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Genomic and proteomic screens have identified numerous host factors of
SARS-CoV-2, but efficient delineation of their molecular roles during infection
remains a challenge. Here we use Perturb-seq, combining genetic perturba-
tions with a single-cell readout, to investigate how inactivation of host factors
changes the course of SARS-CoV-2 infection and the host response in human
lung epithelial cells. Our high-dimensional data resolve complex phenotypes
such as shifts in the stages of infection and modulations of the interferon
response. However, only a small percentage of host factors showed such
phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα
(NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host
dependency factors acting early in infection. Overall, our study provides
massively parallel functional characterization of host factors of SARS-CoV-2
and quantitatively defines their roles both in virus-infected and bystan-
der cells.

The coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-
CoV-2, has claimed millions of lives and remains a global health bur-
den. Despite the success of rapid vaccine developments, barriers
including vaccine access and uptake, as well as breakthrough infec-
tions make it imperative to develop both effective antivirals, and
therapies targeting an overactive host immune response. A detailed
understanding of the host determinants of infection, and the host
response throughout infection will broadly inform efforts to develop
novel antiviral agents.

Many studies have identified candidate host factors by an array of
high-throughput methods, including protein–protein and protein-
RNA interaction mapping, as well as CRISPR-based genetic
screening1–10. Additionally, the host response to SARS-CoV-2 infection
has been investigated in single-cell transcriptional studies of blood,
bronchial lavage, and tracheal aspirate fromCOVID-19 patients, human
and animal (non-human primate, hamster, ferret) models of infection,

and in cell lines infected in tissue culture11–18. However, it remains a
challenge to validate individual candidate host factors, delineate their
specific roles during infection, and evaluate their suitability as targets
for interventions.

Here, we use Perturb-seq, an approach that characterizes the
outcomes of CRISPR-based genetic perturbations by single-cell
transcriptomics19–22, to understand how perturbations of host factors
alter the course of SARS-CoV-2 infection and the host transcriptional
response in human lung epithelial cells. First we compiled a compen-
dium of 183 host factors that were previously reported to either phy-
sically interact with viral proteins, score as protective hits in
coronaviral genetic screens, or factors that are known for their roles in
antiviral host defense pathways1,2,4–9,23–29. While all those factors had
prior experimental evidence assigning them a role in coronavirus
biology, only a small subset of them had been functionally validated.
To test how inactivation of each of these genes alters SARS-CoV-2
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infection dynamics in a highly multiplexed fashion, we subsequently
designed a Perturb-seq library to target each of these factors. We
performed a CRISPR interference (CRISPRi)30 experiment in human
lung carcinoma (Calu-3) cells, infected with a clinical isolate of SARS-
CoV-2 collected in late-2020 (PANGO lineage B.1.503), and subse-
quently subjected the cells to single-cell RNA sequencing, capturing
both infected and uninfected bystander cells. Our results identify
transcriptionally distinct clusters of infected and bystander cells,
uncover new roles of genetic perturbations in interferon signaling, and
functionally validate specific SARS-CoV-2 host dependency factors.

Results
Functional genomics of coronavirus host factors with a single-
cell readout
To characterize the single-cell transcriptional response to SARS-CoV-2
infection and simultaneously test the effect of host genetic perturba-
tions on viral RNA production and host response, we used Perturb-
seq19–22. Perturb-seq combines CRISPR-based genetic perturbations
with a rich, single-cell transcriptomics readout that is capable of cap-
turing high-dimensional phenotypes, making it well-suited for study-
ing virus-host systems31. Viral infection leads to a heterogeneous
response in a cell population, characterized, for instance, by cells
being in different stages of infection and showing varying levels of
activity of antiviral pathways17,32,33. Targeting critical host factors can
cause shifts in the distribution of cellular states, which delivers insight
into the function of any given host factor.

We performed our experiments in Calu-3 cells, a human
respiratory epithelial cell line that endogenously expresses the entry
receptor of SARS-CoV-2, ACE2, albeit at low levels, and has been
previously used for several CRISPR screening and single-cell studies

of SARS-CoV-217,27,28. We employed Calu-3 cells engineered to stably
express the machinery for CRISPR interference (Methods)30,34,35.
CRISPRi is highly efficient at suppressing gene expression of selected
targets without introducing double-strand breaks, with minimal off-
target effects. On-target activity can be maximized by using two
single guide RNAs (sgRNAs) per target, expressed from one lentiviral
vector36–38.

We compiled a list of host factors from the literature on SARS-
CoV-2 and other coronaviruses, mainly genes identified as protective
hits in genetic screens for modifiers of SARS-CoV-2 or related cor-
onavirus infections, and host proteins that were found to interact with
viral proteins. We prioritized candidates with multiple lines of evi-
dence supporting their roles in coronavirus biology. Additionally, we
curated a list of factors involved in the innate immune response.
Overall, we designed and cloned a library containing 239 elements, of
which 195 target a single gene, 22 target combinations of two genes
(typically paralogs or members of the same pathway, e.g., ACE2 +
TMPRSS2 or IFNAR1 + IFNAR2), and 22 non-targeting controls (Supple-
mentary Data 1). We packaged the library into lentivirus and delivered
it into the engineered Calu-3 cells at a low multiplicity of infection,
followed by selection for cells with successful lentivirus integration.

