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Initial conditions combine with sensory
evidence to induce decision-related
dynamics in premotor cortex

Pierre O. Boucher1, Tian Wang1, Laura Carceroni2, Gary Kane3,
Krishna V. Shenoy 4,5,6,7,8,9,10,13 & Chandramouli Chandrasekaran 1,3,11,12

We used a dynamical systems perspective to understand decision-related
neural activity, a fundamentally unresolved problem. This perspective posits
that time-varying neural activity is described by a state equation with an initial
condition and evolves in time by combining at each time step, recurrent
activity and inputs. We hypothesized various dynamical mechanisms of deci-
sions, simulated them in models to derive predictions, and evaluated these
predictions by examining firing rates of neurons in the dorsal premotor cortex
(PMd) of monkeys performing a perceptual decision-making task. Prestimulus
neural activity (i.e., the initial condition) predicted poststimulus neural tra-
jectories, covaried with RT and the outcome of the previous trial, but not with
choice. Poststimulus dynamics depended on both the sensory evidence and
initial condition, with easier stimuli and fast initial conditions leading to the
fastest choice-related dynamics. Together, these results suggest that initial
conditions combine with sensory evidence to induce decision-related
dynamics in PMd.

There are 10 minutes to make it to the airport but your phone says
you’re still 12 minutes away. Seeing a yellow light in the distance you
quickly floor it. You get to the intersection only to realize you have run
a red light. The sight of the lights result in patterns of neural activity
that respectively leadyou to respondquickly to your environment (i.e.,
speed up when you see the yellow) and process feedback (i.e., slow
down after running the red). This process of discriminating sensory
cues to arrive at a choice is termed perceptual decision-making1–5.

Research in invertebrates6,7, rodents8,9, monkeys10,11, and
humans12,13 has attempted to understand the neural basis of perceptual
decision-making. Barring few exceptions14–16, these studies have
focused on single neurons in decision-related brain regions10,11,17,18.

However, currently the link between neural population dynamics in
these brain areas and decision-making behavior, especially in reaction
time (RT) tasks, is largely unclear. Here, we address this gap by using a
dynamical systems approach19–22.

The dynamical systems approach21–23 posits that neural popula-
tion activity (e.g., firing rates), X, is governed by a state equation of the
following form:

dX
dt

= FðX Þ+U ð1Þ
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Where F represents the recurrent dynamics (i.e., local synaptic input)
in the region of interest and usually considered fixed for a given brain
area in a task.U is the input fromneurons outside the region of interest
and depends on various task contingencies (e.g., sensory evidence). X0
is the initial condition for these dynamics. In this framework, dynamics
for every trial depend on both the initial condition and input and leads
to distinct behavior on every trial.

The dynamical systems approach helps link time-varying, het-
erogeneous activity of neural populations and behavior20,24,25. In a
study of motor planning, position and velocity of the neural popula-
tion dynamics relative to the mean trajectory at the time of the go cue
(i.e., initial condition or X0) explained considerable variability in RTs20

(see Fig. 1a). Similarly, in studies of timing, the initial condition enco-
ded the perceived time interval and predicted the speedof subsequent
neural dynamics and the reproduced time interval26 (see Fig. 1b). In the
same study, an input depending on a task contingency (gain) altered
the speed of dynamics (Fig. 1b).

Here, we expanded on findings from motor planning and timing
studies and investigated which dynamical system best described
decision-related neural population activity in dorsal premotor cortex
(PMd). To derive hypotheses about dynamics, we leveraged three
results from prior studies. First, rate at which choice-selective activity
emerges depends on the strength of the sensory evidence (e.g., audi-
tory pulses, random dot motion, static red-green checkerboards,
etc.)8,10,18,27. Second, in studies of speed-accuracy tradeoff, prestimulus
neural activity is different for fast vs. slow blocks16,28–31 (Fig. 1c). Finally,
the prestimulus firing rates are altered by the outcome of the previous
trial32,33 (Fig. 1d). Based on these findings, we hypothesized four dif-
ferent dynamical mechanisms that could describe the data.

• The simplest dynamical systemassumes initial conditions donot
covarywith RT or choice and that neural dynamics and behavior
are driven largely by the sensory evidence (Fig. 1e).

• A second dynamical system assumes that the initial conditions
do not vary, but that there are either systematic or random
delays in sensory evidence processing34, that alter choice-related
dynamics and behavior (Fig. 1f).

• A third systemassumes that initial conditions are biased towards
oneor another choice35, correlatewith RT, and that poststimulus
dynamics are influenced by both initial conditions and sensory
evidence (Fig. 1g).

• Finally, a fourth system assumes that initial conditions correlate
with RT but not choice, and poststimulus dynamics depend on
both sensory evidence and initial condition. Additionally, the
changes in initial condition are in part due to the outcome of the
previous trial (Fig. 1h).

We used these different candidate dynamical mechanisms to
build recurrent neural networks with various constraints (Figs. S1a
and S2) and simulate synthetic neural populations (Figs. S1b and S3).
We analyzed these simulations of neural activity using dimensionality
reduction, decoding, and regression analyses. These different dyna-
mical mechanisms make distinct predictions about the principal
component trajectories andwhether prestimulus activity covarieswith
choice and RT. We used the predictions to analyze the firing rates of
neurons recorded in PMd of monkeys performing a red-green RT
perceptual decision-making task18.

Neural population dynamics in PMd had the following properties.
First, state space trajectories were ordered pre- and poststimulus as a
function of RT, with such effects observed within a stimulus difficulty.
Subsequent KiNeT26 analysis of these trajectories suggested that faster
RTs were associated with faster pre- and poststimulus dynamics as
compared to slower RTs. Second, cross-validated single-trial analyses
using tensor component analysis, dynamical systems, reduced-rank
regression, decoding and regression analyses further corroborated
that prestimulus neural state, that is the initial condition, only

predicted RT but not the eventual choice. Third, poststimulus choice-
related dynamics depended on both the initial condition and the
sensory evidence, with choice-related signals emerging faster for
easier compared to harder trials but also modulated by the initial
condition. Finally, initial conditions and choice-related dynamics
depended on the outcome of the previous trial with pre- and post-
stimulus dynamics slower on trials following an error as compared to
trials following a correct response.

Our results expand on the observations of ref. 20, that the pres-
timulus position and velocity of the neural trajectories in state space
(i.e., initial conditions) are correlated with RT, as we demonstrate that
1) both inputs and initial conditions jointly control dynamics, and 2)
that changes in the initial conditions are dependent upon previous
outcomes. Together, the results suggest that decision-related activity
in PMd is captured by a dynamical system (Fig. 1h) composed of initial
conditions, that covary with RT and are dependent upon previous
outcome, and inputs (i.e., sensory evidence) which combine to induce
choice-related dynamics.

Results
Decision-making behavior is dependent on sensory evidence
and internal state
We trained two macaque monkeys (O and T) to discriminate the
dominant color of a central, static checkerboard composed of red and
green squares (Fig. 2a). Fig. 2b depicts the trial timeline. The trial began
when the monkey held the center target and fixated on the fixation
cross. After a short randomized holding time (300–485ms), a red and
a green target appeared on either side of the central hold (target
configurations were randomized). After an additional randomized
target viewing time (400-1000 ms), the checkerboard appeared. The
monkey’s task was to reach to, and touch the target corresponding to
the dominant color of the checkerboard. While animals were per-
forming the task, we measured the arm and eye movements of the
monkeys. We identified RTs as the first time when hand speed excee-
ded 10% of maximum speed during a reach. If the monkey correctly
performed a trial, he was rewarded with a drop of juice and a short
inter-trial interval (ITI, 300 to 600 ms across sessions) whereas if he
made an error it led to a longer timeout ITI (ranging from ~ 1500 ms
to ~ 3500 ms). Using timeouts for errors encouraged animals to
prioritize accuracy over speed.

We used 14 levels of sensory evidence referred to as signed color
coherence (SC, Fig. 2c) as it is dependent on the actual dominant color
of the checkerboard. Unsigned coherence (C, Fig. 2c), which refers to
the strength of stimuli, is independent of the actual dominant color of
the checkerboard. Thus, there are 7 levels of C.

The behavioral performance of the monkeys depended on the
signed coherence. In general, across all sessions, monkeys made more
errors when discriminating stimuli with near equal combinations of
red and green squares (Fig. 2d). We fit the proportion correct as a
function of unsigned coherence using a Weibull distribution function
to estimate slopes and psychometric thresholds (average R2; T: 0.99,
75 sessions; O: 0.98, 66 sessions; Threshold (α): Mean ± SD: T:
10.89 ± 1.37%, O: 16.78 ± 2.05%; slope (β): Mean ± SD over sessions, T:
1.26 ± 0.18, O: 1.10 ±0.14).

As expected, monkeyswere generally slower formore ambiguous
checkerboards (Fig. 2e). However, per monkey regressions using
unsigned coherence (log10ðCÞ) to predict RTs only explained ~ 12.4%
and ~ 1.5% of RT variability, for monkeys T and O respectively (Fig. 2f).
These results suggest that while there is RT variability induced by
differences in the sensory evidence, there is also an internal source of
RT variability. Indeed, as the box plots in Fig. 2f show, a key feature of
the monkeys’ behavior is that RTs are quite variable within a coher-
ence, including the easiest ones. In the subsequent sections, we
investigated which dynamical mechanism (Fig. 1e–h) was most con-
sistent with this RT variability and choice behavior.
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Single unit prestimulus firing rates covary with RT and post-
stimulus activity is input dependent
Our database for understanding the neural population dynamics
underlying decision-making consists of 996 units (546 units in T and
450 units in O, including both single neurons and multi-units,
801 single neurons) recorded from PMd (Fig. 2g) of the two mon-
keys over 141 sessions. We included units if they were well separated
from noise and if they modulated activity in at least one task epoch.
A unit was categorized as a single neuron by a combination of spike
sorting and if inter-spike-interval violations were minimal (≤ 1.5% of
inter-spike-intervals were ≤ 1.5 ms; median across single neu-
rons: 0.28%).

Fig. 3 shows the smoothed (30 ms Gaussian) trial-averaged firing
rates of six example units recorded in PMd aligned to checkerboard

onset and organized either by coherence and choice, plotted until the
median RT (Fig. 3a), or organized by RT and choice, plotted until the
center of the RT bin (Fig. 3b). Many units showed classical ramp-like
firing rates10,30,35–37 (see Fig. 3, top three rows). However, many neurons
demonstrated complex, time-varying patterns of activity that included
increases and decreases in firing rate that covaried with coherence,
choice and RT15,18,38,39 (Fig. 3, bottom 3 rows). Additionally, each of the
albeit curated neurons in Fig. 3b demonstrated prestimulus firing rate
covariation with RT, implying variable initial conditions that ultimately
factor into RTs. These firing rate dynamics and those from additional
units (Fig. S4a, bottom two rows) were not an artifact of smoothing
spike trains with a 30ms Gaussian kernel, andwere near identical even
when spike trains were filtered with a 15 ms Gaussian or a causal 50ms
boxcar kernel (Fig. S4b, c).
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Fig. 1 | Initial conditions and inputs predict subsequent neural dynamics and
behavior. a The initial condition hypothesis from delayed reach experiments20

posits that theposition and velocity of a neural state at the timeof the gocue (initial
condition) negatively correlateswithRT.bTheneural population state at the endof
a perceived time interval and a gain modifier actuates the initial conditions (Set,
circles) determining the speed (arrows) of subsequent dynamics and therefore
when an action is produced (Go, X’s)26. c, d Prestimulus neural activity differs for
speed and accuracy contingencies for speed-accuracy tradeoff tasks58 or after
correct and error trials33. e Basic decision-making model with no prestimulus
effects, where only the strength of sensory evidence determines RT and choice.
f Stimulus-dependent encoding delay. Decision-making takes longer as a function
of how long it takes to visually process stimuli (dotted line). g Biased initial con-
ditions predict both RT and choice (X0 ~ RT, choice) and combine with sensory
evidence to lead to decisions. Initial neural states vary trial-to-trial, and are closer to

the movement onset state for one choice (here left). Trial outcomes have no effect
on initial conditions in this model as initial conditions largely reflect a reach bias.
h Overall dynamics depend on both the initial conditions, which solely predict RT
(X0 ~ RT), and the sensory evidence. The closer the initial condition is to a move-
ment initiation state before checkerboard onset, the faster the velocity of the
dynamics will be, leading to faster RTs. Previous outcomes shift these initial con-
ditions such that the dynamics are either faster or slower. Current population state
at stimulus onset/go cue (dots within an ellipse; e, f color matches stimulus
strength; g, h color and opacity matches population state and stimulus strength
respectively) evolves along trajectories of varying speed (color bars in (a) & (g/h);
apply to (a), (b), (g), (h)) as set by initial conditions (a, g, h) and/or inputs (e–g). In
(g) and (h) light/dark opacity of the arrowhead indicates speed of trajectory as a
function of weak/strong stimulus input and initial condition (IC).
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Fig. 2 | Monkeys can discriminate red-green checkerboards and demonstrate
rich variability inRTsbetween andwithin stimulus coherences. aAn illustration
of the setup for the behavioral task. We loosely restrained the arm themonkey was
not using with a plastic tube and cloth sling. A reflective infrared beadwas tapedon
the middle digit of the active hand to measure hand position in 3D space and to
mimic a touch screen. Eye position was tracked using an infrared reflective mirror
placed in front of the monkey’s nose. b Timeline of the discrimination task.
c Examples of different stimuli used in the experiment parameterized by the color
coherence of the checkerboard cue. Positive values of signed coherence (SC)
denote more red (R) than green (G) squares and vice versa. d Psychometric curves,
percent responded red, and (e) RTs (correct and incorrect trials) as a functionof the
percent SC of the checkerboard cue, over sessions of the two monkeys (T: 75 ses-
sions; O: 66 sessions). Dark orange markers showmeasured data points along with
2 × SEM estimated over sessions (error bars lie within the marker for many data
points). The black line segments are drawn in between these measured data points

to guide the eye. Discrimination thresholds measured as the color coherence level
at which the monkey made 81.6% correct choices are also indicated. Thresholds
were estimated using a fit based on the cumulative Weibull distribution function.
f Standard box-and-whisker plots (i.e., center line is median, box limits are upper
and lowerquartiles, whiskers are 1.5x interquartile range, and outliers areplotted as
blue circles) of RT as a function of unsigned checkerboard coherence (RTs from n =
128,774 (top) and n = 108,365 trials (bottom)). Note large RT variability within and
across coherences. g The recording location, caudal PMd (PMdc), indicated on a
macaque brain, adapted from89. Single and multi-units in PMdc were primarily
recorded by a 16 electrode (150-μm interelectrode spacing) U-probe (Plexon, Inc.,
Dallas, TX, United States); example recording depicted. Images in (a) and (g) are
adapted from Chandrasekaran, C., Peixoto, D., Newsome, W.T. et al. Laminar dif-
ferences in decision-related neural activity in dorsal premotor cortex. Nat Commun
8, 614 (2017). https://doi.org/10.1038/s41467-017-00715-0. Source data are pro-
vided as a Source Data file.
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These examples already suggest that decision-related PMd neural
responses are more consistent with some dynamical hypotheses than
others. First, when organized by coherence and choice, choice-
selective signals are largely absent before checkerboard onset, and
latency of choice selective responses after checkerboard onset are
only modestly affected by the stimulus coherence. These results are
inconsistent with the dynamical hypotheses outlined in Fig. 1e, g.
Second, prestimulus correlation with RT is consistent with preliminary

support for the dynamical mechanisms in (Fig. 1g, h), and inconsistent
with the hypothesis shown in Fig. 1f.

In the next sections, we use dimensionality reduction, cross-
validated single-trial analyses, decoding, and regression methods to
understand how RT and choice are represented in the shared, time-
varying, and heterogeneous activity of these neurons and reject var-
ious dynamical hypotheses. To predict the results of these analyses for
various dynamical models shown in Fig. 1e–h we first used two mod-
eling approaches that we describe in the next section.

