin association score for RNA i as the log fold
difference between the level of RNA i in the chromatin-associated RNA
transcriptome (measured with the RNA-side of the ChAR-seq reads)
and its level in the total RNA transcriptome (measured with total RNA-
seq).To estimate the chromatin association score in a way that was
robust to small counts and obtain p-values to detect RNAs with
meaningful chromatin enrichment, we used DEseq2 with a design
formula ~cell + sequencing + cell:sequencing. In this design
matrix, the cell covariate represented the cell type and the
sequencing covariate indicated whether the sample originated from
RNA-seq or ChAR-seq. The interaction term cell:sequencing cap-
tured differences in the chromatin association of a given RNA between
ES and DE cells. We used the shrunken estimate of the regression
coefficient associated with the sequencing covariate as the estimate
of the chromatin association score. We computed the chromatin
association score in ES and DE cells separately by setting the reference
level for the cell covariate to ES and DE, respectively, before running
DEseq2. The apeglm method was used to compute the shrunken
estimates.We ran DEseq2 using an input countmatrixwith 16 samples:
2 ES and 2 DE replicates from ChAR-seq and 4 ES and 4 DE replicates
from RNA-seq. Gene counts for all Gencode V29 genes and all UTLs
identified in this study were included in the input matrix, except those
with fewer than 10 counts combined across all 16 samples. Counts
from exons and introns of a given gene and from UTLs were input as

separate entries (rows) in the matrix. All DESeq2 parameters were set
to their default value, except for the sample depth normalization step.
For sample depth normalization, we ran the estimateSizeFactors
command on a subset of the rows of the count matrix that included
only exonsof annotated geneswith at least 50counts combined across
all 16 samples. Subselecting exonic reads removed length bias due to
the low representation of introns in the total RNA-seq data compared
to the ChAR-seq data. False Discovery Rate (FDR) adjusted p-values
corresponding to the regression coefficient associated with the
sequencing covariate were used to identify genes with significant
chromatin enrichment. Genes with an adjusted p-value smaller than
0.05 and a chromatin association score either greater than 3 were
labeled as chromatin enriched, and those with an adjusted p-value
smaller than 0.05 and a chromatin association score less than −3 were
labeled as chromatin depleted. To identify genes with statistically
significant changes in their chromatin association score inES versusDE
cells (Fig. 3d), we used the regression coefficient associated with the
interaction term cell:sequencing, LFCES,DE and its corresponding
adjusted p-value padj,ES,DE. Thresholds used to label such genes were
LFCES,DE > 0, and padj,ES,DE < 0.05.

Computational interaction with ChAR-seq data
Formost computational analyses, the filtered pairs files were loaded in
Python as a chartable Python object using the chartools package.
Within the object, the interaction data were stored in a sparse matrix
with one row per RNA and one column per genomic DpnII site, binned
at 10 bp resolution, which could be loaded entirely in RAM. This
allowed us to perform computationally efficient indexing operations
to select individual RNAs or target genomic loci, plot ChAR-seq maps
at various resolutions, produce bigwig files of the binding profile of
individual RNAs, and generate the caRNA-gene interactome. All of
these operations were performed using methods from the chartools
package.

Identification of UTLs
For each ChAR-seq sample, reads whose RNA did not overlap with any
gene body in GenecodeV29 in the sense orientation were classified as
intergenic by tagtools and their STAR RNA alignments were extracted
in a separate bam file. Only RNA reads with a STAR alignment score of
Q = 255, a cognate DNA read with a Bowtie2 alignment score of Q > 15
were retained. The reads handling and filtering steps were performed
as part of our ChAR-seq reads preprocessing Snakemake pipeline.
These bam files were used as an input to StringTie2 with parameters
--fr --conservative -u -m 30 -p 4 -A to produce one gtf file with
de novo gene models for each sample. The sample-specific gtf files
from the 2 ES and 2 DE ChAR-seq replicates were merged using
StringTie2 with parameters --merge -p 4 -m 30 -c 0 -F 0 -T 0 to
produce a final a gtf file intergenic.merged.gtf with gene models
for the UTL. This gtf file was used to generate a STAR index containing
the gene models for the UTLs using command STAR --runMode
genomeGenerate --sjdbGTFfile intergenic.merged.gtf. A
dedicated Snakemake pipeline was run, similar to the full preproces-
sing pipeline described above, but starting from the tagtools step and
using the UTL rather than the gencode gene models (and corre-
sponding STAR indices) to produce pairs files corresponding to RNAs
emanating from UTLs.

