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Ketamine evoked disruption of entorhinal
and hippocampal spatial maps

Francis Kei Masuda 1, Emily A. Aery Jones1,2, Yanjun Sun1,2 &
Lisa M. Giocomo 1

Ketamine, a rapid-acting anesthetic and acute antidepressant, carries unde-
sirable spatial cognition side effects including out-of-body experiences and
spatial memory impairments. The neural substrates that underlie these
alterations in spatial cognition however, remain incompletely understood.
Here, we used electrophysiology and calcium imaging to examine ketamine’s
impacts on the medial entorhinal cortex and hippocampus, which contain
neurons that encode an animal’s spatial position, as mice navigated virtual
reality and real world environments. Ketamine acutely increased firing rates,
degraded cell-pair temporal firing-rate relationships, and altered oscillations,
leading to longer-term remapping of spatial representations. In the recipro-
cally connected hippocampus, the activity of neurons that encode the position
of the animal was suppressed after ketamine administration. Together, these
findings demonstrate ketamine-induced dysfunction of theMEC-hippocampal
circuit at the single cell, local-circuit population, and network levels, con-
necting previously demonstrated physiological effects of ketamine on spatial
cognition to alterations in the spatial navigation circuit.

Ketamine has been used in clinical medicine as a rapid-acting dis-
sociative anesthetic for decades1,2. Recently, ketamine has received
increased clinical attention due to its approval to rapidly treat
depression at sub-anesthetic doses3–5. However, despite common
clinical uses as an anesthetic and antidepressant, ketamine can induce
undesirable side effects associated with spatial cognition, such as
dissociation, psychotomimetic effects and spatial memory and navi-
gation impairments6–11. Intriguingly, unlike other classes of memory
impairing drugs, sub-anesthetic administration of ketamine can also
cause people’s internal sense of space to change; patients report
feeling disconnected from their own body or as if they are watching
the situation as an observer2,6,12,13. These effects of ketamine on spatial
cognition have also contributed to the abuse of ketamine as a party-
drug and as a memory-impairing drug to facilitate assault6–8,12,14,15.

While the neural substrates associated with ketamine’s ability to
induce dissociation and hallucination-like perception in mice have
been recently investigated16–18, ketamine’s actions on the neural cir-
cuits that support spatial navigation and memory are not fully

understood. Here, we focus on the impact of ketamine on neural
coding in the medial entorhinal cortex (MEC)-hippocampal circuit,
which contains neural substrates for generating an internal spatialmap
of the external environment19–22. Previous work in this circuit has
shown that ketamine significantly disrupts activity at the level of both
single neurons and the larger network. At the level of single neurons,
previous in vitro work has demonstrated that ketamine changes the
firing rates of MEC and CA1 hippocampal neurons23–25. At the network
level, low doses of ketamine decrease the coherence and synchrony of
local field potential measured theta oscillations across the long axis of
the hippocampus and increase the power of gamma oscillations26–28.
However, the potential correspondence between ketamine’s influence
on single neuron firing rates, network level oscillatory activity and the
spatial patterns of functionally defined neurons, such as place or grid
cells, in the MEC or hippocampus remain unknown.

Here, we used Neuropixels silicon probes in MEC and 1-photon
miniscope imaging in hippocampus to consider ketamine’s effects
across the levels of single neuronfiring rates and spatialfiringpatterns,
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neural populations and individual animals. We found that a sub-
anesthetic dose of ketamine disrupted stable spatial coding acutely
and induced remappingover longer timescales inMEC. This disruption
in MEC spatial coding resulted in a loss in the ability of MEC neural
activity to predict an animal’s spatial position, possibly due to an acute
disruption in MEC cell-pair temporal firing rate relationships—a pre-
requisite for many network-level computational models capable of
generating MEC spatial firing patterns29–33. Complementary to the
effects of ketamine on MEC, ketamine acutely suppressed the activity
of hippocampal place cells. Together, our findings reveal how keta-
mine disrupts and restructures spatial coding in MEC and the hippo-
campus, raising the possibility that these circuitsmaycontribute to the
effects of ketamine on spatial cognition26.

