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Disrupting cellular memory to overcome
drug resistance

Guillaume Harmange 1, Raúl A. Reyes Hueros2, Dylan L. Schaff3,
Benjamin Emert4, Michael Saint-Antoine5, Laura C. Kim 6, Zijian Niu7,8,
Shivani Nellore9,10, Mitchell E. Fane 11, Gretchen M. Alicea12,
Ashani T. Weeraratna12,13, M. Celeste Simon 6,14, Abhyudai Singh 5 &
Sydney M. Shaffer 3,15

Gene expression states persist for varying lengths of time at the single-cell
level, a phenomenon known as gene expression memory. When cells switch
states, losing memory of their prior state, this transition can occur in the
absence of genetic changes. However, we lack robust methods to find reg-
ulators ofmemory or track state switching. Here, we develop a lineage tracing-
based technique to quantify memory and identify cells that switch states.
Applied to melanoma cells without therapy, we quantify long-lived fluctua-
tions in gene expression that are predictive of later resistance to targeted
therapy. We also identify the PI3K and TGF-β pathways as state switching
modulators. We propose a pretreatment model, first applying a PI3K inhibitor
to modulate gene expression states, then applying targeted therapy, which
leads to less resistance than targeted therapy alone. Together, we present a
method for finding modulators of gene expression memory and their asso-
ciated cell fates.

Gene expression memory describes the length of time that a parti-
cular expression state exists in an individual cell or lineage of cells.
Gene expression memory can exist over a range of different time-
scales and is ultimately a quantitative measurement1,2. In cancer, an
intermediate timescale of memory has been associated with several
important phenotypes including, stemness, differentiation3,4,
metastasis5, and drug resistance2,6–8. In these examples, the cellular

state underlying the phenotype persists through multiple cell divi-
sions, but is ultimately not permanent, and thus amenable to
switching states. For cancer therapy resistance, drug-naive mela-
noma cells can seemingly randomly fluctuate between two states,
one which is susceptible to targeted therapy, termed drug-suscep-
tible, and another which would become resistant if the drug is
applied, termed primed for drug resistance9,10. This finding
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highlights the ability of clonal cancer cells to transition between
different stable phenotypes.

Because drug resistance can emerge from cells that are in a
primed gene expression state, one intriguing possibility to prevent
resistance is to transform primed cells into drug-susceptible cells.
However, we currently do not know the molecular cues that trigger
cells to switchbetween these states. Knowing these cueswouldmake it
possible to therapeutically target state-switching pathways to drive
cells out of the primed gene expression state and sensitize them to
therapy. Such an approach requires deep characterization of the
processes underlying state switching, which remains exceedingly dif-
ficult with available methods.

Currently, there are limited techniques that can reveal memory
and state switching in single cells. Our previous work inferred cel-
lular memory from bulk RNA-seq measurements2, but it failed to
capture drivers of switching between memory states. On the other
hand, single-cell RNA-sequencing (scRNA-seq) can capture the het-
erogeneity of a population, but it fails to capture the timescales for
which different states have been present in individual cells. Several
computational and experimental techniques have been developed
to resolve time in single cells on short timescales, on the order
of hours11,12, but few exist for the longer timescales of days to weeks,
as needed to track gene expression memory. Recent advances in
high-throughput cellular barcoding technologies have made it
possible to track cellular lineages across any length of time13. Pairing
cellular barcoding with scRNA-seq enables us to now match cellular
lineages with their transcriptome8,10,14,15 and is thus an ideal tool
for tracking transcriptional states across lineages to measure cel-
lular memory.

Here, we present a method for measuring memory by combining
cell barcoding and scRNA-seq called scMemorySeq. Our experimental
design uses a controlled number of cell divisions to capture lineages
that have undergone state switching. We apply scMemorySeq to drug-
naive human melanoma cells and find two distinct gene expression
states, which correspond to drug-susceptible and primed cell popu-
lations. Through lineage tracing with cell barcoding, we identify cells
that switched between states and determine that the TGF-β and PI3K
pathways control state switching. Ultimately, we find that by initially
disrupting the primed state through PI3K inhibition and then applying
a BRAF inhibitor in combinationwith aMEK inhibitor (BRAFi/MEKi), we
can reduce the frequency of drug resistance. Taken together, we
demonstrate the feasibility of molecularly targetingmemory and state
switching to eliminate gene expression states in cancer that primecells
for undesirable phenotypes.

Results
We first sought to identify the molecular pathways that underlie cel-
lular memory in drug-susceptible and primed cells in melanoma
(Fig. 1A). Based on our previous work, we know that both the drug-
susceptible and primed states exist in untreated melanoma cells and
that cells can fluctuate between these states2.When targeted therapy is
applied, cells in the primed state have a higher likelihoodof resistance,
whereas cells in the drug-susceptible state succumb to the treatment9.
To identify molecular regulators of switching between these two
states, we developed a technique called scMemorySeq that identifies
heritable gene expression states and state switching by combining
cellular barcoding and scRNA-seq. In our experimental design, the
cellular barcodes enable high-throughput tracking of cells over any
desired period of time while the scRNA-seq reveals the transcriptional
states of every cell. Ultimately, we infer cellular memory by examining
the gene expression states of cells within the same lineage. States that
have memory over the experimental timescale result in lineages in
which all the cells at the end state have the same gene expression state
as the initial cell (Fig. 1B). However, when memory is lost over the
experimental timescale, then the end state consists of cells with

multiple gene expression states, some of which are different from the
initial state (Fig. 1B).

We applied scMemorySeq to BRAF V600E mutated WM989 mel-
anoma cells containing the drug-susceptible and primed states2,9,10. We
transduced drug-naive cells with a high-complexity viral barcode
library consisting of a transcribed 100 base pair semi-randombarcode
sequence in the 3’ UTR of GFP10 (Fig. 1C). To determine the initial state
of cells, we sorted the primed cells using known primed cell markers
(EGFR andNGFR) and also sorted amixed control. Because the primed
state is rare, representing ~2% of the population, the mixed sample
predominantly consists of drug-susceptible cells. We then allowed the
cells to expand through roughly 4 doublings (12–14 days). Over this
time, weexpect thatmost cellswillmaintain thememory of their initial
gene expression state, but that a subset of cells will lose thememoryof
their initial state, thereby capturing state-switching events. At the
endpoint,weharvested these cells for scRNA-seq andperformeda PCR
side reaction to specifically amplify the lineage barcodes from
each cell.

We profiled a total of 12,531 melanoma cells (7581 cells with bar-
codes) and found two major transcriptionally distinct populations
(Fig. 1D, Supplementary Fig. 1A, C). One of these populations expres-
sed genes associated with the primed state, including EGFR and
AXL2,9,10, and themajority of the sorted NGFR and EGFR-high cells were
included in this cluster (Fig. 1D, Supplementary Fig. 1B). The other
population showed higher expression of genes associated with the
drug-susceptible state, including SOX10 and MITF (Fig. 1D, Supple-
mentary Fig. 1D). The distinction between these two states is robust
and seen in high dimensional space by Louvain clustering and by
multiple dimensionality reduction methods (Supplementary Fig. 1A,
C, E–H).

Within the cluster of suspected primed state cells, we observed
significant heterogeneity in previously described primed state marker
genes, including EGFR, AXL, and NGFR, with each gene expressed by
some of the cells in the cluster, but not all of the cells (Fig. 1D, Sup-
plementary Fig. 1D). Furthermore, in a separate experiment, we profiled
the chromatin accessibility of EGFR and NGFR-high cells and found
epigenetic differences between these populations further confirming
that there is additional heterogeneity within the primed state (Supple-
mentary Fig. 1I). This observation suggests that the individual primed
cell markers from previous work9 only captured a subset of primed
cells. We identified a different marker, NT5E, that encapsulated the
entire cluster containing the primed state population (Fig. 1D). To
determine if NT5E is an effective marker of primed cells, we stained
WM989 cells with NT5E antibody and sorted the top 2% of cells. We
applied the targeted BRAF inhibitor, vemurafenib, and found that the
NT5E-high samples had 5.5-foldmore resistant cells compared to NT5E-
lowcells (Fig. 1E, Supplementary Fig. 2A, B). Thus,wedemonstrated that
the marker gene NT5E captures the entire cluster of transcriptionally
similar cells and that these cells are indeedmore likely to be resistant to
targeted therapy. We also found that primed cells have similarities to
previously published gene expression states associated with drug
resistance in melanoma (Supplementary Fig. 2C)16–24. Therefore, we
concluded that cells in the NT5E-high cluster are in a gene expression
state that primes them for drug resistance, while cells in the other
cluster are in a drug-susceptible gene expression state (Fig. 1F).

