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Integrated radiogenomics models predict
response to neoadjuvant chemotherapy in
high grade serous ovarian cancer
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High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous
disease that typically presents at an advanced,metastatic state. Themulti-scale
complexity of HGSOC is a major obstacle to predicting response to neoadju-
vant chemotherapy (NACT) and understanding critical determinants of
response. Here we present a framework to predict the response of HGSOC
patients to NACT integrating baseline clinical, blood-based, and radiomic
biomarkers extracted from all primary and metastatic lesions. We use an
ensemble machine learning model trained to predict the change in total dis-
ease volume using data obtained at diagnosis (n = 72). The model is validated
in an internal hold-out cohort (n = 20) and an independent external patient
cohort (n = 42). In the external cohort the integrated radiomicsmodel reduces
the prediction error by 8%with respect to the clinicalmodel, achieving an AUC
of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model.
Our results emphasize the value of including radiomics data in integrative
models of treatment response and provide methods for developing new
biomarker-based clinical trials of NACT in HGSOC.

High-grade serous ovarian carcinoma (HGSOC) is a major therapeutic
challenge as it typically presents with advanced, multi-site metastatic
disease. Neoadjuvant chemotherapy (NACT) followed by delayed pri-
mary surgery (DPS) is now the most frequent treatment strategy for
advancedHGSOC1,2. However, response is variable, and 39%of patients
do not obtain any objective benefit from neoadjuvant carboplatin and
paclitaxel3–5. Variability in response is partly driven by the complexity
of HGSOC, which spans a large range of scales—from macroscopic
metastatic tumour volumes observed on radiological imaging to
microscopic tumour-immune microenvironments and sub-

microscopic genomic diversity6–8. Patient care would be substantially
improved if different sub-populations could be identified before
treatment is started, for example by identifying likely non-responders
who could receive immediate primary surgery.

So far, predictive studies have focused on individual data streams,
such as clinical features9,10, CA-12511–13, computed tomography (CT)
imaging14,15, and circulating tumour DNA (ctDNA)16. The superior pre-
dictive power of integrative models for complex endpoints is well
demonstrated in several cancer types17–19, but training such models
requires large, well-annotated, multi-omic datasets, which have not
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been available for NACT treatment of HGSOC. In particular, radi-
ological imaging is the only data source that non-invasively captures
the spatial heterogeneity of metastatic disease, but has so far been
underused. Existing radiomics studies focus only on correlations14,15,
rather than combined predictive power, and do not consider NACT.

Here, wepresent IRON, an integrative radiogenomic framework to
predict the volumetric response of heterogeneous, multi-site ovarian
cancer to NACT.We used two independent, highly annotated data sets
including clinical, chemotherapy treatment, CA-125, ctDNA, and
radiomics features extracted from all primary and metastatic disease
at diagnosis. The features were used as an input to an ensemble
machine learning model trained to predict volume shrinkage during
NACT. We validated the approach on an external training data set and
demonstrated that radiomics features are essential to obtain sig-
nificant predictive power. Our method is easily generalised and is
applicable to other cancers with heterogeneous, multi-site disease.

Results
This study is based ondata from twoprospective observational studies
from Addenbrooke’s Hospital (‘NeOv’, n = 92) and the Barts Health
NHSTrust (‘Barts’, n = 42), respectively (Fig. 1a, Supplementary Fig. S1).
Patients show variability in treatment regimes and response patterns
(Fig. 1b). The NeOv dataset was randomly divided into a training set
(n = 72) and a hold-out internal validation set (n = 20, Supplementary
Fig. S1a). The training data set was used for the exploratory analyses
and to train the machine learning models. The hold-out set was only
used for performance assessment after all predictivemodels had been
fully trained. The Barts data were used as an independent, external
validation data set.

Response patterns to NACT are heterogeneous
All primary andmetastatic lesions identified onpre- andpost-NACTCT
scans were segmented and labelled (Fig. 1c). As expected, tumour in
the omentum and pelvic/ovarian locations accounted for the majority
of the disease burden at baseline and were the most frequent tumour
locations (Fig. 1d, e). Thereweremarked differences in response at the
same anatomic sites between patients (Supplementary Fig. S3).
Omental disease showed significantly better response than pelvic
disease (Fig. 1f, g, h). Despite anatomic differences in response, use of
response evaluation criteria in solid tumours (RECIST 1.1) was strongly
correlated with total volume change (Fig. 1f). The volume of omental
disease at baseline was higher (p =0.05) in responders assessed by
RECIST (complete or partial response; median = 85 cm3) compared to
non-responders (stable disease or progression; median = 31 cm3).

While the number of disease locations at baselinewas significantly
correlated with response, there was no correlation with disease
volume at baseline, either overall or in specific anatomic locations
(Table 1). Taken together, these detailed volumetric data indicate that
multivariable predictors are required to predict response to NACT
rather than simple knowledge about disease burden and its anatomic
distribution.

ctDNA and CA-125 correlate with different types of disease
burden
For all patients in the training and hold-out validation cohorts, ctDNA
was assessed at baseline. We compared TP53 mutant allele fraction
(MAF), trimmed median absolute deviation from copy number neu-
trality based on shallow whole genome sequencing (t-MAD) and
IchorCNA20–23. In addition, we explored the use of computed haploid
genome equivalents per millilitre (hGE/ml)24. All measures were highly
correlated (p <0.0001, Supplementary Fig. S1c) and therefore, TP53
MAF was included in univariable analyses.

Total disease burden at baseline (total volume, number of lesions,
and summed RECIST 1.1 diameters) correlated significantly with both
CA-125 and TP53MAF (Table 2). Neither baseline CA-125 nor TP53MAF

correlated significantly with response, but did show a significant
positive correlation with the summed RECIST 1.1 diameters post-
chemotherapy (Table 1).