Results
Virtual reality behavior and electrophysiological recordings
To examine the effects of sub-anesthetic ketamine on neural activity in
the medial entorhinal cortex (MEC), we recorded neural activity in
head-fixed mice as they navigated a virtual reality (VR) linear track
(mouse n = 8) (Fig. 1a). For all conditions, the VR linear track consisted
of five landmarks (i.e. towers) that repeated every 400 cm. To encou-
rage running, mice received a water reward at the end of the track
before seamlessly teleportingback to the start of the track (Fig. 1b). For

each recording session, the first 50 trials served as the baseline con-
dition, in which no manipulation was performed (baseline epoch).
After trial 50, the VR was paused for ~10 s while the mouse received a
blank intraperitoneal (IP) injection (control insertion) before pro-
ceeding to run a further 50 trials (control epoch). After trial 100, the VR
was briefly paused and the mouse received a 25mg/kg IP injection of
ketamine before proceeding to run 190 trials (ketamine epoch)
(Fig. 1c). We selected 25mg/kg IP for our experiments, as it is the
lowest dose at which sensory dissociation has been reported in
mice16,18.

To record neural activity, we acutely inserted Neuropixels silicon
probes34 into the MEC, with each recording session associated with a
unique probe insertion—up to six recording sessions per mouse, three
recording sessions per hemisphere (Fig. 1d). Using this approach, we
were able to record from thousands of cells (i.e. units) across a
large portion of the MEC dorsal-to-ventral axis in individual wildtype
mice (n = 3233 cells; 30 sessions; 8mice; Supplementary Fig. 1). During
the baseline and control epochs, many of the recorded cells demon-
strated “spatially stable” firing patterns, in which cells consistently
fired at specific VR track positions (Fig. 1e–f, “Methods,” and Supple-
mentary Fig. 2).

We first examined the impact of ketamine on running behavior
during navigation in the head-fixedVR, as ketamine administration can

Fig. 1 | Ketamine alters the coding features ofMEC neurons in navigatingmice.
a Schematic of Neuropixels probe recording and VR setup. Left: side view. Right:
top view. Animals received visual cues from three monitors and received rewards
from a front facing lick port. Left panel was published in Low et al.47, Copyright
Elsevier. b Schematic of the 400 cm linear VR hallway. Five virtual towers spaced
80cmapart served as landmarks.One traversal through thehallway is equivalent to
one trial. The mouse received a water reward for completing the trial before
seamlessly teleporting back to the beginning of the hallway. c Animals ran 50
baseline trials (gray), 50 trials following a control needle insertion (pink), and 190
trials following a 25mg/kg ketamine injection (green). d Example sagittal slice of a

mouse brain showing 3 dye color (DiI, DiD, DiO) tracks of Neuropixels probe
recording insertions in MEC. Up to 6 recording sessions were conducted on each
mouse (3 insertions per brain hemisphere). e Spatial raster plots (top row) and
spatial firing rate maps (bottom) of example cells. Raster plots indicate individual
spikes (black dots). Bottom panels are color coded for minimum (black) and
maximum (red) firing rate values. Each cells’maximum firing rate is labeled on the
top of the cell’s spatial firing rate maps. The panel shows data from the control
session in which an empty needle was inserted intraperitoneally after trial 50 and
again after trial 100. f As in (e), for data from the experimental condition of a
control injection after trial 50 and a 25mg/kg ketamine injection after trial 100.
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evoke altered behavior during open field exploration (Supplementary
Fig. 3). Demonstrating familiarity with and engagement in the task,
mice significantly slowed their running speed near the end of the track
in anticipation of the reward in both baseline and control conditions
(Fig. 2a, b). Following the ketamine injection however, mice no longer
significantly slowed down in anticipation of the reward tower and their
mean running speed was slower (Fig. 2c). Licking behavior was also
altered after the ketamine injection. In the baseline epoch, mice licked
near the reward tower with over 80% accuracy (Fig. 2d–f). Licking in
the baseline epoch was concentrated around the reward tower, and
this behavior remained largely unchanged in the control epoch, with
only a small decrease in lick accuracy between the baseline and control
epochs (mean accuracypercentage: baseline epoch = 79% ± 1%, control
epoch = 69% ± 1%; Fig. 2d–f). In contrast, lick accuracy significantly
decreased after ketamine administration (mean accuracy percentage:
ketamine epoch = 14% ± 1%; Fig. 2e, f). Lick accuracy never returned to
baseline across the rest of the trials (Fig. 2f and Supplementary
Fig. 5a–c). Taken together, these results indicate that while the mice

continued to run in the VR environment after both the control and the
ketamine administration, ketamine altered running and licking beha-
vior, suggesting mice were less able to identify the reward location.