Different dynamical mechanisms predict distinct relationships
between prestimulus activity with RT and choice
The single unit examples shown in Fig. 3 are consistent with the
dynamical mechanisms in Fig. 1g, h in that prestimulus dynamics
covary with RT. However, we need to ensure that such effects are also
present at the level of the neural population. A common approach to
analyze heterogeneous neural populations is to use a dimensionality
reduction method such as principal components analysis (PCA) on
trial-averaged firing rates organized by various variables of interest
and visualize the associated state-space trajectories15,40. To derive
predictions on how principal components (PCs) from neural data
would appear for the various dynamical mechanisms outlined in
Fig. 1e–h, we used two complementary approaches.

First, we trained recurrent neural network (RNN) models to
perform the same task as our monkeys. RNN models used a ReLu
nonlinearity, received noisy evidence for left and right choices, and
output two decision-variables for left and right choices (Fig. S1a).
Additional details on the RNNs can be found in the methods (section
“Recurrent neural network models of various dynamical hypoth-
eses”). Second, we simulated a population of hypothetical neurons,
based on our work from18 that used various metrics to comprehen-
sively characterize the units analyzed in this study. The key observa-
tion from that studywas that PMd contains a large fraction of neurons
that increase their firing rate after stimulus onset, and show strong
covariation with RT and choice (i.e., increased neurons). Smaller
fractions decreased their firing rate after stimulus onset (i.e.,
decreased) or were only active around movement onset (i.e., peri-
movement). Further details of how these neurons were modeled can
be found in the methods (Section “Hypothetical synthetic neural
populations”) and in Fig. S1b.

After training the RNNs and building the synthetic populations,
we performed PCA, decoding, and regression analyses on the firing
rates of both types of models (Figs. S2 and S3). Classical decision-
making models (Figs. S2a and S3a) and a delayed-input model
(Fig. S2b), without any bias for one or another choice as in Fig. 1e, f,
show little prestimulus covariation with choice or RT. In contrast,
models (Figs. S2c and S3b) with a bias for one of the reaches as in
Fig. 1g show a PCA structure where the PCs are biased for one choice
over the other. Finally, to simulate the hypothesis shown in Fig. 1h,
we used two approaches for the RNN. We biased both left and right
choice input before checkerboard onset or altered the gain of the
ReLu function. In both RNN cases, we found that prestimulus state
covaries with RT. However, in neither of these RNNs (Fig. S2d, e) did
we observe a strong and reliable prestimulus covariation with
choice. Similarly, in a synthetic neural population where ~ 20% of
neurons (Section “Hypothetical synthetic neural populations”) had
baseline firing modulation with RT (consistent with the results
reported in18 and the results above), prestimulus population
dynamics demonstrated covariation with RT but not choice
(Fig. S3c).

These RNNmodels and synthetic neuron simulations suggest that
PCA on trial-averaged neural responses should demonstrate distinct
structure consistent with one or another hypothesis. We used these
results to evaluate which of these dynamical hypotheses are most
consistent with our neural data.
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Fig. 3 | Firing rates of a heterogeneous population of PMd neurons are
modulated by the input (i.e., strength of the sensory evidence), and the initial
condition (i.e., prestimulus firing rate) covaries with RT. Firing rate across (a) 7
levels of color coherence (grayscale color bar with darker colors indicating easier
coherences) and (b) 11 RT bins, from fast (violet) to slow (orange), for both action
choices (right - dashed, left - solid)of 6 example units in PMd frommonkeys T andO
aligned to stimulus onset (Cue/vertical dashed black line). Firing rates are plotted
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(notice slightly different lengths of lines). Color-matched shading is SEM. In (a),
firing rates tend to separate as a function of coherence, and in (b), the same neu-
rons show prestimulus covariation as a function of RT (X0 ~ RT), and post-stimulus
covariation with RT and choice. Source data are provided as a Source Data file.
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Principal component analysis reveals prestimulus population
state covariation with RT
Informed by our modeling analyses, we next visualized which dyna-
mical hypothesis was most consistent with our PMd data. We initially
performed a PCA on trial-averaged firing rate activity (again smoothed
with a 30 ms Gaussian) windowed about checkerboard onset, orga-
nized by overlapping RT bins (11 levels representing a spectrum from
faster to slower RTs; 300–400 ms, 325–425 ms, ..., to 600-1000 ms),
and both reach directions (Fig. 4a, b). For this analysis, we pooled all
trials, including all stimulus coherences and both correct and incorrect
trials, then sorted by and averaged within RT bin and choice. On
average, we used 100 to 200 trials per RT bin for these analyses
(Fig. S6b).

To identify the number of relevant dimensions for describing this
data, we used an approach developed in41 (see Section “Estimation of
number of dimensions to explain the data” for details). Firing rates on
every trial in PMd during this task can be thought of as consisting of a
combination of signal (i.e., various task related variables) and noise
contributions from sources outside the task such as spiking noise for
example. Trial averaging reduces this noise but neverthelesswhen PCA
is performed it returns a principal component (PC) space that captures
variance in firing rates due to the signal and variance due to residual
noise (signal+noise PCA). Ideally, we only want to assess the con-
tributions of the signal to the PCA, but this is not possible for trial-
averaged or non-simultaneously recorded data. To circumvent this
issue and determine the number of signal associated dimensions, the
method developed in41 estimates the noise contributions by per-
forming a PCAon the difference between single trial estimates of firing
rates, to obtain a noise PCA. Components from the signal+noise PCA
and the noise PCA were compared component-by-component such
that only the signal+noise dimensions that explained significantly
more variance than the corresponding noise dimensions were inclu-
ded in further analyses. This analysis yielded six PCs that explained >
90% of the variance in trial-averaged firing rates (Fig. S5a). Similar
analyses using different smoothing filters (15 ms Gaussian and 50 ms
causal boxcar filters) on spikes to derive firing rates yielded similar
numbers of chosen dimensions and similar amounts of variance
explained for the first 6 components (87.59% and 85.67%, respectively,
Fig. S5b, c).

Fig. 4a plots the first four PCs obtained from this PCA. What is
apparent in Fig. 4a is that the prestimulus state strongly covaries with
RT but only modestly with choice. In particular, barring component 2,
which appears to bemost strongly associatedwith choice, PCs 1, 3, and
4 showed covariation between the prestimulus state and RT (Fig. 4a,
highlighted with light blue rectangles)—consistent with the rich cov-
ariation between RT and prestimulus firing rates in the single neuron
examples shown in Fig. 3b. Visualizing PCs 1, 2, and 4 in a state space
plot further supported this observation (Fig. 4b). The axes in Fig. 4b are
deliberately not equalized to better highlight prestimulus covariation
with RT. A corresponding axis-equalized figure showing the same
patterns is shown in Fig. S7.

Such covariation between prestimulus neural state and RT was
also not a result of pooling across all the different stimulus difficulties
and was even observed within a level of stimulus coherence (note
similarities between state space trajectories in Fig. 4b & its inset). We
discuss this further in Section “Inputs and initial conditions both
contribute to the speed of poststimulus decision-related dynamics”
where we analyze the joint effects of inputs and initial conditions.
These analyses are also robust to whether they are performed with
multi-units and single units42 (996 units, Fig. 4) as compared to solely
well-isolated single neurons (801 single neurons, Fig. S10a), and not
dependent on the smoothing used to produce the firing rates
(Fig. S11a).

In summary, the PCA trajectories demonstrate a lawful organiza-
tion with respect to RT and modestly with choice prior to stimulus

onset (Fig. 4b). Note such structure was not an artifact of using over-
lapping RT bins. We observed very much the same structure even
when we used non-overlapping RT bins (Fig. 5a). These results are
strongly consistentwith the dynamical hypotheses proposed in Fig. 1h,
weakly consistent with Fig. 1g and inconsistent with hypotheses in
Fig. 1e, f. Additionally, direct comparison of these plots to the PCAs of
RNNs (Fig. S2d, e) and synthetic neural populations (Fig. S3c) also
suggests that perhaps Fig. 1h is overall more consistent with the data
than Fig. 1g.

Position and velocity of initial condition correlate with post-
stimulus dynamics and RT
Hypotheses shown in Fig. 1g, h predict that poststimulus dynamics and
behavior should demonstrate dependence upon the position and
velocity of prestimulus neural trajectories in state space (i.e., initial
conditions)21,22. Position is the instantaneous location in a high-
dimensional state space of neural activity (i.e., firing rate of neurons)
and velocity a directional measure of how fast these positions are
changing over time (i.e., directional rate of change from one neural
state to the next). In Fig. 4b, both the position and the velocity of the
prestimulus state appear to covary with RT. For instance, prestimulus
trajectories for the fastest RTs are 1) spatially separated, and 2) appear
to have covered more distance along the paths for movement initia-
tion by the time of checkerboard onset than the prestimulus trajec-
tories for the slowest RTs (small squares which denote 20 ms time
steps aremore spread out for faster versus slower trajectories, Fig. 4b).
In contrast, only a modest separation by choice occurs before
stimulus onset.

We used the Kinematic analysis of Neural Trajectories (KiNeT26)
approach to more quantitatively test these predictions. KiNeT mea-
sures the spatial ordering of trajectories and how each trajectory
evolves in time, all with respect to a reference trajectory. For KiNeT
analysesweused the first six PCs ( > 90%of variance) as these PCswere
significantly different from noise principal components41. KiNeT ana-
lyses are first performed within a choice and then averaged across
choices. Fig. S8 shows a visualizationof theKiNeT analyses and Section
“Kinematic analysis of neural trajectories (KiNeT)” provides a detailed
description of KiNeT calculations.

First, we used KiNeT to assess if position of the initial conditions
was related to RT to assess if our data was consistent with hypotheses
shown in Fig. 1g, h. If the position of the initial condition covaries with
RT thenwe expect a lawful ordering of neural trajectories organizedby
RT bin, otherwise they would lie on top of each other indicating a lack
of spatial organization. Thus, we examined the spatial ordering of six-
dimensional neural trajectories grouped by RT bins for each reach
direction. We estimated the signed minimum Euclidean distance at
each point for the trajectory relative to a reference trajectory (the
middle RTbin, cyan, for that reachdirection, Fig. 4c). Trajectories were
1) organized by RT with trajectories for faster and slower RT bins on
opposite sides of the the reference trajectory, and 2) the relative
ordering of the Euclidean distance with respect to the reference tra-
jectory was also lawfully related to RT (Fig. 4c) as measured by a cor-
relation between the center of each of the 11 RT bins (e.g., RTbin1: 325 -
400, RTbin1 = 362.5) and the average signed Euclidean distance from50
bootstraps, 90 ms before checkerboard onset (r9 = −0.85, p =
9.33 × 10−4). These data are consistent with the dynamical system in
Fig. 1g and h that the position of the initial condition correlates
with RT.

Second, if the data are consistent with a dynamical system then the
relative ordering of trajectories by RT in the prestimulus period should
predict the ordering of poststimulus trajectories. We tested if this was
the case by measuring the subspace similarity angle, and average
alignment (Section “Kinematic analysis of neural trajectories (KiNeT)”).
To calculate subspace similarity, representative of the geometry of a
subspace, we first estimate vectors between adjacent trajectories at all
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Fig. 4 | Prestimulus population firing rates covary with RT. a PCs1-4 of trial-
averagedfiring rates organized across 11 RTbins, both reachdirections, and aligned
to checkerboard onset. Percent variance explained is provided. Blue boxes high-
light prestimulus covariation with RT. b State space trajectories of PCs1,2,4 aligned
to checkerboard onset. Faster RT trajectories appear to move faster in the presti-
mulus period than slower RTs (fast/slow prestim, also see g). Inset: State space
trajectories within a single stimulus coherence (i.e., 90% and 4%). c KiNeT distance
analysis showing consistent spatial organization of trajectories peristimulus and
correlated with RT. d Angle between subspace vector at the first timepoint
(-400ms) and subspace vector at each timepoint is largely consistent but increases
as choice signals emerge (green box). e Average relative angle between adjacent
trajectories at each timepoint was largely less than 90∘ for the prestimulus period
but approachorthogonality as choice signals emerge poststimulus. fKiNeTTime to

reference (tRef) analysis shows that trajectories for faster RTs reach similar points
on the reference trajectory (cyan, middle trajectory) earlier than trajectories for
slowerRTs. gAverage scalar speed for the prestimulus period (-400 to 0ms epoch)
as a function of RT bin. h Choice-selectivity signal measured as the Euclidean dis-
tance in the first six dimensions between the two reach directions for each RT bin
aligned to checkerboard onset. Rate for choice selectivity (CS) is faster for faster
RTs compared to slower RTs (green box). In (c) and (f) the x-axis is time on the
reference trajectory. Black dashed lines track the reference trajectory. Ind& eblack
dashed horizontal line indicates 90∘. Error bars are color-matched SEM (n = 50
bootstraps) in (c)–(h). Correlations in (c)–(h) were tested with two-sided t tests. p
values in (d) and (e) were derived from one-sided bootstrap tests (n = 50, com-
parison to 90∘). Cue, Checkerboard onset, a. u., Arbitrary units. Source data are
provided as a Source Data file.
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timepoints. These vectors are averaged to derive an average inter-
trajectory vector (subspace vector, Fig. 4d) at each time point. We then
measure how this average vector rotates over time relative to the sub-
space vector for the first time point by estimating the angle (subspace
angle) between these vectors. Alignmentmeasures the degree to which
neural trajectories diverge from one another in state space by esti-
mating the average angle of the normalized vectors between pairwise
adjacent trajectories at each timepoint. The null hypothesis is that the
ordering of trajectories before stimulus onset is in no way predictive of
the ordering of trajectories after stimulus onset. Under this null
hypothesis, the subspace angle and alignment would be randomly dis-
tributed around 90° poststimulus. Alternatively, if prestimulus
dynamics predict ordering of poststimulus dynamics, the average
subspace angle and alignmentwill be largely constant fromprestimulus
to the poststimulus period until choice andmovement initiation signals
begin to emerge for the fastest RTs ( ~ 300 ms).

Consistent with the alternative hypothesis, the subspace angle
(Fig. 4d) between the first point in the prestimulus period and sub-
sequent timepoints was < 90° before and after checkerboard onset
and only increasedwhenmovement initiation began to happen for the
fastest RTs (50-iteration bootstrap test vs 90°, 90 ms before stimulus
onset: p =0.0196). Similarly, the alignment measured as the angle
between adjacent trajectories (Fig. 4e) was largely similar throughout
the trial for each reachdirection and only begun to change after choice
and movement initiation signals began to emerge, suggesting that the

ordering of trajectories by RTwas preservedwell into the poststimulus
period. These results imply that the initial condition strongly predicted
poststimulus state and eventual RT (50-iteration bootstrap test vs 90°,
90 ms before stimulus onset: p = 0.0196), again consistent with the
predictions of the dynamical systems approach.

Third, we examined if the velocity of the peristimulus dynamics
was faster for faster RTs compared to slower RTs. For this purpose, we
usedKiNeT to find the timepoint at which the position of a trajectory is
closest (minimum Euclidean distance) to the reference trajectory,
which we call Time to reference (tRef, Fig. 4f). Trajectories slower than
the reference trajectory will reach the minimum Euclidean distance
relative to the reference trajectory later in time (i.e., longer tRef),
whereas trajectories faster than the reference trajectory will reach
these positions earlier (i.e., shorter tRef). Given that trajectories are
compared relative to a reference trajectory, tRef can thus be considered
an indirect estimate of the velocity of the trajectory at each timepoint.
Note, tRef was referred to as speed in26. Although a trajectory could
reach the closest point to the reference trajectory later due to a slower
speed, it could also be due to unrelated factors such as starting in a
position in state space further from movement onset or by taking a
more meandering path through state space. All of these effects are
consistent with a longer tRef and a slower velocity, but not necessarily a
slower speed.

KiNeT revealed that faster RTs involved faster pre- and post-
stimulus dynamics whereas slower RTs involved slower dynamics as
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Euclidean space to the reference trajectory) analysis shows that trajectories for
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earlier than trajectories for slower RTs. This result suggests that the dynamics for
faster RTs are closer to a movement initiation state than slower RTs. c Angle
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point (-400 ms). The angle between subspace vectors is largely consistent but the
space rotates as choice signals emerge ( ~ 200 ms). d KiNeT distance analysis
showing that trajectories are consistently spatially organized before and after sti-
mulus onset. e Average relative angle between adjacent trajectories for each
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bars are color-matched SEM (n = 50 bootstraps) in (b)–(e). p values in (b)–(e) were
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between fast and slow RT trajectories different from 0; (c) and (e) subspace and
average relative angle different from 90∘). Source data are provided as a Source
Data file.
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compared to the reference trajectory (trajectory associated with the
middle RT bin, cyan) (Fig. 4f). There was also a positive correlation
between RT bin center and average tRef as measured by KiNeT 90 ms
before checkerboard onset (r9 = 0.83, p = 1.48 × 10−3, one sided test to
0). Additionally, the overall scalar speed of trajectories in the presti-
mulus state for the first six dimensions (measured as a change in
Euclidean distance over time and averaged over the 400 ms presti-
mulus period) covaried lawfully with RT (r9 = −0.90, p = 1.58 × 10−4;
Fig. 4g). Thus, the velocity of the initial condition, relative to the
reference trajectory, is faster for faster RTs compared to slower RTs,
coherent with the prediction of the initial condition hypothesis20.

