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Multimodal analysis of cell-free DNA whole-
methylome sequencing for cancer detection
and localization

Fenglong Bie 1,2,6, Zhijie Wang3,6, Yulong Li 4,6, Wei Guo 1,6,
Yuanyuan Hong4, Tiancheng Han4, Fang Lv4, Shunli Yang4, Suxing Li4, Xi Li4,
PeiyaoNie4, ShunXu5, RuochuanZang1,MoyanZhang1, PengSong1, Feiyue Feng1,
Jianchun Duan3, Guangyu Bai1, Yuan Li1, Qilin Huai1, Bolun Zhou1, Yu S. Huang 4,
Weizhi Chen4, Fengwei Tan 1 & Shugeng Gao 1

Multimodal epigenetic characterization of cell-free DNA (cfDNA) could
improve the performance of blood-based early cancer detection. However,
integrative profiling of cfDNA methylome and fragmentome has been tech-
nologically challenging. Here, we adapt an enzyme-mediated methylation
sequencing method for comprehensive analysis of genome-wide cfDNA
methylation, fragmentation, and copy number alteration (CNA) characteristics
for enhanced cancer detection. We apply this method to plasma samples of
497 healthy controls and 780 patients of seven cancer types and develop an
ensemble classifier by incorporating methylation, fragmentation, and CNA
features. In the test cohort, our approach achieves an area under the curve
value of 0.966 for overall cancer detection. Detection sensitivity for early-
stage patients achieves 73% at 99% specificity. Finally, we demonstrate the
feasibility to accurately localize the origin of cancer signals with combined
methylation and fragmentation profiling of tissue-specific accessible chro-
matin regions. Overall, this proof-of-concept study provides a technical plat-
form to utilize multimodal cfDNA features for improved cancer detection.

Cancer is becoming themost deadly disease, accounting for almost 10
million deaths around the globe in 20201. Detecting cancer early pro-
vides an opportunity for more effective therapeutic intervention,
which may reduce treatment morbidity and mortality. In recent years,
cfDNA-based liquid biopsy has gained prominent interest in early
cancer detection and diagnosis with its minimal invasiveness and the
potential to reveal tiny tumors. However, tumor-originated cfDNA, or
circulating tumor DNA (ctDNA), constitutes only a small fraction of
cfDNA2,3. The advancement of experimental and computational

methodologies to improve the signal-to-noise ratio for more sensitive
cancer detection remains a constant clinical need.

While geneticmutation is a hallmark of cancer4, plasmamutations
are challenging to detect given the low fraction of mutation-bearing
ctDNA fragments in early-stage disease or certain tumor types5,6. There
is also increasing evidence for the presence of somatic mutations in
non-malignant tissues7,8, whichmay hamper the specificity ofmutation
search for cancer detection. In contrast, epigenetic dysregulation is an
early-occurring event in tumorigenesis and involves widespread
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alterations of DNA methylation and chromatin organization in both
cancer cells and tumor microenvironment9,10. Compared with search-
ing point mutations, characterizing the vast number of plasma epige-
netic changes is expected to improve detection sensitivity, as shown
by recent studies about the promiseof cfDNAmethylation profiling for
cancer detection and localization11,12. However, conventional bisulfite-
based methylation sequencing severely damages DNA13, which is both
material consuming and inapplicable for profiling other informative
cfDNA features such as fragmentation.

Recently, a novel bisulfite-free method utilizing mild TET2 and
APOBEC3A enzymes was introduced for methylation detection of
genomicDNAwith reducedDNAdamage14. This nondestructive nature
opens up a potential avenue for simultaneous methylation and frag-
mentation analysis for enhanced cancer detection, although its utility
in cfDNA sequencing remains to be explored. Here, we adapted this
method for whole-methylome sequencing (WMS) of cfDNA extracted
from only 4ml of plasma and demonstrated proof that cfDNAWMS is
highly concordant with whole-genome sequencing (WGS) in frag-
mentation and coverage profiling. Moreover, all these genomic fea-
tures were readily detectable at low sequencing depth and thus
reducing sequencing cost.

To develop and validate a multicancer detection test, we applied
shallow WMS to plasma samples from a multicenter, case-control,
observational MONITOR (Multi-Omics Noninvasive Inspection of
TumOr Risk) study comprising seven common cancer types and
healthy controls (Supplementary Data 1). We developed computa-
tional methods to extract four types of cancer-associated features
across the plasma genome, including methylation15, fragment size16,
copy number alteration17, and fragment end motif18, and constructed
an ensemble machine learning classifier integrating all modalities for
distinguishing cancer patients from healthy controls with high sensi-
tivity across stages. By combinatorial analysis of methylation and
fragmentation signatures at cancer tissue-specific accessible chroma-
tin regions,wewereable to accurately locate the tissueorigin of cancer
signals. Overall, this proof-of-concept study provides a blood-based
approach, termed THEMIS (THorough Epigenetic Marker Integration
Solution), for sensitive and accurate multicancer early detection and
localization.

Results
Overview of THEMIS approach for cancer detection
Figure 1 illustrates the experimental and computational workflow of
cancer detection by THEMIS approach. Unlike bisulfite sequencing, we
adapted an enzyme-basedmethod14 to characterize thewhole-genome
methylome of cfDNA extracted from 4ml of plasma. This method
utilizes TET2 to protect methylcytosines from subsequent deamina-
tionbyAPOBEC3A,which converts unmodified cytosines to uracils.We
spiked-in unmethylated lambda DNA to estimate the conversion rate
of unmodified cytosine, and the 1,277 cfDNA samples included in the
MONITOR cohort had a median conversion rate of 99.4% (Fig. S1).
Although this method detects methylation at single-base resolution,
we subjectedWMS libraries to low-pass paired-end sequencing to limit
sequencing cost after determining the minimum required sequencing
depth in our pilot analysis. All uniquely aligned sequencing data were
randomly downsampled to 60 million properly paired reads (~2X
haploid genome coverage) for downstream analysis and model
development.