Baseline CA-125 correlated with omental disease and pelvic/
ovarian disease volume measured before chemotherapy. Similarly,
baseline TP53 MAF correlated significantly with pelvic/ovarian dis-
ease volume measured both before and after chemotherapy.
However, ctDNA measurements did not correlate with omental
disease at either time point (Table 2). This suggests that high TP53
MAF at baseline could be a specific indicator for high disease bur-
den in the ovaries or pelvis, which tends to show poorer
response (Fig. 1f).

Radiomics features correlate with clinical and biological
characteristics
To capture the radiological complexity of the disease we defined
several collections of radiomics features (Supplementary Data 1).
Volumes and number of lesions were calculated for each of the
relevant anatomical sites, in order to model the effect of tumour
location. Shape features, first-order histogram statistics and texture
features (‘intensity radiomics’) were calculated for each lesion and
averaged over the whole disease. Intra-lesion heterogeneity was
assessed by contracting the lesion contours and calculating the ratio
of radiomics features before and after the contraction (‘rim radio-
mics’). Similarly, the external context of the lesions was assessed by
calculating the ratio of radiomics features before and after dilating
the contours (‘peripheral radiomics’). Finally, we also defined a series
of binary variables to describe additional radiological findings
(‘semantic features’): ascites and pleural effusion were assessed
manually, and we used a previously developed automated tissue-
specific sub-segmentation tool to identify hypodense (cystic/necro-
tic spaces) and hyperdense (calcifications) lesion parts within the
manual segmentations25.

We found that imaging features grouped into six distinct clusters
(Fig. 2a). Cluster 1 was associated with baseline CA-125 levels
(rmedian = 0.34) and contained mostly lesion volume metrics. This is
consistent with previous work suggesting that CA-125 correlates with
lesion volume26. Clusters associated with ctDNA features were gen-
erally dominated by features quantifying lesion heterogeneity and
context. Cluster 5 was primarily associated with ctDNA TP53 status
(rmedian = 0.25), and contained predominantly peripheral radiomics
features, which quantify lesion context. Cluster 6 was associated with
ctDNA TP53MAF and tMAD (rmedian = 0.20 and 0.19, respectively), and
contained predominantly rim ratio radiomics features, which provide
information on intra-lesion heterogeneity.

Cluster 4 was highly correlated to stage (rmedian = 0.36), and was
composed of a mixture of features related to shape, volume, and
number of lesions, which quantify the disease burden. This is con-
sistent with the definition of FIGO stage, which relies on the assess-
ment of the extent and spreadof the disease27. Cluster 2was associated
mostly with age (rmedian = 0.23) and contained almost exclusively rim
ratio radiomics features, which provide information about intra-
tumour heterogeneity. The remaining group (cluster 3) was formed by
a heterogeneous mixture of features, and did not associate with any
biological or clinical feature.

These results indicate that some of the information from global
biomarkers such as stage, CA-125 or ctDNA can also be captured in
multi-lesion radiomic features that quantify the extent, spread, het-
erogeneity and context of the disease. In addition, as shown in Fig. 2b,
clusters 1, 2, 3 and 5 contain imaging features that are significantly
correlated with volumetric response to treatment after multiple
comparison correction. Cluster 3 has negligible associations with
either biological or clinical features, demonstrating that radiomics
features can also contribute unique information to integrated radio-
genomic predictive models.
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Integrative ensemble model predicts volume response to
neoadjuvant chemotherapy
We built an integrative radiogenomic machine learning framework to
predict response to neoadjuvant chemotherapy, called IRON (Inte-
grated Radiogenomics for Ovarian Neoadjuvant therapy). The

framework is a robust ensemble of three machine learning pipelines,
each of which includes a classifier (elastic net, support vector regres-
sion, or random forest) preceded by collinearity reduction and feature
selection steps (see Methods). To further prevent overfitting, models
were trained using a 5-fold cross-validation setup that was repeated
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Fig. 1 | Structure of the study and main characteristics of the training cohort.
a Key time points and variables in the dataset (left) and steps of the modelling
strategy (right). See also Supplementary Fig. S1 for additional information.
b Treatment courses of all 92 patients in the NeOV cohort, ordered by decreasing
volumetric tumour response following NACT. Patients analysed in the hold-out
validation set were randomly selected and are indicated with a green triangle.
Treatment journeys progress vertically (bottom to top) and are aligned at the time
of the first chemotherapy cycle. Additional biomarkers obtained at baseline are
depicted in the bottom heatmap. c Sites of primary and metastatic disease in
HGSOC. d Distribution of tumour volumes by site for patients in the training
cohort. e Distribution of tumour sites by patient. f Volume changes of the omental

and pelvic/ovarian disease for all patients in the training cohort. p value obtained
from the two-sided Mann-Whitney U test. g Total and site-specific volume change
stratified by RECIST 1.1 response status for the training cohort. p value obtained
from the point biserial correlation coefficient, two-tailed. h Total and site-specific
volume change stratified by BRCA mutation status. These figures are restricted to
the n = 45 patients in the training cohort for whom the BRCAmutation status was
known. p value obtained from the two-sided Mann-Whitney U test. Boxes indicate
the upper and lower quartiles, with a line at the median. Outliers are shown as
circles and identified via the interquantile range rule. Source data are provided as a
Source Data file.
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five times with different seeds. To capture the behaviour of the whole
metastatic disease, we defined the response metric as the relative
change in total disease volume, whichwas also correlatedwith surgical
debulking status (Supplementary Fig. S5).

We used three distinct datasets: a training set (NeOV n = 72), a
hold-out validation set (NeOV n = 20) and an independent validation
set (Barts n = 42). We trained four models by successively adding
clinical and molecular features: (i) age, FIGO stage, and treatment; (ii)
CA-125; (iii) radiomics features; and (iv) ctDNA, (Fig. 3a and Supple-
mentary Data 1). All features used in the model were extracted from
data obtained at diagnosis. Once trained, the four models were frozen
and tested on the hold-out and external validation sets.