With a defined gene expression state for primed cells, we next
assessed the generalizability of the primed state in tumor models and
patient samples. We used RNA FISH HCRv3.0 on tumor samples
derived from WM989 cells grown in NOD/SCID mice6,25. We used
probes for NT5E and SOX10 on tumor sections and quantified
expression across 5,600 cells. We found rare cells expressing high
levels of NT5E mRNA scattered throughout the tissue (Fig. 2A, addi-
tional images in Supplementary Fig. 3A). SOX10 showed diffuse
expression across the tissue, but many of the NT5E-high cells did not
have SOX10 expression, as predicted by the scRNA-seq. Altogether
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these NT5E-high/SOX10-low cells demonstrate that the primed state
exists both in vitro and in vivo (and is not an artifact of cell culture
conditions). We also performed scRNA-seq on a different melanoma
cell line, WM983B, and found a subpopulation of cells with a large
number of primed state markers, including NT5E (Fig. 2B, C). To
establish whether the primed states exist in patient tumors, we ana-
lyzed scRNA-seq data26–28, which included 7 samples directly from
human tumors and found that 5 of them had a subpopulation of cells

with high expression of genes associated with the primed state
(Fig. 2D, E, Supplementary Fig. 3B). Furthermore, a previous analysis of
data from the cancer genome atlas showed that the presence ofMITF-
low/AXL-high cells (as also seen in our primed cell state) in drug-naive
patient tumors was predictive of a shorter progression-free survival
rate29. Together, these data demonstrate the generalizability of the
primed cell state and suggest that itmight be predictive of response to
BRAFi/MEKi.
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Fig. 1 | scMemoryseq can reveal when cells change state. A Model for how the
heritableprimedstate leads to resistance to targeted therapy. Cells primed for drug
resistance (in green) proliferate and pass on their gene expression state through
cell division, which demonstrates the concept of gene expression memory. These
primedcells survive treatmentwith BRAFi andMEKi (resistant cells in red)while the
drug-susceptible cells (in gray) die. B Schematic of lineages that maintain memory
compared to those that lose memory. In lineages that maintain memory, the end
state of all the cells is the same as the initial state. In lineages wherememory is lost,
the end state contains a mixture of cell states. C Schematic of the experimental
design we used to capture the transcriptome and lineage of cells. We transduced
melanoma cells (WM989) with a high-complexity library of lentiviral lineage

barcodes.We then sorted a sample of primedcells (based on EGFRandNGFR) and a
mixedpopulation. This sorting step provides uswith the initial state of the cells.We
then allowed the cells to undergo approximately four doublings before scRNA-seq
and barcode sequencing on the cells. D UMAP plots showing the log10 normalized
gene expression of the drug-susceptible cell marker SOX10, and the primed cell
markers EGFR, AXL, and NT5E. E Diagram of the experimental design and images
showing the fixed NT5E-low and NT5E-high cells stained with DAPI after 3 weeks in
targeted therapy. Each black dot is the nucleus of a drug-resistant cell, and drug-
resistant colonies are circled in black, n = 3 biological replicates. F UMAP plot
showing drug-susceptible cells (in gray) and primed cells (in green).
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To determine how cell states change over time, we turned to our
barcoding data to track lineages. Using the drug-susceptible and
primed state clusters fromUMAP,we classifiedeach lineage intooneof
four categories (Fig. 3A, B): (1) Drug-susceptible lineage (containing
only drug-susceptible cells), (2) Primed lineage (containing only
primed cells), (3) Switching from drug-susceptible to the primed state
(initial state is drug-susceptible and lineage contains drug-susceptible
and primed cells), or (4) Switching from primed to drug-susceptible
state (initial state is primed and lineage contains drug-susceptible and

primed cells). While we observe many lineages that contain cells from
both states (3 and 4), it is possible that a subset of cells have a higher
propensity for state switching andgenerate thesemixed state lineages.
Across the classes of lineages, we found that lineage sizes were largest
for drug-susceptible lineages and smallest for primed lineages, which
is consistent with scRNA-seq predictions that primed state cells divide
slower than drug-susceptible cells (Fig. 3A, Supplementary Fig. 3C).
Given the high memory observed in both the drug-susceptible and
primed states, we compared the differentially expressed genes
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between these states captured by scMemorySeq to bulk measure-
ments of gene expression memory performed in the same cell line
from Shaffer et al.2. We observed a strong correlation between the two
methods on a per-gene basis (Supplementary Fig. 3D).

To derive the rates of proliferation and state switching from the
paired scRNAseq and barcoding data, we used a stochastic two-state
model (Supplementary Methods 1). Using the model, we estimate that
primed cells proliferate at approximately half the rate of drug-
susceptible cells on average. We also estimate that drug-susceptible
cells switch to the primed state once every 135–233 cell divisions,while
primed cells are estimated to switch to the drug-susceptible state once
every5–8cell divisions. The large difference in switching rates is due to
the rarity of the primed cell state, which must have a faster switching
rate to maintain a constant proportion of primed cells at steady state.
Thus, at the single-cell level, the drug-susceptible state is significantly
more stable than the primed state.

After classifying the lineages based on whether they switch
between states, we next wondered if there are transcriptional differ-
ences between lineages that undergo state switching and those that do
not. We hypothesized that these differences might exist if there is an
intermediate transcriptional state when cells switch between drug-
susceptible and primed states. To uncover such a state, we compared
the drug-susceptible cells from lineages that contain only drug-
susceptible cells to those in lineages that switch fromdrug-susceptible
to the primed state (Fig. 3C). Importantly, to uncover the intermediate
state from this comparison requires the assumption that the inter-
mediate state would demonstrate memory through cell division
(Supplementary Fig. 3E). Consistent with the presence of such an
intermediate state, we found 575 genes differentially expressed
between these types of lineages (based upon a differential gene
expression analysis with a cutoff of 0.05 Bonferroni adjusted p-value
and 0.25 log fold change cutoff) (Fig. 3D, Supplementary Data 1). We
then used this gene list to develop an intermediate state score, applied
this score to all cells in the data set, and then projected them into
UMAP space (Fig. 3E). We identified two primary regions within the
drug-susceptible cluster that are enriched for cells in this intermediate
expression state. We set a threshold on this score and classified the
high-scoring cells as intermediate state cells (Fig. 3F). These rare
intermediate state cells are confidently identified using lineage infor-
mation, but are difficult to accurately identify from the scRNAseq
alone (Supplementary Fig. 1G).

We next wanted to know what pathways are activated in the
intermediate state. We first used gene set enrichment analysis on the
gene list from the intermediate state (Fig. 3D). The top pathways
included UV response down, epithelial-to-mesenchymal transition
(EMT), and response to hypoxia (Fig. 3G). We examined the activity of
these different pathways in UMAP space and noted that the EMT
pathway score localized in the same regions of the UMAP as the
intermediate state cells (Fig. 3H). We focused on EMT asmultiple lines
of evidence in melanoma suggest that an EMT-like gene expression

state is associated with resistance to BRAFi/MEKi16,30–33. Another enri-
ched pathway in our analysis was TGF-β signaling, which also showed
enrichment in the same region of the UMAP as the intermediate state
cells (Fig. 3I) and is associated with resistance in the literature20,32.
Furthermore, both the EMT and TGF-β pathways were enriched in the
primed state beyond the levels in intermediate state cells, suggesting
that these are early changes as cells switch from drug-susceptible to
the primed state (Fig. 3H, I). We also observed that these intermediate
state cells maintain expression of many genes associated with the
drug-susceptible state, including melanocyte identity genes SOX10,
andMITF, but have already begun to upregulate someof the important
primed state marker genes including FN1 and SERPINE2 (Fig. 3J). A few
genes were uniquely expressed only in the intermediate state cells,
including NFATC2, and MGP. Intriguingly, NFATC2 was previously
found to be a regulator of MITF and melanoma dedifferentiation34,35.
Together, these data suggest that the intermediate state represents
the initiation of an EMT-like process as cells switch states.