One concern is that perhaps these correlations are difficult to
interpret because they use overlapping RT bins. We also repeated the
KiNeT analysis for nonoverlapping bins and found exactly the same
pattern of results (Fig. 5b–e). In addition, all KiNeT results were repli-
cated even if we only 1) used single units for our analyses (Fig. S10b–e),
or useddifferent smoothing kernels (15msGaussianor a 50msboxcar,
Fig. S11B–E). Collectively, these results firmly establish that the initial
condition in PMd correlates with RT and that the geometry and trial-
averaged dynamics of these decision-related trajectories strongly
depend on the position and velocity of the initial condition consistent
with the hypotheses shown in Fig. 1g, h and inconsistent with the
hypotheses shown in Fig. 1e, f.

Cross-validated single-trial analyses corroborate PCA results
that prestimulus neural activity predicts future neural activity
and RT
Our PCA and KiNeT analyses on trial-averaged data (Fig. 4) strongly
support the dynamical mechanisms in Fig. 1g, h that prestimulus state
correlates with RT and suggest that prestimulus neural activity pre-
dicts future neural activity (Fig. 4d, e). However, it is unclear whether
this is simply an effect of trial averaging, orwhether such effects would
also be seen at the single-trial level. In this section, we use Tensor
component analysis (TCA), fits to a linear dynamical system (LDS), fits
of a nonlineardynamical system (LFADS), and reduced-rank regression
to confirm that prestimulus state is predictive of future neural activity
and RT at the single-trial level.

We applied TCA43, amatrix factorization technique akin to PCA, to
binned (50 ms) spiking activity from 600 ms before to 600 ms after
checkerboard onset for all trials. TCA was performed for each of the
44 sessions (23 from monkey T, and 21 from monkey O) containing
V-probe data ( ~ 2–32 units) and returns three connected low-
dimensional descriptions of neural activity, or tensors: neuron fac-
tors (N) × temporal factors (T) × trial factors (K) (Fig. S12a, b; Section
“Tensor component analysis”). Regardless of cross-validationmethod,
either speckled holdout43, or with a more conservative neuron hold-
out, the variance of neural activity explained in both the training and
the test sets increased as the rank of the low-dimensional model
increased (Fig. S12d). Thus, TCA provides a reasonable description of
neural activity especially considering that this was performed with
small numbers of units.

We next visualized the low-dimensional activity profiles for fast
and slow RT trials from a single session (Fig. S12c) by multiplying the
temporal factors and the trial-specific factors (Fig. S12a, b). Consistent
with our results from PCA, we found that prestimulus neural activity
indeed separated by RT (Fig. S12c). A regression analysis suggested
that > 25% of the variance in RT was explained by the rank 4 low-
dimensional descriptions in the prestimulus period (Fig. S12e).
Therefore, this TCA is the first line of single-trial evidence that presti-
mulus neural activity in PMd correlates with RT and is consistent with
hypotheses shown in Fig. 1g, h.

The core thesis of this study is that neural activity in PMd is well
described by a dynamical system and that the initial condition
(prestimulus neural activity) is strongly predictive of future neural
activity andRT. TheKiNeT subspace similarity and alignment analyses

(Fig. 4d, e) provide indirect evidence that PMd activity is consistent
with a dynamical system and that initial conditions are predictive of
future neural activity and RT.

As amoredirect test, wefit a simple low-dimensional autonomous
dynamical system to binned single-trial firing rates (50ms bins). We fit
separate dynamical systems to the pre- and post-stimulus period of
sessions with at least 10 units (31 sessions), fit left and right choices
separately, andused leave-one-out cross validation to assess themodel
as a function of the dimensionality of the dynamical system (Fig. S13).
We found that firing rates at the current time point closely predicted
the firing rates 100 ms later (Fig. S13a). Furthermore, the LDSes were
excellent models of the pre- and post-stimulus neural dynamics and
could describe neural data on held-out trials, with increasing model
size improving the fit of the model to the data (Fig. S13b). We then
estimated the firing rates predicted by the LDS at each time point and
investigated if pre- and poststimulus firing rates predicted RT. Again,
prestimulus firing rates strongly predicted RT, with prediction accu-
racy improving for dynamical systems of larger dimensionality
(Fig. S13c).

We also replicated these results using a nonlinear dynamical sys-
tem fit, the Latent Factor Analysis of Dynamical Systems (LFADS44,
described further in Section “Latent Factors Analysis of Dynamical
Systems (LFADS)”). Again, we could predict firing rates of neurons on
trials held out from the fitting process reliably (Fig. S14a, b), and pre-
and poststimulus activity was correlated with RT (Fig. S14c). Thus,
these two analyses strongly demonstrate that neural activity in PMd in
this task is well modeled by a dynamical system where prestimulus
activity can be used to predict future neural activity and RT.

Finally, we used an alternative cross-validated reduced-rank
regression45,46 to test if prestimulus neural activity predicted future
neural activity (Fig. S15a). Consistent with our KiNeT analysis, the
prestimulus state better predicted neural activity than a shuffle control
in both the pre- and post-stimulus epochs in a single session and
averaged across multiple sessions (Fig. S15b, c). Additionally, angles
between reduced-rank regression beta values weremeasured from the
first timepoint to all other timepoints and found to be stable from the
pre- to post-stimulus period until the point where choice signals
emerge, especially as compared to beta values from shuffled activity
(Fig. S15d). This single-trial analysis therefore corroborates the sub-
space similarity and alignment analyses performed with the trial-
averaged data.

All together, these four cross-validated single-trial analyses again
show that neural activity in PMd is consistent with a dynamical system
where prestimulus activity predicts future neural activity and RT
(Fig. 1g, h).

Initial conditions do not predict eventual choice
The previous analyses demonstrated that initial conditions strongly
covaried with RT consistent with the hypotheses shown in Fig. 1g, h.
However, does the initial condition also predict choice? If it does
not, then the data rules out the dynamical hypothesis in Fig. 1g at
least for PMd in this task. To investigate this issue, we first examined
the covariation between prestimulus and poststimulus state with
choice by measuring a choice-selectivity signal identified as the
Euclidean distance between the left and right choices in the first six
dimensions at each timepoint. The choice-selectivity signal was lar-
gely flat during the prestimulus period and increased only after sti-
mulus onset (Fig. 4h). We also found that slower RT trials had
delayed and slower increases in the choice-selectivity signal com-
pared to the faster RTs, a result consistent with the slower overall
dynamics for slower compared to faster RTs (Fig. 4h). Consistent
with this observation, we found a negative correlation between the
average choice-selectivity signal in the 125 to 375 ms period after
checkerboard onset and the center of the RT bin (mean and 95% CI,
r9 = −0.88, p = 4.05 × 10−4).
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To furtherdiscriminatebetween thehypotheses shown inFig. 1g, h,
we further explored the initial condition and subsequent poststimulus
dynamics using a combination of single-trial analysis, decoding, and
regression. We first used the cross-validated LFADS44 approach to esti-
mate single-trial dynamics in an orthogonalized latent space for left
reaches and the easiest coherence in a single session (23 units). This
analysis revealed that: 1) initial state for a majority of the slow RT trials
are separated from the fast RT trials, 2) initial conditions associatedwith
aminority of the slow trials aremixed in with fast initial conditions, and
3) slower RT trajectories also appear to have more curved trajectories
(Fig. 6a). All of these are consistent with the results of the trial-averaged
PCA reported in Fig. 4 and mirror single-trial results from TCA
(Fig. S12c).Most importantly, initial neural states related to left and right
reach directions are mixed prior to stimulus onset (Fig. 6b)—again

consistent with the results of the trial-averaged PCA. These single-trial
dynamics suggest that prestimulus spiking activity covaries with RTs
but not choice, even on single trials.

Regression and decoding analyses of raw firing rates sup-
ported insights from the LFADS visualization (Fig. 6a) that presti-
mulus spiking activity would be predictive of RT. A linear
regression with binned prestimulus spiking activity (20 ms causal
nonoverlapping bins) and coherence as predictors explained ~25%
of the variance in RT from the same session used for LFADS
(Fig. 6c), significantly higher than the 99th percentile of variance
explained by a similar regression using trial-shuffled spiking
activity instead. Identical linear regressions were performed for
each of 51 sessions and R2 values were averaged across sessions.
Across these sessions (Fig. 6e), prestimulus spiking activity and
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coherence again explained significantly more RT variance than a
shuffle control of spiking activity for 47 out of 51 sessions
(Mean ± SD: 13.50 ± 8.57%, 4.70 ± 3.61%, one-tailed binomial test,
p = 1.11 × 10−10, Fig. S16a).

Note, prediction of RT by spiking activity was not an artifact of
RT covarying with the coherence. For instance, neural activity and
coherence combined explain ~25% of the variance in RTs for the
example session shown in Fig. 6a, b, but coherence alone only
explains only 12% of the variance in RT (Fig. 6c). Similarly, on
average across sessions, linear regression with binned spiking
activity and coherence as predictors explained significantly more
variance in RTs in all prestimulus bins than a linear regression of
RTs with solely coherence as the predictor (only the last presti-
mulus bin is reported here: Mean ± SD: 13.66 ± 8.9%, 6.32 ± 5.97%;
Wilcoxon rank sum comparing median R2, p = 2.97 × 10−9, Fig. 6e).
Therefore, nearly equal amounts of RT variance are explained by
prestimulus neural spiking activity ( ~ 7%) and the coherence of the
eventual stimulus (6.32%, Fig. 6e). These decoding results are
essentially a replication of the results shown in Figs. S12e, S13c,
and S14c.

In contrast, a logistic regression using binned spiking activity
failed to predict choice at greater than chance levels in the prestimulus
period. The choice-decoding accuracy was not significantly greater
than the 99th percentile of accuracy from a logistic regression using
trial-shuffled spiking activity, until after stimulus presentation
(Fig. 6d). Similar logistic regressions were built for each session and
accuracy was averaged across bins and sessions. The average presti-
mulus accuracy for predicting choice (Fig. 6f) was no better than
chance or than the 99th percentile of averaged prestimulus accuracy
from similar logistic regressions built on trial-shuffled spiking activity
(Mean± SD: 50.08 ±0.51%, 50.00 ±0.03%, only one session was larger
than the shuffled data out of 51 comparisons, one-tailed binomial test,
p = 0.999, Fig. S16b).

We further explored whether there was a prestimulus bias for
faster RT bins (apparent larger prestimulus separation by choice for
faster RT bins, Fig. 4b) or harder coherences as prestimulus activity
has been found to be predictive of choice for harder coherences in
previous experiments35. For one, prestimulus spiking activity was no
better than chance at predicting eventual choice even when trials
were grouped by RT bins (Fig. S16c). Next, we further refined this
analysis by performing a decoding analysis where we restricted the
analysis to just the hardest coherence and the fastest and slowest RT
bins (Fig. S17b). Again we found no relationship between presti-
mulus neural activity and choice for any of the RT bins. Results were
similar even when we restricted the trials to just the easiest coher-
ence (Fig. S17a). Second, we also performed a simple regression
analysis (50 ms causal bins stepped by 1 ms) where we examined if
neural activity covaried with choice on a neuron-by-neuron basis for
just the fastest and slowest RTs for the hardest coherences, and
compared it to the percent of neurons that covaried with RT
(Fig. S17c). We found that percent of neurons that covaried with
choice before stimulus onset was largely at chance levels, whereas a
modest ( ~ 5%) but significant portion of neurons correlated with RT
even before stimulus onset. Including all coherences in this
regression also did not change the results—again ~ 20% of neurons
covary with RT before stimulus onset but only ~ 1% of units covary
with choice (Fig. S17d). Thus, we found further evidence of the
neural population covarying with RT before stimulus onset but did
not observe any prestimulus choice bias.

These results are a key line of evidence in support of the dyna-
mical hypothesis outlined in Fig. 1h that initial conditions covary with
RT but not choice and thus help reject Fig. 1g as a candidate model for
our neural data. They also provide independent validation of the
results from the analysis of the PC trajectories.

Inputs and initial conditions both contribute to the speed of
poststimulus decision-related dynamics
Thus far we have shown that the initial conditions predict RT but not
choice. Our monkeys clearly demonstrate choice behavior that
depends on the sensory evidence, and also are generally slower for
harder compared to easier checkerboards. These behavioral results
and the dynamical systems approach make two key predictions: 1)
sensory evidence (i.e. the input), should modulate the properties of
the choice-selectivity signal after stimulus onset and 2) the overall
dynamics of the choice-selectivity signal should depend on both sen-
sory evidence and initial conditions (Fig. S9).

To test the first prediction, we performed two analyses. First, we
performed a PCAon firing rates of PMdneurons organized by stimulus
coherence and choice. Figure 7a shows the state space trajectories for
the first three components. In this space, activity separates faster for
easier compared to harder coherences. Consistent with this visualiza-
tion, choice selectivity increases faster for easier compared to harder
coherences (Fig. 7b). However, there is little tono change in the latency
of choice selectivity as a function of the stimulus coherence and thus
firing rates in PMd are inconsistent with the hypothesis that there are
stimulus-dependent encoding delays (Fig. 1f). These results suggest
that poststimulus dynamics are at least in part controlled by the sen-
sory input, consistent with the predictions of the dynamical systems
hypothesis.

To test the second prediction of how sensory evidence and initial
conditions jointly impact the speed of poststimulus dynamics, we
performed a PCA of PMd firing rates conditioned on RT and choice
within a coherence. To obtain these trajectories, we first calculated
trial-averaged firing rates for the 11 RT bins within each coherence. We
then projected these firing rates into the first six dimensions of the PC
space organized by choice and RTs (Fig. 4a, b). This projection pre-
served more than 90% of the variance captured by the first six
dimensions of the data organized by RT bins and choice within a
coherence. Typically the first six dimensions explained 75% of the total
variance of the data for a given coherence. Consistent with the results
in Fig. 4b, the prestimulus state again covaries with RT even within a
stimulus difficulty (Fig. 7c).

To assess how inputs and initial conditions jointly influenced
decision-related dynamics, we again computed the time-varying
choice-selectivity signal (CS(t)) by computing the high-dimensional
distance between left and right trajectories at each timepoint for each
of the RT bins and coherences. Fig. 7d shows this choice-selectivity
signal as a function of RT bin for the three different coherences shown
in Fig. 7c. For the easiest coherence, the choice-selectivity signal
starts ~ 100 ms after checkerboard onset and it increases faster (i.e.,
steeper slope) for faster RTs compared to slower RTs (Fig. 7d, left
panel, blue highlight box). In contrast, for the hardest coherence, the
choice-selectivity signal is more delayed for the slower RTs compared
to the faster RTs, while the slope effect is much weaker (i.e., slope for
fast RTs is similar to that of slow RTs, Fig. 7d, right panel). These plots
suggest that inputs and initial conditions combine and alter the rate
and latency of choice-related dynamics.

Wequantified thesepatternsbyfirstmeasuring the average choice-
selectivity signal in the 250 ms period from 125 to 375 ms after check-
erboard onset as a function of the initial condition and for each of the 7
coherences. We obtained an estimate of the initial condition by using a
PCA to project the average six-dimensional location in state space in the
-400ms to -100ms period before checkerboard onset for each of these
conditions on to a one-dimensional axis (see “Initial condition as a
function of RT and coherence”). As Fig. 7e shows, the average choice-
selectivity signal is larger for easier coherences across the board but
also weaker or stronger depending on the initial condition. Further-
more, when coherence is fixed, the average choice-selectivity signals
depends on the initial condition. A partial correlation analysis found
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that the average choice selectivity in this time epoch depends on both
the initial condition (50 bootstraps, mean and 99% confidence interval,
r74 = 0.85 (0.846 - 0.854), p = 0.0196) and the sensory evidence (r74 =
0.341 (0.331 - 0.350), p = 0.0196). These results are key evidence that
choice-selective, decision-related dynamics are controlled both by the
initial condition and the sensory evidence.