We infected the resulting population for 24 h with a late-2020
clinical isolate of SARS-CoV-2 featuring only a single spike mutation,
D614G, and 10 non-synonymous mutations in other genes relative to
the ancestral isolate (PANGO lineage B.1.503, complete genome avail-
able at GISAID accession ID: EPI_ISL_13689582). Single-cell tran-
scriptomes were then captured using a droplet-based microfluidic
workflow (10x Genomics) with direct capture of sgRNAs to reveal
which gene or gene pair was targeted in each cell36 (Fig. 1A). After
quality control filtering (Methods), we profiled the transcriptomes of
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Fig. 1 | Perturb-seq for single-cell transcriptional analysis and functional vali-
dation of SARS-CoV-2 host factors. A Experimental design for the Perturb-seq
experiment inCalu-3 cells engineered to express CRISPRimachinery.Weperturbed
183 different host factors (individually or in combination) using a lentivirally-
delivered library, infected the cells with SARS-CoV-2 for 24hours, and performed
droplet-based single-cell RNA sequencing, reading out host and viral transcripts as

well as the sgRNA, indicating the perturbed host factor. B Single-cell tran-
scriptomes were projected into UMAP space and colored by viral RNA fraction per
cell. C, D Density of cells identified as either uninfected/bystander (C) or infected
(D) by our classifier, overlaid onto all cells in gray. E Cells color-coded by their cell
cycle phase. F Fraction of bystander and infected cells assigned to each cell cycle
phase. G Cells color-coded by the number of detected UMIs per cell.

Article https://doi.org/10.1038/s41467-023-41788-4

Nature Communications |         (2023) 14:6245 2



27,882 single cells with exactly one unambiguously assigned library
element each.

Transcriptional heterogeneity in SARS-CoV-2 infected cells
As a baseline for our subsequent Perturb-seq analysis, we first profiled
the transcriptional response in the cell population upon infection,
characterizing the spectrum of cellular states irrespective of the
genetic perturbations present in the population. The heterogeneity of
cellular states was primarily driven by the fraction of viral transcripts
(Fig. 1B), which reached levels of up to 95% in some cells.

In order to compare infected and uninfected cells, we developed a
classifier that determines the infection state of each cell based on the
read counts of individual viral transcripts (Methods, Fig. 1C, D). Due to
the presence of ‘ambient’ viral RNA, almost all cells have nonzero viral
reads. To separate cells with true infection from those with spurious
reads, the baseline of ambient viral RNA per cell was determined based
on a spike-in of uninfectedwild-type cells, whichwere identified by the
absence of lentivirus-derived transcripts.

We sought to design an experimental strategy that captures
single-cell transcriptomes of SARS-CoV-2 infected cells in a way that
resolves both host and viral transcripts. Coronaviruses have a
unique transcript architecture39, consisting of the (+)strand viral gen-
ome, numerous subgenomic mRNAs (sgmRNAs), and matching (-)
sense counterparts. Importantly, all (+)sense transcripts start with the
same ~72nt leader sequence at the 5′ end, followed by a junction to the
body of the sgmRNAs. All (+)sense transcripts also share the same 3′
end and are polyadenylated. We reasoned that 3′ sequencing would
not be able to resolve individual viral transcripts and therefore used
the 10x Genomics 5′ workflow with a modified sequencing strategy
that extends read1 to sequence from the 5′ end into the transcript,
spanning the leader-body junction (Supplementary Fig. 1A). A recent
report found the same conceptual approach to maximize unambig-
uous detection of the different viral sgmRNAs40.

Utilizing this 5′ sequencing strategy (Methods), we resolved
individual viral sgmRNAs and observed distinct patterns of viral tran-
script abundances in infected cells (Supplementary Fig. 1B). The 3′-
proximal Nucleocapsid (N) transcript was by far the most abundant
viral RNA. Cell-by-cell correlation of the abundances of individual viral
sgmRNAs was largely a function of genomic location: the abundances
of the sgmRNAs proximal to N, encoding ORF3A, E, M, ORF6, ORF7ab,
ORF8 showed the highest correlation with N. Conversely, the abun-
dances of Spike and ORF1ab (i.e., whole genome) were much less
correlated on a cell-by-cell basis. Additionally, we mapped the posi-
tions of leader-body junctions in sgmRNAs from our extended read1
data and found both the positions as well as their relative frequencies
of individual junctions to be in agreement withmeasurements derived
from bulk, whole-transcript sequencing data39 (Supplemen-
tary Fig. 1C).

Next, using our infection state classification, we observed the cell
cycle phase as a major contributor to the heterogeneity among unin-
fected cells, with subclusters often representing cells within one pre-
dominant phase. Conversely, infected cells showed a pronounced,
general shift in their cell cycle phases: we observe far fewer infected
cells in S phase and the proportion of G1 cells increased approximately
two-fold (Fig. 1E, F), suggesting that cell cycle arrest occurs upon
infection. Furthermore, infected and uninfected bystander cells dif-
fered dramatically in the total amount of detectable RNA per cell,
quantified by the number of unique molecular identifiers (UMIs)
(Fig. 1G, Supplementary Fig. 1D). We calculated Pearson’s correlation
coefficient between total UMIs per cell and viral fraction per cell, and
observed a negative correlation (r = −0.44). These data indicate a
pronounced shutoff of host gene expression in infected cells. This
observation is consistent with a recent study showing that SARS-CoV-2
NSP1 specifically degrades transcripts lacking the viral 5′ leader
sequence, enabling the virus to dominate the cellular mRNA pool41.

To further characterize the heterogeneity within the infected and
bystander populations, different cell states were delineated using
Leiden clustering, defining 12 clusters of bystander cells (clusters A–L)
and 7 clusters of infected cells (clusters M–S) (Fig. 2A).