Classification of UTLs
Each UTL was assigned 4 metrics or tags. (1) We attributed each UTL a
dominant Transposable Element (TE) family and a TE-score. For this
task, we applied Classification of Ambivalent Sequences using K-mers
(CASK)85 to the RNA-side of the ChAR-reads. CASK annotates each read
with a candidate TE family (if any) based on its k-mer composition
analyzed against a database of TE-specific k-mers built using the T2Tv1
genome assembly and T2T-CHM13 repeat annotations. Then, for each
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UTL, we identified the CASK annotation with the highest representa-
tion among all the reads (across the 2 ES and 2 DE replicates) mapped
to this UTL. We assigned this annotation as the dominant TE family for
this UTL and the proportion of reads from this UTL with this specific
CASK annotation as its TE-score. (2) If the 5’ end of a UTL was within
±300 bp of a cis-regulatory element (CRE) active in either ES or DE
cells, we annotated this UTL with the closest such CRE and its asso-
ciated 7-group classification based on the Encode Registry of Reg-
ulatory Elements67 (file ID GRCh38-cCREs.bed). To determine active
CRE in ES or DE cells, we selected, among the Encode Registry of
Regulatory Elements (containing 1,063,878 human candidate CREs),
those that overlapped with an ATAC-seq peak in that cell line. (3) UTLs
whose 5’ end were within −200 bp to +100bp of the 3’ end of a Gen-
codeV29 gene body were flagged as candidate readthrough. (4) UTLs
with at least 10% overlap with the antistrand of a GenecodeV29 gene
body were flagged as candidate antisense. Finally, these 4 metrics and
tags were combined to determine the final UTL classification using the
following priority rule: (1) UTLs with a dominant TE family of tRNAs
and at TE-score greater than 10% were classified as tRNA-derived. (2)
Remaining UTLs with a dominant TE family in {snRNA, snoRNA,
scaRNA, srpRNA, scRNA, rRNA} and at TE-score greater than 10% were
classified as snRNA-derived. (3) Remaining UTLs flagged as candidate
readthroughs were classified as readthroughs. (4) Remaining UTLs
with a CRE annotation in either ES or DE cells were classified as CRE-
derived, and the subtype of CRE was selected from the ES cell anno-
tation if the CRE was active in ES cells and from DE cell annotation
otherwise. (5) Remaining UTLs with a TE-score greater than 50% were
classified as repeat-derived, with the specific repeat family determined
by their dominant TE family. (6) Remaining UTLs flagged as candidate
antisense were classified as antisense. (7) All remaining UTLs were
classified as intergenic.

Quantification of the RNA-DNA interactome dynamics
To compare the ChAR-seq RNA-DNA contact maps in ES versus DE
cells, we repurposed the differential gene expression analysis tool
DEseq295.We appliedDEseq2 in the interactome space (rather than the
transcriptome space, as traditionally done in differential RNA-seq)
using the number of ChAR-seq reads linking a specific RNA to a specific
DNA locus, hereafter referred to as an RNA-DNA interaction, as sepa-
rate rows in the input countmatrix. We defined a DNA locus as either a
100 kbor 1Mbgenomicwindow(forFig. 3) or a region surrounding the
TSS of a protein-coding gene as defined in the main text (for Fig. 6).
The 4 ChAR-seq samples were included as columns of the count
matrix. RNA-DNA interactions for which fewer than 2 samples had at
least 10 reads were excluded from the count matrix and further ana-
lysis. The contactmaps fromexons, introns, andUTLswereanalyzed in
independent DESeq2 runs. The count matrices were generated in
Python directly from the chartable objects that stored the contactome
data. These matrices were imported in R, and DESeq2 was run with all
parameters set to their default values. Log2 Fold Change differential
contacts maps shown in Fig. 3 were generated using the shrunken fold
change estimates for each contact as returned by DESeq2. The apeglm
method was used for shrinkage. This DESeq2 output was loaded into a
chartable object in Python for computational handling and visualiza-
tion tasks using chartools. Bar plots in Fig. 3b were produced using
ggplot2 in R after converting the DESeq2 output into dplyr tibbles and
applying appropriate transformations.