Do effects observed in Fig. 7 emerge from slope changes, latency
changes or both? To address this question, we fit the choice-selectivity
signal (CS(t)) using a piecewise function (eq. 21) with a latency and
slope parameter. Fig. 7f plots the latency of the choice-selectivity sig-
nal (tLatency) as a function of the sensory input and the initial condition.
Latencies depend on both the initial condition and sensory evidence.
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Latencies are slowest when the initial condition is in the slow RT state
and for weak inputs but faster for strong inputs or when the initial
condition is in a fast RT state. Consistent with this joint dependence, a
partial correlation analysis found that the latency of choice selectivity
depends on both the initial condition (r74 = −0.55 (-0.59, -0.51), p =
0.0196) and stimulus coherence (r74 = −0.38 (−0.4, −0.36), p = 0.0196).

Figure 7g plots the slope of the choice-selectivity signal (m) as a
function of the sensory input and the initial condition. In contrast to
latency, slope of the choice-selectivity signal was strongly dependent
on the initial condition but only weakly modulated by coherence. A
partial correlation analysis confirmed these observations. Slope was
strongly correlated with initial condition (r74 = 0.77 (0.75, 0.79), p =
0.0196) but had a very weak relationship to sensory evidence (r74 =
−0.16 (−0.18, −0.13), p = 0.0196).

Again, these effects were reaffirmed when using non-overlapping
bins for the analyses. Figure 7h shows the choice-selectivity signals for
the three non-overlapping bins considered in Fig. 5a. For instance, for
the easiest coherence, activity increases faster for faster RTs compared
to slower RTs but does not appear to do so for the harder coherences,
consistent with the patterns observed in Fig. 7d-g. We computed the
average choice-selectivity for each of these three RT bins in the 125 to
375 ms period and again found both initial condition and coherence
had an impact on the average choice-selectivity in the 125 to 375 ms
period (mean and 99% confidence intervals, coherence: r = 0.225
(0.204, 0.241), initial conditions: r = 0.77 (0.76,0.78), p = 0.0196 for
both cases, 50 bootstraps, Fig. 7i). Subsequent analysis of the latency
and slope of these choice-selectivity signals (Fig. 7j, k) were also con-
sistent with the conclusions from overlapping bins. Latency was
strongly impacted by initial condition (r18 = −0.63, (−0.72, −0.53)) and
modestly by coherence (r18 = −0.38 (−0.43, −0.33)). Slope was again
strongly influenced by the initial condition (r18 = 0.91 (0.88, 0.93), p =
0.0196) but had almost no relationship to coherence (r18=-0.007,
(-0.099, 0.085), p = 0.46).

In summary, choice selectivity depends on both the initial con-
ditions and the inputs. The initial condition exerts a strong indepen-
dent effect on both slope and latency of this signal, whereas sensory
evidence interacts with the initial condition in altering the latency of
the signal. Collectively, these results strongly support a dynamical
system for decision-making where both initial conditions and inputs
together shape decision-related dynamics and behavior.

Theoutcomeof the previous trial influences the initial condition
So far we have demonstrated that the initial condition, as estimated by
prestimulus population spiking activity, explains RT variability and
poststimulus dynamics in a decision-making task. However, why initial
conditions fluctuate remains unclear. One potential source of presti-
mulus neural variation could be post-outcome adjustment, where RTs
for trials following an error are typically slower or occasionally faster
than RTs in trials following a correct response32,47,48.

We examined if post-outcome adjustment was present in the
behavior of our monkeys. We identified all error, correct (EC)
sequences and compared them to correct, correct (CC) sequences.
The majority of the data are from sequences of the form CCEC (78%).
We compared any remaining EC sequence to the nearest CC sequence,
either before or after the EC sequence (22%). We did not observe any
error streaks (Fig. S18a). Associated RTs were aggregated across both
monkeys and sessions.

We found that correct trials following an error were significantly
slower than correct trials following a correct trial (Mean± SD: 487 ± 129
ms, 446 ± 96 ms; Wilcoxon rank sum comparing median RTs, p =
2.23 × 10−308, Fig. S18b). Additionally, we found that correct trials fol-
lowing a correct trial were modestly faster than the correct trial that
preceded it (M ± SD: 446 ± 96 ms, 451 ± 105 ms; Wilcoxon rank sum
comparingmedianRTs, p = 1.81 × 10−4, Fig. S18b). Thus, trialswhere the
previous outcomewas a correct response led to a trial with a faster RT,
whereas trials where the previous outcome was an error led to a trial
with a slower RT.

Such changes in RT after a previous trial were mirrored by cor-
responding shifts in initial conditions. A PCA of trial-averaged firing
rates organized by trial outcome and choice revealed that prestimulus
population firing rate covaried with the previous trial’s outcome. Post-
error correct trials, hereafter post-error trials, showed the largest
prestimulus difference in firing rates as compared to other trial out-
comes (Fig. 8a, b).

A KiNeT26 analysis using the first 6 PCs (again 6 dimensions cap-
tured ~ 90% of the variance; Fig. S18c) further corroborated presti-
mulus firing rate covariation with the previous trial’s outcome. Peri-
stimulus trajectories for post-error trials occupied the reflected side of
state space, relative to the reference trajectory (Correct trials), as
compared to all other trial types (Fig. 8c). The averaged, windowed
(i.e., –400:–200 ms, –200:0 ms, 0:200 ms, 200:400 ms) post-error
trajectory was significantly different from the distance reference tra-
jectory (0) for all windows (50-repetition bootstrap test, p <0.0196;
Fig. 8c). In a similar finding, a decoder revealed that the current trial’s
spiking activity can predict, at greater than chance levels, the previous
trial’s outcome from before stimulus onset until about the overall
mean RT, ~ 450 ms (equal numbers of correct and error trials, were
used in training the decoder, Fig. 8d), suggesting that the previous
trial’s outcome has an effect on the current trial’s pre- and post-
stimulus population firing rates.

KiNeT analyses reveal that post-error trials also had significantly
slower prestimulus trajectories as compared to the speed reference
trajectory for both prestimulus windows (i.e., –400:–200ms& –200:0
ms; 50-repetition bootstrap test vs reference trajectory: p =0.0196;
Fig. 8e), suggesting that error trials or, similarly, infrequent outcomes47

result in slower population dynamics in the following trial. Addition-
ally, trials that follow correct trials (errors generally followed correct
trials) have slightly faster prestimulus dynamics as compared to the

Fig. 7 | Initial conditions and inputs determine speed of dynamics and ulti-
mately choice and RT behavior. a First three PCs (PC1,2,3) of firing rates aligned to
checkerboard onset (red dots) and conditioned on stimulus coherence and choice.
Weobserved strongpoststimulus separation asa functionof choice andcoherence,
but no observable prestimulus (-400 ms to 0 ms) separation. Color-matched dia-
monds and squares, indicate 225ms post-checkerboard onset and 20ms time steps
respectively. b Choice-selectivity signal measured as the 6-dimensional Euclidean
distance (E. distance) between left and right reaches as a function of stimulus
coherence. c State space trajectories of the 1st, 2nd and 4th PCs of PCAs condi-
tioned on RT bins and action choice within three stimulus coherences (90%, 31%, &
4%). d Choice-selectivity signal for each of the three coherences shown in c as a
function of RT bin. eAverage choice-selectivity (CS) signal in the 125 to 375ms after
checkerboardonset as a functionof the initial condition (IC) within each coherence
(Coh.). Easier coherences lead to higher choice-selectivity signals regardless of

initial condition, but themagnitudeof this signaldependson the initial condition as
well as sensory evidence. f Latency of the choice-selectivity signal as a function of
the initial condition (IC) and for each stimulus coherence (Coh.). As expected from
(d), the latency is largely flat for the easier coherences and faster RT bins
(regardless of coherence), but slower for the harder coherences. The bend down in
e and the bend up in (f/g) for the fastest RT bin (300-400 ms, violet) is likely an
artifact of fewer trials in this bin. g Slope of the choice-selectivity signal (m term in
eq. 21) as a function of the initial condition (IC) and coherence (Coh.). Slopes
strongly depend on initial condition but only weakly on coherence. h Same as (d),
but for non-overlapping bins. Notice similarity between (h) and (d). Bend down in
(h) emerges due to truncation of firing rates at movement onset when averaging.
i–k Same as (e)–(g) but for non-overlapping bins. Again the choice selectivity
depends on both initial condition (IC) and coherence (Coh.). Cue - Checkerboard
onset. Source data are provided as a Source Data file.
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speed reference trajectory. Post-correct trial dynamics were sig-
nificantly faster in both prestimulus windows (50-repetition bootstrap
test: p =0.0196), whereas error-trial dynamics were significantly faster
in the last prestimulus window (–200:0 ms; 50-repetition bootstrap
test: p = 0.0196; Fig. 8e). Finally, error and post-error trials have sig-
nificantly slower poststimulus trajectories in the last poststimulus
window (200:400 ms) as compared to the speed reference trajectory,
(50-repetition bootstrap test: p = 0.0196; Fig. 8e) consistent with their
longer RTs. Altogether, these results complement behavioral results in
that the initial condition shifts as a function of previous trial outcome
and not just due to errors. These results suggest that slower or faster
RTs after an error or correct trial are at least partially due to slower or
faster prestimulus dynamics respectively (see Fig. S18d for com-
plementary findings in single trials). Results were near identical when
we used CCE and ECC sequences (Fig. S19).

The single-trial dynamics organized by trial outcome also suggest
that neural state for post-error trials is separated from the post-correct
trials at the timeofmovement onset (Fig. S18d).We reasoned that such
differences would lead to differences in choice selectivity between the
different trial outcomes before movement onset. Consistent with this
reasoning, the six-dimensional Euclidean distance between left and
right choice trajectories was largely flat until ~ 250 ms before
movement-onset at which point it increased for all trial types
(Fig. S18e). Post-error trials demonstrated the strongest choice selec-
tivity as compared to all other trial types at least 250 ms before
movement onset, with the difference between trial types peaking ~ 90
ms before movement onset (Fig. S18e).

These findings are consistent with the dynamical systems
approach and the hypothesis in Fig. 1h as they demonstrate that initial
condition before stimulus onset is dependent upon trial history and
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Fig. 8 | Prestimulus neural activity covaries with the previous trial’s outcome.
a The first four PCs (PC1,2,3,4) of trial averaged firing rates aligned to checkerboard
onset (Cue & black dashed line) of all 996 neurons from monkeys T & O and all
sessions organized by choice (right - dashed lines, left - solid lines) and trial out-
come (green - correct trial, cyan - correct trial following a correct trial, red - error
trial, and magenta - correct trial following an error trial). Percentage variance
explained by each PC presented at the top of each plot. b 1st, 3rd and 4th PC
(PC1,3,4) state space aligned to checkerboard onset (red dots). Plotting of PCs
extends 400ms before checkerboard onset and 400ms after. Observe how neural
activity separates as a function of outcome, but not by choice, up to 400ms before
stimulus onset. Squares and diamonds, color matched to their respective trajec-
tories, indicate 20ms time steps and 250ms post-checkerboard onset respectively.
c KiNeT distance analysis demonstrating that trajectories are spatially organized

with post-error trials furthest from other trial types peri-stimulus as compared to a
reference trajectory (green, middle trajectory). d Logistic regressions were built
per session (51 total) from current trial spiking activity to predict the outcome of
the previous trial. Plot shows the average percent accuracy of these 51 logistic
regressions peristimulus. Orange outline is SEM. e KiNeT Time to reference (tRef)
analysis reveals thatprestimulus velocity is slower peri-stimulus for post-error trials
as compared to the reference trajectory (green, middle trajectory). In (c) and (e)
shaded regions, color matched to their respective trajectories, are bootstrap SEM.
The x-axis is labeled Time (ms), this should be understood as time on the reference
trajectory. * - p =0.0196 and # - p = 0.05. p values derived from one-sided 50-
repetition bootstrap tests of differences between each outcome trajectory and the
reference trajectory. a.u. - arbitrary units. Source data are provided as a Source
Data file.
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that pre- and post-stimulus dynamics slow down after errors as com-
pared to after correct trials.

Changes in initial condition due to outcome of the previous trial
likely leads to RT-related changes in the initial condition
Our results in the previous section suggest that changes in RT are at
least in part due to alterations in the initial condition due to the pre-
vious trial’s outcome. To further test this hypothesis, we performed
two analyses.

First, we projected the firing rates organized by outcome and
choice, onto the RT subspace (defined using the first 6 principal
components of the PCA in Fig. 4). If the space defined by trial outcome,
and space defined by RT show a strong degree of overlap (High
Overlap in Fig. S20a), then the cross projection would reveal mean-
ingful structure. In contrast, if the subspaceswere independent or non-
overlapping, then cross projection would be largely unstructured25

(Independent in Fig. S20a). Consistent with our hypothesis, when we
projected the firing rates organized by outcome and choice onto the
RT subspace, we found near identical structure to what we observed
when performing PCA on the firing rates organized by trial outcome
and choice (Fig. S20b).We alsoperformed the converse of this analysis
where we projected firing rates organized by RT and choice into the
space defined by trial outcome and choice (Fig. S20c). Consistent with
our hypothesis that changes in trial outcome leads to changes in RT,
we found near identical structure to what we observed when per-
forming PCA on the firing rates organized by choice and RT (Fig. 4).
These cross projection analyses show that the subspaces identified by
trial outcome and choice, and RT and choice are highly overlapping
with one another.

To quantify the strength of this overlap we first used a previously
developed alignment index25. Briefly, the index calculates the trace of
the matrix that results from the projection of the RT space onto the
first six principal components of the outcome subspace (i.e., sum of
eigenvalues) and divides this by the sum of the eigenvalues from the
PCAonfiring rates organized byRT and choice (see “Subspace overlap
analysis”). Thus the index, as used here, quantifies the amount of
variance in the RT space (Fig. 4a, b) that could be accounted for by the
outcome subspace (Fig. 8a, b). This analysis revealed that ~ 77% of the
total variance for the RT space was explained by the outcome sub-
space, suggesting that the previous trial’s outcome has a large impact
in explaining prestimulus firing rate covariation with RT.

Second, we performed a dPCA49 on the population firing rates in
the 600 ms before checkerboard onset organized by previous trial’s
outcome and choice, and another organized by RT and choice. The
respective axes that maximally separated as a function of previous
trial’s outcome and that maximally separated as a function of RT
demonstrated significant overlapwith an angle of 47.8° between them.
These results suggest that the previous trial’s outcome leads to a shift
in prestimulus dynamics consistent with determining the speed of the
dynamics and therefore eventual RTs.

Collectively, the past trial’s outcome leads to different initial
conditions, slower pre- and poststimulus dynamics and ultimately
leads to RT variability, all in line with the hypothesis in Fig. 1h.

Discussion
Our goal in this study was to identify the dynamical system that best
described decision-related neural population activity in PMd. Inspired
by studies of neural population dynamics related to motor planning
and timing20–22,26, we investigated the neural population dynamics in
PMd of monkeys performing a red-green RT decision-making task18,27.
The prestimulus neural state in PMd, a proxy for the initial condition of
the dynamical system, strongly predicted RT, but not choice. We
observed these effects across and within stimulus difficulties and also
on single trials. Furthermore, faster RT trials had faster neural
dynamics and separate initial conditions from slower RT trials.

Additionally, poststimulus, choice-related dynamics were altered by
the inputs with easier checkerboards leading to faster dynamics than
harder ones. Finally, these initial conditions and the behavior for a trial
depended on the previous trial’s outcome, where RTs and prestimulus
trajectories were slower for post-error compared to post-correct trials.
Together, our results suggest that decision-related neural population
activity in PMd is well described by a dynamical system where the
choice-related dynamics (the output of the system) depend on initial
conditions (influenced by trial outcome) and the sensory evidence
(which solely determines the eventual choice).