On the hold-out validation set, adding successive features resul-
ted in a gradual MSE reduction of 15% for the model without ctDNA,
and 14% after integrating ctDNA (Fig. 3b and Supplementary Table S8).
Only the two models that included radiomic features were able to
produce response scores that were significantly correlated with the
observed volume response (Spearman r = 0.5, p =0.02, Fig. 3b and
Supplementary Table S8). Although the models were not trained to
predict RECIST 1.1, we observed that the scores predicted by the
integrated radiomics model were able to correctly rank the three
RECIST 1.1 response groups (p =0.02, Fig. 4). Similarly, we found that
the model was able to accurately predict which patients were most
likely to undergo delayed primary surgery, but it was not able to pre-
dict surgical debulking status (Supplementary Fig. S5).

We tested the generalisability of the models in an independent
external cohort (Barts cohort, n = 42). As this cohort did not have
ctDNA testing performed, we imputed ctDNA measurements to the
training set averages. The clinical and CA-125 models did not achieve
significant performances in terms of Spearman correlation with

response. The radiomics and ctDNA models both achieved significant
performance at a similar level (r =0.32, p = 0.04 and r =0.32, p = 0.02
respectively, Fig. 3b and Table S8). For volume shrinkage thresholds
corresponding to clinically relevant criteria (RECIST, WHO, spherical-
volume and ellipsoidal-volume response), the full model achieved an
average area under the receiver-operating characteristic curve (AUC)
of 0.7, compared to an average of 0.5 for the clinical and CA-125
models (Supplementary Fig. S7). When assessed against the RECIST
classification labels, the full model achieved an AUC of 0.8, similar to
the radiomics model (0.78), compared to 0.47 and 0.50, respectively
for the clinical and CA-125 models.

We studied the relative contribution of the features used by the
final models in two different ways. Firstly, we evaluated the selection
frequency for each feature (Fig. 5a). We found that the treatment regi-
men and the number of sessions of chemotherapy before the second
scan were consistently selected across models. We also found that CA-
125was used inmodels that did not include radiomics, butwas dropped
from radiomics integration models. Semantic features, in particular
pleural thickening and the presence of a hyperdense region in an
omental lesion, were selected across all the relevant models. The only
volumetric features selected consistently were mean volume and the
volume of the infrarenal lymph nodes. A small and consistent number
of radiomics features was also selected, most of them belonging to the
category of features quantifying lesion context. We found that volume-
related radiomic features play an importantbut not essential role, as the
model is still predictive if they are removed during inference. Secondly,
we quantified relative feature importances within the models (Fig. 5).
We found that most of the models integrating a large number of fea-
tures tend to be more dense, with features sharing similar, lower
importance levels. Features that tended to have larger importancewere

Table 2 | Spearman correlation coefficients (rS) and corresponding two-sided p values (p) for pre- and post-NACT measure-
ments of tumour burden versus blood biomarkers measured at baseline

Pre-chemotherapy

Oment. vol. Pelvis/ovaries vol. LN vol. Total vol. Number lesions Summed diameter Ascites Pleural effusion

Baseline TP53MAF rS 0.04 0.37 0.26 0.37 0.32 0.48 0.05 0.13

p 0.77 0.005 0.06 0.005 0.02 0.0003 0.77 0.36

Baseline CA-125 rS 0.41 0.38 0.21 0.48 0.28 0.45 0.28 0.23

p 0.002 0.005 0.13 0.0003 0.04 0.0009 0.04 0.10

Post-chemotherapy

Oment. vol. Pelvis/ovaries vol. LN vol. Total vol. Number lesions Summed diameter Ascites Pleural effusion

Baseline TP53MAF rS −0.04 0.30 0.13 0.29 0.19 0.41 0.03 0.13

p 0.79 0.03 0.36 0.03 0.17 0.003 0.79 0.36

Baseline CA-125 rS 0.10 0.23 0.10 0.22 0.20 0.32 −0.07 −0.16

p 0.50 0.10 0.50 0.11 0.15 0.02 0.63 0.24

p values are adjusted for multiple correction.
Significant correlations (p < 0.05) are highlighted in bold.

Table 1 | Spearman correlation coefficients (rS) and corresponding two-sided p values (p) between baseline measurements of
tumour burden and different assessments of treatment response

Pre-chemotherapy

TP53
MAF

CA-125 Oment. vol. Pelvis/ovar-
ies vol.

LN vol. Total vol. Number
lesions

Summed
diameter

Ascites Pleural
effusion

Volume change rS −0.05 −0.30 −0.07 0.12 −0.13 0.01 −0.38 −0.08 −0.15 −0.03

p 0.93 0.07 0.90 0.62 0.60 0.96 0.02 0.90 0.55 0.93

Summed diam.
change

rS −0.06 −0.28 0.04 0.24 −0.16 0.15 −0.34 0.02 −0.03 −0.01

p 0.93 0.08 0.93 0.16 0.55 0.55 0.04 0.93 0.93 0.96

p values are adjusted for multiple correction.
Significant correlations (p < 0.05) are highlighted in bold.
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generally consistent with those that had the highest selection fre-
quency, as can be observed by comparing the two panels in Fig. 5.

Discussion
The clinical presentation of HGSOC is with complex, highly hetero-
geneousdisease that is invariablymetastatic throughout the abdomen.