We then examined local field potential activity inMEC. Prior work
in the hippocampus and cortex has broadly shown that ketamine
decreases power in the theta band, while increasing power in the
gamma band27,28,35–37. Consistent with these previous studies, we
observed that ketamine increased power in the theta frequency band
but decreased power in the gamma frequency band in MEC (Supple-
mentary Fig. 4). Since theta frequency oscillations have been shown to
influence spatial firing patterns in MEC38–41, we next examined how
ketamine changed firing rates and spatial patterns in MEC neurons.

Ketamine affected firing rates heterogeneously across MEC cell
types and impaired spatial coding
To quantify the effect of ketamine administration of the MEC neural
population, we examined the firing rate of all MEC neurons across
baseline, control and ketamine epochs. Between baseline and control

Fig. 2 | Ketamine disrupts VR task behavior. aRunning speed at eachposition bin
during the baseline epoch (trials 1–50). Gray columns indicate the location of VR
landmark towers (spaced by 80cm). In the reward zone (positions 390–400 cm),
mice slowed their running speed compared to the main hallway (100–200cm)
demonstrating familiarity with the task (difference in running speed ± SEM,
16.7 ± 2.5 cm/s; t(29) = 6.77, p = 1.96 × 10−7). Note the tower at 240 cm resembles the
reward tower at 400 cmandmice often sloweddownbriefly around 240 cmbefore
increasing their speeduntil they reached the reward tower.bRunning speedduring
the control epoch (trials 51–100). In reward zone, mice slowed, demonstrating
familiarity with the task (10.5 ± 2.4 cm/s; t(29) = 4.38, p =0.0001). c Running speed
during the first 50 trials of the ketamine epoch (trials 101–150). Mice slightly
increased speed in the reward zone (−2.5 ± 2.4 cm/s; t(29) = −2.84, p =0.0081). For
(a–c), solid lines representmean running speed and shaded regions represent SEM.

All tests are two-sided paired t tests. d Raster plots of spatial positions where the
animal licked in two example recording sessions. Control epoch highlighted in
magenta (trials 51–100). Ketamine epoch highlighted in green (trials 101–290).
e Lick accuracy averaged over sessions in the baseline, control, and ketamine
epochs. Lick accuracy was lower in the ketamine epoch than in the baseline
(Z = 4.76, p = 5.76 × 10−6) and control epochs (Z = 4.66, p = 9.55 × 10−6), and lick
accuracy in the control epoch was lower than in the baseline epoch (Z = 2.4,
p =0.0489). Two-sided Wilcoxon matched pairs signed rank tests with Sidak cor-
rection for multiple comparisons. f Lick accuracy per trial across sessions. Control
epoch highlighted inmagenta (trials 51–100). Ketamine epoch highlighted in green
(trials 101–290). Solid lines represent smoothed lick accuracy and shaded regions
represent SEM. N = 30 sessions, 8 mice. Significant comparisons highlighted
*p <0.05, ***p <0.001, ****p <0.0001. Source data are provided as a Source datafile.
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epochs, the mean firing rate across the MEC population only slightly
increased (mean change: 0.76Hz, Wilcoxon signed rank test, Z = 3.45,
p =0.0006, n = 30 sessions), indicating that injection alone did not
cause large changes in the firing rates of MEC neurons (Fig. 3a, b).
However, during the ketamine epoch, we observed a significant
increase in the mean firing rate across the MEC population (mean

change: 3.04Hz, Wilcoxon matched pairs signed rank test, Z = 4.29,
p = 1.8 × 10−5, n = 30 sessions; Fig. 3a–d). This increase in firing rate in
the ketamine epoch was consistent across animals (Fig. 3c, d). The
mean peak of the ketamine-induced increase in the firing rate across
animals occurred 17.08 ± 6.26min (mean ± SEM) after the injection of
ketamine (Fig. 3c). The mean time of firing rate increase onset was
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3.54 ±0.20min (mean ± SEM). This coincides with the previously
published pharmacodynamics of ketamine (time to onset of immobi-
lization = 2.3 ± 0.5min, serum half-life of ketamine = 13min)42 and
previously observed effects of ketamine on firing rates in cortical
regions16,43.