At the highest level, these observations highlight how a dynamical
systems approach (alternatively, computation through dynamics) can
help understand the link between the time-varying activity of neural
populations and behavior6,15,26,50–54. Regardless of species or brain
region, an increasingly common finding is that neurons associated
with cognition and motor control are often heterogeneous and
demonstrate complex time-varying patterns of firing rates and mixed
selectivity8,15,41,52,55. Simple models or indices, although attractive to
define, are often insufficient to summarize the activity of these neural
populations15,52,56, and even if one performs explicit model selection on
single neurons using specialized models37, the results can be brittle
because of the heterogeneity inherent in these brain regions56. The
dynamical systems approach addresses this problem by using
dimensionality reductionmethods such asPCA andTCA, reduced-rank
regression, decoding, RNN models, and optimization techniques to
understand collective neuronal activity of different brain regions and
tasks, generally summarizing the trial-averaged dynamics of large
population datasets in lower dimensional subspaces14,15,41. Here, we
demonstrated that >85% of the variance from the trial-averaged firing
rate activity of nearly 1000 neurons in PMd during decisions could be
explained in just a few (six) dimensions.

This trial-averaged, low-dimensionality should be appreciated in
the context that it allows us to understand the task-related, latent
neural dynamics underlying decision-making. However, that six
dimensions suffice to explain neural activity in PMd is first due to trial-
averaging that suppresses variability in both firing rates and spiking
variability (Fig. S21). Other factors in our study including the use of
highly-trained animals performing a task with small stimulus sets, one-
to two-dimensional behavioral reports, and well controlled behavioral
conditions further minimize possible variability. The single-trial
dimensionality of PMd during decision-making is likely to be much
higher under more naturalistic conditions when factors such as arou-
sal, unintended arm, body, and eye movements, and variability in
spiking are present. Consistent with this notion, experiments with
large population datasets ( > 10,000 units) in the primary visual cortex
in mice running on a ball and passively viewing visual stimuli drawn
from large stimulus sets often require 100s of dimensions to capture a
majority of the variance57.

Besides compactly describing trial-averaged population activity,
there are three other clear advances afforded by using a dynamical
systems approach to study decisions. First, we find lawful relationships
between the low-dimensional activity of neural populations and task
variables such as choice, RT, stimulus difficulty and past outcomes14,15.
Second, analysis of this low-dimensional activity allowsone to arbitrate
between different dynamical hypotheses. The dynamical system that
was most consistent with the PMd data was one where prestimulus
activity correlated with RT, but only minimally with choice (Fig. 1h).
Finally, this dynamical system naturally bridges previously disparate
findings from studies of speed-accuracy tradeoff28–31,58, post-outcome
adjustment32,59, motor planning20 and timing26 and provides a common
framework for deriving models for the neural computations under-
lying decision-making.

We augmented our trial-averaged analyses with cross-validated
single-trial approaches that used TCA, reduced-rank regression,
decoding, and regression to suggest that the dynamical system most
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consistent with our data is likely one where the initial conditions
covary with RT and are modified by trial outcome (Fig. 1h). We also
showed that a simple unconstrained linear dynamical system without
external input can explain single-trial variance in neural and behavioral
data before and after checkerboard onset (Fig. S13), and a fully
expressive nonlinear dynamical system through LFADS44 could predict
single-trial firing rates of the population of neurons (Fig. S14). Both
LFADS firing rates and factors (Fig. S14c), and firing rates from the LDS
(Fig. S13c) predicted RT suggesting that these dynamical systems are
capturing behaviorally relevant neural variance.

Larger single-trial datasets could provide two advantages to bet-
ter understand dynamics underlying decision-making. First, these
datasets would allow us to fully characterize the relative contributions
of the position of the initial condition and the velocity of the initial
condition to decision-related dynamics and behavior. In particular,
further analyses of the curvature, velocity relative to the mean trajec-
tory, path length, and speed of the trajectories will lead to an even
better description of the single-trial dynamics underlying decisions as
has been done for motor planning20,60,61. Second, we could directly
recover the dynamical system from the data either through reverse
engineering the generator RNN from our LFADS fits or using methods
that can fit switching linear dynamical systemswith switch times either
constrained to various task events (e.g., target onset, checkerboard
onset, and movement onset)62, or use unsupervised switching linear
dynamical systems63,64.

Our results, mainly that decision-related neural activity and
behavior are well described by a dynamical system dependent upon
both initial conditions and inputs, are inconsistent with simple one-
dimensional drift diffusion models (DDM) where decision-making
behavior is solely driven to a bound by accumulation of sensory
evidence65–67. Including variable drift rates and starting points biased
towards a particular choice in a one-dimensional DDM would be
insufficient towards recapitulating prestimulus decision-related sig-
nals that covary with RT but not choice. Variable non-decision times
could potentially explain the RT behavior reported here. However, the
neural effect of a change in non-decision time is thought to relate to
changes in the initial latency of decision-related responses and does
not predict changes in the prestimulus neural state. Thus, while simple
one-dimensional DDMs with a variable non-decision time may explain
the behavior observed herein they would fail to recreate the observed
variability in the initial condition.

Thus, these results suggest that additional dimensions might be
needed for the DDM to faithfully replicate our neural data. For exam-
ple, consider a two-dimensional DDM, where the x and y axes are the
bounds. If the initial state is close to the origin along the 45° diagonal
line, thenRTswould be faster for both choices. Conversely, if the initial
state is farther from the origin along the 45° diagonal line for both
choices then the RTs would be longer. Such a model is consistent with
our data and could potentially explain the behavior and neural
responses described here.

Cognitive process models with an additive or multiplicative
stimulus-independent gain signal, previously described as urgency
and successfully used to describe monkey behavior and neural
activity28,68–71, could also faithfully model the behavior and the neural
dynamics. A variable additive gain signal, which adds inputs to accu-
mulators for left and right choices in a race model for decisions,
would lead to different initial conditions and thus faster dynamics for
faster RTs and slower dynamics for slower RTs30. Similarly, a multi-
plicative gain signal would also lead to differences in both the initial
firing rates and control the speed of decision-making behavior28,68.
Both types of gain signals generate similar predictions about RT and
choice behavior and are often difficult to distinguish using trial-
averaged firing rates as done here. Even in our RNN models, both
inputs and gain changes lead to shifts in prestimulus activity and
these shifts are correlated with RT (Fig. S2d, e). One way to resolve

this impasse would be to employ single-trial analysis57,72 of neural
responses inmultiple brain areas using a taskparadigm thatdispenses
sensory evidence over the course of a trial such as in the tokens17 or
pulses task8.

Typically, researchers have focused on the slowing down of
responses after anerror, a phenomenon termedpost-error slowing32,48.
However, our findings suggest that both correct and error outcomes
can influence the pre- and poststimulus decision-making neural
dynamics on subsequent trials suggesting that post-error slowing
could be better understood under the umbrella of post-outcome
adjustments47. It is currently unclear how these post-outcome adjust-
ments in PMd emerge. One possibility is that these adjustments
emerge from the internal dynamics of PMd itself. We examined the
loadings on the various principal components to test for the possibility
of “error” cells driving the effects of trial outcome (Fig. S22). However,
our preliminary analysis did not provide clear evidence for the exis-
tence of such error cells and instead suggest that error signals are
better characterized as distributed throughout the population. Errors
vs. correct trials could lead to a shift in the initial condition due to
recurrent dynamics that occur in PMd due to the presence or absence
of reward. Such error-related signals have been observed in premotor
and motor cortex and have even been used to augment brain com-
puter interfaces73. Alternatively, the changes observed in PMd could
emerge from inputs from other brain areas such as the anterior cin-
gulate cortex (ACC) which is known to monitor trial outcome74, or the
supplementarymotor area (SMA), which has been implicated in timing
of motor actions and evaluative signals related to outcome29,75.
Simultaneous recordings in PMdand these brain areas are necessary to
tease apart the contribution, if any, of these areas to the initial con-
dition changes observed in PMd.

We have shown that the outcome of the previous trial alters the
initial conditions for subsequent trials. There are certainly other fac-
tors that can alter initial conditions. In particular, recent studies have
shown that both neural activity and behavior as indexed by RT, per-
formance, and pupil size drifts over slow time scales and that these
slowly drifting signals are likely a process independent of deliberation
on sensory evidence70,76,77. Such effects emerge over several hourswith
maximal alterations in behavior happening at the end of sessions.
However, our monkeys do not demonstrate a large drop off or change
in performance over the course of a session (Fig. S18a). Nevertheless,
we believe that such effects could also contribute to changing initial
conditions in other studies70,77.

We found that prestimulus neural activity in PMd and in this task
did not covary with or predict eventual choice. However prestimulus
neural activity in lateral intraparietal (LIP) cortex was found to be
predictive of choice for low coherence or harder randomdot stimuli35.
Our lack of an observed covariation between the initial condition and
choice may be due to the randomization of target configurations.
Thus, the monkeys in our experiment were disincentivized from pre-
planning a reach direction. To be clear, our lack of a finding does not
preclude prestimulus activity in other brain areas or even in PMd with
different tasks from covarying with choice78.

We suspect that the observed effects where initial conditions
predict the RT in a cognitive task are likely to be observed in many
brain areas. For example, previous results recorded in monkey dor-
somedial prefrontal cortex during timing tasks26 and in motor cortex
(M1)/PMd from motor planning tasks20,61,79,80 bear out the contention
that our observation of prestimulus PMd neural population activity
covarying with and predicting RTs in a decision-making task is likely
not solely localized to PMd or constrained to occur only in this task. In
fact, differences in baseline neural activity between speed and accu-
racy conditions of speed-accuracy tradeoff tasks is found in frontal eye
field58, pre-supplementary motor area29, M1 & PMd16,31, and LIP30. We
also showed that prestimulus beta band activity in this same taskand in
PMd was correlated with RT81. Additionally, in a study of post-error
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slowing the level of prestimulus phase synchrony in fronto-central
electrodes, was found to positively correlate with the speed of RTs59.
These findings of neural activity changing as a result of different
conditions of a speed-accuracy tradeoff task or being predictive of
RTs, strongly suggest that initial conditions in multiple brain regions,
and potentially someputative fronto-centralmotor network, effect the
speed of a response. In otherwords, changes in the initial conditions in
various brain regions before stimulus onset is likely not a localized
effect and suggests either broad signalling82 from some source or even
feed-forward/feedback mechanisms between brain regions.

In summary, our results are a significant advance over a previous
study of dynamics in PMd during reach planning20 that showed that in
a delayed reach task, the position and velocity of the initial conditions
correlated with RT. It was unclear from the study, what the role of
inputs was and how changes in initial conditions emerge across trials.
Our study suggests that initial conditions, sensitive to previous out-
comes, jointly with sensory evidence (i.e., input) determine the choice-
related dynamics in PMd.

Methods
Several method sections are adapted from ref. 18 as the same data set
is reanalyzed in this study. For completeness and readability, some
aspects are replicated here, but much of the methods focuses on key
details about the various dimensionality reduction techniques such as
PCA, TCA, fits of linear dynamical systems, reduced-rank regression,
decoding, and LFADS analyses. Table 1 summarizes the major analyses
performed in the manuscript and corresponding figures associated
with the analyses. The majority of the analyses were performed using
MATLAB including the statistics and machine learning, parallel com-
puting and curve fitting toolboxes.

Subjects
Experiments were performed using two adult male macaque monkeys
(Macaca Mulatta; monkey T, 7 years, 14 kg & monkey O, 11 years, 15.5
kg) trained to touch visual targets for a juice reward. Monkeys were
housed in a social vivariumwith a normal day/night cycle. Protocols for
the experiment were approved by the StanfordUniversity Institutional
Animal Care and Use Committee (Protocol 8856). Animals were initi-
ally trained to come out of their housing and to sit comfortably in a
chair. After initial training (as described in18), monkeys underwent
sterile surgery where cylindrical head restraint holders (Crist Instru-
ment Co., Inc., Hagerstown, MD, United States) and standard circular
recording cylinders (19 mm diameter, Crist Instrument Co., Inc.) were
implanted. Cylinders were placed surface normal to the cortex and
were centered over caudal dorsal premotor cortex (PMdc; +16, 15
stereotaxic coordinates, see Fig. 2g). The skull within the cylinder was
covered with a thin layer of dental acrylic or palacos.

Apparatus
Monkeys sat in a customized chair (Synder Chair System, Crist
Instrument Co., Inc.) with their head restrained. The arm that was
not used to respond in the task was gently restrained with a tube
and cloth sling. Experiments were controlled and data collected
using a custom computer control system (Mathworks’ xPC target
and Psychophysics Toolbox, The Mathworks, Inc., Natick, MA,
United States). Stimuli were displayed on an Acer HN2741 monitor
approximately 30 cm from the monkey. A photodetector (Thorlabs
PD360A, Thorlabs, Inc., Newton, NJ, United States) was used to
record the onset of the visual stimulus at a 1 ms resolution. A small
reflective spherical bead (11.5 mm, NDI passive spheres, Northern
Digital, Inc., Waterloo, ON, Canada) was taped to the middle finger,
1 cm from the tip, of the active arm of each monkey; right for T and
left for O. The bead was tracked optically in the infrared range (60
Hz, 0.35 mm root mean square accuracy; Polaris system, NDI). Eye

position was tracked using an overhead infrared camera with an
estimated accuracy of 1° (ISCAN ETL-200 Primate Eye Tracking
Laboratory, ISCAN, Inc., Woburn, MA, United States). To get a
stable image for the eye tracking camera, an infrared mirror
(Thorlabs, Inc.) transparent to visible light was positioned at a 45°
angle (facing upward) immediately in front of the nose. This
reflected the image of the eye in the infrared range while allowing
visible light to pass through. A visor placed around the chair pre-
vented the monkey from touching the juice reward tube, infrared
mirror, or bringing the bead to its mouth.

Task
Experiments were made up of a sequence of trials that each lasted a
few seconds. Successful trials resulted in a juice reward whereas failed
trials led to a time-out of 2–4 s. A trial started when a monkey held its
free hand on a central circular cue (radius = 12 mm) and fixated on a
small white cross (diameter = 6 mm) for ~ 300–485 ms. Then two iso-
luminant targets, one red and one green, appeared 100mm to the left
and right of the central hold cue. Targets were randomly placed such
that the red target was either on the right or the left trial-to-trial, with
the green target opposite the red one. In this way color was not tied to
reachdirection. Following anadditional center holdperiod (400–1000
ms) a static checkerboard stimulus (15 × 15 grid of squares; 225 in total,
each square: 2.5 mm × 2.5 mm) composed of isoluminant red and
green squares appeared superimposed upon the fixation cross. The
monkey’s task was to move their hand from the center hold and touch
the target that matched the dominant color of the checkerboard sti-
mulus for aminimumof 200ms (for full trial sequence see Fig. 2b). For
example, if the checkerboard stimulus was composed of more red
squares than green squares the monkey had to touch the red target in
order to have a successful trial. Monkeys were free to respond to the
stimulus as quickly or slowly, within an ample ~ 2s time frame, as they
chose. There was no delayed feedback therefore a juice reward was
provided immediately following a successful trial10. An error trial or
miss led to a timeout until the onset of the next trial.

The checkerboard stimulus was parameterized at 14 levels of red
(R) and complementing green (G) squares ranging from nearly all red
(214 R, 11 G) to all green squares (11 R, 214 G) (for example stimuli see
Fig. 2c). These 14 levels are referred to as signed coherence (SC),
defined as SC = 100× ðR�GÞ

ðR +GÞ (R: 4%:90%, G: –4%:–90%). Correspondingly
there are seven levels of color coherence, agnostic to the dominant
color, defined as C = 100× jR�Gj

ðR +GÞ (4-90%).
The hold duration between the onset of the color targets and

onset of the checkerboard stimulus was randomly chosen from a
uniform distribution from 400 to 1000 ms for monkey T and from an
exponential distribution for monkey O from 400-900 ms. Monkey O
attempted to anticipate the checkerboard stimulus therefore an
exponential distribution was chosen to minimize predictability.

Effects of coherence on accuracy and reaction time (RT)
Behavior was analyzed by fitting psychometric and RT curves on a per-
sessionbasis and averaging the results across sessions. Behavioral data
was analyzed in the same sessions as the electrophysiological data. In
total there were 75 sessions for monkey T (128,774 trials) and 66 ses-
sions for monkey O (108,365 trials). On average there were ~ 1500
trials/session. Both incorrect and correct trials for each SC were
included for estimating RT/session.