To identify transcriptional patternswithin these different clusters,
we evaluated gene expression within each cluster. (Fig. 2B). Bystander
cells (clusters A–L) varied in their expression of genes associated with
antigen presentation, chemokines, and interferon-stimulated genes
(ISGs). ISGs including IFI6, IFI27, and ISG15 (Fig. 2C) were prominently
more abundant in bystander cells compared to infected cells. This
suggests active suppression of the interferon response in infected
cells, a phenomenon that has been observed for many different
viruses31,33,41,42.

We identified a small but prominent subset of cells (bystander
cluster L and infected cluster M) expressing interferon β (IFNB1) and λ
(IFNL1/2/3) (Fig. 2D) and a number of chemokines (CXCL1/2/3/10/11,
CCL5, IL6, CXCL8/IL8). This observation is consistent with prior single-
cell work showing a subset of interferon-producing cells after SARS-
CoV-2 infection17, and studies that assessed interferon production in
bulk43. Notably, all interferon-producing cells exhibited pronounced
expression of both NF-κB pathway genes and ISGs. Additionally, this
population expressed genes associated with antigen presentation and
translation regulation/stress response (e.g., PPP1R15A). These features
were reminiscent of subpopulations of abortively infected cells which
have been characterized for the herpesviruses HSV-1 and HCMV31,33.
However, only ~20% of the interferon-producing cells in our dataset
were classified as infected based on the abundances of viral transcripts
(cluster M).

Infected cells (clusters M–S) varied not only in their fractions of
viral transcripts, but also showed a concomitant shift in cell cycle
distribution (Fig. 2A), and subtle host transcriptional patterns (Fig. 2B).
A number of host transcripts were generally upregulated in infected
cells, including genes associated with NF-κB signaling such as NFKBIA
(Fig. 2E), NFKBIE/Z, EGR1, REL and RELB (Fig. 2E). In addition, genes
related to cell stress (ATF3, FOS, JUN) were upregulated in most
infected clusters. It is conceivable that the apparent downregulation of
some transcripts in infected cells (such as ISGs) is an artifact caused by
the global host shutoff. Therefore, we repeated gene expression and
cell cycle analyses oncells thatweredownsampled to the readdepthof
infected cells (bottom 2% of the UMI distribution). These data reca-
pitulate our prior findings and suggest that despite host shutoff, we
were able to detect transcriptional changes in infected and bystander
cells (Supplementary Fig. 2A–F).

Host perturbations alter infection dynamics
To determine how the activity of host factors affects the response of a
cell population to SARS-CoV-2 infection, we next evaluated how each
genetic perturbation in our CRISPRi library altered viral load and
bystander activation. To ensure sufficient representation of our 239
library elements, we assessed the distribution of captured cells for
these elements and determined the peak of that distribution (mode) to
be at 138 cells (Supplementary Fig. 3A). 48 library elements had less
than 55 cells each, forming a distinct lower mode in the distribution of
cell numbers, suggesting that they target genes essential for the
growth of Calu-3 cells. As these elements lacked appropriate coverage
for proper evaluation of infection dynamics, they were removed,
resulting in 25,835 remaining cells, on which we based all downstream
analyses (Supplementary Data 2). Amongwell-represented targets, the
median knockdown efficiency was 91%, and 80% of our library showed
greater than 75% knockdown of their respective target transcripts in
uninfected cells confirming the efficacy of CRISPRi targeting in Calu-3
cells (Supplementary Fig. 3B).

To test which host factors confer protection from infection upon
perturbation, we compared the distributions of viral loads in cells with
any given CRISPRi target against the population of cells with
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non-targeting controls (Fig. 3A). Knockdown of only one factor, SEC62,
resulted in increased viral loads. This was unexpected in light of
genetic screens that identified SEC62 knockout as protective against
human coronavirus (HCoV) OC43 infection9. SEC62 is involved in the
post-translational targeting of proteins across the endoplasmic reti-
culum, acts as an autophagy receptor in the ER, and is a known inter-
actor of SEC61B44,45. On the other hand, knockdown of the known entry
factors ACE2 and TMPRSS2, both alone and in combination, led to
strongly reduced viral loads. Similarly, TMPRSS2 in combination with
either Furin, Cathepsin B, or L (but notably not Furin or either Cathe-
psin alone) resulted in substantially reduced fractions of viral RNA,
suggesting partial redundancy of those entry factors. Knockdown of
BRD2 also reduced viral loads considerably, which is consistent with

the recent finding that BRD2 is required for efficient transcription of
ACE234.

Aside from those known factors involved in viral entry, we iden-
tified a number of additional, strongly protective factors such as the
autophagy factor ATG1446, as well as translation factors EIF4E2 (4EHP)
and EIF4H. Translation factors EIF4E2 and EIF4Hwere previously found
to interactwith the viral proteinsNSP2 andNSP9, respectively1,2. EIF4E2
represses translation initiation by binding to themRNA cap and can be
ISGylated to enhance this cap-binding activity47. In the setting of SARS-
CoV-2, EIF4E2 surfaced as an unvalidated protective host factor in one
genetic screen5. The second translation factor that conferred protec-
tion from infection upon knockdown, EIF4H, binds to and stimulates
RNA helicase activity of EIF4A48,49. Additionally, EIF4H is reported to

Fig. 2 | Transcriptional heterogeneity in SARS-CoV-2 infection. A Single-cell
transcriptomes were projected in UMAP space and colored by Leiden cluster. Lei-
den clusters were subsequently characterized by the mean viral fraction, the
number of cells, and the cell cycle composition per cluster. Cluster T are all cells
that could not be assigned an unambiguous infection state. B Differential expres-
sion of Leiden clusters revealed transcriptionally distinct subclusters of bystander

cells, infected cells, and a small subset of interferon-producing cells. The color of
each dot is pseudobulk gene expression of each gene per cluster, and the size of
each dot is the expression normalized to the cluster with maximum expression of
that gene. C–EHost transcriptional analysis revealed heterogeneity in infected and
bystander populations, including differential gene expression in UMAP space of:
C ISG15; D IFNL1; and E NFKBIA.
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interact with SARS-CoV-2 RNA5. Notably, the protective phenotypes
when targeting EIF4E2 and EIF4H do not appear to reflect a general
effect of perturbing translation factors, as EIF4B did not significantly
alter infection dynamics.