Given the role of TGF-β as a potent inducer of EMT and the
enrichment of the TGF-β pathway in the intermediate state, we hypo-
thesized that applying TGFB1 to drug-susceptible cells would induce
theprimed state (Fig. 4A)36. In addition,weobserved that TGFB1and its
receptor are highly upregulated in primed state cells, suggesting that
these cells can activate TGF-β signaling through autocrine or paracrine
mechanisms (Supplementary Fig. 3F). To test the hypothesis that
TGFB1 induces the primed state, we treated melanoma cell lines,
including WM989 and WM983B, with recombinant TGFB1 for 5 days
and then performed flow cytometry for primed cell marker gene NT5E
(Fig. 4B). We found that treatment with TGFB1 increased the percen-
tage of cells in the primed state in WM989 from 1.98 to 19.15% and in
WM983B from 10.04% to 81.56% (Fig. 4C, D, Supplementary Fig. 4C, D).
These findings are in agreement with the literature showing that TGF-β
signaling can induce a dedifferentiation state in melanoma20,37. The
dedifferentiated state is similar to our primed state, as these cells are
also characterized by their decreased expression of melanocyte tran-
scription factors SOX10 and MITF20,26,37,38.

Since TGFB1 was sufficient to induce the primed state, we next
asked whether inhibiting TGF-β signaling could induce the drug-
susceptible state. We treated WM989 cells with LY2109761, a targeted
TGFBR1/2 inhibitor (TGFBRi), for 5 days. Unexpectedly, we found that
theTGFBRididnot have a large impact on thepercentageof cells in the
primed state (Fig. 4C). To confirm the specificity of the inhibitor, we
treated WM989 cells with both recombinant TGFB1 and TGFBRi and
found that indeed the inhibitor was able to block the effects of TGFB1
(Fig. 4C). Overall, this suggests that TGF-β signaling is sufficient to
increase the percentage of primed state cells, but is not necessary for
maintaining the primed expression state.

Since inhibiting TGF-β signaling was not able to switch cells out of
the primed state, we wondered whether other signaling pathways
might be involved in maintaining the primed state. We noted that
several growth factors including FGF1, VGF, BDNF, VEGFA, VEGFC, and

Fig. 3 | An EMT-like state is activated early in the transition to the primed cell
state. A Bar graphs showing the size of each lineage organized based upon clas-
sification as drug-susceptible, primed, switching from drug-susceptible to primed,
or switching from primed to drug-susceptible. Each bar represents an individual
lineage, and the color of the bar indicates the state of the cell (green is primed and
gray is drug-susceptible). In lineages that change state, the number of cells in each
state is reflectedby the colors in the bar.BUMAPplots showing an example lineage
from each type of lineage in the data. The cells from the example lineage are
highlighted in blue. C Schematic showing which cells from the drug-susceptible
lineages (blue rectangle) and which cells from lineages switching from the drug-
susceptible state to the primed state (red rectangle) were used to identify differ-
entially expressed genes in transitioning cells. D Volcano plot representing the
differential expression analysis outlined in (C). Red points represent genes upre-
gulated in crossing lineages and blue points represent genes downregulated in

crossing lineages. Wilcoxon rank sum test. E UMAP plot showing the gene set
signature score of the upregulated genes in panel D (high score represents high
expression of the gene set). FUMAP plot labeling the top 2% drug-susceptible cells
expressing the crossing lineage gene set. We classify these cells as Intermediate
state cells, and these cells are labeled in purple. G Bar graphs of the normalized
enrichment score of the top 5 gene sets enriched in the crossing lineage gene set.
H UMAP plot showing which cells have a high EMT pathway gene set signature
score. Arrows point to drug-susceptible cells with high EMT scores. I UMAP plot
showing which cells have high TGF-β signaling pathway gene set signature score.
Arrows point to drug-susceptible cells with high TGF-β signaling scores. JHeatmap
of the log10 normalized and scaled gene expression of cells in the drug-susceptible,
intermediate, and primed state. The genes shown are the top differentially
expressed genes between the primed and drug-susceptible states as well as select
genes upregulated in the intermediate state.
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PDGFA were all upregulated in the primed state (Supplementary
Data 2). Many of these growth factors have downstream PI3K activa-
tion as a common pathway39. We also noted that while the canonical
TGF-β signaling has downstream SMAD family effectors40, non-
canonical TGF-β signaling can activate PI3K41,42. Since these pathways
converge on PI3K, we wondered whether blocking PI3K could elim-
inate the primed state by blocking both the effects of TGF-β signaling
and other upregulated growth factors and receptors. To test this
hypothesis, we treatedWM989 andWM983B cells with a PI3K inhibitor
(PI3Ki), GDC-0941, for 5 days and then performed flow cytometry
looking at NT5E to quantify the percentage of cells in the primed state.
Importantly,we selected the dose of 2µMfor the PI3Ki as it hasminimal
effects on cell viability and growth rate and effectively blocks PI3K
signaling (Supplementary Fig. 4A, B, E). We found that the PI3Ki
decreased the percentage of cells in the primed state in WM989 and
WM983B from 1.98 to 0.31% and 10.04 to 3.66% respectively (Fig. 4C,
D). Furthermore, we tested whether the PI3Ki can block the effects of
TGF-β signaling by simultaneously treating WM989 cells with TGFB1
and PI3Ki. Indeed, we found that the PI3Ki was able to block the
increase in primed state cells seen when we treat with TGFB1 alone
(Fig. 4C), suggesting that the TGFB1-mediated effects on priming
melanoma cells is dependent on downstream PI3K activity.

Because PI3Ki was able to reduce the percentage of primed state
cells, we wonder whether other ligands that can activate the PI3K
pathway could induce the primed state43–45. We treated WM989 cells
with EGF, BDNF, and IL6 for 5 days (Supplementary Fig. 4F) and found
that none of these factors were able to induce the primed cell state as
seenwith TGFB1. Thus, we concluded that TGFB1 is a unique inducer of
the primed state, potentially due to its ability to stimulate the PI3K and
SMAD signaling pathway at the same time46,47.

Since TGFB1 and the PI3Ki were both able to change the percen-
tage of cells in the primed state, we wondered how this is achieved at
the single-cell level. Specifically, does TGFB1 forcemore cells to switch
into the primed state? Conversely, does the PI3Ki force cells to exit the
primed state? Based on our flow cytometry experiments, we can
conclude that the percentage of the population is shifted by these
treatments; however, changes in multiple different parameters could
lead to this same effect. For instance, the result that TGFB1 increases
the percentage of primed cells could be explained by (1) an increase in
the growth rate of primed cells, (2) a selective killing of drug-
susceptible cells, or (3) state switching from the drug-susceptible into
the primed state. The opposite consideration is necessary with the
finding that the PI3Ki decreases the percentage of primed cells. This
result could be the effects of (1) an increase in growth rate in the drug-

P = 5.7x10-12

P = 0.0047
P = 0.00018

P = 0.064

P = 0.0014

Manipulating cell plasticity to change memory expression states

WM989 cells

0

1.0

2.0

Lo
g 10

(p
er

ce
nt

 o
f c

el
ls

 in
 th

e
 p

rim
ed

 s
ta

te
)

Untreated TGFB1 TGFBRi PI3Ki TGFB1
+TGFBRi

TGFB1
+PI3Ki

A

B

C D

Induction of primed state
Primed state

inducing
agent

Drug-susceptible
state is lost.

TGFB1 
TGFBRi
PI3Ki

5 days

Test for induction of the primed state
NT5E flow cytometry, example plots

NT5E flow cytometry to test for cells in the primed state

1.97%
NT5E-high

26.9%
NT5E-high

0.75%
NT5E-high

NT5E antibody stain

Untreated TGFB1 PI3Ki
D

en
si

ty

Elimination of primed state

Drug-susceptible
state inducing

agent

Primed for 
resistance state is lost.

Growth

Unperturbed, prime state has memory

Primed for drug 
resistance

Lo
g 10

(p
er

ce
nt

 o
f c

el
ls

 in
 th

e
 p

rim
ed

 s
ta

te
)

-0.5

1.0

1.5

2.0

Untreated TGFB1 PI3Ki

WM983B cells
P = 0.011

P = 0.00016
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susceptible cells, (2) selective killing of primed cells, or (3) state
switching from the primed into the drug-susceptible state.

To directly test how TGFB1 and PI3K shift the percentage of
primed state cells, we used the fact that these cell states have memory
to test the effects of these perturbations on cells in each state. Speci-
fically, we transduced WM989 cells with the high-complexity tran-
scribed barcode library and then allowed the cells to go through 7–8
doublings (as we expect the memory of these states to largely persist
on this timescale, Supplementary Fig. 5A–C). We then split the cells
into four separate plates and subjected each to a different condition
(untreated, TGFB1, TGFBRi, and PI3Ki) (Fig. 5A). Since cells within the
same lineages have very similar gene expression states due tomemory,
this allows us to approximate studying how the same cell will react to
the different conditions. After 5 days, we harvested each sample and
performed scRNA-seq and barcode-sequencing to capture the tran-
scriptional state and barcode under each condition (Fig. 5A). With this
experimental design, each barcode is represented across all the con-
ditions. Thus, we can see the effects of each treatment by comparing
the gene expression of cells with a given barcode in one treatment to
cells with the same barcode in the untreated condition.