We next considered ketamine’s effect on the firing rates of dif-
ferent MEC putative-cell types. While the mean rate of excitatory
neurons did not change between baseline and the control epochs,
their mean firing rates increased after the administration of ketamine
(n = 2894 excitatory neurons, 8 mice; baseline firing rate <15Hz;
Fig. 3e, g). In contrast, the mean firing rate of interneurons (n = 339
interneurons, 8 mice; baseline firing rate >15Hz) did not appear to
changebetweenbaseline and control epochs, nor between control and
ketamine epochs (Fig. 3f, g). Comparisons between excitatory and
inhibitory neurons confirmed these observations, revealing that firing
rates of putative excitatory cells significantly increased following
ketamine administration, while putative inhibitory cells did
not (Fig. 3g).

We then asked whether this increase in excitatory neuron activity
was due to disinhibition from local inhibitory neurons or increased
intrinsic excitability of excitatory neurons. We identified putative
monosynaptically connected pairs of neurons based on their cross-
correlograms44,45, then classified them as excitatory or inhibitory
(Supplementary Fig. 6a, b). We calculated the extent to which a single
spike from the upstream cell in each pair (cell A) changed the prob-
ability of spiking from the downstream cell (cell B) in the 5ms fol-
lowing the spike, compared to the 5ms prior to the spike. This
transmission probability increased in excitatory neurons and
decreased in inhibitory neurons following ketamine injection, thus
both excitatory and inhibitory cells were more effective at altering the
activity of their downstream partners (Supplementary Fig. 6c–e). This
suggests that the increase in excitatory neuron firing was not due to
disinhibition, but at least in part due to increased effectiveness of
excitatory synaptic transmission.

Given that a large portion of MEC neurons encode the spatial
position of an animal, we next considered how ketamine impacted
spatial coding across the MEC neural population. In individual MEC
neurons, we noted that spatial selectivity often degraded after keta-
mine administration, switching from a firing pattern in which firing
activity occurred in one or more discrete spatial positions on the VR
track to a firing pattern in which firing activity was distributed across

the VR track (Figs. 1f and 3h–j). This was consistently observed in
spatial cells across many sessions and across different animals (Sup-
plementary Fig. 2). To quantify this, we binned firing rates into 2 cm
spatial bins and classified spatial cells as those with a mean spatial
stability score>0.2 in the baseline condition (n = 496 cells; “Methods”).
For spatial cells, there was no change in the mean spatial stability
between baseline and control epochs (Fig. 3k–m). This observation
held when comparing spatial stability across time (Fig. 3l) rather than
trial numbers (Fig. 3k), although we noted a brief period of decreased
spatial stability just after the VR turned on or was paused (Fig. 3k–l). In
contrast, the mean spatial stability of spatial cells significantly
decreased between the baseline and ketamine epochs, as well as
between the control and ketamine epochs (Fig. 3m). This ketamine
associated decrease in spatial stability was accompanied by a decrease
in the mean spatial crest factor (a measure of how peaked fluctuations
were in the spatial firing map, Fig. 3i, see “Methods”) and a decrease in
spatial information (Fig. 3j, “Methods”). Thus, ketamine affected firing
rates heterogeneously acrossMEC cell types, increasing thefiring rates
of excitatory neurons while having little effect on the firing rates of
interneurons, and broadly impaired spatial coding in the MEC.

To examine how functionally-defined excitatory MEC cell types
responded to ketamine, we leveraged a previously published method
for identifying grid cells in 1D linear track virtual reality environments
(“Methods”)46,47. As in the larger excitatory neuron population, the
mean firing rate increased by ~2.5 Hz in putative grid cells after the
ketamine injection, while the control injection had no effect on grid
cell firing rates (Supplementary Fig. 7a). As in the larger spatial cell
population, grid cell spatial selectivity degraded following ketamine
injection (Supplementary Fig. 7b–e). However, unlike in the larger
spatial cell population, grid cells did not recover spatial stability during
the ketamine epoch (Supplementary Fig. 7d). Finally, we found that
grid field widths did not change following ketamine administration
(Supplementary Fig. 7f–g), suggesting the reduced spatial selectivity
was not due to an increase in grid scale.