Additionally, knockdown of VMP1 andMPP5 conferred protection
from infection. VMP1 is involved in cytoplasmic vacuole formation and
autophagosome assembly, when it interacts with TMEM41B50, a known
pan-coronavirus host dependency factor5,9. MPP5 is involved in tight
junction formation and was similarly identified as a protective hit in a
genome-wide CRISPR survival screen9, and as an interactor of the E
protein of SARS-CoV-151. Our data validate those proteins as protective
host factors.

Lastly, we observed that knockdown of the NF-κB inhibitor IκBα
(encoded by NFKBIA) significantly reduced viral loads. The NF-κB
pathway is well-known to be activated in the setting of viral
infections52, and its activity was reported to be important for SARS-
CoV-2 replication53. While NFKBIA is transcriptionally upregulated in
SARS-CoV-2 infected cells as shown in our data (Fig. 2E) and by
others17,53,54, it has not appeared in any genetic screen to our knowl-
edge as a protective factor.

At baseline, IκBα inhibits the NF-κB pathway by binding to and
retaining p65/RELA-containing complexes in the cytosol55. Canonical
pathway activation induces proteasomal degradation of IκBα/NFKBIA,
leading to p65/RELA nuclear translocation and subsequent transcrip-
tion of target genes (including NFKBIA, forming a negative feedback
loop). Prior studies have shown that the papain-like proteases (PLPro)
of both SARS-CoV-1 and SARS-CoV-2 can deubiquitylate and thereby
stabilize IκBα, thus decreasing p65/RELA nuclear translocation and
suppressing pathway activation54,56. However, our data show that
knockdownofNFKBIAdoes not lead to transcriptional activation of the
NF-κB pathway in bystander cells (Supplementary Fig. 4A), arguing
against constitutive activation as a phenotypic outcome. Knocking
down RELA or RELB, both individually or in combination, did not result
in a protective phenotype. Our data suggest a dependency of SARS-
CoV-2 on NFKBIA, which may be independent of its inhibitory role in
the NF-κB pathway.

To further investigate the phenotypic response of NFKBIA per-
turbation, we utilized the OpenCell collection of HEK293T cell lines
expressing split mNeonGreen (mNG)-tagged proteins from their
endogenous loci45. First, we confirmed that the NF-κB pathway was
functional in cells expressing mNG-tagged RELA. Using live-cell fluor-
escentmicroscopy, we observed the expected p65/RELA translocation
to the nucleus after TNF-α stimulation (Supplementary Fig. 4B). We
then generated polyclonalNFKBIA knockout lines in the backgroundof
the mNG-RELA line. Without stimulation, there was no constitutive
p65/RELA translocation to the nucleus in NFKBIA KO cells. After
treatment with TNF-α, we observed a blunted response with delayed
and incomplete p65/RELA nuclear translocation in NFKBIA KO cells
compared to control cells (Supplementary Fig. 4B). These data are in
agreement with prior studies that show a delayed response to NF-κB
pathway stimulation in the setting of an NFKBIA knockout57, and sug-
gest a compensatory mechanism that prevents both constitutive and
acute pathway activation.

Next, we orthogonally validated the observed protective pheno-
types of inactivatedNFKBIA, EIF4E2, and EIF4H by generating knockout
lines from Huh7.5.1 (hepatocellular carcinoma) cells ectopically
expressing ACE2 and TMPRSS2 (Fig. 3B). This cell line is permissive for
SARS-CoV-2 infection and has been used for pooled CRISPR
screening9. First, we infected polyclonal pools of knockout cells with
SARS-CoV-2 and quantified the fraction of infected cells by fluores-
cence microscopy, staining for the viral nucleocapsid protein. Com-
pared to non-targeting controls, ACE2, NFKBIA, EIF4E2, and EIF4H
knockout cell lines showed a substantial decrease in infection (Fig. 3C,
D). NFKBIA knockout cells displayed a 31.8% decrease in infection,
85.5% in EIF4E2 KO, and 33.2% in EIF4H KO cells compared to non-

targeting control cells. To determine if these perturbations altered
SARS-CoV-2 production, we next quantified infectious virus produc-
tion for each knockout line. At 24 h post infection, following similar
trends to our viral intracellular staining, we saw a decrease in viral titer
for these same knockout cells (Fig. 3E). Altogether, these data provide
functional evidence thatNFKBIA, EIF4E2, and EIF4H play a role in SARS-
CoV-2 infection in multiple cell types, and suggest that this action is
prior to viral transcription, viral translation, and egress.

Systematic classification of host factor phenotypes
Changes in the viral load distribution are only onemanifestation of the
multitude of cellular phenotypes resulting from host factor perturba-
tion. To achieve a systematic and unbiased characterization of host
factor perturbationphenotypes, beyondviral protection/sensitization,
wemonitored howdifferent perturbations shift the proportion of cells
in distinct cellular states. Qualitatively, this can be assessed by looking
at the distribution of cells with a given genetic perturbation on the
UMAP projection. More quantitatively, one can count cells in the dif-
ferent Leiden clusters and determine how a given host factor pertur-
bation changes the relative numbers of cells by cluster (see Fig. 2A).
This approach not only identifies host factor perturbations that alter
cellular states and sorts them by similarity, but also narrows down the
underlying mechanism by directly pinpointing the cellular states that
are affected by the perturbation31.