Data were fit to a psychometric curve to characterize how dis-
crimination accuracy changed as a function of stimulus coherence. For
each session a monkey’s sensitivity to the checkerboard stimulus was
estimated by estimating the probability (p) of a correct choice as a
function of the color coherence of the checkerboard stimulus (C). The
accuracy function was fit using a Weibull cumulative distribution
function.
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Weibull cumulative distribution function:

pðCÞ= 1� 0:5e�ðcαÞγ ð2Þ

The discrimination threshold α is the color coherence level at
which themonkey wouldmake 81.6% correct choices. The parameter γ
describes the slope of the psychometric function. Threshold and slope
parameters were fit per session and averaged across sessions. We
report the mean and standard deviation of threshold and R2 values
from the fit in the text.

Mean RT was calculated per SC on a session-by-session basis and
averaged across sessions. Results are displayed in Fig. 2e with error
bars denoting 2 × SEM and lines between the averages to guide the
eyes. RT was also regressed with log10ðCÞ per session. The fit
coherence-RT model was used to predict RTs and calculate R2 on a
per session basis. R2 values were averaged across sessions per monkey
and are reported in Fig. 2f as percentage of variance explained. The
general framework and equations for linear regression and R2 calcu-
lations are provided in “Linear regression to relate RT and firing rate,
and logistic regression to decode choice”.

Electrophysiological recordings
Electrophysiological recordings were guided by stereotaxic coordi-
nates, known response properties of PMd, and neural responses to
muscle palpation. Recordings were made anterior to the central sul-
cus, lateral to the precentral dimple and medial to the spur of the

arcuate sulcus. Electrodes were placed in the PMd contralateral to the
dominant hand of the monkey (T: right arm, O: left arm). Recording
chambers were placed surface normal to the cortex to align with the
skull of themonkey and recordings were performed orthogonal to the
surface of the brain. Estimates of upper and lower arm representation
was confirmed with repeated palpation at a large number of sites to
identify muscle groups associated with the sites.

Single electrode recording techniques were used for a subset of
the electrophysiological recordings. Small burr holes in the skull were
made using handheld drills (DePuy Synthes 2.7 to 3.2mm diameter). A
Narishige drive (MO-972A, Narishige International USA, Inc., Amity-
ville, NY, United States) with a blunt guide tube was placed in contact
with the dura. Sharp FHC electrodes ( > 6 MΩ, UEWLGCSEEN1E, FHC,
Inc., Bowdoin, ME, United States) penetrated the dura and every effort
was made to isolate, track, and stably record from single neurons.

180 μm thick 16-electrode linear multi-contact electrode (U-
probe, see Fig. 2g; Plexon, Inc., Dallas, TX, United States); interelec-
trode spacing: 150 μm, contact impedance: ~ 100 kΩ) recordings were
performed similarly to single electrode recordings with some mod-
ifications. Scraping away any overlying tissue on the dura, under
anesthesia, and a slightly sharpened guide tube aided in slow U-probe
penetration ( ~ 2–5 μm/s). U-probe penetration was stopped once a
reasonable sample of neurons was acquired, potentially spanning
multiple cortical layers. Neural responses were allowed to stabilize for
45-60 minutes before normal experimentation began. Monkey T had
better recording yields on average ( ~ 16 units/session) than monkey O

Table 1 | Summary of analyses, models, and simulations used in the manuscript

Analysis Sessions/Units Data/Parameters Figures

Principal Components Analysis (PCA) with
overlapping RT bins and choice

• 141 sessions
• 996 units
• 30 ms Gaussian
• 801 units (*)
• 15msGaussian and 50
ms Boxcar (∘)

Smoothed PSTHs of trial-averaged units combined across sessions and orga-
nized by overlapping RT bins and choice; 6D trajectories for associated KiNeT
analysis

• Fig. 4
• Fig. S5∘

• Fig. S7
• Fig. S10*
• Fig. S11∘

• Fig. S20

Principal Components Analysis (PCA) with
coherence and choice

• 141 sessions
• 996 units
• 30 ms Gaussian

Smoothed PSTHs of trial-averaged units combined across sessions and orga-
nized by coherence and choice; 6D trajectories for associated Kinematic
analysis of Neural Trajectories (KiNeT)

• Fig. 7

Principal Components Analysis (PCA) with
trial outcome and choice

• 141 sessions
• 996 units
• 30 ms Gaussian

Smoothed PSTHs of trial-averaged units combined across sessions and orga-
nized by outcome of trials and choice; 6D trajectories for associated KiNeT

• Fig. 8
• Fig. S18
• Fig. S19
• Fig. S20

Principal Components Analysis (PCA) with
nonoverlapping RT bins and choice

• 141 sessions
• 996 units
• 30 ms Gaussian

Smoothed PSTHs of trial-averaged units combined across sessions and orga-
nized by nonoverlapping RT bin and choice; 6D trajectories for asso-
ciated KiNeT

• Fig. 5

Choice/outcome decoding analysis & RT
regression analysis
• Curve Fitting Toolbox
• Statistics & Machine Learning Toolbox

• 51 sessions
• 2 to 32 units
• 157 to 2349 trials

Binned spike counts (20ms bin size) • Fig. 6
• Fig. 8
• Fig. S16
• Fig. S17

Single neuron regression analyses • 141 sessions
• 996 units

Smoothed firing rates (50ms causal boxcar) • Fig. S10

Latent Factor Analysis of Dynamical Systems
(LFADS)
• https://github.com/lfads

• 1 session; 23 units (*)
• 16 sessions; 11 to 32
units (∘)

• 631 to 1403 trials

Binned spike counts (10ms bin size); 8 factors • Fig. 6*
• Fig. S14∘

• Fig. S18*

Tensor Component Analysis (TCA),
• https://www.tensortoolbox.org/
• https://github.com/ahwillia/tensor-demo

• 44 sessions
• 2 to 32 units
• 370 to 2349 trials

Causally smoothed firing rates (50msboxcar), ranks from 1 to 4. Sessions with
fewer than 4 unitsweonly ran TCAup to themaximumnumber of units for that
session.

• Fig. S12

Linear Dynamical Systems (LDS),
• https://github.com/gamaleldin/CFR

• 31 sessions
• 11 to 32 units
• 97 to 960 trials

Causally smoothed firing rates (50ms boxcar); step of 100 ms. Only left trials
were analyzed.

• Fig. S13

Reduced-rank regression
• https://github.com/cmccomb/RedRank

• 41 sessions
• 2 to 32 units
• 370 to 2349 trials

Causally smoothed firing rates (50 ms boxcar); step of 100 ms. • Fig. S15

Recurrent Neural Network models (RNNs)
• https://github.com/murraylab/PsychRNN

• 100 units ReLu nonlinearity • Fig. S2

Simulated population of PMd neurons • 350 units 200 Increased, 100 Decreased, and 50 perimovement units • Fig. S3

Where applicable, links to the toolboxes used are provided. Most analyses were performed using MATLAB.
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( ~ 9 units/session). Additionally, lowering the electrode necessitated
careful observation to ensure the electrode did not bend or break at
the tip, or excessivelydimple thedura. Therefore, itwasnotpossible to
precisely localize the U-probes with a grid system between sessions.
We used the Blackrock system and the Cerebus Software for acquiring
all electrophysiological data.

Unit selection and classification
The electrophysiological recordings consist of 996units (546 units inT
and 450 units in O, including both single neurons and multi-units)
recorded from PMd of the two monkeys as they performed the task
over 141 sessions. Chosen units were included as they were well iso-
lated from other units/separated from noise andmodulated activity in
at least one task epoch.

U-probes were useful for recording from isolated single neurons
as U-probes are low impedance ( ~ 100 kΩ) with a small contact area. A
conservative threshold was used to maximize the number of well
definedwaveforms and tominimize contamination fromspurious non-
neural events. Single neuronsweredelineated online by the hoops tool
of the Cerebus system software client (Blackrock Microsystems, Salt
Lake City, UT, United States) after the electrodes had been in place for
30 - 45 minutes. When a spike was detected via thresholding, a 1.6 ms
snippet was stored and used for subsequent evaluation of the clusters
as well as modifications needed for spike sorting.

Some electrodes in U-probe recordings capturedmixtures of 2 or
more neurons, well separated from each other and noise. In the
majority of cases the waveforms were separable and labeled as single
units. These separations were verified by viewing the waveforms in
principal component (PC) space using custom code in MATLAB (The
MathWorks, Inc., Natick, MA, United States). MatClust, a MATLAB
based clustering toolbox (https://www.mathworks.com/
matlabcentral/fileexchange/39663-matclust), or Plexon Offline Sorter
(Plexon, Inc.) were used to adjust the clusters thatwere isolated online.
Recording activity labeled as multi-units were mixtures of 2 or more
neurons whose waveforms were reasonably demarcated from the
noise but not easily separable using a PCs method.

The number of interspike interval (ISI) violations after clustering
and sorting was used to mitigate subjectivity in the classification of
units. A unit was labeled as a single neuron if the percentage of ISI
violations (refractory period of ≤ 1.5 ms) was ≤ 1.5%, otherwise it was
labeled as a multi-unit. 801/996 PMd units were labeled as single
neurons (T: 417, O: 384,median ISI violation =0.28%,mean ISI violation
= 0.43%, ~ 0.13 additional spikes/trial). Therefore 195/996 units were
labeled as multi-unit (T: 129, O: 66, mean ISI violation = 3.36%, ~ 1.4
additional spikes/trial). We included multi-units as well because they
gave us additional power for our decoding analyses and priorwork has
shown that the inclusion of multi-units does not distort recovery of
low-dimensional dynamics from neural activity42.

Units from both monkeys were pooled together as the electro-
physiological characteristics were similar. Change-of-mind trials
( ~ 2–3%) were excluded from averaging as the change in reach direc-
tion mid-movement execution made the assignment of choice
ambiguous. Incorrect and correct trials arranged by choice were
averaged together.

Peri-event firing rates
We calculated peri-event time histograms and other analyses (e.g.,
PCAs) aligned to either checkerboard (e.g., in Fig. 3) or movement
onset (i.e., Fig. S18e) using the following procedure. 1) We first binned
spike times for each trial at 1 ms resolution for a condition of interest
(e.g., fast RT bin and left reaches) aligned to checkerboard or move-
ment onset. When trials were aligned to checkerboard onset we
removed (i.e., replaced with NaNs) all spikes 50 ms before movement
onset (estimated from RT) until the end of the trial to ensure that
movement related spiking activity did not spuriously lead to ramping

in the checkerboard period. 2) We then convolved the spike train with
a Gaussian kernel (σ = 30 ms) to estimate the instantaneous firing rate
(e.g., ri(t,RT, left)) for a trial. 3) Finally, firing rates were trial-averaged
within a condition (e.g., �rðt,RT ,leftÞ). We used a 30ms kernel based on
previous studies in our and other lab(s). However to ensure our results
were not a trivial artifact of smoothing, peri-stimulus time histograms
(Fig. S4) and other key analyses (Fig. S11) were performed with a
smaller Gaussian kernel (15 ms) and a causal boxcar kernel (50ms). As
expected, results were very similar if only slightly noisier. None of the
conclusions change when using these alternative smoothing
approaches.

Principal component analysis (PCA) of trial-averaged PMd fir-
ing rates
PCA was used to examine firing rate variance in the recorded PMd
neural population. PCA reveals dimensions that explain a large per-
centage of the data while making few assumptions about the under-
lying structure of the data. The dimensions extracted by PCA may not
always bemeaningful49. However, they often align well with behavioral
variables.

The general procedure for performing a PCA involved creating
a 4D matrix containing all 996 units (or 801 single units as in
Fig. S10) and their condition-averaged firing rate activity (i.e., peri-
stimulus time histograms; Section “Peri-event firing rates”) wind-
owed about checkerboard onset ( ~ -600 ms: ~ 1200 ms) and orga-
nized by level of condition (e.g., coherence, RT, or past outcome)
within a reach direction. Typical matrix organization was windowed
firing rate x units x reach x condition (C) ( ~ 1800 × 996 × 2 × C).
Condition could be coherence (7, i.e., Fig. 7a), RT (11, i.e., Fig. 4b), or
past outcome (4, i.e., Fig. 8b). For the RT PCA we used overlapping
RT bins ( ~ 100 - 200 trials/bin, Fig. S6b) as it afforded a degree of
smoothing to understand how neural population dynamics covary
with RT and choice. However, this could be statistically problematic
as trials then contribute to multiple conditions. Thus we also split
our data into nonoverlapping RT bins ( ~ 120 - 220 trials/bin,
Fig. S6a) and found that our results are not a trivial artifact of using
overlapping bins (Fig. 5).

The 1800 × 996 × 2 × Cmatrices are reorganized into 2Dmatrices
appropriate for PCA. First, we further constrain the time window such
that individual conditions are now windowed 400 ms before check-
erboard onset to the median RT of the condition (i.e., for coherence
and outcome analyses) or lower bound of the RT bin (i.e. for RT ana-
lyses) minus 25 ms (e.g., 300 ms - 25 ms = 275 ms). The 25 ms is
subtracted to remove any artifact from data replaced with NaNs (as
explained above, “Peri-event firing rates”). Thus each condition is now
windowed − 400: ~ 400 ms around stimulus onset for all units and
vertically concatenated by order of condition. Thus the RT, coherence,
and outcome condition matrices respectively become ~ 17000 ×
996, ~ 11, 000 × 996 and ~ 6, 000 × 996 matrices (11/7/4 conditions
each with slightly varying time windows vertically concatenated × all
996 units, with all left reach conditions vertically concatenated above
all right reach conditions).

These trial-averaged 2D firing rate matrices are centered by
subtracting the mean of each column (i.e. units) and then normal-
ized by dividing by the square root of the 99th percentile of that
column (i.e., soft normalization). Soft normalization reduces the
bias of units with high firing rates and ensures that each unit has
roughly the same overall variability across conditions. Eigenvec-
tors and eigenvalues were calculated using the pca function in
MATLAB.

To perform the within-coherence RT PCAs (3 shown, Fig. 7c) we
first generated seven (1 for each coherence) trial-averaged firing rate
matrices organized by RT and choice (each 11 RT bins × 2 choices).
Thenwe projected each of these 7matrices into the PC space obtained
by PCA on the RT and choice data (i.e., Fig. 4)
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Bootstrapped trial-averaged PMd firing rate distributions for
statistical analysis
We also generated 50 bootstrapped firing rate distributions by sam-
pling with replacement for each unit’s trials in a condition. We per-
formed PCA on these bootstrapped firing rates and used them for
generating the KiNeT analysis errorbars (e.g., Fig. 4, Fig. 5), compute
confidence intervals for correlation analyses (e.g., Fig 7), as well as for
comparing between conditions in Fig. S18.

Estimation of number of dimensions to explain the data
We used the approach developed by41 to estimate the number of
dimensions that best described our data. The assumption of this
method is that the firing rates of the kth neuron for the ith trial given a
RT bin and choice (rikðt,RT,choiceÞ) are assumed to be composed of a
mean signal rate (qk(t∣RT, choice)) and a noise rate that fluctuates
across trials (ηi

kðt,RT,choiceÞ).

rikðt,RT,choiceÞ=qkðt,RT,choiceÞ+ηi
kðtÞ ð3Þ

Noise here encompasses both contributions from the random nature
of spike trains aswell as systematic but unknown sources of variability.
Averaging over trials:

�rkðtjRT,choiceÞ=qkðtjRT,choiceÞ+ �ηkðtjRT,choiceÞ ð4Þ

Where �ηkðt,RT,choiceÞ is the average noise over N instantiations (i.e.,
trials) of the noise term ηi

kðt,RT ,choiceÞ.
The overall mean firing rate over time and conditions (�r) is given

as:

�rk =<qkðt,RT,choiceÞ>+ <�ηkðt,RT,choiceÞ> ð5Þ

= qk + �ηk ð6Þ

Note, none of these assumptions are strictly true. Noise may not
be additive and it may depend on RT bin andmay increase or decrease
during various phases of the trial. However, these assumptions illus-
trate the problem encountered in identifying the number of dimen-
sions to best describe the data.