We analyzed a total of 40,021 cells across the four different
samples and found similar transcriptional states distributed across
UMAP space, as in previous experiments (Fig. 5B, Supplementary
Fig. 6A). To classify cells as primed or drug-susceptible, we selected
Louvain clusters 4 and 10, as these clusters contained the majority of
cells expressing the known primed state marker genes (Fig. 5D, Sup-
plementary Fig. 6B, C). Based on this classification, we see that TGFB1
increased the percent of cells in the primed state and that PI3Ki
decreased the percent of cells in the primed state (Fig. 5C, E). Impor-
tantly, the primed cell state induced by treatment with TGFB1 was
transcriptionally very similar to untreated cells in the primed state, and
induced EMT and TGF-β signaling genes (Fig. 5F, Supplementary
Fig. 6D, E). To explicitly test for differences, we performed differential
gene expression to compare the TGFB1-induced and untreated primed
state cells. We found that some genes, including NGFR, FGFR1, FOSL1,
and JUN, were induced by the TGFB1 treatment, but were not as highly
expressed as in the untreated primed state cells (Fig. 5F, Supplemen-
tary Fig. 6F). This might be significant as NGFR expression has been
linked to invasive properties ofmelanoma cells48,49. We also noted that
TGFB1 seemed to induce even higher expression for many of the
primed state genes including FN1, SERPINE1, COL1A1, and VGF (Fig. 5F,
Supplementary Fig. 6F). Some of these effects might result from the
specific dose of TGFB1, which is unlikely to be the same as the amount
of TGFB1 found endogenously. Overall, this analysis shows that TGFB1
and PI3Ki change the whole transcriptome of cells into the primed and
drug-susceptible state respectively.

Next, we integrated the barcoding data into the analysis to test for
state switching at the single-cell level. Our data set included 19,740
lineages, each containing aminimumof 3 cells per lineage, with 49% of
lineages represented across all four conditions. To test the hypothesis
that TGFB1 causes cells to switch to the primed state, wefirst evaluated
lineages where the untreated sample consisted solely of cells in the
drug-susceptible state. Across eachof these lineages, wequantified the
fraction of primed cells in the other conditions and found that the
matched set of lineages in the TGFB1-treated condition had a higher
fraction of cells in the primed state (Fig. 5G, Supplementary Fig. 6G, H).
Reassuringly, the TGFBRi and the PI3Ki only hadminor increases in the
percentage of primed state cells across these lineages. We next tested
the opposite direction, switching from the primed state to the drug-
susceptible state.We identified lineages inwhich the entire lineagewas
in the primed state in the untreated sample, 8 total. In the PI3Ki-treated
sample, 6 out of these 8 lineages had cells that had switched out of the
primed state (Fig. 5H, Supplementary Fig. 6G, H). Of note, 2 lineages
did not respond to the PI3K. However, by analyzing all lineages,wefind
that 93% of lineages reduce their fraction of primed state cells when

treated with PI3Ki (Supplementary Fig. 6G). Lineages that did not
respond may require longer treatment with the PI3Ki to switch to the
drug-sensitive gene expression state. Moreover, there were no sys-
tematic gene expression differences that explained the differences in
responsiveness to PI3Ki (SupplementaryData 3). Taken together, these
data show thatTGFB1 and the PI3Ki can induce state switching and that
the observed changes in the number of primed state cells are not due
to other population dynamics.

To extend our analysis to include all of the lineage data, we
developed a stochastic model of state switching between the drug-
susceptible and primed states. Our model included different state-
switching parameters (kon, koff), different growth rates, and different
death rates in each cell state (Supplementary Fig. 6I). We used the
model to simulate experimental data for different scenarios in which
different parameters are changing. For instance, for TGFB1, the
increase in primed state cells could be explained by three possible
parameter changes, (1) an increase in kon for the primed state, (2) an
increase in primed cell proliferation rate, or (3) an increase in the death
rate among drug-susceptible cells. To constrain the proliferation rate
parameter in our model, we performed live-cell imaging to measure
the direct effects of 5 days of TGFB1 and the PI3Ki on the proliferation
rates of primed and drug-susceptible cells. Across conditions, we
found that cells in the primed state proliferate more slowly compared
to the drug-susceptible cells (Supplementary Fig. 6J). In addition, we
found that treatment with either TGFB1 or the PI3Ki decreased growth
rate by similar amounts in each population (Supplementary Fig. 6J).

Given these constraints on proliferation rates, we then ran one
million simulations of the model varying each parameter and found
that increasing the rate atwhich the cells switch into theprimed state is
the best fit for our data. In addition, this model suggests that drug-
susceptible cells in lineages with a high proportion of cells already in
the primed state are more easily switched into the primed state (See
Supplementary Methods 1). We similarly considered possible para-
meter changes that could account for the decrease in primed state
cells upon PI3Ki treatment. Given experimentally measured con-
straints on proliferation rates, we found that an increased rate of cells
switching from the primed state to the drug-susceptible state was the
best fit for our data (See Supplementary Methods 1). This model fur-
ther validates our finding that the effect of TGFB1 and PI3Ki on the
number of primed state cells in the population works through state
switching.

Given that TGFB1 and PI3Ki are drivers of state switching, we
hypothesized that these treatmentswould also impact drug resistance.
We used a sequential dosing strategy inwhichwefirst pretreat cells for
5 days with a state modulator (e.g., TGFB1 or PI3Ki) followed by
4 weeks of BRAFi/MEKi to test for subsequent resistance (Fig. 6A). In
this design, the pretreatment period is intended to induce state
switching before the addition of targeted therapy.Whenwepretreated
cells with TGFB1, we found that, although fewer total cells died, pre-
treatment with TGFB1 initially led to faster killing of the remaining
drug-susceptible cells compared to cells treated with BRAFi/MEKi
alone (Fig. 6B, C, Supplementary Fig. 7A). Furthermore, after 4 weeks
of BRAFi/MEKi, we found that the pretreated TGFB1 sample had fewer
resistant cells than the BRAFi/MEKi only sample. Given the potential
for the pretreatment timewindow to affect cell growth, we normalized
the resistant data by the number of cells present after pretreatment in
each condition. With this normalization, we found that TGFB1
increased resistance by 2.8-fold compared to the control (Supple-
mentary Fig. 7B, C). We also tested pretreating with TGFBRi and,
consistent with its minimal effects on priming, we found that it did not
change the amount of resistance (Fig. 6B–D).

We then tested the more therapeutically relevant approach of
pretreating with the PI3Ki to reduce the number of primed cells, fol-
lowed by treating with BRAFi/MEKi. We found that pretreating with
PI3Ki decreased the number of resistant colonies by 62% and the
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number of resistant cells by 57% compared to BRAFi/MEKi alone
(Fig. 6C, D). We next performed the same normalization as described
above for TGFB1. We found that with this normalization, PI3Ki pre-
treatment decreased the number of resistant cells by 36% (Supple-
mentary Fig. 7B, C). Furthermore, treating cells with PI3Ki and targeted

therapy at the same time was even more effective than pretreatment,
nearly eliminating all resistance (Supplementary Fig. 7D, E). Although
blocking the PI3K pathway at the same time as the MAPK pathway is
effective at killing melanoma cells, it is toxic to patients which has
forced clinical trials to use low doses of these drugs, thus limiting the
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Fig. 5 | Treatment with TGFB1 induces the primed state and treatment with
PI3K inhibitor induces the drug-susceptible state. A Schematic of the experi-
mental design used to determine if treatments cause state switching. We trans-
duced melanoma cells with barcodes, allowed them to divide ~7 times, and split
them across four plates. Cellswith the same barcodes serve as copies of each other.
We used scRNA-seq with barcode sequencing to capture both the lineage and
transcriptome of the cells at the endpoint. B UMAP plots of the log10 normalized
gene expression of the drug-susceptible state marker SOX10 and primed state
markers EGFR, AXL, and NT5E. C UMAP plots highlighting cells in each condition
relative to all the other sequenced cells (in gray). Cells in blue were untreated, cells
in orange were treated with TGFB1, cells in teal were treated with TGFBRi, and cells
in pink were treatedwith PI3Ki.DUMAPplotwith primed cells labeled in green and
drug-susceptible cells in gray. E Bar graph quantifying the log10 percent of primed
cells in each condition based on the defined drug-susceptible and primed cell

populations in (D) and the location of each treatment condition shown in (C). P
values were calculated using Pearon’s Chi-squared test with Yates’ continuity cor-
rection. F Heatmaps of log10 normalized and scaled gene expression of drug-
susceptible and primed cells in each treatment. G Schematic of lineage-based
analysis to test for state switching into theprimedstate. Box plots show the fraction
of cells in each lineage that are in the primed state. The lineages shown are
exclusively those that were completely drug-susceptible in the untreated sample.
H Schematic of lineage-based analysis to test for state switching into the drug-
susceptible state. Box plots show the fraction of cells in each lineage that are in the
primed state. The lineages shown are exclusively those that were completely
primed in the untreated sample. For the box plots in (G) and (H), the center line is
the median, the box is the IQR, and the whiskers indicate 1.5 times the upper and
lower IQR. All data points are shown.
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effectiveness of this otherwise promising combination50–52. In sum, we
find that by first converting primed cells to drug-susceptible cells
through pretreatment with PI3Ki, we can reduce resistance to targeted
therapy and potentially provide some of the benefits of combination
therapy, while minimizing toxicity.