Cells with non-targeting control sgRNAs were uniformly dis-
tributed across the UMAP representation of the cell population
(Fig. 4A). In comparison, cells with certain genetic perturbations
deviated from this pattern in specific ways. First, cells with sgRNAs
targeting known entry factors were specifically excluded from all
infected clusters in UMAP space (Fig. 4A, Supplementary Fig. 5A). The
same was also true for cells with EIF4E2, EIF4H and NFKBIA-targeting
sgRNAs (Supplementary Fig. 3C, Fig. 4A). Moreover, cells with sgRNAs
targeting proviral factors were similarly depleted from two clusters
(bystander clusters F and L, the latter being one of the interferon-
producing clusters). These clusters border infected clusters and were
classified as uninfected based on viral transcripts in quantities below
noise level. Based on the observation that entry factor inactivation
excludes cells from these clusters, we speculate that these two clusters
represent cells that are in the earliest stage of infection, have been
infected with a defective viral particle, or are in a state where tran-
scription of viral genes is effectively suppressed by an antiviral host
response.

We systematically quantified the under/overrepresentation of
cells with a given host factor perturbation in individual clusters
(Fig. 4B), compared to cells with non-targeting control sgRNAs. The
results can be visualized as a heatmap of the odds-ratio of how tar-
geting a certain host factor changes the occupancy of each cluster
(Fig. 4C, Supplementary Fig. 5A),which can further be projectedonto a
UMAP of host factor phenotypes (Fig. 4D, Supplementary Fig. 5B).

This analysis re-confirmed the group of proviral factors, which are
strongly protective when inactivated (Fig. 4D, Supplementary Fig. 5B,
blue highlight). A second group of perturbations that caused a distinct
re-distribution of cells across the individual clusters were cells with
inactivated members of the interferon pathway (Fig. 4A, D, Supple-
mentary Figs. 3C, 5B, orange highlight). Those cells were shifted from
bystander clusters representing cells with high expression of ISGs
(clusters B, D, E, F) to the cluster with a low degree of interferon
response (cluster A) (see Supplementary Fig. 5A, Fig. 2B).

The group of interferon signaling factors contained not only
expected genes (IFNAR2, STAT2, IRF3, IRF9), but also genes not routi-
nely implicated in the interferon response such as SPNS1, KEAP1 and
GPR89A/B. To evaluate these in more detail, we scored the extent of
interferon response in single cells based on a previously established
list of ISGs that are readily detected by single-cell RNA sequencing31.
We subsequently tested for statistically significant shifts in this
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interferon score for each perturbation compared to non-targeting
controls (Fig. 5A, B). To rule out the effect of viral antagonism of this
pathway, we limited this analysis to bystander cells.

Knockdown of GPR89A/B, KEAP1, SPNS1, and BRD2 significantly
decreased bystander activation as measured by our ISG scores, con-
firming these proteins as regulators of the interferon signaling path-
way. GPR89A and GPR89B are sequence-identical paralogs, encoding a
Gprotein-coupled receptor, and proteomic studies report interactions
of this protein with multiple SARS-CoV-2 proteins (M, NSP6, and
ORF7B)4. Notably,GPR89A/B overexpression is reported to activate the
NF-κB signaling pathway58, and this protein is thought to be important
forGolgi acidification andglycosylation59.KEAP1 is a repressorofNRF2,
which acts as a regulator of the inflammatory response60. Our findings
for KEAP1 are consistent with prior work that showed repression of
inflammatory genes in Keap1 deficientmurine cells61. SPNS1 is involved
in lipid and transmembrane transport, and Wang et al. reported that
genetic knockout of this gene protects from hCoV-229E and hCo-
VOC43 infections in vitro9.While both KEAP1 and SPNS1were shown to
interactwith SARS-CoV-2ORF3 andORF7b, respectively1,4, we only saw
an effect on bystander activation in these experiments. Furthermore,
CRISPRi knockdown of BRD2 decreased the overall sensitivity of
bystander cells in our study, which aligns with prior reports that per-
turbation of BRD2 reduces interferon signaling34. Taken together, our
analytical framework identified genes not routinely implicated in
bystander activation, and proved to be very sensitive to identify fac-
tors with subtle phenotypes beyond strong protection from infection.

Discussion
In this study, we measured the dynamics of SARS-CoV-2 infection in
tissue culture, and simultaneously validated and functionally char-
acterized host factors of infection. Perturb-seq delivers a high-
dimensional, phenotypic single-cell readout, characterizing both the
intrinsic heterogeneity of a SARS-CoV-2 infected population, and the
response to many host factor perturbations. We captured different
functional outcomes and simultaneously classified host factors by the
similarities of their roles during infection and bystander activation.
Our study thereby complements and greatly expands upon the geno-
mic and proteomic screens which initially informed our selection of
host factors included in our Perturb-seq library1,2,4–6.

Our transcriptional analysis revealed upregulation of key NF-κB
pathway members, including NFKBIA, in SARS-CoV-2 infected cells.
This is consistent with findings of earlier studies17,18,53. Considering the
prominent transcriptional host shutoff, we speculate that viral factors
trigger the upregulation of NFKBIA and/or protect the transcript from
degradation. Moreover, our study demonstrates that IκBα/NFKBIA can
be targeted genetically to confer strong protection from SARS-CoV2
infection. Collectively, we show that perturbation ofNFKBIAdecreased
viral RNA production, viral protein production, and the production of
infectious progeny, suggesting its necessity for completion of the viral
life cycle.