The accompanying genomic and cellular heterogeneity has impeded
therapeutic progress and strongly suggests that understanding
response to treatment must involve the integration of data from dif-
ferent sources and scales. We have shown that an integrated radio-
genomic machine learning model based on baseline multi-scale data
predicts volumetric response to NACT (p =0.04, external validation
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Fig. 2 | Analysis of the correlations between radiomics and non-imaging fea-
tures. a Spearman correlation coefficients between imaging (rows) and clinical and
biological features (columns), both clustered using a hierarchical approach, using
the training cohort. bComposition and characteristics of the six identified imaging
feature clusters. Polar plots indicate the relative contribution of the different
classes of imaging features. Scatter plots show the feature of each cluster with the

highest Spearman correlationwith volumetric treatment response. Each features is
illustrated by displaying one slice from the patient with the maximum value (left),
and one from the patient with theminimum value (right). Source data are provided
as a Source Data file. p values are two-sided and corrected for multiple
comparisons.
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cohort). Our results show that radiomics features are critical for the
prediction, and that models that do not include radiomics fail to pre-
dict response. We also revealed site-specific patterns of differential
response and correlation of radiomics features with ctDNA detection.

The field of radiomics has grown exponentially in recent years,
showing great promise across tumour sites and endpoints28. At the
same time, radiomics has been criticised for lack of robustness and
reproducibility, as well as lack of biological interpretability29,30. Our

study shows that both problems can be overcome by the right design
choices.

We made robustness a design priority for our predictive frame-
work, IRON, which included strong feature selection,model ensembles
on multiple levels, and repeated re-shufflings of the data to avoid
biases. In addition, we trained the model on a dataset with hetero-
geneous imaging parameters31; and we included new families of ima-
ging features based on ratios between different volumes of interest,
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Fig. 4 | Using the IRON framework to predict responding, stable and pro-
gressive disease according to RECIST 1.1. Validation of the ability of predictive
models to describe RECIST 1.1 response in the hold-out (left, n = 20) and external
(right, n = 42) validation cohorts, for models containing, respectively, clinical,
clinical+CA-125, clinical+CA-125+radiomics, and clinical+CA-125+radiomics+ctDNA

features. Boxes indicate the upper and lower quartiles, with a line at the median.
Outliers are shown as circles and identified via the interquantile range rule. p values
are obtained using the point biserial coefficient and are two-tailed. ctDNA values in
the external validation cohort were imputed using training set averages. Source
data are provided as a Source Data file.
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Fig. 3 | Training scheme and validation results for the IRON machine learning
framework. a Schematic of the machine learning framework for model training
and validation.b Validation of the discriminative power of predictivemodels in the
hold-out (left) and external validation cohorts (right), for models containing, from
left to right, clinical, clinical+CA-125, clinical+CA-125+radiomics, and clinical+CA-
125+radiomics+ctDNA features, respectively. The metrics are mean square error

(MSE, top) and Spearman (continuous) or Pearson (dashed) correlation (bottom).
The magnitude of the mean squared error (MSE) is comparable to the standard
deviation of the volumetric response (Supplementary Table S9). ctDNA values in
the external validation cohort were imputed using training set averages. Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41820-7

Nature Communications |         (2023) 14:6756 6



Age at diagnosis
Num. cycles before scan 2

Num. days between scan 1 and Tx start
Received Doxorubicin
P weekly, C 3-weekly

Only C
Received P

Baseline CA125
Ascites

Pleural thickening
Hyperdense region in omental lesion

Mean volume
Maximum volume
Omental volume

Mesentery volume
Left paracolic gutter volume

LN infrarenal volume
LN suprarenal volume
Omentum n. lesions

LUQ n. lesions
POD n. lesions

LN infrarenal n. lesions
LN suprarenal n. lesions
LN inguinal n. lesions

N. lesions
N. lesions with vol>1 cc

Least axis
Minor axis

Surface to vol. ratio
10th perc. HU

Mean absolute dev.
Median

Skewness
Total energy
Sum entropy
90th perc. HU

Coeff variation rim
Range rim

Sum. Variation rim
Volume with HU>-10 peripheric

Maximum peripheric
Minimum peripheric
Range peripheric

Skewness peripheric
Total energy peripheric
Cluster prom. peripheric
Cluster shade peripheric
Dissimilarity peripheric

Energy peripheric
Inv. Diff. mom. peripheric
Inv. Diff. norm. peripheric
Inv. Variance peripheric
Joint entropy peripheric
Sum average peripheric
Sum variance peripheric

tMAD
p53 MAF

C
lin
ic
al

+C
A-
12
5

+R
ad
io
m
ic
s

+c
tD
N
A

C
lin
ic
al

+C
A-
12
5

+R
ad
io
m
ic
s

+c
tD
N
A

Average
importance

Selection
frequency

Volume

RECIST

Semantic

Number of lesions

Clinical

CA-125

Global feature

Site-specific feature

Texture

Peripheral

Rim

Shape

ctDNA

Fig. 5 | Feature importances in the fully integrated IRON radiogenomicmodel.
Importances of the features used by the predictive models. The first (blue) heat-
map illustrates the selection frequency. The heatmap shows the number of times
that a given feature was selected in a model. The different columns correspond to
different models with increasing, cumulative numbers of input features. As the
optimisation is repeated five times, the range of the selection frequency is 0–15

(three algorithms in the ensemble timesfive repetitions). The first (green) heatmap
illustrates the averaged, normalised feature importances for the elastic net and
random forest components of the models. Importances are defined from the
feature coefficients for the elastic net regression, and from impurity-based Gini
importances for random forest. Source data are provided as a Source Data file.
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which were designed to partially cancel out such biases. We also
curated an independent cohort from a different institution for vali-
dation, which we were able to perform successfully.

Our feature definitions were also designed to improve interpret-
ability: the ratio features are not only robust to imaging parameters,
but they alsohelpedus to explore internal heterogeneity (rim features)
and the external context of the lesions (peripheral features). Interest-
ingly, we found that ratio featureswere themost frequently selected in
the final models. This result is in line with previous work that found
that qualitative radiological featuresdescribing the edges of peritoneal
disease (nodular, diffuse, or mixed) were significantly associated with
CLOVAR subtype32 and BRCA mutation status33. The concept of peri-
tumoural radiomics has been explored before in breast, lung, and liver
cancer34–37. The periphery of tumours and the adjacent peritumoural
stroma are characterised by molecular and cellular changes directly
related to tumour biology. Neoangiogenesis and fibroblast invasion
have been demonstrated in the tumour periphery of ovarian cancer38,
whereas characteristic immune cell populations have been identified
in the peritumoural stroma39,40. Our findings motivate the develop-
ment of more detailed studies focusing on the boundary regions of
ovarian cancer lesions, demonstrating that data-driven radiomics
analyses can support biological hypothesis generation.