Discussion
Here, we show that scMemorySeq is a powerful method for tracking
gene expression memory in single cells. Our approach leverages the
combination of scRNA-seq and cellular lineage barcoding to quantify

memory of gene expression states in single-cell data. We applied this
method to melanoma cells to track lineages as they switch states
between a drug-susceptible state and a state primed for drug resis-
tance. By analyzing the gene expression differences in lineages that
switch states, we identified and tested TGF-β and PI3K as mediators of
state switching at the single-cell level. Ultimately, we show that by
manipulating state switching, we can reduce resistance to targeted
therapy.

Broadly, it is intriguing that modulating signaling alone is suffi-
cient to globally modify gene expression states in single cells and to
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affect their susceptibility to drugs. Here, PI3Ki is driving cells into a
MAPK-dependent transcriptional state, sensitizing cells to MAPK
inhibitors. Importantly, multiple papers have reported the use of PI3Ki
to reduce resistance inmelanoma53–56 and other studies have proposed
leveraging cell state dynamics in therapy scheduling57–59. Distinguish-
ing our use of a PI3Ki, here, we find that the PI3Ki can reduce drug
resistance even when only applied briefly before the addition of tar-
geted therapy. This approach may lay out a generalizable strategy for
reducing drug resistance in which perturbing signaling can globally
tune gene expression to achieve susceptibility to drugs. In such a
strategy, modulating signaling pathways would be used before the
addition of the main targeted therapy to drive heterogeneous popu-
lations of cells into a drug-susceptible state. This is in contrast to
dosing with a combination of inhibitors at the same time, which is not
always tolerated due to toxicity and side effects60–62.

Conceptually, the idea of leveraging the plasticity of cells to revert
them into a drug-susceptible state to delay drug resistance has pre-
viously been described in the context of drug holidays63. In contrast to
our approach, in which we actively drive cells into a drug-susceptible
state, a drug holiday is a break from the drug to alleviate the selective
pressure thus allowing the drug-resistant cells to switchback to a drug-
susceptible state at their intrinsic rate. Given the previous success of
drug holidays63,64, one strategy that we believe should be further
explored is to use state-switching drugs during what would be the
holiday period. With this approach, the switch to a drug-susceptible
state would be accelerated during the drug holiday, leading to
potentially even less resistance. Future work is still needed to model
these different scenarios and to experimentally test the efficacy of
such dosing strategies.

Extending scMemorySeq beyond state switching in melanoma,
there are several biological contexts in which specific drugs or ligands
could be shifting gene expression states and population dynamics
simultaneously. This is particularly relevant in cancer where there is a
growing body of literature describing considerable heterogeneity at
the single-cell level that shows variable degrees ofmemory26,65,66. Here,
we show that the scMemorySeq approach can provide a detailed sys-
tematic overview of these populations, and can also be used to test
how closely related cells from the same lineage will react to different
conditions.Webelieve that this approach is generalizable and could be
used in other contexts to profile cell state transitions under different
drugs, ligands, or environmental conditions. This is a growing area of
interest asmultiple recent studies showed thatmicroenvironment and
growth conditions of cancer cells can globally change both gene
expression and sensitivity to drugs66–68.

In sum, we show how scMemorySeq uses cellular barcoding to
reveal single-cell dynamics of drug resistance in melanoma. By track-
ing the memory of gene expression states we can identify stable cell
populations aswell as the factors that cause cells to change states. This
approach can be widely applied to discover unknown dynamics in
heterogeneous cell populations and to identify the key factors
responsible for gene expression state changes in biological systems.

Methods
Ethics statement
This study complieswith all relevant ethical and safety regulations. The
PDX tissue was collected by the Weeraratna lab as part of a prior
study6, further described in the section titled Mouse model tumor
generation. All animal experiments were approved by the Institutional
Animal Care and Use Committee (no. 112503X_0) and were performed
in a facility accredited by the Association for the Assessment and
Accreditation of Laboratory Animal Care.

Antibodies
Antibodies used in this included NGFR primary antibody (1:11, Biole-
gend, 345108), EGFR primary antibody (1:200 dilution, Fisher

Scientific, Clone 225, MABF120MI), NT5E primary antibody (1:200,
Biolegend, 344005), Alexa Fluor 488 Donkey Anti-Mouse secondary
antibody (1:500, Jackson Labs, 715-545-151), Phospho-AKT Ser473
(1:1000, Cell Signaling Technology #4060), pan-AKT (1:1000, Cell
Signaling Technology #9272), β-actin (1:1000, Santa Cruz Biotechnol-
ogy #4778).

Small molecule inhibitors and recombinant proteins
Vemurafenib (Selleckchem, S1267) was reconstituted at 4mM in DMSO
for the stock solution. Dabrafenib (Cayman, 16989-10) was recon-
stituted at 1.25mMinDMSOfor the stock solution. Trametinib (Cayman,
16292-50) was reconstituted at 12.5 µM in DMSO for the stock solution.
TGFB1 (R&D systems, 240-B-002) was reconstituted at 100μg/mL in a
4mMhydrochloric acid, 1mg/mLbovine serumalbumin solution for the
stock. PI3K inhibitor (GDC-0941, Cayman, 11600-10) was reconstituted
at 10mM inDMSO for the stock solution. TGFBRi (LY2109761, SML2051-
5MG) was reconstituted at 40mM in DMSO for the stock solution. IL6
(R&D systems, 206-IL-010) was reconstituted at 100μg/mL in a 0.1%
BSA PBS solution for the stock. EGF (R&D systems, 236-EG-200) was
reconstituted at 200μg/mL in PBS for the stock solution. BDNF (R&D
systems, 206-IL-010) was reconstituted at 100μg/mL in a 0.1% BSA PBS
solution for the stock. EGF (R&D systems, 248-BDB-005) was recon-
stituted at 100μg/mL in water for the stock solution.

Cell lines and tissue culture
We used the following cell lines: WM989 A6-G3, which are a twice
single-cell bottlenecked clone of themelanoma lineWM989 (provided
by the Meenhard Herlyn’s lab at the Wistar Institute), WM983B E9-D5,
which are a twice single-cell bottlenecked clone of the melanoma line
WM983B (provided by the Meenhard Herlyn’s lab at the Wistar Insti-
tute), and HEK293FT cells which we used for lentiviral packaging
(provided by Arjun Raj’s lab at the University of Pennsylvania). We
authenticated the identity of all cell lines by STR profiling and con-
firmed that they are all negative for mycoplasma. STR profiling and
mycoplasma testing were performed by the Penn Genomic Analysis
Core. We cultured WM989 A6-G3 and WM983B E9-D5 in TU2% (78.4%
MCDB 153, 19.6% Leibovitz’s L-15, 2% FBS, 1.68mM CaCl, 50 Units/mL
penicillin, and 50µg/mL streptomycin). We cultured HEK293FT in
DMEM 5% (95% DMEM high glucose with GlutaMAX, 5% FBS, 50 Units/
mL penicillin, and 50 µg/mL streptomycin). We grew all cells at 37 °C
and 5% CO2 and passaged them using 0.05% trypsin-EDTA.