Under these assumptions PCA attempts to identify a covariance
matrix as

Cij =<�riðt,RT,choiceÞ � �ri><�rjðt,RT,choiceÞ � �rj> ð7Þ

Which can be simplified (see41 for more details) to:

Cij =Qij +Hij ð8Þ

Where Qij is a signal covariance and Hij is the noise covariance.
Our goal is to perform PCA on Qij. However, because our data

were not collected simultaneously, we cannot calculateQij aswedonot
have a good estimate of Hij.

Nevertheless, even with trial-averaged data, one can provide an
estimate of Hij by constructing putative noise matrices based on the
simplifying assumption that the noise is largely independent in neurons
with perhaps modest noise correlations. To generate representative
noise traces for our firing rates, consider firing rates of two trials rki ðtÞ,
and rliðtÞ for the ith neuron (the superscripts k and l refer to any two
different trials). Notice that if one subtracts the firing rates for these
trials, then the signal components, which by assumption are identical

for the two trials are removed and we are only left with the noise:

rki ðtjRT,choiceÞ � rliðtjRT,choiceÞ=ηk
i ðt,RT,choiceÞ � ηl

iðt,RT,choiceÞ
ð9Þ

Which is just subtraction of two random instantiations of the same
process, which can be written as:

ηk
i ðt,RT,choiceÞ � ηl

iðt,RT,choiceÞ=
ffiffiffi
2

p
ηm
i ðt,RT,choiceÞ

=
ffiffiffiffiffiffiffi
2M

p
�ηiðt,RT,choiceÞ

ð10Þ

Where thefinal equality emerges from the equations for standarderror
of the mean. For example, varð�X Þ= varðPM

i= 1
Xi
MÞ=

PM
i= 1

varðXiÞ
M .

Thus, we can generate estimates of the average noise
�ηiðt,RT,choiceÞ

�ηiðt,RT,choiceÞ=
1ffiffiffiffiffiffiffi
2M

p ðrki ðt,RT,choiceÞ � rliðt,RT,choiceÞÞ ð11Þ

Using this equation, we can estimate Hij.
We denote Cij as the signal+noise covariance matrix and Hij as the

noise covariance matrix. We estimate the eigenvalues and eigenvec-
tors of both covariance matrices and compare them to identify the
number of dimensions needed to explain the data. We used boot-
strapping to derive error estimates on the signal+noise PCA and
identified the number of dimensions needed to explain the data as the
first dimensionwhere signal+noise variancewas significantlybelow the
noise variance (by at least 3 × SEM).

Kinematic analysis of neural trajectories (KiNeT)
Weused the recently developedKiNeT analysis (Ref. 26, https://github.
com/jazlab/KiNeT/tree/master) to characterize how state space tra-
jectories evolve over time in terms of relative speed and position as
compared to a reference trajectory. We used the first six PCs ( ~ 90% of
variance) of the PCAs organized by choice and RT/outcome as these
PCs were significantly different from noise in both PCAs41.

As such we have a collection of six-dimensional trajectories
(Ω1,Ω2…Ωn) differing in RT bins and choice in one analysis (Fig. 4c–f)
and trial outcome and choice in another (Fig. 8c, e). The trajectory
associated with the middle RT bin (cyan, Fig. 4c, f) and the trajectory
associated with the Correct trial outcome (Fig. 8c, e) were chosen as
reference trajectories (Ωref) to calculate various parameters (e.g., Time
to reference) of the other non-reference trajectories (i.e., trajectories
associated with the ten other RT bins and the three other trial out-
comes). All of the following calculations in this section were first per-
formed within a particular choice and then averaged across choices.
Please refer to Fig. S8 for a visualization of KiNeT analyses and glossary
of terms used in the following equations.

Time to reference: KiNeT finds the Euclidean distances between
the six-dimensional position of the reference trajectory at timepoint j
(sref[j]) and the six-dimensional position of a non-reference trajectory
(Ωi) at all of its timepoints (Ωi(τ)). We identified the timepoint (ti[j]) at
which the six-dimensional position of a non-reference trajectory (si[j])
is closest to sref[j] (minimum Euclidean distance).

si½j�=Ωiðti½j�Þ ð12Þ

ti½j�= argminτ jjΩiðτÞ � sref ½j�jj ð13Þ

If the non-reference trajectory reaches a similar position to the
reference trajectory at an earlier timepoint then it’s a faster trajectory
(ti[j] < tref[j]) whereas if it reaches the same point at a later timepoint
then it is a slower trajectory (ti[j] > tref[j]) (Fig. 4f).
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Distance: The distance between reference and non-reference
trajectories at timepoint j (Di[j]) is taken as the minimum Euclidean
distance between the position of the reference trajectory at timepoint j
(sref[j]) and the position of the non-reference trajectory at all its time-
points (si[j]). Additionally, the size of the angles between a normalized
non-reference trajectory and normalized trajectories for the 1st and
last conditions (e.g., 1st and last RT bins) determines whether the
current non-reference trajectory is closer to either the 1st or last
condition. As defined here, if a trajectory is closer (i.e. smaller angle) to
the trajectory for the 1st condition then (Di[j]) is positive, otherwise it is
negative (Fig. 4c).

Di½j�= ± jjsref ½j� � si½j�jj ð14Þ

Angle: KiNeT computes the vector between adjacent trajectories
by subtracting the positions of two non-reference trajectories when
they are respectively closest to the reference trajectory at timepoint j.
These vectors are then normalized and all the angles between all
adjacent normalized vectors is found at all timepoints. Finally, the
average angle is found at each timepoint between all adjacent trajec-
tories (Fig. 4e).

ΔΩ
i ½j�= si+ 1½j� � si½j� ð15Þ

θi½j�=ffðΔΩ
i ½j�,ΔΩ

i+ 1½j�Þ ð16Þ

Subspace similarity: We first identified normalized vectors
between adjacent trajectories for all timepoints. We then averaged
these normalized vectors, so that we have the mean between trajec-
tories (i.e. conditions) vector for each timepoint. This mean vector is
again normalized as averaging normalized vectors doesn’t maintain
unit length (�Δ). We calculate the angle between the average vector at
timepoint t (�Δ½t� and the average vector at the first timepoint �Δ½1�, for
all timepoints t∈ τ. In other words we are measuring how this vector,
representative of the state space, rotates relative to the first timepoint
across a trial (Fig. 4d). This data is calculated separately for each choice
and again is bootstrapped and averaged across the separate reaches
and then across the bootstraps.

�θ½t�=ffð�Δ½t�,�Δ½1�Þ 8 t 2 τ ð17Þ

Bootstrap calculation
Assume the test statistic for the ith bootstrap is Si and Stest is what you
are comparing to (e.g., 90° for the alignment angles). If you perform n
bootstraps, then the unbiased p value for a one-tailed t test is
ð1 + Pn

i= 1ðSi > StestÞÞ=ð1 +nbootstrapsÞ. We typically bootstrapped firing
rates 50 times to obtain our p values (e.g., Fig. 4d, e). Thus the mini-
mum possible p value possible is 1/51 (0.0196) for a one-tailed t test.

Scalar speed
Wecomputed scalar speed infiring rate state space for the prestimulus
period within a RT bin (Fig. 4g) as the ℓ2 norm between the six-
dimensional coordinates, of the PC data at adjacent 10 ms time steps,
per RT bin and for each choice separately.

‘2i ðtÞ= jjΩiðt + δtÞ �ΩiðtÞjj2 ð18Þ

Where Ωi(t + δt) and Ωi(t) are six-dimensional trajectories within
condition i at time t + δt and time t in the prestimulus period,
respectively. ‘2i ðtÞ is the ℓ2 norm between six-dimensional
trajectories within a condition at time t and t + 1. We then
averaged speeds across choices and over the entire prestimulus
period (–400 ms to 0).

The plotted prestimulus firing rate speed was averaged across 50
bootstraps in which trials were sampled with replacement 50 times
(Fig. 4g). Separate PCA and speed calculations were performed per
bootstrap.

Choice-selectivity signal
We estimated the choice-selectivity signal by calculating the Euclidean
distance between left and right reaches at all timepoints for the first six
PCs within each level of the RT (Fig. 4h & Fig. 7d) and coherence
(Fig. 7b) conditions aligned to checkerboard onset. We performed the
same analysis for each level of the outcome condition (Fig. S18e) but
aligned to movement onset.

CSðtÞ= jjΩLðtÞ �ΩRðtÞjj2 ð19Þ

ΩL(t) andΩR(t) are the six-dimensional location in state space for a left
and right choice at time t.

To calculate the latency of this choice-selectivity signal, we fit the
time varying choice-selectivity signal with a piecewise function of the
form

CSðtÞ=b 8 t ≤ tLatency ð20Þ

CSðtÞ=mðt � tLatencyÞ2 8 t>tLatency ð21Þ

b is the baseline choice-selectivity and tLatency is the time after which
the choice-selectivity signal begins to increase. The piecewise linear
function assumes that before tLatency the value of the choice-selectivity
signal is constant and roughlyequal tob, and after tLatency increases as a
quadratic function with a slope (m).

Initial condition as a function of RT and coherence
To estimate the initial conditions shown in Fig. 7e–k, weperformed the
following procedure. For each coherence andRTbin, we concatenated
the average location in the six-dimensional state space in the –400ms
to –100msepochbefore checkerboard onset for both reachdirections
and obtained a 77x12 matrix (7 coherences, 11 RT bins, and 2 choices).
We thenperformed a PCAon this 77x12matrix andused the top PC as a
measure of the initial condition that we used for plotting and sub-
sequent partial correlation analyses.

Latent factors analysis of dynamical systems (LFADS)
LFADS is a generative model which assumes that neuronal spiking
activity is generated from an underlying dynamical system44. This
dynamical system is assumed to be relatively low-dimensional (i.e.
considerably smaller than the number of neurons involved) and latent
factors can be extracted and exploited to recreate spiking activity on
single trials. Thismethoduses a trained autoencoder to generate initial
conditions based on a trial’s neurons’ spike counts. This latent code
serves as the initial condition to the generator RNN. From the latent
code the generator infers the latent factors of all the neurons in that
trial. Here LFADS was used to reconstruct single-trial trajectories
within a single session recorded from 23 neurons (Figs. 6a, b and
S18d). Our model consisted of eight latent factors to recreate spiking
activity of single trials. Since these factors are not orthogonal to each
other, PCAwasperformedon these eight factors and thefirst three PCs
were visualized in Figs. 6a, b and S18d. LFADS was also used to esti-
mate single-trial firing rates from held-out units for 16 sessions
(Fig. S14). Please refer to ref. 44 for fuller descriptions of the LFADS
method.

Tensor component analysis
Our PCA on trial-averaged data revealed that prestimulus neural state
covaried with RT. To test whether such a result was observable at the
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single-trial level, we employed tensor component analysis (TCA)43.
TCA decomposes a tensor X of the form N × T ×K according to the
following equation:

XNTK ∼
XR
r = 1

wr
nb

r
ta

r
k ð22Þ

Like PCA, wr is a prototypical firing rate pattern across neurons
and br is a temporal basis function within trials. Neuron factors and
temporal factors are commonacross all trials. ar are trial factors (green
vector in Fig. S12a) that can be thought of as trial-specific amplitudes
for the within-trial activity patterns identified by the neuron and
temporal factors.

Thus, in TCA, the trial-to-trial fluctuations in neural activity are
also embedded in an R-dimensional space. TCA reduces the dimen-
sionality of the original data tensor, reducing NTK data points to
R(N + T +K) values, while still capturing trial-to-trial variability.

We used the Tensor Toolbox for MATLAB83 as well as the imple-
mentation provided by43. We used two forms of cross-validation to
assess how well our data were described by this approach. Like43 we
first used a speckled holdout approach and randomly removed 25% of
the data as a test set. We trained on 75% of the data and assessed the fit
of the model to the training and test datasets to measure how much
neural data is explained by the TCAdecomposition. One issuewith this
speckled hold out approach is that the R2 obtained from it can be
inflated due to the autocorrelation in the neural data (Fig. S12d, top
panel). So we also performed a second type of cross-validation where
weheldout a randomneuronon25%of trials (Fig. S12d, bottompanel).
In both cases, as the rank of the decomposition increased the pro-
portion of variance explained increased for both training and test sets
(Fig. S12d).

We finally used the trial-specific factors and the temporal factors
and estimated if the activity in the prestimulus period predicted RT on
single trials in a single session (Fig. S12c) and also across sessions
(Fig. S12e).

Fits of linear dynamical systems to single-trial activity
We examined if binned single-trial PMd firing (X∈ RT×N×M) rates (50ms
bins) during the prestimulus and poststimulus epochs were well
described by a dynamical system. For X,N is the number of neurons, T
is the time points of interest and M is the number of trials analyzed.
We first projected X onto the top principal components (PCs) of the
data to produce a reduced tensor (X 2 RT ×N ×M). The linear dynamical
system models the temporal evolution of these low-dimensional
neural trajectories as fixed across trials, namely for any given trial m:

_X ð: , : ,mÞ≈X ð: , : ,mÞJ,8m 2 ð1 . . .MÞ ð23Þ

This analysis thus asks if the change in neural activity at time
t + 100ms is predicted by using the activity at time t (note 50 ms bins
were used to estimate firing rates).

Where J 2 RN ×N is the dynamics matrix underlying the flow field
that governs evolution of the activity. N therefore determines the
dimensionality of the model. To find J, we optimized the following
objective function:

Ĵ = argmin
PM

m= 1 jj _X ð: , : ,mÞ � X ð: , : ,mÞjjJ2FPM
m= 1 jj _X ð: , : ,mÞjj2F

ð24Þ

The solution of the objective function can be obtained via
standard least squares optimization, and the quality of the fit is
easily assessed by a cross-validated coefficient of determination (R2)
that equals 1 minus the minimum normalized error. To perform
cross-validation, we excluded the firing rate of one test trial mtest,
and fit the J from data that did not include this trial. We then

obtained ameasure of the cross-validated performance of themodel
by performing leave-one-condition-out cross-validation on the
reconstruction of X(: , : , mtest) from Ĵ. Other cross-validation
approaches yielded similar results. We repeated this procedure for
mtest∈ [1,…,M], yielding an average leave-one-condition-out cross-
validation R2 statistic for each session. Data was then averaged over
sessions and monkeys. We used the LDS fitting code provided with
this study84.

We fit separate dynamical systems for the pre- and post-stimulus
period based on our KiNeT results that showed that the subspace
angles begin to diverge after stimulus onset and with the general
notion that a single LDS is unlikely to capture the rich dynamics of
neural activity in these brain areas62. We also only show the fits of the
data from left trials as results were largely similar for right trials.
Including the stimulus at each time point did not materially alter the
results of the dynamics analysis.Webelieve that PMd ismuch removed
from the processing of the sensory stimuli and in our monkeys the
sensory evidence has weaker impact on RT compared to the ongoing
internal neural state of the animal (Fig. 2f).

We varied N from 2 to 10 for our fits. Including additional
dimensions improvedour ability to predict future neural activity.More
importantly, we assessed whether this modeled neural activity was
useful for describing behavior and we found that although our dyna-
mical system only explained 40% of the single-trial neural variance, it
was as good as the full activity for a session to explain the RTvariability
in both pre-and post-stimulus epochs (Fig. S13).

Reduced-rank regression
We used reduced-rank regression to understand if prestimulus neural
activity predicted poststimulus neural activity. In reduced-rank
regression, we have a Y, which in our case is neural data at time t of
size n × p, andwe ask if we can predict it from neural activity at time t0,
and other covariates such as choice, and the unsigned coherence of
the checkerboard, which are then combined together in a matrix X of
size n × q. Where β is a matrix of size q × p.

Typically in a standard multivariate regression we minimize the
following loss function:

L= jjY � Xβjj2 ð25Þ

And β canbe estimated by the following equation for the standard
ordinary least squares solution as:

β̂OLS = ðXTX Þ�1
XTY ð26Þ

However, for reduced-rank regression, we assume an additional
constraint that we need a low rank βrrr such that

rankðβrrrÞ≤ r ð27Þ

To achieve such a solution, we use the following loss function:

L= jjY � Ŷ jj2 + jjŶ � Xβjj2 ð28Þ

where,

Ŷ =X β̂OLS ð29Þ

Only the second term depends on β, we can choose β to satisfy
Xβ= Ŷ s, where Ŷ s, is sum of the first s terms of the singular value
decomposition of Y. Such a solution is possible because of the Eckart-
Young theorem, which states that β chosen in such a way will minimize
the second term in the equation (28) and thereby the total loss term.We
split our data into a training and validation set, and chose the rank that
minimizes themeansquareerror in thevalidation set andalso report this
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minimum cross-validated R2 (Fig. S15b, c) in the results and figures. To
perform this analysis, we used an implementation available on MATLAB
Central45.