Our study confirms previous observations that the presence of
ctDNA is correlated with volume of disease at the start of treatment in
HGSOC patients20. The integration of clinical data into ourmodels also
yielded important insights, as features describing the type of NACT
and its timing were consistently selected by our models. The
ICON8 study (to which part of the NeOv cohort was recruited) showed
that PFS in patients with ovarian cancer undergoing NACT was unaf-
fected by the administration regimen of paclitaxel (3-weekly as is
standard or in a dose-dense weekly regimen)3. However, the feature
describing the mode of administration (weekly versus 3-weekly) was
consistently selected by our prediction models. There are several
possible explanations for this, including the limited size of our dataset,
or a possible non-linear interplay with some of the other variables in
themodel. Alternatively, the administrationmode could potentially be
a factor that affects response to NACT but not survival. This is still
clinically important, since disease extent after NACT affects resect-
ability of the disease at DPS and, therefore, perioperative morbidity
and operating time41.

Previous studies have explored the value of radiogenomic data
integration for HGSOC14,42. Their analyses focus on immediate primary
surgery and localised biomarkers (pathology and genomics from a
single biopsy; radiomics from single lesions), whereas we focus on
neoadjuvant therapy and analyse global biomarkers capturing meta-
static disease (circulating tumour DNA and multi-site radiomics). We
enriched our data set by segmenting the full disease burden and
including radiomics of all abdominopelvic tumour locations, reaching
a median of 18 volumes of interest per scan in the training set. Our
analysis showed that response to NACT in HGSOC varies spatially:
lesions in the ovaries and/or pelvis had poorer response than those in
the omentum. Our analysis also integrates imaging features for all of
the abdominopelvic disease with blood-based biomarkers, including
ctDNA and CA-125.We showed that global tumour burden and volume
of pelvic and ovarian tumours at baseline are significantly correlated
with both CA-125 and ctDNA TP53 MAF. However, our analysis of
volumetric data also showed that ctDNA signal was most strongly
correlated with the volume of disease in the ovaries and/or pelvis,
suggesting that the simultaneous reading of ctDNA and CA-125 at
baseline could play a role in helping determine disease spread and
response in the diagnostic setting. This variation could be due to
potential differences in ctDNA release kinetics or to genomic hetero-
geneity between disease sites.

Our study has several limitations. Firstly, the response metric
(relative total volume change) treats the disease as a single entity,

ignoring the subtle interplay between the pelvis/ovaries and the
omentum. Cell-of-origin analysis via mutation, methylation or frag-
mentomics to infer contribution from specific cell types to the cir-
culating free DNA pool could help to predict specific volume
reductions. Secondly, the importance of some data streams is driven
by the specific features that were included in the model. Indeed,
given the correlation between ctDNA and total disease volume, and
the higher dimensionality of the collections of clinical and radiomics
features, it is not surprising that we did not find any additional value
in adding ctDNA based biomarkers to our integrated models. Our
study was limited to ctDNA t-MAD, TP53 MAF and TP53 mutation
status. A more sophisticated analysis of ctDNA, applied on larger
multi-institutional datasets, and measured longitudinally across dif-
ferent time points, may find that there are other complementarities
between ctDNA and imaging data43–46. Another important limitation
of our results is the size of the datasets used. This may have impacted
the added value of ctDNA features and reduced the strength of the
radiomic correlations, which are often borderline significant. Our
conclusions need to be validated in larger cohorts as the next step in
their development.

Our dataset also lacked detailed quantification of known bio-
markers such as BRCA1/2 or CCNE1 mutations, homologous recombi-
nation deficiency, or molecular subtypes as evaluated from gene
expression or copy number data, which are likely to be important
factors and should be incorporated into future models47–55. For a small
subset of samples in the hold-out validation cohort that did have
BRCA1/2 status information, we did not find that it had an effect on
either the response or the errors of the prediction (Supplementary
Fig. S6). Detailed investigations regarding histopathological features
such as the presence of necrosis, extent of tumoural fibrosis, or
quantification of reactive stroma, were also beyond the scope of this
study. Adding extensive molecular profiling and computational
pathology in the future will not only potentially improve the perfor-
mance of the model, but also enable detailed biological interpretation
of the main drivers behind response.

One potential barrier for clinical implementation of this work is
that manual segmentation for volumetry is time consuming. However,
accurate and highly adaptable deep learning models for automatic
segmentation are being rapidly developed across cancer types, facil-
itating the integration of volumetry into clinical workflows as well as
large-scale radiomics computation56,57.

In conclusion, our study is a proof-of-principle for the integration
of radiogenomic data to describe and predict the response of HGSOC
patients to NACT. We demonstrate that the systematic multi-scale
integration of standard-of-care biomarkers provides critical predictive
power and important insights into the complex spatial configuration
of the disease. Further clinical development of IRON could have sig-
nificant impacts as a stratification tool in clinical and experimental
settings—for example avoiding delays in surgery for patients who are
unlikely to respond to chemotherapy—and could bring forward a new
generation of clinical trials for HGSOC, with rapid, effective endpoints
that improve and expedite the discovery of new therapies.

Methods
Patient cohorts
This study was performed in accordance with the principles of the
1964 Declaration of Helsinki and its later amendments or comparable
ethical standards. Written informed consent was obtained from all
patients prior to any study related procedures.