Barcode library
We used a high-complexity transcribed barcode library described in
Emert et al. for our lineage barcodes10. The plasmid uses LRG2.1T as a
backbone, but we replaced the U6 promoter and sgRNA insert with
GFP followed by a 100 nucleotide semi-randombarcode, expressed by
an EFS promoter. The barcode is semi-random as it is made up ofWSN
repeats (W=A or T, S = G or C, N = any) to maximize barcode com-
plexity. A detailed protocol on the barcode production process can be
found in Emert et al., which also links to this protocol:

https://www.protocols.io/view/barcode-plasmid-library-cloning-
4hggt3w.

The sequence of the plasmid can be found here:
https://benchling.com/s/seq-DAMUWPyU198hRSbpiecf?m=slm-

GJ609ijArVWmkT8mk8zr.

Lentiviral packaging
WegrewHEK293FT to about 90% confluence in a 10cmdish containing
10mL of media (see the section titled Cell lines and culture). To
transfect cells with the lentiviral plasmid, we combined 500µl of OPTI-
MEM with 80 µl of 1mg/mL PEI in one tube. In a second tube, we
combined 500µL of OPTI-MEM, 9 µg of the psPAX2 plasmid, 5.5 µg of
the VSVG plasmid, and 8 µg of the barcode plasmid. We combined the
contents of these two tubes and allowed the mixture to incubate at
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room temperature for 15min. We then pipetted the solution dropwise
into the plate of HEK293FT and incubated the cells at 37 °C for 7 h.
Next, we removed themedia, washed the plate oncewith DPBS, added
10mLof freshmedia, and then incubated the cells at 37 °C for ~12 h.We
used fluorescence microscopy to confirm GFP expression in the cells
and then applied a fresh 6mL of media for virus collection. We incu-
bated the cells at 37 °C for ~12 h and collected the media (this media
contains the virus). We repeated the process of adding 6mL of media
and collecting the virus every 12 h for a total of ~72 h. After the last
collection, we filtered all the media containing the virus through a
0.2 µm filter to ensure no HEK293FT cells were left with the virus
media. Finally, wemade 1mL aliquots of themedia containing the virus
and stored them at −80 °C.

Lentiviral transduction
When barcoding cells, we wanted to avoid multiple lineage barcodes
per cell, and thus, we aimed to transduce ~20% of cells. To transduce
the cells, we made a mixture of polybrene (4µg/mL final concentra-
tion), virus (concentration determined through titration experiments
to achieve 20% infection), and cells at 150,000 cells/mL. Next, we put
2mL of this mixture into each well of a 6-well plate and spun the plate
at 600 RCF for 25min. We then incubated the cells with the virus at
37 °C for 8 h. After the incubation, we removed the media containing
the virus, washed each well with DBPS, and added 2mL of fresh media
to each well. The next day, we transferred each well to its own 10 cm
dish. We then gave the cells 2–3 days to start expressing the barcodes.
We confirmed the presence of barcodes by GFP expression in the cells
(cells express GFP along with the barcode).

Fluorescence-activated cell sorting (FACS)
We dissociated cells into a single-cell suspension using trypsin-EDTA
and washed them once with 0.1% BSA. To stain for EGFR and NGFR, we
first stained with the EGFR antibody (see antibodies section) diluted
1:200 in0.1%BSA for 1 hon ice.We thenwashed the cells twicewith0.1%
BSA and stained themwith the anti-mouse A488 secondary antibody at
a 1:500 dilution in 0.1% BSA for 30min on ice. Next, to stain for NGFR,
wewashed the cells oncewith0.1%BSAand then resuspended them in a
1:11 dilution of the NGFR antibody directly conjugated to APC in 0.5%
BSA 2mMEDTA solution.We then incubated the cells on ice for 10min.
Finally, we washed the cells once with 0.5% BSA 2mM EDTA, resus-
pended them in 1%BSAwithDAPI, and kept the cells on ice until sorting.

To stain for NT5E, we resuspend the cells in a solution of NT5E
antibody diluted 1:200 in 0.1% BSA and incubate them on ice for
30min.We thenwashed the cells twicewith0.1%BSA, resuspended the
cells in 1% BSA with DAPI, and kept them on ice until sorting.

For flow sorting, we followed the staining protocols above and
then sorted the cells onaBeckmanCoulterMofloAstrioswith a 100 µm
nozzle using Summit software (Version 62). We used forward and side
scatter to separate cells from debris and select singlets. We selected
DAPI-negative cells to remove dead cells. To sort primed cells with
EGFR and NGFR, we selected the top 0.2% of EGFR and NGFR-
expressing cells. To sortprimedcellswithNT5E,we selected the top2%
of NT5E-expressing cells.

Single-cell RNA sequencing
We used the 10x Genomics 3’ sequencing kits for all our scRNA-seq
experiments. For thefirst scRNA-seq experiment, introduced in Fig. 1C,
we sorted 1000 barcodedWM989 cells per well in a 96-well plate (one
well ofmixed cells andoneof EGFR/NGFR-high cells) and allowed them
to expand through 4–5 doublings. We then trypsinized onemixed well
and one primed well and prepared as described in the Chromium
Single Cell 3’ Reagent Kit V3 user guide. When loading cells on the
microfluidic chip, we split both the primed and themixed cells across 2
wells. After GEM generation, we continued to follow the Chromium
Single Cell 3’ Reagent Kit V3 user guide to generate libraries.

For the second scRNA-seq experiment (data shown in Supple-
mentary Fig. 2A, B), we sorted 1000 WM989 primed cells (based on
NT5E expression) and 1000 mixed WM989 cells into one well of a 96-
well plate, and 2000WM989B cells into another well.We then allowed
the cells to undergo 4 divisions, trypsinized them, and prepared the
samples all the way through library generation as described in the
Chromium Single Cell 3’ Reagent Kit V3.1 (Dual Index) user guide.

For the third scRNA-seq experiment, shown in Fig. 5A, we sorted
2000 barcoded WM989 cells into a single well of a 96-well plate. We
waited for these cells to expand through 7–8 divisions, and then ran-
domly split these cells across four separate plates. We waited one day
for the cells to adhere to the plate, and then started treatments (one
plate untreated, one plate 5 ng/mL TGFB1, one plate 4 µM LY2109761
(TGFBRi), andoneplate 2µMGDC-0941 (PI3K inhibitor)).We incubated
the cells in their respective treatments for 5 days.We carried the above
steps with two samples in parallel as replicates. After 5 days, we tryp-
sinized the cells and processed them all the way through library gen-
eration as described in the chromium Single cell 3’ Reagent kit V3.1
(Dual Index) user guide.

We sequenced all our single-cell libraries using a NextSeq 500
with the High Output Kit v2.5 (75 cycles, Illumina, 20024906). For
samples sequencedwith the SingleCell 3’ReagentKit V3 (single index),
we used 8 reads for the index, 28 reads for read 1, and 49 reads for read
2. For samples sequenced with the Single Cell 3’ Reagent Kit V3.1 (dual
index), we used 10 cycles for each index, 28 cycles for read 1, and 43
cycles for read 2.

Lineage barcode recovery from scRNA-seq
To recover the lineage barcodes, we used an aliquot of the excess full-
length cDNA generated in the 10x library protocol. Specifically, we
selectively amplified reads containing the lineage barcode using pri-
mers that flank the 10x cell barcode and the end of the lineage barcode
in our library (Supplementary Table 1)69. To perform the PCR, we
combined 100ng of full-length cDNA per reaction, 0.5µM of each pri-
mer, and PCRmaster mix (NEB, M0543S). We used 12 cycles to amplify
the cDNA using the following protocol: an initial 30 s denature step at
98 °C, then 98 °C for 10 s followed by 65 °C for 2min repeated 12 times,
and a 5-min final extension step at 65 °C. We then extract the amplified
barcodes, which are ~1.3 kb, using SPRI beads (Beckman Coulter,
B23317) for size selection (0.6X bead concentration). To sequence the
barcode library, we used a NextSeq 500with aMid Output Kit v2.5 (150
cycles, Illumina, 20024904). We performed paired-end sequencing and
used 28 cycles on read 1 to read the 10x barcode and UMI, 8 cycles on
each index, and 123 cycles on read 2 to sequence the lineage barcode.