Detection of RNA relocalization events during differentiation
Model 3 in Fig. 3cwas tested by comparing the fold change between ES
and DE cells for each RNA-DNA interaction with the fold change in the
total expression of the corresponding RNA in the caRNA tran-
scriptome. To do so, we generated expression-only contact maps,
where the number of contacts between RNA i and genomic locus jwas
set equal to the total number of contacts made by RNA i in the

observed map. For this analysis, genomic loci were defined using a
100 kb tiling partition of the genome. Because in theseexpression-only
maps, each row i (representing RNA i) is constant across the columns
(representing the 100 kb-wide DNA loci), any information about the
localization of individual RNAs is effectively removed, and only the
information about the abundance of each RNA is retained. We next
applied DEseq2 in the interactome space as described above but with
the following modifications. First, the count matrix input to DEseq2
contained 8 samples/columns: the 2 ES and the 2 DE replicates of the
observed contact maps and the 4 corresponding expression-only
maps. Second, we used a design matrix of the form ~cell+ mapType
+cell:mapType, where themapType covariate indicatedwhether the
column corresponded to anobservedChAR-seqmapor an expression-
only map, and the cell covariate indicated whether the column cor-
responded to a map in ES or DE cells. Third, the count matrix was
prefiltered as above by removing interactions for which fewer than
2 samples had at least 10 reads, except that only the true observed
samples (mapType=observed) were considered for the purpose of
the filter. The interaction term cell:mapType captured differences in
the ES to DE dynamics in the true maps compared to the expression-
onlymaps.All interactions that had anFDRadjustedp-value associated
with the cell:mapType covariate smaller than 0.05 were flagged as
not explained by expression. Maps shown in Fig. 3e and labeled as
Differential contacts explained by expression were generated using
the apeglm shrunken estimate of the regression coefficient associated
with thecell covariate andwith the reference level formapType set to
expressionOnly. This analysis was performed separately for maps
corresponding to exons, introns, and UTLs.

Computation of the trans- and cis-delocalization scores
For full details on the trans-delocalization scores, please refer to
Supplementary Note 2.

trans-delocalization scores
Briefly, we defined the raw trans-delocalization score for each RNA as
the ratio of the contact density of this RNA on trans chromosomes
(number of contacts divided by the total length of the trans chromo-
somes) over the contact density of this RNA on its cis chromosome.
The raw delocalization score was difficult to interpret due to sample-
specific biases and dependency on the chromosome of origin and
expression (Supplementary Note 2, Supplementary Fig. 7). To regress
out these biases and obtain a score that was comparable across RNAs
and samples, we used a generalized linear model (GLM) and an
empirical Bayes approach. First, wemodeled the total number of trans-
chromosomal contacts Ntrans,i for each RNA i as independent Beta-
Binomial distributions. The Beta-Binomial distribution accounts for
both the sampling variation and the biological variation across RNAs
and was parameterized with the total number of reads Ni for RNA i, a
mean trans-contact rate for RNA i πi, and an overdispersion parameter
which we assumed constant across all RNA γ, such that

EðNtrans,ijNiÞ=πiNi

varðNtrans,ijNiÞ=πið1� πiÞNi 1 + ðNi � 1Þγ� � ð1Þ

We captured the expression and chromosome biases by using a
beta-binomial GLM and by including these effects as covariates in the
GLM. Specifically, we used a logit link function for the mean trans-
contact rate pii of the form

logitðπiÞ=ηchr,i +ηexpr lnðNiÞ ð2Þ

Wenext fit the Beta-binomial GLMusing our ChAR-seq count data
frommRNAs as a training set and conditioning on the total number of
reads Ni for each RNA i. Fitting was performed using the fit.gamlss
function from the gamlss package in R with the beta-binomial family
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parameter and after loading the count data in a dplyr tibble and
transforming the table appropriately for input into the fit function.
RNAs with fewer than 50 total counts were removed and discarded
from further analysis. Using the fitted beta-binomial GLM, weobtained
for each RNA i an estimate for the mean trans-contact rate πmodel,i and
an associated Beta-Binomial distribution with parameters Ni, πmodel,i

and γmodel, which we used as an Empirical Bayes prior. We performed
a Bayesian update using the true observed number of trans-chromo-
somal contacts for RNA i, thereby obtaining a shrinkage estimate for
the trans-contact rate πpost,i. We defined the calibrated trans-deloca-
lization score for RNA i Δtrans, i as the log2 transformed ratio of the
shrinkage estimate over the model prediction:

Δtrans, i = logitðπpost,iÞ � logitðπmodel,iÞ ð3Þ

Delocalization scores were computed independently for each
sample, and a final delocalization score for each RNA in each cell state
was obtained by averaging the scores over the 2 replicates. For all
delocalization score analyses, and only for these analyses, the pair files
described in the above section (ChAR-seq data processing and gen-
eration of pairs files) were not used directly but further filtered to
eliminate any possible remaining multimappers on the RNA side by
using a more stringent multimapping threshold than STAR Q = 255.
Specifically, the RNA side of the reads were realigned to hg38 using
Bowtie2, and reads with Q < 40 were discarded from the pairs file for
the delocalization score analysis.

cis-delocalization scores
We defined the RNA travel distance δ for each ChAR-seq read corre-
sponding to a cis-chromosomal contact as the distance between the
mapping locus of the RNA and the mapping locus of the DNA. cis-
delocalization scores were defined and computed similarly to the
trans-delocalization scores, except for the following replacements: the
number of cis-chromosomal contacts for RNA i was replaced with the
number of contactsNδ<1Mb,i such that the absolute RNA travel distance
was smaller than 1Mb, and the number of trans-chromosomal contacts
was replaced with the number of contacts Nδ>1Mb,i such that the
absolute RNA travel distance was greater than 1Mb. The covariates for
the GLM remained unchanged. Detection of RNAs with extreme
delocalization scores The analysis described below was used for the
trans-delocalization scores and was performed similarly for the cis-
delocalization scores. Briefly, for each RNA and each sample, we
computed the probability pdelocalized,i that a random sample drawn
from the posterior distribution of the trans-contact rate θpost,i was
larger than a random sample drawn from the GLM trained on the
mRNA population. This probability was used as a p-value for identify-
ing trans-delocalized RNAs.One p-valuewas obtained per RNA and per
sample, and p-values from replicates were combined using Fisher’s
method. Multiple hypothesis testing was corrected using the
Benjamini–Hochberg procedure. RNAs with an adjusted p-value
smaller than 0.05 were declared as trans-delocalized. To identify RNAs
on the other side of the distribution tail (ultralocalized RNAs) 1
−pdelocalized,i was used, and Fisher’s and BH methods were applied
similarly. An RNA was declared ultralocalized if the resulting adjusted
p-value was smaller than 0.05. All computations were performed in R.
For further details, please refer to Supplementary Note 3. Prediction of
ChAR-seq contact maps using a generative model For mathematical
details and a detailed discussion on the generative model, please refer
to Supplementary Note 4. Briefly, the ChAR-seq dataset can be repre-
sented as a set of RNAs from an arbitrarily indexed transcriptome (i.e.,
RNA i refers to an RNA associated with the ith gene in the tran-
scriptome), and for each RNA i, a set of Ni reads coming from this RNA
whose RNA mapping coordinates are {ri,j}j=1…Ni and DNA mapping
coordinates are {di,j}j=1…Ni. We modeled for each RNA i the probability
of observing any particular realization of the DNA mapping

coordinates, conditional on knowing (1) the set of RNA mapping
coordinates and (2) the total number of contacts for this RNA on each
chromosome. We modeled the cis- and trans-chromosomal contacts
separately. For cis-contacts, we assumed the probability for an RNA
emanating from coordinates r to contact locus jwith coordinates dj, is
proportional to: (1) an RNA-independent and DNA locus-dependent
bias bj representing the biological and technical variation of RNA
localization and detection along the genome and (2) an interaction
frequency dependent on the distance between the RNA and the DNA
locus. The latter effect captures diffusion and tethering effects at short
distances, whereby an RNA is more likely to interact with loci near its
transcription site. Under this model, the probability of observing any
specific localization pattern for RNA i in cis is given by a multinomial
distribution of the form:

Multinomial Ni,cis , / bJ*
X

k2Ci
ρðdj � ri,kÞ

� �
ð4Þ

whereCi is the set of indices among the reads fromRNA i, forwhich the
DNA-side maps to a locus in cis. For trans-contacts, we assumed that
the probability for any RNA to contact locus j is only proportional to
the DNA bias. Under this model, the probability of observing any
specific localization pattern forRNA ion a trans chromosome c is given
by a multinomial distribution of the form

MultinomialðNi,chrðiÞ = c,bJÞ ð5Þ

where Ni,chr(i) = c is the number of contacts made by RNA i on chro-
mosome c. The DNA bias coefficients bjwere estimated using the total
coverage at each locus j from all the mRNAs originating from trans
chromosomes. The distance-dependent interaction frequency curve
was estimated using the empirical distribution of RNA-DNA travel
distance from all the protein-coding RNAs. Maps shown across the
manuscript and labeled as model were obtained by simulating a single
realization of the cis and transprobabilisticmodels for each RNA in the
transcriptome and for each target chromosome. Note that for each
RNA, because of the conditional constraints, the total number of
contacts on any specific chromosome is always equal in the simulated
data and in the observed data. All simulations were performed in
Python as described in Supplementary Note 4, and the resulting maps
were loaded inmemory as chartables using chartools for analysis
and plotting purposes.