Two patient cohorts were used in the study. Themain cohort (the
‘NeOV’ cohort)was randomly split into a training set and a hold-out set.
The training set was used to train themachine learningmodels, and as
a discovery dataset for univariable analyses. The hold-out set was set
aside and used only to validate the model predictions. A second
dataset (the ‘Barts’ cohort) was used for external validation.
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For both data sets, patients had a confirmed histopathological
diagnosis of HGSOC andwere treatedwith neoadjuvant chemotherapy
before delayed primary surgery. All patients within the main data set
were treated at Cambridge University Hospitals NHS Foundation Trust
between 2009 and 2020 and were recruited into a prospective clinical
study approved by the local research ethics committee (REC reference
numbers: 08/H0306/61). All patients within the Barts data set were
treated at Barts Health NHS Trust between 2009 and 2018 and
recruited into prospective clinical study approved by the local
research ethics committee (IRAS reference numbers: 243824).

Patients were identified and included in the analysis based on the
availability of at least two CT scans at baseline and after NACT. Addi-
tionally, for the NeOV cohort at least one baseline plasma sample for
ctDNA assessments was required.

Clinical data
Data regarding patient demographics, treatment, and disease were
collected from the patient electronic medical records including notes
from multidisciplinary team discussions (MDTs). PFS was defined as
the time between histopathological diagnosis and first radiological
evidence of progression or recurrence. Where progression date was
unclear from radiology reports alone, (e.g. successive imaging studies
with subtle/mixed changes), clinical interpretation of progression was
incorporated in PFS date calling (e.g. documentation of breaking bad
news to patients, treatment decisions for subsequent line therapy). OS
wasdefined as the time fromdiagnosis to death. Stagewasdetermined
using the International Federation of Gynaecology and Obstetrics
(FIGO) criteria for ovarian cancer27.

Management. The management of all patients in the study
including indications for surgery were discussed and decided
upon within MDTs as per the UK National Health Service (NHS)
guidelines. Surgeries were performed through a midline lapar-
otomy by a team specialised in surgical gynae-oncology aiming to
achieve total macroscopic tumour clearance. Overall, n = 107
patients were treated with platinum-based chemotherapy in
combination with paclitaxel, while 23 received carboplatin as a
monotherapy. Patients were considered to have received weekly
chemotherapy if the average time interval between doses ranged
between 6 and 10 days, 3-weekly if the average time interval was
between 18 and 24 days, and irregular otherwise. Of those
receiving combination therapy, 81 patients received carboplatin
and paclitaxel 3-weekly, 18 patients received carboplatin three-
weekly and paclitaxel weekly, 2 patients received carboplatin and
paclitaxel weekly, and the rest received the treatment at irregular
intervals. In addition, 4 patients were treated with Doxorubicin.
Supplementary Table S3 shows the breakdown for the three
datasets.

BRCA status. Germline BRCA1 andBRCA2 mutational status was
determined for 45 patients in the training cohort and 15 patients in the
internal hold-out cohort. The remaining cases reflect historical prac-
tice of not testing patients above the age of 70.

ctDNA
Blood samples were collected before initiation of treatment with
chemotherapeutic agents. DNA was extracted from plasma (1.2–4ml)
using QIAvac 24 Plus vacuum manifold and the QIAamp Circulating
Nucleic Acid kit (Qiagen), or with QIAsymphony (Qiagen) as per
manufacturer instructions. DNA quantification was performed using
Qubit dsDNA broad-range or high-sensitivity assay kits and the Qubit
Fluorometer (Thermo Fisher Scientific). Tagged-amplicon deep
sequencing DNA libraries were prepared as described by ref. 58. Fol-
lowing purificationwith AMPure XPmagnetic beads (BeckmanCoulter
Life Sciences), 10nM libraries were quantified using Agilent

Bioanalyzer and Agilent DNA 1000 kit or Agilent TapeStation and
ScreenTape D1000 (Agilent Technologies) according to manufacturer
instructions, and pooled for sequencing on MiSeq, HiSeq 2500 or
HiSeq 4000 (Illumina).

Shallow whole genome DNA libraries (10 million reads per sam-
ple) were prepared using the ThruPLEX DNA-Seq kit (Takara) and
purified with AMPure XP magnetic beads (Beckman Coulter Life Sci-
ences). 10nM libraries were quantified using Agilent D5000 Screen-
Tape System or Roche KAPA library quantification kits and pooled for
sequencing on HiSeq 4000 (Illumina) in paired-end 150-base pair
mode. On removing adaptor sequences, shallow whole genome
sequence reads were aligned to the 1000 Genomes Project version of
the unmasked human reference genome GRCh37 using the BWA-MEM
alignment software59. Somatic copy number analysis was performed
using CNAclinic60 to generate trimmed Median Absolute Deviation
fromcopy-number neutrality (t-MAD) scores as previously described21.

Demultiplexed TAm-Seq reads were aligned to the GRCh37
reference genome by amplicon, and mutations called where non-
reference alleles met probability criteria in both replicates, as pre-
viously described58. Samples lacking mutation calls were manually
curated using the Integrative Genomics Viewer.

Imaging protocol
Although adnexal masses are most frequently detected on ultrasound
(US), CT is a universal tool for the detailed staging of patients with
adnexal masses and is crucial for treatment planning as it maps the
disease for surgical debulking and helps stratify patients for primary
debuling surgery or neoadjuvant chemotherapy. US suffers from high
observer-dependencyanddoes notprovide images covering the entire
pelvis and abdomen as CT does. Therefore, CT was chosen as the
imaging modality for this study. Clinically requested contrast-
enhanced venous phase CT scans covering the abdomen and pelvis
(with or without the chest depending on the clinical request and
imaging findings) were either acquired at Cambridge University Hos-
pitals NHS Foundation Trust (CUHNHSFT) or in other institutions
across the UK and then imported into the picture archiving and
communication system (PACS) at CUHNHSFT. Therefore, different
manufacturers and scanning protocols were used. Baseline scans were
acquired between 0 and 14 weeks before initiation of neoadjuvant
chemotherapy and post-treatment scans were acquired for response
assessment after 1.6–5.8 months of treatment. All scans were initially
identified on the local PACS and then fully anonymised for further
study-related processing.