Given that the mild enzymatic reactions minimize DNA damage,
we sought to incorporate fragmentation and CNA features in addition
to methylation for enhanced cancer detection. We designed algo-
rithms to extract four epigenetic and genetic cancer features from
plasma cfDNA WMS data. To profile the genome-wide methylation
patterns, we divided the genome into 1846 nonoverlapping 1-Mb
segments and calculated the ratio of fullymethylated fragmentswithin
each window (Methylated Fragment Ratio, MFR). Similarly, position-

specific fragmentation characteristics were profiled as the ratios of
short (100–166 bp) to long (169–240bp) fragments for 502 non-
overlapping 5-Mb genomic windows (Fragment Size Index, FSI). To
enhance the signal of copy number alteration, we size-selected short
(<151 bp) and long (>220 bp) fragments which are more likely to ori-
ginate from cancer cells19,20 to quantify the copy number changes of
chromosome arms (Chromosomal Aneuploidy of Featured Fragments,
CAFF). In addition, the frequencies of 256 4-mermotifs at the 5′ end of
fragments were quantified (Fragment EndMotif, FEM). To improve the
performance of cancer detection, machine learning methods were
implemented for MFR, FSI, and FEM modalities, including support
vector machine (SVM) models for MFR and FSI, and a logistic regres-
sion (LR) model for FEM, after reduction of data dimensionality by
principal component analysis (PCA). Finally, an ensemble classifier
(THEMIS) was constructed using a regularized LR model to integrate
prediction results from the four individual modalities. We used the
output of the THEMIS model, which was termed the THEMIS score, to
predict a sample’s probability of having cancer,

Copy number and fragmentation profiling from cfDNA WMS
A major advantage of WMS over whole-genome bisulfite sequencing
(WGBS) is the ability to keep most DNA intact, which enables the
extraction of additional genetic and fragmentation information to
improve the sensitivity of cancer detection. We included a cohort of
220 healthy controls and 270 cancer patients of multiple types (Sup-
plementary Data 2) to evaluate copy number and fragmentation pro-
filing from cfDNA WMS data and assessed their concordance with
whole-genome sequencing (WGS) data of similar sequencing depth
(60M reads) generated with the same cfDNA samples. We first inves-
tigated the similarity of cfDNA copy number landscape between WMS
and WGS data. As observed for the plasma genome of an advanced
colorectal cancer (COREAD) patient GCP0088 (Fig. 2a) as well as
examples of other cancer types (Fig. S2a), WMS displayed highly
consistent copy number patterns withWGS in genomic bins of 100 kb.
We noted the same chromosome alterations frequently observed in
colorectal cancer, including gains of chromosomes 13 and 20 and
losses of chromosomes 4 and 1821, with both sequencing platforms
(Fig. 2a). We used a metric called plasma aneuploidy score (PA score)
which summarized copy number changes of the top five chromosome
arms17 to evaluate the aneuploidy level of a sample. Within the entire
cohort samples, PA scores were closely matched between WMS and
WGS data with a Pearson correlation coefficient (PCC) of 0.988 (95%
confidence interval (CI): 0.986–0.990) (Fig. 2b). These data confirm
the concordance between WMS and WGS in detecting cfDNA CNA.

Next, we investigated whether WMS could retain cfDNA frag-
mentation patterns, which displayed position-specific changes in the
distribution of fragment size in cancer patient plasma16,22. We defined
the coverage ratio of short to long fragments in 5-Mb windows along
the genome as fragmentation size index (FSI). Across the plasma
genome of Patient GCP0088 as well as patients of other cancer types,
similar fragmentation profiles were observed between WMS and WGS
data (Figs. 2c and S2b). Because cfDNA fragmentation profiles among
healthy individuals were highly consistent16, for each platform we
generated a reference FSI profile from healthy controls by taking the
median FSI value of each window. We then measured the similarity of
each sample’s FSI profile to the reference profile with PCC as a proxy
for fragmentation pattern. Among all cohort samples, WMS PCCs and
WGS PCCs showed high concordance with a correlation coefficient of
0.961 (95% CI: 0.954–0.968) (Fig. 2d). These data demonstrate that
WMS can retain faithful cfDNA fragmentation signature.

Plasma methylation, fragmentation, and CNA profiles provide
complementary cancer-associated signals
Themultimodal genomic features we profiled may represent different
molecular alterations underlying tumorigenesis23. To investigate
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whether these features couldprovide complementary signals in cancer
detection, we analyzed the associations among fragmentation (FSI),
methylation (MFR), and CNA profiles of 1,795 1-Mb nonoverlapping
windows along the plasma genome of 20 healthy controls and 20
colorectal cancer samples (Supplementary Data 3). For each feature,

z-score over healthy controls was shown for each window after
quantile-normalization with healthy controls (Fig. 3a–c). Compared
with healthy controls, cancer patient plasma genome exhibited both
increases and decreases in the signals of all three features spanning
broad regions. We then analyzed the number of commonly altered

Fig. 1 | Overview of THEMIS approach for cancer detection based on plasma
whole-methylome sequencing. Schematic illustration of the experimental and
bioinformatics procedures. Blood samples were collected from cancer patients or
noncancer control donors. Plasma cfDNA was extracted from the participant’s
blood sample and subject to low-pass WMS using TET2 and APOBEC enzymes for
cytosine conversion. Four modalities were extracted from uniquely mapped WMS

sequencing reads, including Methylated Fragment Ratio (MFR), Fragment Size
Index (FSI), Chromosomal Aneuploidy of Featured Fragments (CAFF), and Frag-
ment End Motif (FEM). An ensemble model integrating prediction scores from all
four modalities was constructed to yield the final probability of having cancer,
termed THEMIS score, for a sample.
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genomic windows which were more than two standard deviations
away from healthy controls in at least half of the control or cancer
samples (Fig. 3d). We found a large fraction of commonly altered
windows among COREAD samples for all features: 10.6% for FSI, 35.5%
for MFR, and 40.2% for CNA.

To quantify the associations among the three features, we
calculated their pairwise PCCs along the genome of each cancer
patient. Consistent with previous findings that genomic regions
with CNA exhibit more dramatic fragmentation alterations16,22,
positive correlations between FSI and CNA profiles were noted for
most patients with a median PCC = 0.350 (Fig. 3e). In contrast, MFR
and CNA profiles were mostly anti-correlated with a median PCC =
−0.276 (Fig. 3f), probably due to global hypomethylation of the
tumor genome15. These associations likely result from differential
fractions of ctDNA in the circulating cfDNA pool shed from CNV-
positive regions. FSI and MFR profiles showed weak correlations in
either direction (median PCC = −0.087; Fig. 3g), which might imply
complex relationships between cfDNA fragmentation and methy-
lation that remain to be elucidated. Overall, these modest to
weak associations among different feature types suggest that
these data modalities can provide both concordant and com-
plementary information, supporting the notion that integrative
analysis can potentially enhance the detection power of cancer-
associated signals.