Furthermore, our data suggest blunting of NF-κB pathway acti-
vation as one underlying mechanism to explain this phenotype. While
somewhat counterintuitive in light of IκBα/NFKBIA’s role as an NF-κB
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inhibitor, this result is in linewith data from a previous optical imaging
screen that shows a p65 translocation defect upon NFKBIA
perturbation57. Furthermore, we suspect that independent from IκBα’s
canonical inhibitory role in NF-κB signaling, IκBα may additionally be
co-opted in another way that benefits viral proliferation. This is cor-
roborated by a recent report that overexpression of a dominant-
negative IκBα mutant enhances SARS-CoV-2 infection in A549 cells,
while simultaneously reducing p65/RELA nuclear translocation62.
These results, togetherwith our transcriptional and translocation data,
underscore the importance of IκBα during the SARS-CoV-2 life cycle
and suggest its role may be independent of activation of the NF-κB
pathway.

Our data further establishes that two translation factors, EIF4E2
and EIF4H, are required for SARS-CoV-2 infection. While prior studies
report that both factors interactwith viral proteins1, here, we show that
knockdown and knockout of these factors decrease infection. The
4EHP(EIF4E2)-GIGYF2 complex is involved in ribosome-associated
quality control by preventing translation initiation of faulty mRNA63–65,
and its interaction with NSP2 is conserved across SARS-CoV-1, SARS-
CoV-2 andMERS-CoV2. Others have proposed that viral NSP2 interacts
with the 4EHP(EIF4E2)-GIGYF2 complex to inhibit host translation
initiation66. However, the strongly protective knockdown phenotype
of EIF4E2 observed in our data leads us to instead hypothesize that
binding of viral NSP2 to EIF4E2 drives preferential translation of viral
RNA. In this manner, the virus may subvert what is normally a defense
mechanism for its exclusive usewithin the cell. Further investigation to
determine which transcripts EIF4E2 binds to in the setting of infection
with ribosome profiling will aid our understanding of the underlying
mechanism of EIF4E2 utilization by coronaviruses.

EIF4Hdirectly binds to and stimulates the DEAD box RNAhelicase
EIF4A49. A pharmacological inhibitor of EIF4A, Zotatafin, decreases
SARS-CoV-2 infection in vitro, and clinical trials (NCT04632381) are

underway to evaluate its safety and efficacy in humans1,67. Our
experiments reveal a viral dependency on the EIF4A binding partner
EIF4H, suggesting a complementary, and possibly synergistic point for
additional therapeutic intervention.

In addition to characterizing the consequences of inactivation of
proviral factors during SARS-CoV-2 infection, Perturb-seq enabled us
to identify SEC62 as an antiviral factor. Contrary to our initial hypoth-
esis that similar to OC43, SEC62 knockdown would provide protection
from SARS-CoV-2 infection, we instead observed sensitization. While
this diverges from OC43, a similar infection enhancement has been
observed with SEC62 knockdown and Foot-and-mouth disease virus68.
Moreover, SEC62 is a dependency factor for HIV replication, and
notably, knockdown alters cell-surface expression of specific trans-
membrane proteins necessary for HIV infection69. Our study adds to
mounting evidence that SEC62 is important for viral infections, but
further investigation is warranted to interrogate if the mechanism
behind our SARS-CoV-2 finding is due to modulation of autophagy, ER
stress, and/or transmembrane protein translocation for cell-surface
expression. Finally, our systematic characterization of each genetic
perturbation revealed regulators of bystander activation. KEAP1,
GPR89A/B, and SPNS1, which were previously found to be protective
when knocked out5,7,9, did not alter infection dynamics within our
study. We speculate that knockout of these genes was identified as
protective in survival screens due to their lack of interferon sensitivity,
leading to protection from interferon-induced death5,9. Conversely, it
is possible that these contrary phenotypes are representative of the
different timeframes of our Perturb-seq experiments (24 hours) com-
pared to genetic survival screens (7+ days). While knockdown of
KEAP1, GPR89A/B, and SPNS1 initially decreased interferon stimulation
in our experiments, it is conceivable that these factors have a sec-
ondary role in protecting the population from infection in long-term
cultures. To further investigate how these factors alter infection
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dynamics and the innate immune response over the course of infec-
tion, experimentation indifferentmodelsof the respiratoryepithelium
is warranted.

While our Perturb-seq library was designed to include genes with
experimental evidence of roles in coronavirus biology, only ~13% of
these factors ultimately showed significant phenotypes during the first
24 hours of infection in our cell culture model. This underscores the
necessity for high-throughput orthogonal validation and character-
ization of host factors in different cell types.Wedo expect that specific
host factor perturbation phenotypes, in particular of factors acting at
the later stages of the viral life cycle such as virion assembly andegress,
cannot be resolved by Perturb-seq. Similarly, host factors that are
active only in rare subsets of cells, such as the interferon-producing
subpopulation, may be difficult for Perturb-seq to dissect without
increasing the scale of these experiments.

In summary, our study presents comprehensive transcriptional
profiling of SARS-CoV-2 infection dynamics, tests the effect of 183 host
factor perturbations on infection, and characterizes the host response
of each perturbation. Key advances of this work include the identifi-
cation of genes involved in bystander activation and functional vali-
dation of host dependencies factors of SARS-CoV-2. Our study
highlights the utility of Perturb-seq for large-scale systematic char-
acterization of host factors essential for pathogen infections and
establishes the groundwork for future mechanistic studies to investi-
gate how SARS-CoV-2 modulates both the NF-κB pathway and
translation.