Data processing
The code and data used in this study are available at https://github.
com/micrisor/OvarianIntegration61.

Image segmentation and labelling. On axial images reconstructed
with a slice thickness of typically 5mm (Supplementary Table S4), and
pixel spacings ranging between 0.053 and 0.095, using abdominal soft
tissue window settings, all cancer lesions were segmented semi-
automatically by a board-certified radiologist with ten years of
experience in clinical imaging, using Microsoft Radiomics (project
InnerEye; Microsoft, Redmond, WA, USA). The volumes of interest
(VOIs) were annotated for their anatomic location: omentum, right
upper quadrant, left upper quadrant, epigastrium, mesentery, right
paracolic gutter, left paracolic gutter, ovaries & pelvis, infrarenal
abdominal lymph nodes, suprarenal abdominal lymph nodes, inguinal
lymph nodes, supradiaphragmatic lymph nodes, other chest lymph
nodes, parenchymal liver metastases, and lung metastases. Cystic and
solid tumour parts were included in these segmentations. Automated
sub-segmentation of hyperdense/calcified, hypodense/cystic or fatty
and intermediately dense/solid tissue was performed for omental
lesions and lesions of the ovaries and pelvis using a previously
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described and validated technique25. Baseline and follow-up CT scans
were evaluated according to RECIST 1.1 for response assessment62.
Pleural effusions and ascites were assessed semiquantitatively
(0 = none, 1 = trace, 2 = less than 5 cmwhenmeasured perpendicularly
to chest/abdominal wall, 3 = 5 cm or more when measured perpendi-
cularly to chest/abdominal wall).

Radiomics features. VOIs drawn manually were split into con-
nected components using MATLAB’s bwlabeln function with a
three-dimensional connectivity of 26, which assumes that voxels
are connected if their faces, edges, or corners touch. Voxels with
intensities below -100 HU were removed from the radiomics
calculations. Radiomics features were extracted using the IBSI-
calibrated CERR Radiomics toolbox63 (December 2018 version,
GitHub hash: 5974376be7103d5c3831690c62aa721fc784d949),
including shape, intensity-volume histogram, first-order, and
Haralick texture features (see Supplementary Data 1 for the full
list). Intensity-volume histogram features, inspired by the Vx
features commonly extracted in radiotherapy dose-volume his-
tograms, corresponded to the volumes spanned by voxels above
a certain intensity value (denoted ‘HU > x’ in Supplementary
Data 1). To calculate Haralick texture features for each lesion, co-
occurrence matrices for 100 grey levels (up to a maximum of
1000 HU) were computed independently for each direction along
2D slices and averaged. To calculate the rim and peripheral
radiomics features, for each VOI two copies were created by
eroding and dilating the contours by 0.4 cm along the 2D slices.
The value of the margin was chosen in order to capture slices of
at least 1 cm diameter. Erosion and dilation were achieved by
convolving the contour with a circular mask of the desired mar-
gin. Ratio features were computed by dividing the results
obtained from the eroded and standard volumes (rim features),
or the dilated and standard volumes (peripheral features). Shape
features were not included in the ratios. Once standard and ratio
features were calculated for each lesion, a single value was
extracted for the whole patient by taking the unweighted mean of
all lesions.

Other imaging features. In contrast to texture features, which we
averaged across lesions, we did use the volume and the number of
lesions in eachof the anatomic locations as individual features.We also
computed the mean, maximum, and total volume, as well as the
number of lesions with volume bigger than 0, 1, 10 and 100 cm3. In
addition, we defined four binary features that indicatedwhether or not
there were hypodense or hyperdense regions in either omental or
pelvic/ovarian lesions. Ascites and pleural effusion were used as
defined by the radiologist, as explained above (section 14, Radiological
image analysis).

Clinical features. Chemotherapy regimens were extracted from the
clinical records. We recorded whether the patient had received any
Carboplatin, Paclitaxel or Doxorubicin in three binary variables. Mean
periods were calculated by averaging the time intervals between ses-
sions. We defined weekly regimen as having a mean period of
6–10 days, both included; and 3-weekly as having a mean frequency of
18–24 days, both included. Typical combinations included weekly
Paclitaxel and 3-weekly Carboplatin; both weekly; and both three-
weekly (Supplementary Fig. S1). These combinations were, therefore,
encoded in binary variables. We also recorded whether patients had
receivedCarboplatin only in a binary variable. FIGO stagewas encoded
by assigning ordinal numbers to in order of aggressiveness, from 1 for
stage 1A to 10 for stage 4B. The exact mapping is listed in Supple-
mentary Table S5. CA-125 values were also extracted from the clinical
records, with the measurement closest to the beginning of treatment
being used for analysis. Performance status was only available for a

subset of the patients in the training set, and it did not correlate with
volumetric response (Supplementary Fig. S2). It was, therefore, not
included in the predictive models.

Statistical analysis
Tumour burden correlations. Correlations were calculated using
Spearman correlation coefficient and p values were corrected using
the Benjamini–Hochberg procedure as implemented in the scikit-learn
Python package64. The total tumour burden affecting lymphnodeswas
calculating by combining the lesions found in infrarenal, suprarenal,
inguinal, supradiaphragmatic, and chest lymph nodes. The difference
between the relative volume change in the omentum and in the
ovaries/pelvis was quantified using the Mann-Whitney U test (two-
sided). The difference in relative volume change for patients with
different BRCA status was also quantified using the Mann-Whitney U
test (two-sided).