Extraction and integration of cancer-associated multimodal
genomic features from cfDNA WMS for multicancer detection
To develop and validate the computational approaches for multi-
cancer detection utilizingWMS-derived cancer genomic features, we
applied WMS to plasma cfDNA samples from the MONITOR study,
which comprised 780 previously untreated cancer patients and 497
healthy controls recruited from six hospitals. Visualization of healthy
controls and each cancer type by t-Distributed Stochastic Neighbor
Embedding (tSNE) with each feature suggested no obvious batch
effects among the hospital source (Fig. S3). We randomly split the
1277 samples into a training cohort and an independent test cohort at
a ratio of 7:3. The training cohort included 352 healthy controls and
542 cancer patients (46 breast (BRCA), 105 colorectal (COREAD),
42 esophageal (ESCA), 78 liver (LIHC), 110 lung (NSCLC), 83 pan-
creatic (PACA), and 78 gastric (STAD) cancers), 35.1% ofwhichwere at
early stages (stage I or II). The test cohort consisted of 145 healthy
controls and 238 cancer patients (20 BRCA, 45 COREAD, 19 ESCA,
35 LIHC, 47 NSCLC, 36 PACA, and 36 STAD), including 34.5% early-
stage disease. With the entire MONITOR cohort, we obtained an
overview of the pan-cancer plasma epigenome including DNA
methylation (MFR) and fragmentation (FSI and FEM), as well as a pan-
cancer CNA landscape (CAFF). Visualization of all four individual
genomic features by tSNE plots showed clear separation of cancer
patients from healthy controls, supporting their utility for cancer

Fig. 2 | Concordance between WMS and WGS in cfDNA copy number and
fragmentation profiling. a, c depict the genome-wide CNA and FSI profiles of a
colorectal cancer patient GCP0088 as anexample.b,d analyze225 healthy controls
and 287 cancer patients for cohort-level comparison. a Log2 ratio over the mean
baseline coverage in 100-kbbins across the genomeof PatientGCP0088profiledby
WGS andWMS respectively. Bins with log2 ratio above 0.3 (copy number gains) are
colored in red, and bins with log2 ratio below −0.3 (copy number loss) are colored
in green. b Scatter plot of PA scores derived from matched WGS and WMS data of
all samples. The regression line is colored in red. Pearson correlation coefficient (R)
of 0.988 (95% confidence interval: 0.986–0.990) and the p value (<2.2 × 10−6,

two-sided) are indicated on the plot. c FSI of 5-Mb windows across the genome of
Patient GCP0088 profiled by WGS and WMS respectively. The coverage ratio of
short to long fragments for each bin is normalized by z-score across the genome.
Patient FSI profile is colored in black against 225 gray healthy reference FSI profiles.
d Scatter plot of Pearson correlations between FSI profiles of individual samples
with the reference FSI profile, assessed with WGS and WMS data respectively. The
regression line is colored in red. Pearson correlation coefficient (R) of 0.961 (95%
confidence interval: 0.954–0.968) and the p value (<2.2 × 10−6, two-sided) are
indicated on the plot. Source data are provided as a Source Data file.
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detection. Moreover, cancer samples of the same types appeared to
be separable by methylation, fragmentation size, and CNA profiles,
suggesting that these features may have cancer type-specific sig-
natures despite the arbitrary segmentation of the genome for MFR
and FSI profiling (Fig. 4a). As expected, the clustering of cancer types
wasmore conspicuous in late-stage (III and IV) than early-stage (I and
II) samples, but separation of early-stage cancers from healthy con-
trols was still discernible (Fig. S4). This result suggests the potential
of these features for sensitive cancer detection across both early and
advanced disease stages.

We implemented machine learning methods for MFR, FSI, and
FEM to increase the sensitivity of cancer detection and all models were
trainedwith samples from the training cohort only. To reduce the high
dimensionality of feature space relative to the number of samples,
principal component analysis (PCA) was performed for MFR, FSI, and
FEM respectively and the top principal components (PCs) explaining
most of the data variance were used as input features for model
development. The performance of classification between can-
cer patients and healthy controls was assessed with receiver operator
characteristic (ROC) analysis in the test cohort (Fig. 4b). A support
vector machine (SVM) model was trained for MFR and achieved the
highest classification power with an area under the curve (AUC) value
of 0.947 (95% CI: 0.926–0.969) for the detection of all seven cancer

types combined, followedby FEMwith a logistic regression (LR)model
(AUC: 0.935, 0.911–0.958) and FSI with SVM (AUC: 0.906,
0.877–0.934). Whole-genome copy number alteration was quantified
by PA score and had the lowest AUC value of 0.861 (0.825–0.897),
perhaps suggesting that plasma CNA is a less sensitive feature for
cancer detection. Each modality showed variable detection perfor-
mances among individual cancer types as shown by ROC plots and the
distribution of prediction scores (Figs. S5–S8, Panels a and b). Never-
theless, prediction scores increasedwith advancing cancer stage for all
modalities, suggesting the association between extracted feature
signal and tumor grade (Figs. S5–S8, Panel c). In addition, prediction
scores of the four modalities showed moderately strong positive
pairwise correlations (Fig. S9), suggesting both the concordance and
complementariness among different features.

To further boost the performance of the multicancer predictive
model, we constructed the ensemble THEMIS classifier with a reg-
ularized LR model to integrate all four modalities. In this model, the
predictive probabilities of MFR, FSI, and FEM, along with log10 trans-
formed CAFF PA scores were used as the input features, and the beta
coefficients for MFR, FSI, CAFF, and FEM were 0.33, 0.34, 0.06, and
0.58 respectively, which represented the relative contribution of each
modality. THEMIS outperformed individual modalities with a higher
overall AUC value of 0.966 (95% CI: 0.950–0.982) in the test cohort

Fig. 3 | Associations among plasma fragmentation, methylation, and CNA
profiles. A total of 20 healthy controls and 20 advanced colorectal cancer patients
are analyzed. a–c Z-scores of FSI, MFR, and CNA profiles in 1795 non-overlapping
1-Mb windows across the genome (row) of healthy and cancer patient individuals
(column). Genome windows are ordered by coordinates from chromosome 1 to
chromosome 22. d For each feature type, genomic windows are indicated in red if

more than half of the healthy controls ormore thanhalf of the cancerpatients have
z-scores above 2 and in blue if z-scores are below −2. e–g Distributions of Pearson
correlations between the genome-wide FSI and CNA (e), MFR and CNA (f), and FSI
and MFR (g) profiles for cancer patients. Source data are provided as a Source
Data file.
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(Fig. 4b). At a threshold of 99% specificity, THEMIS reduced the
number of healthy individuals misclassified as cancer patients (false
positives) and increased the number of cancer patients correctly
identified (true positives) (Fig. 4c). These results confirm our hypoth-
esis that integrative analysis of multimodal cancer genomic features
can improve both the detection specificity and sensitivity over profil-
ing individual features alone.