Ketamine induced an acute discrete neural activity state char-
acterized by reduced spatial information cell-pair co-activation
To examine the effects of ketamine onMEC neural population activity,
we applied an unbiased approach to classify temporal neural activity
states. We first estimated the instantaneous firing rates of neurons by
smoothing the vector of spike counts across temporal bins with a

Fig. 3 | Ketamine acutely affects firing rates and disrupts single cell spatial
scores. a Firing rate averaged over neurons before (5min) and after (10min)
control (magenta) or ketamine (green) injection. Solid line indicates mean and
shaded regions show SEM (n = 3233 cells, mouse n = 8). Gray line at 0 indicates
injection time. b Boxplot of mean change in firing rate for the 5min before versus
after the control (magenta) or ketamine (green) injection divided by the baseline
firing rate. Central mark indicates the median, bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively, and whiskers extend to the
most extreme data points not considered outliers. The mean firing rate of neurons
changed significantly in the 5min after ketamine injection compared to the 5min
after control injection (two-sided Wilcoxon matched pairs signed rank test,
Z = −16.45, p < 10−10, n = 3233 neurons). c Change in the firing rate 60min after
ketamine injection from the mean firing rate 5min prior to the injection. d Change
in firing rate across 290 trials from the mean firing rate in the baseline epoch (trial
1–50). Note that due to variable changes in the running speed of individual mice,
effects observed over trials (d) versus time elapsed (c) do not perfectly align. For
(c, d), thin black lines are individual mice averaged across sessions (n = 8 mice);
thick red line is mean firing rate across all neurons; shaded region shows SEM
(n= 3233 cells). e Same as (a), for excitatory neurons (n = 2894 cells, mouse n = 8).
f Same as (a), for inhibitory neurons (n = 339 cells, mouse n = 8). g Violin plot of the
change in the mean firing rate between 5min before and 5min after an injection
divided by the baseline firing rate of excitatory and inhibitory neurons. Excitatory
and inhibitory neurons significantly increase their firing rate (two-sided Wilcoxon

matched pairs signed rank test, excitatory: Z = 17.57, p < 10−10, n = 2894 cells; inhi-
bitory: Z = 3.6, p =0.0003, n = 339 cells). All violins have the same area, but the
width represents the kernel probability density of the data at different values.
Centralmark of the boxplot indicates themedian, bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively, and whiskers extend to the
most extreme data points not considered outliers. h Single example of an MEC
spatial cell. Left: Raster plot. Middle: Spatial firing rate map (color coded as in
Fig. 1e). Right: Mean running speed per trial. i Left: Crest factor for the example cell
shown in (h). Right: The average crest factor for all cells. j Left: Spatial information
score for the example cell shown in (h). Right: The average spatial information
score for all cells. k Average spatial stability values. For i-k, solid lines represent
mean and shaded regions represent SEM. Control epoch is highlighted in magenta
(trials 51–100). Ketamine epoch is highlighted in green (trials 101–300). N = 300
trials, 3233 cells, 8 mice. l Mean stability of neurons 30min after baseline (black),
control (magenta) and ketamine (green) injection. Line is mean and shaded region
is SEM. m Comparison of the mean stability of neurons in the baseline (black),
control (magenta), and ketamine (green) epochs. Data plotted as violin plots, as in
(g). Spatial stability slightly differed between the baseline and the control epochs
(Z = 2.93, p =0.003). The spatial stability of neurons in the ketamine epoch (n = 50
trials post ketamine injection) was smaller than in the baseline epoch (Z = −18.12,
p < 10−20) and control epoch (Z = −17.69, p < 10−20). Two-sided Wilcoxon matched
pairs signed rank test,n = 3233 cells. Significant comparisons highlighted **p <0.01,
***p <0.001, ****p <0.0001. Source data are provided as a Source data file.
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Gaussian kernel. We applied a non-linear dimensionality reduction
(Uniform Manifold Approximation and Projection: UMAP) and a clus-
tering algorithm (Density-based spatial clustering of applications with
noise: DBSCAN) to the neural firing rates, which revealed distinct
clusters of population activity (Fig. 4a and Supplementary Fig. 8). We
then focused on the first significant cluster of activity following the
administration of ketamine (Fig. 4b, c. The well-defined activity cluster
mapped back onto the period of spatial decoherence seen in the
spatially-binned rasters, and we thus defined this as the “spatial
decoherence period” (Fig. 4b, c). In 28 of 30 sessions, we observed an
acute spatial decoherence period within 2min of the administration of
ketamine (Fig. 4d). The decoherence period was associated with an
increase in mean firing rate compared to baseline and control epochs
and lasted on average 18.6 ± 2.4min (Fig. 4e–f). However, we also
noted heterogeneity across individual cells during the decoherence

period. While there were, on average, more cells that increased their
firing rate during the decoherence period, some cells decreased their
firing rate (2.26 cells increased their firing rate for each cell that
decreased their firing rate, Fig. 4g). Notably, the spatial information of
cellswas significantly loweredduring thedecoherenceperiod (Fig. 4h).