Imaging clusters. To identify clinically or biologically meaningful
clustersof radiomics features, we clustered their Spearmancorrelation
coefficients used a hierarchical clustering approach. The optimal
number of imaging clusters was obtained by maximising their corre-
lation with any of the clinical and biological features. To do this, we
calculated the maximum Spearman correlation coefficient between
each cluster and any of the biological/clinical features, and averaged
the result across all clusters (Supplementary Fig. S4a). The metric
reached a plateau at six clusters, which was therefore chosen as the
optimal number (Supplementary Fig. S4b). Clusters were cross-
checked using non-negative matrix factorisation. We matched the
number of clusters to 6, used a coordinate descent solver and an
initialisation based on non-negative random matrices, following the
scikit-learn implementation. The most predictive feature in each
cluster (Fig. 2b) was chosen in terms of its Spearman correlation with
volumetric treatment response. p values were corrected using the
Benjamini-Hochberg procedure.

Machine learning models
Endpoint. Models were trained to predict the relative volumetric
response,

Response= log

PN0

i v1i
PN

i v0i

 !

, ð1Þ

where v0k is the volume of the kth lesion found at the pre-treatment
time point, v1k is the volume of the kth lesion found at the post-
treatment time point, N is the number of lesions at the pre-treatment
time point, and N0 is the number of lesions at the post-treatment
time point.

Training. We created a machine learning framework to predict
response to chemotherapy, evaluated on the basis of relative total
volume change. All features used in the model were extracted from
data obtained at diagnosis. We used the NeOv training set to train and
optimise the models. Once trained and frozen, we evaluated the
models in the internal hold-out set and in the external validation set.
We used an increasing number of features, in order of general avail-
ability. We started with clinical features (age, stage, and 9 treatment
features); then added baseline CA-125; then imaging features (164
features); and finally ctDNA (3 features). For each combination we
retrained the framework and derived a new model. The full list of
features can be found in Supplementary Data 1.

The predictions were based on an unweighted ensemble
regressor65. The ensemble included three different machine learning
algorithms: an elastic net, a support vector regressorwith a radial basis
function (RBF) kernel, and a random forest, all of them coded in
Python using the scikit-learn package64. Each algorithmwas embedded
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in a scikit-learn pipeline with three pre-processing steps, namely col-
linearity reduction, z-score standardisation, and univariable feature
selection. Collinearity reduction removed all features with a mutual
Pearson correlation above0.95, retaining only the onewith the highest
correlation with the response variable. The feature selection step
removed all features thatwerenot rankedwithin the top k according to
their F value. The scores produced by the three pipelines were aver-
aged to form the prediction.

We used a five-fold cross validation setup to optimise model
hyperparameters in the training set, covering the hyperparameter
ranges shown in Supplementary Table S6. The optimisation was based
on a randomised search in the hyperparameter space to optimise
mean square error (MSE). Once the optimal hyperparameters were
found (Supplementary Table S7), we determinedmodel parameters by
re-fitting the model to the entire training set. To increase model
robustness, we repeated this process five times with five different
cross-validation seeds. The five resulting optimal models were com-
bined to form the final ensemble, in which the prediction is simply the
average of the five predicted scores. In this regard, our ensemble setup
has two different tiers: the randomisation tier (five seeds), and the
algorithmic tier (three regressors acting in parallel for each seed). The
modelling framework is completely agnostic to cancer type and is
generalisable to other applications.

Validation. We validated the models on the hold-out internal valida-
tion set (n = 20) and the external validation set (n = 42). The external
validation set did not have ctDNA data available, so the corresponding
features were set to a constant value corresponding to the training set
averages as a trivial imputationmechanism. Toquantify the calibration
of the models, we computed the MSE. To quantify the discriminative
power of the models, we computed the Spearman correlation coeffi-
cient and p value between the predicted and observed response
scores. To estimate a potential classification power on the external
validation cohort, we evaluated the volumetric thresholds corre-
sponding to RECIST 1.1 criteria (30% reduction), WHO criteria (50%
reduction), spherical-volume (65% reduction), and ellipsoidal volume
(30% reduction) and computed the corresponding area under the
receiver-operating characteristic curve (AUC). Finally, we evaluated
whether the predicted scores were also able to rank patients into the
different RECIST 1.1 categories using the p value associated with the
point biserial correlation coefficient and the AUC for responder vs.
stable disease.

Feature importance. We evaluated feature importance in two differ-
ent steps. First, we computed the frequency with which features were
selected after the collinearity reduction and univariable selection
steps. We repeated the process for each of the three algorithms and
each of the five cross-validation seeds, which means that features
could be selected between 0 and a maximum of 15 times, as seen in
Fig. 5. The table in Fig. 5 displays only features thatwere chosen at least
three out of five times in each cross-validation loops, for robustness.
Second,wecomputed the importanceof each individual featurewithin
the regression algorithm. This was only possible for the elastic net,
where we used the feature’s coefficients, and the random forests,
where we used impurity-based feature importances. The results were
averaged across the five seeds and the twoalgorithms,with the table in
Fig. 5 displaying only features thatwere chosen at least three out offive
times in the cross-validation loops, as before. Finally, we assessed the
effects of volume-related features, including the two most frequently
selected volume features (mean volume and volume of infrarenal
lymph nodes), and the two clusters with important contributions from
volume features (cluster 1 and cluster 4). Features were removed at
inference stage, and replaced with the corresponding average calcu-
lated from the training set. Removing features thatdrive theprediction
would result in a significant change in performance, which can be

either positive or negative depending on whether the corresponding
features in the training and testing sets are mutually calibrated.

Data availability
The clinical, genomic, and radiomics data generated in this study and
used to train predictive models have been deposited in a Github
repository at https://github.com/micrisor/OvarianIntegration61 with
https://doi.org/10.5281/zenodo.8152137. The remaining data are avail-
able within the Supplementary Information and Source Data
files. Source data are provided with this paper.

Code availability
The code anddata used in this study are available at https://github.com/
micrisor/OvarianIntegration61 with https://doi.org/10.5281/zenodo.
8152137.
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