To investigate the minimum required sequencing depth, we ana-
lyzed 773 MONITOR samples (including 306 healthy controls and 467
cancer samples) sequenced at high depth and performed a down-
sampling experiment with a range from 120M to 3M reads. At each
depth, we kept the original training or test group assignment for these
samples and evaluated the classification performance for individual
modalities and the THEMIS model following the original analysis

Fig. 4 | Cancer detection by multimodal analysis of cfDNAWMS data.
a Visualization of individual modalities by tSNE plots (n = 1277). Healthy control
individuals and patient samples from different cancer types are annotated by
shapes and colors. b Receiver operator characteristics for the classification of
cancer patients (training n = 542; test n = 238) from healthy controls (training
n = 352; test n = 145) by individualmodalities and the integrative THEMISmodel for
the training and the test cohort respectively. The 95% confidence intervals (CIs) for

AUCs are calculated with 2000 stratified bootstrap replicates. c Venn diagrams
depicting the number of healthy individuals misclassified as cancer patients
(false positives) and the number of cancer patients correctly identified (true
positives) at a specificity of 99% by individual modalities and THEMIS. Samples
from both the training and the test cohort are included. Source data are provided
as a Source Data file.
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pipeline. For MFR, FSI, and FEM, we found an inverse relationship
between sequencing depth and the number of PCs to explain data
variance (Fig. S10a), suggesting that increasing sequencing depth may
improve the signal-to-noise ratio for feature extraction. Accordingly,
overfitting of both individual and integrative models was notable at
lower depth (Fig. S10b). With 60M reads, model performance reached
plateau without obvious overfitting, indicating that 60M reads were
required by THEMIS for reliable feature extraction and model
development.

Performance of THEMIS for multicancer early detection
THEMIS achieved high AUC values in the detection of all seven types
of cancer ranging from 0.938 for BRCA (95% CI: 0.847–1.000) and
LIHC (95% CI: 0.890–0.987) to 0.990 (95% CI: 0.979–1.000) for
COREAD in the test cohort (Fig. 5a). Remarkably, THEMIS main-
tained consistent AUC values between the training and the test
cohort for every cancer type, suggesting minimal overfitting of the
ensemble classifier. At a specificity of 99%, THEMIS correctly clas-
sified 440/542 (81% sensitivity; 95% CI: 78–84%) cancer patients in
the training cohort versus 197/238 (83% sensitivity; 95% CI: 77–87%)
in the test cohort (Figs. 5b and S11a). As with individual modalities,
the prediction score and detection sensitivity of THEMIS increased
with increasing clinical stage (Figs. 5b and S11b), implying that
cancer-like signals profiled by THEMIS closely correlated with tumor

load. Particularly, the overall detection sensitivity of THEMIS for
early-stage (I and II) cancers was 74% (95% CI: 67–79%) and 73% (95%
CI: 63–82%) in training and test, respectively.

To investigate the clinical sensitivity of our approach more pre-
cisely, we adopted the concept of clinical limit of detection (cLOD)24 to
evaluate classifier performance.We used a customized 769-gene panel
to calculate the variant allel frequency (VAF) of 65 plasma samples
from the MONITOR cohort with available paired tumor tissue and
white blood cell (WBC) samples, and single nucleotide variant (SNV)
was detected in both tissue and cfDNA after removal of WBC back-
ground. We defined the clinical LOD as the mean VAF at which
the probability of positive cancer signal detectionwas at least 50%with
a 99% specificity. The cLOD of the THEMIS classifier (1.5 × 10−3 mean
VAF, 95% CI: 2.8 × 10−4–3.7 × 10−3) was lower than individual modalities
(Fig. S12), again supporting our hypothesis that feature integration can
boost detection sensitivity.

To evaluate the robustness of the classifiers to potential batch
effects for prospective clinical application, we investigated the
impact of sample source on model performance by selecting train-
ing and testing samples collected from different sites. Specifically,
all cancer (except BRCA) and healthy cohorts in our data were
recruited from two to four hospitals (Supplementary Data 4) and
therefore, for each non-BRCA cancer or healthy cohort, samples
from one hospital were used formodel testing and samples from the

Fig. 5 | THEMIS performance for multicancer detection. a Receiver operator
characteristics for the classification of cancer patients from healthy controls by
THEMIS in the training (healthy n = 352; cancer n = 542) and the test (healthy
n = 145; cancer n = 238) cohort split by cancer type. The 95% confidence intervals
(CIs) for AUCs are calculated with 2000 stratified bootstrap replicates. bDetection
sensitivity of individual cancer types by clinical stage. Sensitivity at a specificity of

99% is depicted with bar charts. Error bars represent 95% Wilson confidence
intervals. The numbers of samples in the training and the test cohort for each
stage are indicated below the plots and separated by a vertical line. Cancer samples
with unknown stages are omitted from display. Source data are provided as a
Source Data file.
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remaining hospitals for model training. This scheme yielded a total
of 384 split-by-hospital combinations, and we implemented feature
extraction and model training for each combination. We observed
comparable AUCs among the 384 combinations for individual
modalities and the integrative THEMISmodel (Fig. S13a), suggesting
little impact on classifier performance by sample collection site.
Instead, we found that model performance appeared to be inversely
correlated with the proportion of early-stage (I or II) cancer patients
in each combination (Fig. S13b), consistent with the notion that
cancer detection power is dependent on ctDNA fraction in
the blood.