We performed reduced-rank regression on 41 sessions from both
monkeys.

Linear regression to relate RT and firing rate, and logistic
regression to decode choice
We used linear and logistic regressions (decoders) to determine the
variance in RT explained by spiking activity andwhether spiking activity
predicted choice or past outcomes, respectively. For these analyses, we
leveraged the U-probe sessions where multiple neurons were recorded
from at once. For monkey T, we used 24 sessions (36,690 trials) where
there was a minimum of 9 neurons (one session only has 2 neurons;
otherwise all other sessions had at least 9) and a maximum of 32 neu-
rons. FormonkeyO, we used 27 sessions (30,831 trials) where therewas
aminimumof 5 neurons in a single session and amaximumof 18. Some
sessions had distinct portions (e.g., the electrode was moved). In the
later portion of three sessions, 2 neurons were recorded from and in
another, 3 neurons were recorded from. Otherwise in all other sessions
at least 5 neurons were recorded from. Variance explained and decod-
ing accuracy shown in Fig. 6c–f is pooled across both monkeys.

For regression anddecoding analyses, we used 1800msof spiking
activity from each trial (600 ms prestimulus and 1200 ms post-
stimulus). For the choice and outcome decoders respectively, we used
20 ms nonoverlapping bins and 50 ms overlapping (10 ms time step)
bins to bin the spike times. This provided uswith 90 timepoints for the
choice decoder, and 72 timepoints for the outcome decoder across all
units within a session.

Linear Regression:
For analysis of the relationship between activity in PMd and RT,

we regressed spike counts for each bin for all trials across all units for
that session to RT according to the following equation:

RTi =β0 +
XN
j = 1

βjX ijðtÞ+βcci ð30Þ

WhereRTi(t) is the RTon the ith trial, Xij(t) is the spike count in a 20
ms bin for the ith trial and the jth unit, ci is the coherence for the ith trial,
and the βj/c are coefficients for the model. After regression, we calcu-
lated variance explainedby spiking activity and coherence together for
each bin by using the standard equation for variance explained.

R2 = 1�
PM

k = 1 ðRTk � cRTkÞ
2

PM
i= k ðRTk � RTÞ2

ð31Þ

Where RT is the mean RT, RTk is the RT for the kth trial, and dRTk is
the RT predicted for the kth trial.

For assessing if the R2 values were significant, we computed a
shuffled distribution (500 shuffles) where we shuffled the trials to
remove the relationship between the RTs and spiking activity. We then
assessed if the per bin R2 values were significantly different from the
99th percentile of the shuffled distribution R2 values.

Logistic Regression to decode choice: For decoding choice and
previous outcome on a bin-by-bin basis, we used a regularized logistic
regression approach. Decoders were trained with an equal number of
trials for the opposing outcomes (i.e., left vs. right reaches; previous
correct vs. previous error trials). The logistic regression approach
assumes that the log odds in favor of one event (e.g., left) vs. right
reach is given by the following equations:

log
pðLeftjX Þ

1� pðLeftjX Þ

� �
= β0 +

XN
j = 1

βjX j ð32Þ

β0 is the intercept of the model, βj is the model coefficient for the jth
neuron in the current bin, Xj is the spiking activity of the jth neuron of
the current bin. The following equation is used to produce the outputs
of the system: if p(Left∣X) < 0.5 then –1 and if p(Left∣X) > 0.5 then 1.

We used the implementation provided in MATLAB via the fitc-
linear function and the Broyden-Fletcher-Goldfarb-Shanno quasi-
Newton algorithm to find the optimal fit for the parameters85. We
typically attempted to predict choice or previous outcome using tens
of units. To simplify the model, we decreased the collinearity of the
coefficients and to avoid overfitting, we used L2 regularization (ridge
regression):

J =
λ
2
Σβ2 ð33Þ

Where J is the cost associatedwith coefficients, λ is the penalty term (1/
number of in-fold observations), and β are the coefficients of the
model. We used 5-fold cross validation and calculated loss for each
model. Accuracy is reported as, accuracy = 1 - mean(loss). We
performed several variants of this choice-decoding analysis. The
typical variant is shown in Fig. 6d, f and involves decoding choice from
firing rates of all trial types (i.e., any coherence/RT bin). We also
restricted this decoding analysis to trials of any coherence but each
model is built from firing rates from within RT bins (Fig. S16c), or just
the hardest or easiest coherences and also separated the data by fast,
medium, and slow RT bins (Fig. S17a, b).

Choice selectivity and covariation with RT per neuron
To assess whether individual neurons are selective for choice (or
covaried with RT) we performed a regression analysis where we
assessed whether the firing rate in each 50 ms bin could be explained
by choice (or RT). For example, to assess if a neuron was selective for
choice, we assumed that for the jth neuron, the firing rate on the ith trial
at time t is explained by the following linear equation:

FRi
jðtÞ∼β0 +βChoiceChoice

i + ϵ ð34Þ

We used a standard least squares regression and estimated the
99% confidence intervals for the βChoice (or βRT) and assessed if the
confidence intervals overlap with 0. We then report the percent of
neurons with significant βChoice (or βRT) as a function of time. With a
99% confidence interval, we assume 1% of neurons to have a significant
relationship with choice (or RT) just by chance.

We performed these regressions by restricting the regression to
trials of the hardest coherence (Fig. S17c). We also performed another
regression where we included all trials in the regression along with the
coherence of the checkerboard and predicted both choice and RT
(Fig. S17d). Even in these expanded regressions, prestimulus activity
covaried with RT but not choice.

Subspace overlap analysis
We wanted to determine how much variance is shared between firing
rates organized by RT and choice (Fig. 4a, b) versus firing rates orga-
nizedbyoutcomeandchoice (Fig. 8a, b). Todo thisweused amodified
version of a subspace overlap index25. Essentially we took the covar-
iance matrix of the firing rates organized by RT and choice (time/RT
bin/choice × units; 17000 × 996; RT space) and projected them onto
the first 6 PCs of the PC space organized by outcome and choice
(outcome subspace; visualization ofmethod: Fig. S20a). Thismakes up
the numerator of the index which is then divided by the sum of all
eigenvalues of the RT space (equation below).

A=
trðDT

outcomeCRTDoutcomeÞ
Σ996
i = 1σRTðiÞ

ð35Þ
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The alignment index, A, provides an estimate of the fraction of
variance that is explained by projecting one subspace into another. tr()
is the trace of a matrix, which can be proved to be the sum of its
eigenvalues. Doutcome is the first six eigenvectors of all 996 units from
the PCA organized by outcome and choice. CRT is the covariance
matrix of the firing rates of all 996 units organized by RT and choice.
σRT(i) are the eigenvalues (i) obtained from PCA on firing rates orga-
nizedbyRT and choice. For our purposes, weused the total variance in
the denominator instead of the same number of dimensions as the
numerator. Thus, the alignment index calculates the ratio of howmuch
of the total variance from firing data organized by RT and choice is
explained by the outcome subspace.

Demixed principal component analysis (dPCA)
Weused dPCA49, a semi-supervised dimensionality reduction technique
to further understand if prestimulus activity which covaried with RTs
shared variance with firing rate activity that covaried with the previous
trial’s outcome. We performed two dPCAs. The first identified axes that
maximally accounted for firing rate variability from trial outcome and
the second identified axes that maximally accounted for firing rate
variability that covaried with RTs. We then calculated the dot product
between these axes and estimated the angle using the inverse cosine of
the dot product. An angle of zero would indicate that these axes com-
pletely overlap and that their sources of variance are the same, whereas
orthogonal angles would mean that the axes do not overlap and
therefore share no variance. We used the freely available dPCA toolbox
for this purpose (https://github.com/machenslab/dPCA).

Models of dynamical hypotheses
Recurrent neural network models of various dynamical hypoth-
eses. We created single layer recurrent neural network models cor-
responding to hypotheses in Fig. 1e–h using the PsychRNN tool box86.
Each model contains 100 recurrent units, with the state activity x of
each unit specified by the following equation:

xt = ð1� αÞxt�1 +αðWrecrt�1 +Winut +brecÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αN2

rec

q
N ð0, 1Þ ð36Þ

The firing rate of each recurrent unit is obtained by passing state
activity through a relu nonlinearity:

rt = reluðxtÞ ð37Þ

Finally, the output of the network yt is given by:

yt = sigmoidðWoutrt +bout Þ ð38Þ

The outputs of the model yT×2 are decision-variables for left and right
choices.

For each model, we used a training set of 50,000 trials and a
testing set of 5000 trials. For each trial, we simulate 500 time points T
with 10 ms intervals giving us a total time of 5000 ms.

For each model, the input uT×2 is a two-dimensional vector
representing left evidence and right evidence specified by left coher-
ence Coh∈ [0, 1]. Coh =0 signifying pure right evidence and
Coh = 1 signifying pure left evidence. For training trials, the input was
given as:

uleft
train =

0, T< =Tc:

ðCoh+noiseÞ, if T>Tc:

�
ð39Þ

uright
train =

0, T<=Tc:

ðð1� CohÞ+noiseÞ, if T>Tc:

�
ð40Þ

For this task, Tc, a random number between 750ms and 1500ms,
represents the checkerboard onset, after which evidences for left and
right choices are available to the network.

For the desired outputs ytrain, a left trial has the equation,

ylefttrain =
y0, T<=Tc:

1, if T>Tc:

�
ð41Þ

For a right trial,

yrighttrain =
y0, T<=Tc:

1, if T>Tc:

�
ð42Þ

y0 is the starting value, which we set to 0.2.
We used back propagation through time with a mean squared

error loss function to train the networks. We assumed a decision was
made once the value of either the left or the right decision variable
reached the threshold of 0.7. After the decision is chosen, both inputs
and outputs were reduced to their starting value.

We simulated five models with different conditions to quantita-
tively model the dynamical hypotheses that we proposed in Fig. 1e–h.
1. The first model (Fig. S2a), corresponding to Fig. 1e, applied the

basic RNN without further modifications.
2. For the second model (Fig. S2b), corresponding to Fig. 1f, we

applied a delay between 0 and 300 ms on inputs with a linear
mapping to coherence.

3. For the third model (Fig. S2c), corresponding to Fig. 1g, the RNN
model was trained in the same way as the basic RNN. In testing
sets, a random value between 0.3 and 0.6 was added on every left
input over the trial to mimic a bias in the animal towards one or
the other choice.

4. For the fourthmodel (Fig. S2d), corresponding to Fig. 1h, the RNN
model was trained in the same way as the basic RNN. In testing
sets, a random value between 0 and 0.3 was added on both left
and right inputs over the trial to mimic an overall impulse in the
animal to make the choice.

5. For the fifth model (Fig. S2e), corresponding to Fig. 1h, a multi-
plicative gain was applied to state x:

rt = reluðg0*xtÞ ð43Þ

After the choice was made, the gain variable g0 was set to 0.

Results of RNNs are shown in Fig. S2. For each time step, RT PCA
trajectories were generated using the same method as Fig. 4.

We used the same approach as used for the PMd data to regress
firing rates to RT (Fig. S2, middle). We report the regression between
model firing rates and RTs for left trials only. Finally, we performed
choice decoding analyses by median splitting the RTs into fast and
slow bins (Fig. S2, right).

Hypothetical Synthetic Neural Populations. We created hypothetical
neurons based on the population of neurons that we observed in our
PMddataset. In a previous study,weused variousmetrics to categorize
this continuum of neurons into increased, decreased, and perimove-
ment neurons18. Increased and decreased neurons, as their name
suggests had sustained increases and decreases in their firing rates
after checkerboard onset. In contrast, the perimovement neurons just
responded at or around the time of movement onset with a variable
lead and lag relative to movement onset. We also know from a
regression analysis (Fig. S17d), that roughly 20% of our population of
neurons shows prestimulus covariation with RT. We used these pieces
of information to build simulated neural populations. We then used
dimensionality reduction, decoding, and regression analyses to make
predictions for our neural data. These targeted simulations of
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hypothetical synthetic populations are meant to guide interpretation
of our analyses of the neural data, and complement the RNN
simulations.

We created three simulations of hypothetical neural activity in
PMd. In all of these simulations, post-cue firing rates covaried with
choice and RT.

Simulation 1 assumed that the firing rates of the neurons had no
covariationwithRTor choicebeforecueonset (consistentwith Fig. 1e).
Simulation 2 assumed that the firing rates of the neurons covariedwith
choice before cue onset (consistent with Fig. 1g). Finally, simulation 3
assumed that prestimulus firing rates of the neurons covaried with RT
but not choice (consistent with Fig. 1h).

For all three cases, we simulated the firing rate patterns of 200
increased neurons, 100 decreased neurons, and 50 neurons (transient
response around movement RT) for 600 trials in total (300 left trials
and 300 right trials). For each trial, RT was generated randomly from a
gamma distribution:

RT=200+ 100Γð5, 0:5Þ ð44Þ
We assumed the checkerboard onset was at time 0, and that post-

cue firing rates changed a short time period later defined by a variable
(tlatency) defined as the sum of non decision-related time including
stimulus encoding andmotor execution, etc. tlatency was set to 100ms.

For all three simulations, the firing rate for each increased neuron
at a given time point t, was a combination of a baseline firing rate (rbase1
= 5 spikes/s), a choice-selective component, and a condition-
independent signal that increased with time after cue onset and
depended on RT.

The choice-selective increase in firing rates after stimulus onset
was as follows: For choice 1 (chosen direction), rchoice1 = 5 + 7*Uð0,1Þ.
For choice 2, rchoice2 = 2 +Uð0,1Þ. These choice-selective components
were activated after checkerboard onset as a function of time by
multiplying by maxðt�tlag

RT ,0Þ with tlag for trial i defined as
tlatency + 0.2*RTi. For the chosen direction, rchoice1 was added to the
firing rate at each time point, whereas for non-chosen direction rchoice2
was subtracted from the neuron’s firing rate at each time point.

The condition-independent signal for each trial and neuron was
modeled as a general stimulus-triggered increase in firing rate with
rtime = maxð15*ðt � tlag Þ,0Þ. This condition-independent signal
depends on RT based on prior work87.

• In Simulation 1, thesewere the only components that altered the
firing rate.

• For Simulation 2, where we hypothesized a prestimulus bias
towards one or the other choice, we added a second firing rate
term that was uniformly drawn from 0 to 4 spikes/s for one
choice and from 0 to 2 spikes/s for the other choice.

• For Simulation 3, where we hypothesized that prestimulus
firing rate covaries with RT but not choice, we added a
second firing rate term derived from a uniform distribution
and dependent on RT (rbase2 =

2+baseneuron
RT ) for both left and

right choice trials. baseneuron is generated for each neuron
from a uniform distribution between 0 and 3 spikes/s. Only
20% of neurons had this baseline covariation with RT and
these neurons also have 0 baseline firing rate. This simula-
tion is schematized in Fig. S1b.

We created 100 decreased neurons by subtracting 10 spikes/
s from the firing rate of the first 100 increased neurons.

To generate the PSTHs of these simulated neurons we used
the following procedure: Once we obtained a simulated firing rate
r for a trial, we used the time-rescaling theorem88 to generate
spike trains from a poisson process. Then we smoothed the spike
train with a Gaussian kernel to generate hypothetical neuron
PSTHs for each trial. We then averaged these PSTHs and

calculated PCA trajectories with the same method as in Fig. 4.
Finally, we randomly selected 50 neurons from this simulated
neural ensemble and performed regression analyses to under-
stand the link between these firing rates, and RT and choice to
closely match the analyses performed for the real
PMd data (Fig. 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper and can be used to recreate
figures. Data that are analyzed and used for generating figures have
been deposited in Dryad [https://doi.org/10.5061/dryad.9cnp5hqn0].
Raw session data that lead to the summarized data analyzed in the
paper are completely available upon request. Source data are provided
with this paper.

Code availability
MATLAB and Python code and functions for generating all the main
and supplementary figures are publicly available [https://github.com/
chand-lab/Dynamics2023].
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