Detection of RNA-DNA contacts not predicted by the gen-
erative model
To compare the true observed ChAR-seq RNA-DNA contact maps to
those predicted by the generative model, we applied DEseq2 in the
interactome space as described in the section “Quantification of the
RNA-DNA interactome dynamics” with the following modifications.
First, the count matrix input to DEseq2 contained 8 samples/columns:
the 2 ES and the 2 DE replicates of the true observed contactmaps and
the 4 corresponding model maps obtained by a single simulation of
the generative model. Second, the design matrix was set to ~ cell +
observedORmodel + cell:observedORmodel, where the obser-
vedORmodel covariate indicatedwhether the columncorresponded to
observed or model ChAR-seq map. Third, the count matrix was pre-
filtered by removing interactions for which fewer than two samples
among the observed samples had at least 10 reads. The interaction
term cell: observedORmodel captured differences between the
observed and modeled data that were specific to either ES to DE cells.
All interactions whose apeglm shrunken estimate of the regression
coefficient associated with the observedORmodel covariate was
greater than log2(1.3) and had an FDR adjusted p-value smaller than
0.05 were flagged as not explained by the model. We computed the
regression coefficient associated with the observedORmodel and its
p-value in ES and DE cells separately by setting the reference level for
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the cell covariate to ES and DE, respectively, before running DEseq2.
This analysis was performed separately for maps corresponding to
exons, introns, and UTLs. Maps shown in Figs. 5d–h and 7b labeled as
model or “mod” were generated using the apeglm shrunken estimate
of the regression coefficient associated with the observedORmodel
covariate. The DESeq2 outputs were loaded into a chartable object in
Python using chartools for visualization tasks. Bar and line plots in
Fig. 5e were produced using ggplot2 in R after converting the DESeq2
output into dplyr tibbles and applying appropriate transformations.
For the analysis of the dynamics of the caRNA-gene interactome
(Fig. 7), DESeq2 was used similarly as in Fig. 5, except that in the con-
struction of the count matrix in the interactome space, the genomic
loci were defined as regions of +10 kb upstream and −90 kb down-
streamof the transcription startof eachprotein-codinggene. In Fig. 7c,
d, interactions that had an FDR adjusted p-value smaller than 0.05 for
the cell covariate (reference level for observedORmodel set to
observed) were flagged as cell-state-specific.

External data used in this study
Hi-C data in Fig. 5 were loaded in HiGlass from the Krietenstein et al.
(H1 hESCs) dataset96, visualized at 2 kb resolution after ICE normal-
ization, and manually aligned with the ChAR-seq, ATAC-seq,
H3K27ac and H3K4me3 tracks plotted in IGV based on their genomic
coordinates. H3K27ac and K3K4me3 tracks in Fig. 2b and Fig. 5g
were generated using ChIP-seq data in H7 hESCs cells and H7 cells
differentiated into definitive endoderm from GSE12720245.
PolII localization peaks used for the metagene analysis in Supple-
mentary Fig. 8e were obtained by running MACS2 on H9 ChIP-seq
data from GSE10502897.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon request. All ChAR-seq, RNA-seq and
ATAC-seq sequencing data generated as part of this study are available
as GEO accession number GSE240435.

Code availability
Software packages and code released as part of this study and Sna-
kemake pipelines used to preprocess the ChAR-seq and RNA-seq data
are available asGitHub repositories and archived onZenodo as https://
github.com/straightlab/chartools (https://doi.org/10.5281/zenodo.
8339066), https://github.com/straightlab/charseq-pipelines (https://
doi.org/10.5281/zenodo.8339068), https://github.com/straightlab/
tagtools (https://doi.org/10.5281/zenodo.8339076). All data analysis
code and code to generate the figures are available at https://github.
com/straightlab/charseq_dynamics_paper (https://doi.org/10.5281/
zenodo.8339062).
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