Methylation and fragmentation profiles of accessible chromatin
regions inform the tissue origin of cancer signals
With static genome sequence, the epigenome is cell type and tissue
specific andmay inform the origin of circulating cfDNA11,12,16. The utility
of cfDNA methylation in tumor localization has been recently shown
by targeted sequencing11 or immunoprecipitation enrichment12. Unlike
thesemethods, analysis of single CpGs is beyond the scope of shallow
WMS data despite its base-pair resolution. Recently, the chromatin

accessibility landscape of 23 primary cancer types was profiled by
ATAC-seq assay using TCGA samples23. Many of the ATAC-seq peaks
overlap TSS-distal regulatory elements such as enhancers, which play
critical roles in oncogenesis and cancer type specificity25,26. Therefore,
these ATAC peaks were grouped into 18 clusters by cancer tissue
specificity23, which allowed us to profile the cfDNA methylation and
fragmentation patterns within accessible cis-regulatory elements for
localization of cancer signal origin (CSO). To develop the multicancer
CSO classifier, we used cancer samples detected by THEMIS at 100%
specificity, which included 289 training and 139 test samples. For each
sample, we characterized the mean cfDNA methylation and the
aggregate coverage of short (100–166 bp) and long (169–240bp)
fragments within all ATAC-seq peaks of each cluster. We observed
lower methylation of ATAC-seq clusters in relevant cancer types
compared with other cancers (Fig. 6a), which is consistent with pub-
lished reports on the anticorrelation between DNA methylation and
chromatin accessibility23,27 and provides orthogonal validation of the
tissue specificity annotated for ATAC-seq clusters. For example,
COREAD samples were notably hypomethylated in Cluster 2 (Colon)
and both COREAD and STAD samples were hypomethylated in Cluster

Fig. 6 | Classification of cancer signal origin. a Heat maps of p values (one-sided
Wilcoxon test) of methylation levels, short fragment coverage, and long fragment
coverage of each ATAC-seq cluster between individual cancer types and other
cancers in the training cohort. Each feature is normalized as described in “Meth-
ods”. Training cancer samples correctly identified as true positives by THEMIS
score at 100% specificity are used for analysis, including 30 BRCA, 49 NSCLC, 24
ESCA, 38 STAD, 65 COREAD, 46 LIHC, and 37 PACA samples. b Confusion matrices

representing the accuracy of CSO localization in the training and the test cohort.
Color corresponds to the proportion of predicted CSO calls. Test cancer samples
correctly identified as true positives by THEMIS score at 100% specificity are used
for evaluationof theCSOclassifier, including 14BRCA, 17NSCLC, 10 ESCA, 21 STAD,
33 COREAD, 25 LIHC, and 19 PACA samples. Closely associated cancer types are
enclosed within squares. Source data are provided as a Source Data file.
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13 (Digestive). Likewise, BRCA and NSCLC samples had lower methy-
lation in Cluster 3 (Non-basal breast) and Cluster 12 (Lung), respec-
tively.We also observed lower coverage of short and long fragments in
cancer relevant clusters (Fig. 6a), suggesting increased chromatin
accessibility in these regions. Based on these three features, the seven
cancer types investigated by this study were classifiable using a ran-
dom forest algorithm. This model correctly localized 153/289 (53%,
95%CI: 47–59%) cancer samples in the training cohort and 75/139 (54%,
95% CI: 46–62%) cancer samples in the test cohort (Fig. 6b). Not sur-
prisingly, some of the misclassified samples were assigned into highly
associated tissues. For example, gastric cancers were frequently mis-
classified as colorectal cancer. We therefore combined closely asso-
ciated cancer types for evaluating the accuracy of CSO assignment,
including merging ESCA, STAD, and COREAD into a digestive tract
cancer group and merging LIHC and PACA into a hepatopancreatic
cancer group. After this grouping, our CSO classifier achieved an
accuracy of 183/289 (63%, 95% CI: 58–69%) for the training cohort and
90/139 (65%, 95% CI: 57–72%) for the test cohort.

Discussion
In this study, we developed a multicancer detection and localization
approach, THEMIS, by leveraging crucial tumor genetic and epigenetic
characteristics with shallow plasma WMS. We showed proof that the
mild enzyme-based WMS platform is applicable for cfDNA fragmenta-
tion and coverage analyses, which enables simultaneous profiling of
multiple types of cancer genomic features such as methylation, frag-
mentation, and CNA. We integrated these modalities and built an
ensemble classifier for cancerdetection,which achievedhigh sensitivity
across disease types and stages. We also profiled plasma methylation
and fragmentation patterns at cancer tissue specific accessible chro-
matin regions, which allowed us to accurately localize the origin of
cancer signals. Together, these results demonstrate the promising
clinical utility of THEMIS inmulticancer early detection and localization.

Several blood-basedmulticancer detection approaches have been
recently published, including targeted methylation sequencing11,
immunoprecipitation-based methylation enrichment12, genome-wide
fragmentation profiling16, and detection of mutation and serum pro-
tein biomarkers28. The advent of enzymatic reaction based methyla-
tion sequencing allows for simultaneous analysis of additional cfDNA
epigenetic features besides methylation, as validated for nucleosome
footprint analysis by cfNOMe29 and for fragmentation and CNA pro-
filing by this study. While both cfNOMe and THEMIS employed the
same enzymatic methylation sequencing assay, cfNOMe profiled a
small cohort of cfDNA samples from renal disease patients with high
fraction of circulating kidney-derived DNA (>1%). By contrast, THEMIS
was developed with a large clinical cohort of multicancer patients
wherein the fraction of circulating tumor DNA can be lower than 0.1%
in early-stage patients. Therefore, the application of cfNOMe for can-
cer detection remains to be investigated. In addition, compared with
THEMIS, much higher sequencing depth was needed by cfNOMe to
reliably analyze nucleosome footprinting, which may limit its cost-
effectiveness for clinical application. Recently, the concept of inte-
grating multiple types of cancer features for more sensitive ctDNA
detection has also been explored by another bisulfite-free whole-
genome methylation sequencing method cfTAPS30. Unlike cfTAPS
which employed a lengthy incubation step with pyridine borane to
convert 5caC to DHU, the enzyme-based WMS assay is anticipated to
bemore robust because it is potentially less sensitive to fluctuations in
experimental conditions. Also, in contrast to the deep sequencing of
cfTAPS for methylome analysis30, THEMIS model was developed on
low-pass sequencing with only 60 million paired reads (~2×genome
coverage) to control sequencing cost, and the performance and gen-
eralization capacity of both individual modalities and the integrative
THEMIS model were thoroughly evaluated with a large clinical cohort
comprising sevenmajor cancer types across all stages. Together, these

technical advances over similar studies highlight the potential of
THEMIS for real-world clinical application.