Methods
Establishment and propagation of SARS-CoV-2 clinical isolate
SARS-CoV-2 (SARS-CoV-2/human/USA/CA-UCSF-0001H/2020) was
isolated, propagated, and plaqued on Huh7.5.1 cells overexpressing
ACE2 and TMPRSS29. Viral titer was determined using standard plaque
assaywith Avicel70 onHuh7.5.1-ACE2-TMPRSS2 cells. Isolated virus was
sequence-verified, lineage identified using PANGO71, and deposited
onto GISAID (accession ID: EPI_ISL_13689582). Additionally, SARS-CoV-
2 was mycoplasma negative (Lonza MycoAlert Mycoplasma Detection
Kit). All experiments in this study that utilized cultured SARS-CoV-2
were conducted in a biosafety-level 3 laboratory.

Cell culture
The CRISPRi Calu-3 cell line was generated by lentiviral delivery of
pMH0001 (UCOE-SFFV-dCas9-BFP-KRAB)19 (Addgene #85969) into
Calu-3 cells, followed by FACS sorting of BFP positive cells19,34. These
cells were grown in DMEM/F12 supplemented with 10% FCS, penicillin,
streptomycin, glutamine, and non-essential amino acids. Huh7.5.1 cells
overexpressing ACE2-TMPRSS2 and HEK293T cells were grown in
DMEM supplemented with 10% FCS, penicillin, streptomycin, and
glutamine. All cell types were maintained at 37 °C and 5% CO2. Calu-3
and HEK293T cells were obtained from the UCSF Cell and Genome
core. Huh7.5.1 cells overexpressing ACE2-TMPRSS2 were obtained
from Andreas Puschnik.

Library design and lentivirus generation
Our Perturb-seq library was designed to target coronavirus host fac-
tors which were compiled from the literature, primarily from proteins
physically interacting with coronavirus proteins, and from genes that
came up as hits in CRISPR screens for host factors. All targets, sgRNA
sequences, and host factor annotations are listed in Supplementary
Data 1. Guide selection and library cloning followed the design intro-
duced by Replogle et al.36,37. We used a lentiviral backbone (pJR101, a
variant of pJR85, Addgene #140095, with a GFP instead of BFPmarker)
which carries an additional Puromycin marker and allows the expres-
sion of two separate sgRNAs from different U6 promoters (human and
mouse, respectively) with two distinct sgRNA constant regions (CR1
and CR3, respectively) to remove homologous regions in order to

minimize recombination during lentiviral packaging. CR1/3 are further
engineered with ‘capture sequence 1’ to be compatible with 10x’s
direct guide capture technology of the non-polyadenylated sgRNAs36.
Guide oligos containing sets of two sgRNA sequences, separated by a
spacer region, were ordered from Twist Bioscience, PCR-amplified,
and cloned into pJR101 by ligation into the BstXI/BlpI restriction sites.
The BsmBI-flanked spacer was then replaced by a fragment amplified
from pJR98 (Addgene #140096), carrying the constant region of the
first sgRNA and the promoter for the second one. The resulting library
was sequenced to confirm proper guide sequences and abundance
distribution.

After initial library cloning was completed, we obtained new
screening data and designed an additional 24 sgRNAs, targeting 12
factors with 2 sgRNAs each. Those were cloned in an array into the
same pJR101 background as one-guide vectors (without the pJR89
drop-in). We then pooled the individually cloned sgRNA vectors with
the initial library at equimolar amounts of all library elements at the
DNA level. We used this combined library for lentiviral production as
described36. While analyzing our single-cell datasets, we observed that
the individually cloned library elements were overrepresented roughly
3-fold, which we attribute to higher lentiviral packaging efficiency due
to their slightly smaller size.

Perturb-seq
Calu-3CRISPRi cells were transducedwith our Perturb-seq library at an
MOI of ~0.1. Cells were puromycin-selected for 7 days, after which they
hadplateaued at ~93%GFP+ cells, followedby twomoredays of culture
without selection markers. Cells were seeded into a 12-well plate at
400,000 cells/well and on the following day infected with SARS-CoV-2
at an MOI of 4. Infection was performed either for 1 h, followed by a
media change (‘pulsed infection’) or without removal of the inoculum
(‘non-pulse’). After 24h, cells were washed with PBS, dissociated with
TrypLE Select Enzyme (10x, Thermofisher Scientific), washed, and
resuspended in 1× PBS with 0.04% BSA. Wild-type, uninfected Calu-3
cells were spiked at ~1% into the dissociated Calu-3 CRISPRi cells to
allow for analysis of ambient viral RNA.Manufacturer’s instructions for
the Chromium NextGEM Single-Cell V(D)J Reagents Kit v1.1 (10x
Genomics) were followed for preparation of gene expression libraries.
Modifications to the 10x single-cell sequencingprotocolweremade for
direct guide capturing and library preparation as previously
described36. Gene expression and guide libraries were subsequently
quantified on the Bioanalyer (Agilent) using the High Sensitivity DNA
kit, pooled, and sequenced on the Illumina NovaSeq 6000 (read1:
150 bp, read2: 150bp, index length: 8 bp).

Data analysis
Gene expression libraries were aligned using the 10x Genomics Cell-
Ranger v3.1.0 with default settings and aligned the hg38 reference
genome concatenated with the SARS-CoV-2 genome. For viral align-
ments, STARsolo (version 2.7.8a) was used to capture viral junction
sites. Cell barcode and UMI were identified for guide libraries using
CellRanger. Guides identity was assigned to single cells following the
Replogle et al. mixed model approach. Infection conditions were
combined for downstream analyses since there was not a statistically
significant distribution in guides between the conditions.