gDNA barcode recovery
To sequence barcodes fromgDNA, we trypsinized cells, pelleted them,
and then extracted their gDNA using the QIAamp DNA Mini kit
according to the manufacturer’s protocol (Qiagen, 56304). To amplify
the barcodes, we performed PCRusing primerswith homology to each
side of the barcode. The primers also contain the Illumina adapter
sequence, and index sequences (see Supplementary Table 1 for primer
sequences). To perform the PCR amplification,weused 500ng isolated
gDNA, 0.5 µM of each primer, and PCR Master Mix (NEB, M0543S) for
each reaction. We used 24 cycles to amplify the barcodes using the
following protocol: an initial 30-s denature step at98 °C, then 98 °C for
10 s followed by 65 °C for 40 s repeated 24 times, and a 5-min final
extension step at 65 °C. After amplification, we used SPRI beads
(Beckman Coulter, B23317) to select the amplified barcode product
(expected length of ~350 bp). To isolate this fragment size, we per-
formed a two-sided selection where we first selected with a 0.6× bead
concentration and kept the supernatant (large gDNA fragments were
on beads). We then select again using a 1.2× bead concentration
keeping the material bound to the beads(small fragments such as the
primers were in the supernatant). To sequence the barcode library, we
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used a NextSeq 500 with a Mid Output kit (150 cycles, Illumina,
20024904). We performed single-end sequencing and used 151 cycles
on read 1 to read the lineage barcode and 8 cycles on each index.

scRNA-seq analysis
We used the 10x Genomics Cell Ranger pipeline to generate FASTQ
files (using the hg38 reference genome), to assemble the countmatrix,
and to aggregate replicate runs (without depthnormalization).We also
used the Cell Ranger feature barcode pipeline to integrate our lineage
barcodes with the scRNA-seq data (more information in the section
titled Combining single RNA sequencing and barcode data).

Once we generated the aggregated count matrices with incorpo-
rated barcode information, we analyzed the data using Seurat V370.
Using Seurat, we performed basic filtering of the data based on the
number of unique genes detected per cell, both removing poorly
sequenced cells (low number of genes), and data points likely to be
doublets (high number of genes).We alsofiltered basedon the percent
ofmitochondrial reads to eliminate low-quality or dying cells. If we saw
batch effects between replicates, we used the Seurat scRNA-seq inte-
gration pipeline to remove them.When therewerenobatch effects,we
used SCtransform to normalize the data before running PCA, cluster-
ing, and dimensionality reduction with UMAP. When plotting gene
expression information, we did not use the SCtransform data, but
rather separately log normalized the data. To generate single-cell sig-
nature scores for a gene set, we used the UCell package71. We selected
the primed cell gene set by including all genes with a positive log2 fold
change in our list of differentially expressed genes between primed
and drug-susceptible cells (Supplementary Data 1).

Combining scRNA-seq and barcode data
To identify the lineage barcodes from the sequencing data, we used a
custom python script (available through GitHub here: https://github.
com/SydShafferLab/BarcodeAnalysis) and the 10x Genomics Cell
Ranger Feature Barcode pipeline. In this pipeline, we first identified
lineage barcodes in the FASTQ files by searching for a known sequence
at the beginning of all lineage barcodes. Once we identified all
potential barcode sequences, we used the STARCODE72 to identify
barcodes thatwere very similar to eachother and replace them all with
the most frequently detected sequence within the set of similar bar-
codes. We then put these modified barcode sequences back into the
FASTQ file and generated a reference file containing all the edited
barcode sequences. Next, we fed these edited FASTQ files and the
reference file into the Cell Ranger pipeline and used the Feature Bar-
code analysis function to link lineage barcodes with the cell barcodes.
This provided us with the lineage and gene expression information for
cells where a barcode was identified.

Our initial steps identified barcodes by combining similar bar-
codes, butwhenwe looked at this outputwe found thatwe couldmore
stringently call real lineages using additional filtering steps. The code
used to accomplish this can be found in the Assign a lineage to each
cell section of the 10X1_r1_r2_Analysis_unorm_sctrans.Rmd script
available on the Google Drive link in the Software and data availability
section. In brief, we first eliminated lineages that appear across mul-
tiple samples, as such lineages are not possible. We then also removed
lineages that are bigger than expected given the amount of time cells
were given to proliferate. Finally, for cells that appeared to have more
than one lineage barcode, we tested whether there are multiple cells
with this same combination of barcodes and considered those cells to
be in the same lineage.

Validating primed cell markers
To test whether different proteins are markers of the primed cell state
(NT5E, NGFR, EGFR), we stained live WM989 cells with an antibody for
themarker of interest and then sorted the stained cells. Specifically, we
sorted amixed population of cells in onewell, and a population of cells

high in ourmarker of interest in another well (for sorting detail refer to
the Fluorescence-Activated Cell Sorting section). We then allowed the
cells to adhere to the plate for 24 h and then started treatment with
1µM vemurafenib for 3 weeks. After 3 weeks in vemurafenib, we
counted the number of cells and drug-resistant colonies in eachwell to
determine if the marker increased the number of cells that survive
targeted therapy. The percentage of cells sorted in the primed con-
dition was determined by sorting different percentages of high cells
and treating themwith targeted therapy to identify which percentages
were resistant.

ATAC-seq
We sorted 10,000 cell populations of EGFR/NGFR-High, EGFR-High,
NGFR-High, and negative (for both markers) cells in triplicate as
described in the FACS section of methods. Immediately after sorting,
we performed OMNI-ATAC on each population of cells73. We used the
Illumina Tagment DNA Enzyme for tagmentation (Illumina 20034197)
for tagmentation and performed two-sided bead purification before
sequencing. We performed paired-end, single-index sequencing on
pooled libraries using a 75-cycleNextSeq 500/550HighOutput Kit v2.5
(20024906) allotting 38 cycles to both read 1 and read 2 and8 cycles to
the sample indices.

ATAC-seq alignment and analysis
We adapted the paired-end analysis pipeline from ref. 74 for align-
ment, processing, and peak calling. Briefly, we aligned reads to hg38
using bowtie2 v2.3.4.1, filtered out low-quality read alignments using
samtools v1.1, removed duplicated reads with picard 1.96, and gener-
ated alignmentfileswith inferredTn5 insertions. To call peaks,we used
MACS2 2.1.1.20160309. We then identified consensus peaks using the
findConsensusPeakRegions function in the consensusSeekeR package
in R as peaks seen in at least 3 replicates out of 12 total75. We then
counted reads within these consensus regions for each sample and
created a DESeq2 object which we used to perform PCA on consensus
peaks76. We then plotted a row-scaled heatmap with ward.D2 cluster-
ing of the top 20,000 most variable peaks.

Mouse model tumor generation
The PDX tissue was collected by the Weeraratna lab as part of a prior
study6. Briefly, these melanoma tumors were generated by sub-
cutaneously injecting 1 × 106WM989-A6-G3-Cas9-5a3 cells into 8-week-
old NOD/SCID mice. The mice were fed AIN-76A chow, and the facil-
ities were maintained between 21–23 °C, a humidity of 30–35%, and
lights had a 12 h on/off cycle with lights on from 6:00 to 18:00. The
tumor was collectedwhen itmeasured ~1500mm3. Tumor blocks were
embedded in OCT, flash frozen, and stored at −80 °C.

Tissue RNA FISH
To analyze NT5E and SOX10 expression in mouse tumors, we used
HCRv3.0 with probes targeting NT5E and SOX10 25,77. The probes and
fluorescently labeled hairpins were purchased from Molecular Instru-
ments (NT5E lot #: PRK825, SOX10 lot #: PRK826). To perform HCR in
tissue, we made slight modifications to published protocols25,77. First,
we used cryostat sectioning to generate 6µm sections of the fresh
frozen tumor. We placed these sections on charged slides and fixed
them with 4% formaldehyde for 10min. We then washed the slides
twice with 1X PBS and stored them in ethanol.