A blood-based multicancer detection test presents several major
advantages over currently available imaging-based diagnostic proce-
dures, such as the ability to detect small and early tumors, the
reduction of accumulative false positive rates for screening multiple
organs, and improved patient compliance with its minimal invasive-
ness. Therefore, THEMIS is intended for a general screening popula-
tion with low to average cancer risk, which requires a sufficiently high
specificity to minimize the false positive rate (FPR). At a fixed training
specificity of 99%, THEMIS had an overall sensitivity of 83% in the test
cohort. When applied to a populationwith a 1.5% cancer incidence rate
per year (which approximates the cancer incidence rate for people
over 50 years old in the United States in 201931), THEMIS would the-
oretically detect 1245 true positives and result in 985 falsepositives per
100,000participants, yielding a positive predictive value (PPV) of 56%.
Although a prospective screening study is needed to precisely inves-
tigate the PPV of our approach, this preliminary PPV calculation
demonstrates the potential of THEMIS for population-level cancer
screening with minimized risks of false positives.

The concentration of ctDNA is generally low especially in early-
stage disease. To more sensitively capture weak tumor signals,
machine learning methods are frequently implemented in published
studies which are prone to overfitting issues arising from technical and
biological noises. Although additional functional validations may be
needed to further prove the fidelity of feature extraction andmodeling
by THEMIS, multiple lines of evidence suggest that THEMIS char-
acterizes bona fide tumor-derived signals. First, because alteration of
genome copy number is a highly cancer-specific event17,32,33, CNA may
beutilized to confirm thefidelity of cancer signalswedetected. Indeed,
we observed strong correlations between fragmentation and copy
number in COREAD samples, consistent with other studies16,22,34. We
also noted anticorrelations between methylation and copy number,
consistent with the global hypomethylation of tumor DNA15. Second,
we noticed consistent cancer detection performance between the
training and the test cohort with both the base models of individual
modalities and the integrative THEMIS model. To estimate variability
of the classifiers, we performed 100 random splits of the MONITOR
cohort into training and test cohorts at the fixed ratio of 7:3 and
implemented feature extraction andmodel development for each split.
Model AUCs were highly consistent between the training and the test
cohorts per run as well as over the 100 runs for all classifiers (Fig. S14),
demonstrating the stability of our approach. Finally, prediction scores
and detection sensitivity of THEMIS increased with increasing disease
stage. These results imply that signals detected by THEMIS likely ori-
ginates from tumor cells instead of background noise.

Localizing the origin of cancer signal is a crucial component of a
multicancer test to guide follow-up diagnostic workups. Tissue speci-
ficity has been reported for multiple plasma epigenetic features
including methylation, fragmentation, and nucleosome footprint11,16,35,
amongwhich deep targetedmethylation sequencing showed themost
robust CSO classification performance11. Considering the low depth of
our WMS approach, THEMIS adopted an alternative strategy by
employing epigenetic features of the large number of tissue specific
accessible chromatin regions, most of which are putative noncoding
regulatory elements such as enhancers23. As expected for open chro-
matin, we observed reduced DNAmethylation and fragment coverage
in most cancer type-relevant clusters (e.g., Cluster 2 for COREAD) in
plasma, which suggests the concordance between tumor tissue and
plasma epigenome. A notable exception is Cluster 9 (Liver), withwhich
we only observed weakly reduced methylation in our LIHC samples.
This might result from heterogeneity in the etiology of liver cancer
between the Western and Chinese populations analyzed in the two
studies, which are primarily driven by alcohol consumption and HBV
infection, respectively. The coverage of short and long fragments for
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Cluster 9, however,was significantly reduced inour LIHC samples. This
discrepancy between DNA methylation and fragmentation patterns
requires further investigation; nevertheless, it demonstrates the utility
of multimodal epigenome profiling for more comprehensive under-
standing of the regulatory mechanism underlying tumorigenesis as
well as for more sensitive ctDNA detection. One of the main limits to
our current CSO performance is probably the diversity of types, sub-
types, and etiologies of available cancer chromatin accessibility data-
sets and therefore, this study mainly presented a proof of concept for
the feasibility of CSO classification by shallow WMS using integrative
epigenetic profiling of regulatory elements. In addition, although
accessible regulatory elements generally tend to be hypomethylated,
the clustering of ATAC-seq peaks by methylation profiles may be fur-
ther refinedwith cancer tissuemethylation datasets. We anticipate the
availability of chromatin accessibility as well as methylation datasets
from more diverse cancer types, subtypes, and etiologies to facilitate
the refinement of our CSO marker selection and the improvement of
prediction accuracy.

Despite the proof of concept for a sensitivemulticancer detection
and localization approach, this study has several limitations. Due to the
small sample size, participant demographics were not completely
matched between cancer patients and noncancer controls. Also,
although our approach displayed high sensitivity for early-stage can-
cers, further assessment is needed considering the relatively limited
size of early-stage samples in the cohort. In addition, we lack complete
one-year follow-up information for participants considered healthy at
the time of writing this manuscript, therefore we cannot rule out the
possibility that some control individuals bear early-stage cancer thus
overestimating the false positive rates of the models. Because this is a
retrospective case-control study, precise assessment of the real-world
performance of THEMIS (including sensitivity, specificity, PPV, etc.)
and the establishment of its clinical utility require future investigations
in a larger prospective screening cohort with complete long-term
follow-up.

Methods
The ethics committee of National Cancer Center approved the pro-
tocol of this study (NCC–007821), and our research complies with all
relevant ethical regulations. All participants gave their written
informed consent for research use.

Study design and participants
Plasma samples of the MONITOR cohort were prospectively collected
from 497 healthy donors and 780 patients with breast, colorectal,
esophageal, gastric, liver, lung, or pancreatic cancers of various stages
and analyzed retrospectively. Participants were enrolled from six
hospitals including the Cancer Hospital Chinese Academy of Medical
Sciences. Participant sex was not considered in the study design.
Individuals were considered healthy if they had no previous history of
cancer and negative clinical diagnosis at the time of administration.
Plasma samples from cancer patients were obtained before tumor
resection or therapy. Participants of the MONITOR cohort were ran-
domly assigned into a training cohort and a test cohort at a ratio of 7:3.
Clinical information of participants including age, gender, and disease
stage were summarized in Supplementary Data 1. Patients with
unknown disease stage were indicated as stage NA.