Scanpy was used for downstream cell filtering and analyses72. Cell
filtering was done to include only cells that have one-guide set per cell
and at least 55 cells per guide. Additionally, low-quality cells char-
acterized as the bottom2%of cells in total counts and cellswith greater
than 20% mitochondrial RNA were excluded.

We found the two populations with pulsed vs non-pulsed infec-
tion to exhibit very similar characteristics and combined them for all
downstream bioinformatic analyses (Supplementary Fig. 2G). For
assessing the effect of the host transcriptome in the setting of vastly
different library distributions, we performed experiments with and
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without viral sequences, and subsequently downsampled to the level
of infected cells and re-analyzed the data.

For clear identification of infected cells, ambient viral RNA was
evaluated in wild-type Calu-3 cells packaged into droplets. These WT
control cells were identified by selecting cells that lack Cas9, lentiviral,
and guide transcripts. We additionally selected cells that have at least
10,000 UMIs, which yielded 1082 cells for this analysis. In those cells,
we determined themean and standard deviation of the read counts of
all individual viral genes. Other cells were considered infected if they
had at least 6 viral transcripts at 2 standard deviations above themean
of WT cells, as well as more than twice the total viral transcript reads
per cell. Conversely, cells were considered uninfected if no viral gene
exceeded the 2 standard deviation threshold. A small proportion of
cells could not be clearly determined as infected or uninfected,
therefore we classified these cells as the borderline population
(designated cluster T in UMAP space).

Guide knockdown percentages were determined by calculating
the normalized count of target gene/non-targeting control. This ana-
lysis was limited to bystander cells to remove the effects of viral
antagonism, andwas subset to geneswith at least 0.5 UMI per cell after
normalization to remove low abundance or undetectable genes.

Cell cycle phases were determined following scanpy’s tutorial.
Similarly, single cells were also scored for interferon stimulation (ISG
score) using scanpy’s sc.tl.score_gene function. Differential expression
was performed by exporting scanpy’s count matrix to R, and subse-
quently performing MAST following Seurat’s tutorials73.

Orthogonal validation
For targeted follow-up, published protocols for guide design and
cloning into the lentiCRISPR v2 plasmidwere followed74. The following
sgRNA sequences were used:

ACE2: CAGGATCCTTATGTGCACAA;
NFKBIA: AGGCTAAGTGTAGACACGTG (Huh7.5.1), CTGGACGACC

GCCACGACAG (HEK293T);
EIF4H: CCCCCCTACACAGCATACGT; EIF4E2: TCATAGCTCTGTGA

GCTCGT.
Lentivirus was produced in HEK293Ts by co-transfecting pMD2.G,

DR8.91, and the lentiCRISPR v2plasmidwith the guide of interest using
TransIT-Lenti (Mirus Bio). Lentivirus-containing supernatant was col-
lected 48 hours after transfection, filtered, and frozen.

For orthogonal validation of host factors that alter viral infection,
Huh7.5.1-ACE2-TMPRSS2 cells were transduced with lentivirus in the
presence of polybrene. We next selected transduced cells for 72 hwith
puromycin. After 1 week, knockout cell lines were infected with SARS-
CoV-2 at an MOI of 3 for 20 hours in biological duplicates. Cells were
subsequently fixed in 4% paraformaldehyde for 30minutes, permea-
bilized with 0.2% Triton X, blocked with 5% BSA stained with primary
anti-NP (Sino Biological 40143-R001), and secondary goat anti-rabbit
IgG conjugated to Alexa Fluor 488 (Thermo Fisher Scientific A-11034).
Slides were mounted with DAPI Fluoromount-G (SouthernBiotech
0100-20) and imaged on a Nikon Ti inverted fluorescence microscope
(×4). Quantification of images was performed using CellProfiler 475.

To quantify infectious virus produced from our Huh7.5.1-ACE2-
TMPRSS2 CRISPR KO lines, we seeded cell lines in duplicate and
infected with SARS-CoV-2 at an MOI 0.05 at 37 °C. Viral inoculum was
removed after 1 hour. At 24 hpost infection, supernatantwas collected,
spun to remove cellular debris, and frozen at −80 °C. The infectious
titer produced by each cell linewas determined using the tissue culture
infectious dose (TCID50) assay. Briefly, supernatant for each cell line
was serially diluted and each dilution added to 10 wells of Huh7.5.1-
ACE2-TMPRSS2 cells. After 6 days, CPEwas determined bymicroscopy,
and the TCID50/mL calculated using the Reed-Muench formula.

To investigate the effect of NFKBIA knockout on NF-κB induction,
we generated NFKBIA knockout lines and controls in a background of

HEK293T cells expressing N-terminally mNG11-tagged RELA45. RELA-
tagged cell lines were transduced with lentivirus carrying Cas9 and
NFKBIA-targeting sgRNA and puromycin-selected for 1 week. Cells
were stimulated with recombinant TNF-α (50ng/ml; Abcam ab9642)
and imaged using confocal microscopy 25 and 45minutes after sti-
mulation. The imaging volume per field of view was 21 µm depth with
0.25 µmz-sectioning. During imaging, cells weremaintained in a stage-
top incubator (Okolab, H201-K-Frame) at 37 °C and 5% CO2. The ima-
ging was performed using a DMI-8 inverted microscope (Leica) with a
Dragonfly spinning-disk confocal (Andor) with a ×63 1.47 NA oil
objective (Leica). Images were acquired using a Prime BSI sCMOS
camera (Photometrics, pixel size = 6.5 µm× µm). Microscope control
was achieved with Micromanager version 2.0.076. Image visualization
was via napari v0.4.1677.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawand preprocessed data are available onGEO (GSE208240). Source
data are provided with this paper.
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