To start HCR, we placed the slide in a slide staining tray and
washed the slides twice with 5× SSC (sodium chloride sodium citrate).
After removing the 5× SSC, we added 200 µl of hybridization buffer
(30% formamide, 5× SSC, 9mM citric acid (pH 6.0), 0.1% Tween 20,
50 µg/mL heparin, 1X Denhardt’s solution, 10% dextran sulfate) which
was pre-heated to 37 °C onto the tissue. We then incubated the slide
for 10min at 37 °C. All incubation steps in this protocol were donewith
the slide staining trayclosed andwithwater at thebottomof the tray to
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prevent the sample fromdrying out. During this incubation period, we
added 0.8 pmol of each probe pool (in this case NT5E and SOX10) to
200 µl of probe hybridization buffer pre-heated at 37 °C and kept the
solution at 37 °C. After 10min, we removed the hybridization buffer
from the tissue and added 300 µl of hybridization buffer containing
the probe pools. We placed a cover slip over the sample and incubated
it for 12–16 h at 37 °C. After the incubation,weprepared the hairpins by
putting 0.6pmol of each hairpin into its own tube (to keep hairpin 1
and hairpin 2 separate), and then performed snap cooling by heating
them to 95 °C for 90 s and then slowly cooled down to 25 °C over
30min in a thermocycler. While the hairpins snap cooled, we added
300 µl of wash buffer (30% formamide, 5× SSC, 9mM citric acid (pH
6.0), 0.1% Tween 20, 50ug/mL heparin) to the slide to remove the
cover slip. We then performed multiple wash steps with decreasing
amounts of wash buffer in the solution. We first added 300 µl of 75%
wash buffer, 25% 5× SSCT (5× SSC with 0.1% Tween 20), removed that
and added 300 µl of 50% wash buffer, 50% 5× SSCT, removed that, and
added 25% wash buffer, 75% 5X SSCT, and finally removed that and
added 300 µl of 100% 5× SSCT. For each step of the wash, we left the
slides in solution for 15min at 37 °C. After the last wash, we removed
the 5× SSCT and added 200 µl of room temperature amplification
buffer (5× SSC, 0.1% Tween 20, 10% dextran sulfate) to the slide and
incubated it at room temperature for 30min. We then removed the
amplification buffer and added the prepared hairpins mixed in 100 µl
of amplification buffer to the slide, and added a cover slip. We incu-
bated the slide in the staining tray at room temperature for 12–16 h.
After incubating with the hairpins, we removed the coverslip and
washed the slide off using successive 5× SSC washes. We put 300 µl of
5× SSC on the sample for 5min, removed it, then added 5× SCC for
15min, removed it, added 5× SSC for 15min again, removed it, and
finally added 5× SSCwithDAPI for 5min. After thewashes,wemounted
the slide using TrueVIEW (Vector labs, SP-8500-15), added a coverslip,
and sealed it with nail polish.

Flow cytometry
We dissociated cells from the plate using trypsin-EDTA into a single-
cell suspension and washed once with 0.1% BSA. We then resuspended
the cells in a 1:200 dilution of anti-NT5E antibody conjugated with APC
and incubated them for 30min on ice. Next, we washed the cells once
with0.1%BSA, oncewith 1%BSA, and then resuspended them in 1%BSA
for analysis by flow cytometry. We used an Accuri C6 for our flow
cytometry and quantified 10,000 events per sample. To analyze the
data we used the R package flowCore78. In our analysis, we used for-
ward and side scatter to identify cells, and used the FL4 channel
(640nmexcitation laser and 675/25 filter) to quantify cell surface levels
of NT5E. To determine what percent of cells were primed, we set an
intensity threshold where 2% of untreated cells would land above the
threshold. We considered any cells above this threshold as primed.

Drug-resistant colony experiments
We plated cells in six-well plates with 10,000 cells per well. After
plating,wegave cells 24 hwithout treatment to adhere to the plate.We
then initiated pretreatments and changed the media on the no-
pretreatment controls. During the pretreatment period, we treated the
cells with doses of the drug that had low toxicity andminimal effect on
the proliferation rate of the cells (assay for determining the doses
described in the Pretreatment growth effects section). We incubated
cells in their respective pretreatment for 5 days. For experiments
where we normalized for drug resistance, at this point 3 wells were
fixed and the number of cells quantified to determine how many cells
were present in each condition after pretreatment. We then aspirated
the media and replaced it with media containing 250 nM dabrafenib
and 2.5 nM trametinib. We maintained treatment with 250 nM dabra-
fenib and 2.5 nM trametinib for 4 weeks, changing the media every
3–4 days. After 4 weeks, we fixed the cells by aspirating off the media,

washing the wells with DPBS, and treating themwith 4% formaldehyde
for 10min. We then aspirated off the formaldehyde and washed twice
with DBPS. Finally, we added 2mL of DPBS to eachwell and stained the
cells with DAPI. We then imaged the wells using a 10× objective on a
fluorescence microscope (Nikon, Eclipse Ti2).

Cell and colony counting
To determine how many cells were in wells after drug treatment, we
used a custom pipeline called DeepTile (https://github.com/
arjunrajlaboratory/DeepTile/tree/071e3e9fb27f50ce024fd5ece25e3
a4b0071f771) to feed tiled images into DeepCell to generate nuclear
masks79,80. To simplify the interface with DeepTile and DeepCell, as
well as remove nuclei incorrectly called outside the well, we used
a custom tool DeepCellHelper (https://github.com/SydShafferLab/
DeepCellHelper). We then determined the number of cells per well
by counting the number of masks per image. We also developed our
own machine-learning approach to identifying nuclei called NucID
whichwas 10X faster (https://github.com/gharmange/NucID). Thiswas
used for counting nuclei in the pretreatment normalization of drug
resistance experiment. To identify colonies, we used a custom graphic
user interface ColonySelector (https://github.com/SydShafferLab/
ColonySelector) to circle individual colonies in each well and save a
file containing which nucleus belongs to which colony. Using the
output of the colony selecting software, we counted the number of
colonies there were in each well.

IncuCyte imaging and analysis
For time-lapse experiments on the IncuCyte S3 (Sartorius), we used a
clonal population of WM989 cells tagged with H2B-GFP for nuclear
tracking.We took4× imageswith a 300ms exposure forGFP every 12 h
to track cell growth over time. We used the IncuCyte software to
generate nuclear masks and exported csv tables containing the num-
ber of nuclei in eachwell at each time point.We analyzed this data in R.

Pretreatment growth effects
To determine if our treatments were leading to state-specific changes
in proliferation rates, we used a clonal WM989 H2B-GFP tagged cell
line. To isolate drug-susceptible and primed cells, we sorted on NT5E
and separated drug-susceptible and primed cells into separate wells.
After 24 h to adhere to the plate, we added TGFB1, PI3Ki, or nothing to
themedia.We then imaged the cells according to thedescription in the
Incucyte imaging and analysis section.

Western blot analysis
WM989melanomacellswere sorted either asmixed (all live cells) or as
primed (top 2% of NT5E expressing cells). Cells were allowed to grow
for 24 h before the initiation of treatment. PI3Ki treated cells had PI3Ki
(2uM) put on them for 4 h before harvest. Starved cells had media
without FBS. Cells treated with insulin growth factor (IGF) had 200 ng/
ml IGF added to them 15min before harvest. For combined treatment
with PI3Ki and IGF, cells were treated with PI3Ki for 3 h and 35min and
then treated with PI3Ki and IGF for the last 15min before harvest. Cells
were harvested in RIPA buffer (50mM Tris pH 8.0, 150mMNaCl, 0.5%
NP-40, 0.1% SodiumDeoxycholate, 0.1% SDS) containing Halt Protease
and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific, Cat.
78445) and centrifuged at 10,000× g for 10 min at 4 °C. Protein con-
centrations were determined by the Pierce BCA protein assay kit
(Thermo Fisher Scientific, Cat. 23225). Protein lysates (10–20μg) were
resolved by Tris-Glycine SDS-PAGE and transferred to nitrocellulose
membranes (Bio-Rad, Cat. 162-0115, 0.45mm pore size for all experi-
ments). All membranes were incubated with the indicated primary
antibodies overnight at 4 °C and were diluted in TBST (20mM Tris pH
7.5, 150mM NaCl, 0.1% Tween-20) supplemented with 5% bovine
serum albumin (BSA, Sigma-Aldrich, Cat. A7906). The following anti-
bodies were used: Phospho-AKT Ser473 (1:1000, Cell Signaling
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Technology #4060), pan-AKT (1:1000, Cell Signaling Technology
#9272), β-actin (1:1000, Santa Cruz Biotechnology #4778). Primary
antibodies were detected with horseradish peroxidase-conjugated
secondary antibodies followed by exposure to ECL reagents (Perkin
Elmer, Cat. NEL105001EA).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study have been deposited in
Gene Expression Omnibus and is publicly available under accession
code GSE237228. The publicly available data used in this study is
available in the GEO database under accession code GSE115978,
GSE7794027. The remaining data are available within the Article, Sup-
plementary Information or Source Data file. Source data are provided
with this paper.

Code availability
All analysis code and accompanying data used for this paper is avail-
able at the following link: https://drive.google.com/drive/folders/1-
C78090Z43w5kGb1ZW8pXgysjha35jlU?usp=sharing. The following
custom pipelines used in the paper are available on github: NucID:
https://github.com/gharmange/NucID. ColonySelector: https://github.
com/SydShafferLab/ColonySelector. BarcodeAnalysis: https://github.
com/SydShafferLab/BarcodeAnalysis.
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