Isolation of plasma cfDNA
Plasma samples were isolated from 10ml of peripheral blood collected
and stored in Cell-Free DNA Storage Tube (Cwbiotech). Blood was
centrifuged at 1600 × g for 10min at 4 °C and plasma was transferred
to new 1.5ml tubes (AXYGEN). A second centrifuge was performed at
16,000× g for 15minat4 °C to remove remaining cell debris and a total
of ~4ml of plasma was obtained and stored at −80 °C until use. cfDNA
was extracted using MagMAX Cell-Free DNA Isolation Kit (Thermo

Fisher Scientific, Catalog# A29319) permanufacturer instructions. The
quantity and quality of extracted cfDNAwas assessedwith Bioanalyzer
2100 (Agilent).

Whole-methylome sequencing of plasma cfDNA
The entire amount of extractedplasma cfDNA (capped at 30 ng ifmore
was extracted) was used to generate WMS libraries with NEBNext
Enzymatic Methyl-seq Kit (New England Biolabs, Catalog# E7120) per
manufacturer instructions with the modification that 100ng of carrier
RNA (TIANGEN, Catalog# CA-310/PA-310) was added before dena-
turation by sodiumhydroxide. Librarieswere amplifiedwith 9 cycles of
PCR reactions and quantified usingQubit dsDNAHSAssay Kit (Thermo
Fisher Scientific). Libraries were sequenced on NovaSeq 6000 (Illu-
mina) with read length of paired-end 100 bp.

Methylation sequencing data processing
Methylation sequencing reads were demultiplexed by Illumina
bcl2fastq (v2.20.0) and adapters were trimmed by Trimmomatic
(v0.36). Reads were aligned against the human reference genome
(hg19) and deduplicated by BisMark (v0.19.0)36. Samtools (v1.3) and
BamUtil (v1.0.14) (https://github.com/statgen/bamUtil) were used for
sorting and overlap-clipping of mapped reads. Reads with mapping
quality below 20 were filtered out. To normalize for sequencing depth
among samples, 60 million paired reads were randomly selected from
each sample and used for downstream analyses.

Copy number profiling
Hg19 autosomes were divided into adjacent, nonoverlapping 100-kb
bins and the coverage of each bin was calculated. A LOESS-based
method17 was applied to correct for coverage bias related with GC
content of the reference genome. Bins overlapping the Duke black-
listed regions (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
encodeDCC/wgEncodeMapability/) or the hg19 gap track (down-
loaded from UCSC Table Browser) were prone to lowmapping quality
and removed from analysis. Bins with original coverage over 100 but
zero coverage after GC-correction were also excluded. To remove bins
with copy number variations among healthy controls, we calculated
the z-score of each GC-corrected bin over the 352 healthy controls in
the training cohort (i.e., baseline samples). Bins with absolute z-scores
above two amongmore than60baseline samples or above four among
any baseline samples were filtered out.

Fragment size index (FSI)
To profile differences in cfDNA fragmentation size between cancer
patients and healthy controls, the frequency of each fragment size was
calculated for individual samples and Wilcoxon one-sided test was
performed between cancer samples and healthy controls in the train-
ing cohort to select for differentially represented fragment sizes
(Fig. S15). At a p value threshold of 0.01, most fragment sizes within
50–300bp exhibit frequency differences except 167–168 bp and
241–259 bp. Therefore, fragments within 100–166 bp were considered
as short fragments and fragments within 169–240 bp were considered
as long fragments. The ratio of short to long fragment counts was
defined as fragment size index (FSI).

To characterize the genome-wide FSI profile, hg19 autosomes
were divided into 100-kb A/B compartments representing open and
closed chromatin regions37 and those overlapping theDukeblacklisted
regions or the hg19 gap track were removed from analysis. Counts of
short and long fragments within each bin was calculated and the ratios
of short to long fragment counts were corrected against GC content of
the reference genome using a LOESS-based method17. After merging
adjacent 100-kb bins, genome was segmented into 502 nonoverlap-
ping 5-Mb windows (Supplementary Data 5) and the FSI of each 5-Mb
window was defined as the average of its overlapping GC-corrected
100-kb FSI values.
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Methylated fragment ratio (MFR)
Hg19 autosomes were tiled into 1846 adjacent, nonoverlapping 1-Mb
windows after filtering out genomic regions overlapping the Duke
blacklisted regions or thehg19 gap track (SupplementaryData 6). Read
pairs were merged into fragments and those failing to meet the fol-
lowing criteria were discarded: (1) Fragment covers at least 3 CpGs. (2)
Fragment length is between 80 and 250bp, which is the size range of
most cfDNA molecules. (3) Conversion rate of non-CpG cytosines
exceeds 95%. The methylation level of each 1-Mb window was quanti-
fied by the fraction of fragments with fully methylated CpGs, or
methylated fragment ratio (MFR).

Associations among fragmentation, methylation, and copy
number profiles
The 1846 1-Mb windows determined by MFR analysis were used to
investigate the associations among methylation, fragmentation, and
CNA across the genome. The FSI of each window was calculated as the
averageGC-corrected FSI values of its overlapping 100-kbbins. For CNA
analysis, the coverage of each window was calculated as the total GC-
corrected coverage of its overlapping 100-kb bins. Because of themore
stringent filtering criteria for CNA analysis, 1795 windows were even-
tually kept for association studies. Each feature type for a sample was
quantile-normalized with that of healthy controls. A z-score was calcu-
lated for each bin over the corresponding bins of healthy controls.

Chromosomal aneuploidy of featured fragments (CAFF)
CAFF analysis followed the same procedures as CNA profiling except
that fragments shorter than 151 bp or longer than 220bp were
extracted for coverage analysis to increase the presence of tumor-
derived abnormal fragments19,20. The coverage of each chromosome
arm was calculated by summing the GC-corrected coverage of all its
100-kb bins. To summarize chromosome arm-level copy number
changes, we adopted a previously described approach to calculate the
plasma aneuploidy (PA) score of each sample using the five chromo-
somearms exhibiting themost dramatic copynumber alterations from
baseline samples17.

Fragment end motif (FEM)
The 4-nucleotide (i.e., 4-mer) fragment 5′ end motif was extracted as
previously reported18 with the following modifications: (1) Fragments
shorter than 171 bp were selected for analysis. (2) Only reads mapped
to the Crick strand were used for calculation.

Visualization by tSNE
MFR, FSI, and CAFF values of individual samples were transformed to
z-scores and the FEM frequencies of each sample were quantile-
normalized with the healthy controls. To reduce the dimensionality of
data for visualization, t-distributed stochastic neighbor embedding
(tSNE) was applied for individual modalities with the Rtsne (v0.16)
package for R (v4.0.2) with the following parameters: dims = 2, pca = F,
max_iter = 2000, theta = 0.05, perplexity = 10.

Machine learning models for MFR, FSI, and FEM
An in-house Python (v3.7.3) script based on sklearn module (v1.2.0)
wasused for thedevelopmentofmachine learningmodels. Tomitigate
overfitting, 10 bootstraps of the training cohort were performed for
hyperparameter optimization wherein each bootstrap randomly
selected 70% of the training cohort for model training and the
remaining 30% for model validation. The average probability of the
resulting 10 sub-models was used as the final prediction score of a
sample. Model performance for each modality was evaluated with the
independent test cohort.

MFR. To construct an MFR classifier, principal component analysis
(PCA) was performed for the MFR values of the 1846 windows to

reduce feature dimensionality within each bootstrap. For each sub-
model, top principal components (PCs) explaining at least 95% of the
variance of the training samples were used for model development. A
support vector machine (SVM) model was trained with the training
samples under tenfold cross-validation and validated with the valida-
tion samples.

FSI. For each sample, the FSI values of the 502 5-Mb windows were
normalized to z-scores across the genome. PCA and the training of an
SVM model with top PCs explaining at least 90% of data variance fol-
lowed the procedures of MFR model development.

FEM. PCA of the 256 4-mer endmotif frequencies and the training of a
logistic regression (LR) model with top PCs explaining at least 95% of
data variance were performed following the procedures ofMFRmodel
development.

For each modality, the number of top PCs employed for model
training was selected by determining the optimal data variance of the
training folds explainable by the PCs, which could yield high validation
AUCs with minimal overfitting across the 10 bootstraps (Fig. S16).

Considering the relatively low feature dimensionality and the
moderate sample size, SVM, LR, and random forest (RF) models were
tested for MFR, FSI, and FEM modalities and similar performances
were observed. Themodel with the best performance was selected for
each modality.

Development of THEMIS classifier for feature integration
To integrate the predicted cancer probability scores by MFR, FSI, and
FEM along with log10 transformed PA scores of CAFF, a generalized
linearmodel (GLM)with elastic-net penalizationwas constructed using
the R package CARET under 20-fold cross-validation within the train-
ing cohort for hyperparameter tuning. Given the small size of input
features, we chose to apply the parametric statistical model LR to
better interpret the contribution from each modality. The resulting
THEMIS model calculates the probability of cancer in a participant as:

PrðcancerÞ= expðZ Þ=ð1 + expðZ ÞÞ

where Z =0:57+0:33 �MFR+0:34 � FSI +0:06 � CAFF+0:58 � FEM
Prediction scores by individual modalities and the integrative

THEMIS classifier were listed in Supplementary Data 4 for the MONI-
TOR cohort.

Clinical limit of detection
Targeted sequencing with a customized panel of 769 cancer-related
genes was performed for somatic mutation identification38. Briefly,
between 30 and 300 ng of fragmented tumor tissue or WBC genomic
DNA or between 10 and 50ng of cfDNA was used for library con-
struction with KAPA Hyper Prep Kit (Roche, Catalog# KK8504). Tar-
geted regions were captured with HyperCap Target Enrichment Kit
(Roche) according tomanufacturer instructions.The enriched libraries
were amplified with KAPA HiFi HotStart ReadyMix (Roche, Catalog#
KK2602) and sequenced on Illumina Novaseq 6000 in 150-bp paired-
end mode.

To determine the detection sensitivity of a classifier at 99% spe-
cificity, a logistic regression was estimated between classifier predic-
tions versus log10(mean VAF) for 65 cancer plasma samples with
corresponding tumor tissue and WBC samples. Clinical LOD was
defined as themean VAF for a cancer detection probability of 50%. The
95%confidence intervalwasestimatedusing aGaussian approximation
for the standard error of the logistic regression slope.

Cancer signal origin classification
We chose cancer samples identified as true positives by THEMIS at
100% specificity to develop and evaluate the CSO classifier. Plasma
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methylation and fragmentation profiles for 18 clusters of tissue-
specific 500-bp open chromatin peaks identified by ATAC-seq23 were
used for model development.

For each sample, methylation level was quantified by the fraction
of methylated CpGs within individual ATAC-seq peaks. Because open
chromatin regions tend to be hypomethylated23,27, Wilcoxon one-sided
test was performed between cancer samples and healthy controls in
the training cohort to select for peaks with lower methylation among
cancer patients (p <0.05), which constituted ~90% of the original
ATAC-seq peaks, for CSO analysis. For each cluster, the average
methylation level of the remaining peaks was computed and trans-
formed into a z-score over the corresponding cluster of healthy con-
trols in the training cohort. Subsequently, the z-scores of 18 clusters
were scaled between 0 and 1 for each sample.

To characterize the fragmentation profile of each sample, the
aggregate counts of short (100–166) and long (169–240 bp) fragments
falling within the peak regions of each cluster were calculated
respectively and transformed into z-scores over the corresponding
cluster of healthy controls in the training cohort. The z-scores of 18
clusters were then scaled between 0 and 1 for each sample.

Finally, the normalized methylation level, short fragment cover-
age, and long fragment coverage of each cluster were used as the input
features for the development of themulti-class CSO classifier. Because
the feature dimensionality was relatively high compared with the
sample size, to avoid overfitting an RF model was trained using Ran-
domForest package in R with 2000 trees under leave-one-out cross-
validation.

Statistics and reproducibility
All statistical analyseswere performedusingR version 4.0.2. To estimate
the required sample size, power calculations suggest that an analysis of
approximately 800 patients with cancer and 500 healthy controls suf-
fices for estimationof a sensitivity of 0.8with amargin of error of 0.05 at
a specificity of 0.95. No data were excluded from the analyses. The
experiments were not randomized, and the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 1277 cfDNA WMS data of the MONITOR cohort generated in this
study have been deposited in the Genome Sequence Archive (GSA) for
Human database under accession code HRA003209. To protect
patient privacy, data access can be obtained through a request to the
data access committee. Access to the data will be restricted to non-
commercial entities. Accesswill be providedwithin approximately one
week and be available for one year. Tissue ATAC-seq peaks were
download from TCGA [https://gdc.cancer.gov/about-data/
publications/ATACseq-AWG]. Reference genome hg19 was used for
mapping samples. Source data are provided with this paper.

Code availability
Processed data and code to reproduce the figures are publicly avail-
able and deposited in GitHub [https://github.com/yulongbio/
themis.git].
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