Given ketamine’s disruption of spatial information in MEC, we
next consideredwhether ketamine impacted a cardinal feature ofMEC
spatial coding. Previous works point to MEC grid cell firing patterns as
arising from attractor dynamics that emerge as a result of recurrent
connectivity within a network of neurons29,48. A key feature of this
framework is that pairs of co-active grid cells maintain their temporal
firing relationship across environments and experimental conditions,
even if their spatial firing relationships are disrupted (Fig. 5a). Indeed,
cell-cell pairs have been found to retain their temporal firing rela-
tionships across a range of experimental conditions30,49,50. Given this,

Fig. 4 | Unbiased identification of the acute decoherence period evoked by
ketamine. a Temporally-binned firing rates plotted onto the first two dimensions
of UMAP space. Each point represents a time-bin of population firing rates of
recorded neurons. Color-coded by the animals position (top) and by the experi-
mental epoch (bottom). Non-linear dimensionality reduction better clusters out
activity by epoch and it is possible to visualize the animal’s position on the looped-
linear during the baseline and control sessions. b Raster plots from example cells
with spikes identified in the acute-decoherence periods identified by UMAP and
HDBSCAN, highlighted in red. c Two example sessions with firing rates dimen-
sionally reduced with UMAP and clustered with HDBSCAN. Colors label clusters
identified by UMAP andHDBSCAN. Circled cluster is the acute decoherence period
that follows the ketamine injection. d UMAP/HDBSCAN identified trial clusters for
each session, decoherence period highlighted in red. eA histogramof the length of
identified acute decoherence periods (n = 28 sessions, 10min bins). f Violin plot
comparing firing rate in the decoherence period and the equivalently lengthened

control period, averaged over sessions. Firing rates are higher during the deco-
herence period (two-sided Wilcoxon matched pairs signed rank test, Z = 22.78,
p < 10−20, n = 2926 cells). The central mark of the boxplot indicates the median, the
bottom and top edges of the box indicate the 25th and 75th percentiles, respec-
tively, and the whiskers extend to the most extreme data points not considered
outliers. g Histogram of the number of cells that decreased (left) or increased
(right) their firing rate during the identified decoherence period (n = 2895 cells,
2007 cells increased, 888 cells decreased). h Violin plot comparing spatial infor-
mation content in the decoherenceperiod and an equivalent length control period.
Spatial information is lower during the decoherence period (two-sided Wilcoxon
matched pairs signed rank test, Z = 16.5, p < 10−20, n = 2926 cells). Significant com-
parisons highlighted ****p <0.0001. All violins have the same area, but the width
represents the kernel probability density of the data atdifferent values. Source data
are provided as a Source data file.
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we examined whether cell-pairs maintain their temporal firing rela-
tionships across our different experimental conditions.

Consistent with previous work, we found that the temporal rela-
tionships between cell-pairs were maintained between the baseline
and control conditions (Fig. 5b), aswell as between late ketamine and a
manipulation of the relationship between the virtual reality visual flow

and locomotion (i.e. a change in the gain of the visual flow; Methods).
In contrast, cell-pair stability was significantly diminished between
baseline and acute ketamine conditions (Fig. 5c). This suggests that
ketamine acutely disrupted cell-pair connectivity. In an attractor net-
work framework, such a disruption in cell-cell co-activity would lead to
a significant disorganization in stable spatial coding (i.e., the spatial
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position a neuron is most active), which is consistent with our obser-
vation that ketamine disrupts spatial information in MEC.

MEC spatial neurons remap following the discrete ketamine-
induced neural activity state
Given that ketamine disrupts both the spatial information and tem-
poral relationships between cell-pairs, we next consideredwhether the
spatial representations observed before ketamine administration
returned after the acute decoherence period. First, we noted that after
the acute decoherence period, the spatial locations in which individual
spatial neurons were most active differed from those observed in the
baseline condition. The phenomenon of spatial neurons moving the
spatial location they are most active in is often referred to as
“remapping”20,21 and is proposed to provide a population code for
distinct environments20–22 (Fig. 6a). To visualize this, we constructed
trial-by-trial population spatial similaritymatrices, in which the activity
of all neurons for a given trial was correlated to their activity on all
other trials47 (Fig. 6b, c). We found that the population activity was
spatially stable between the baseline and control period (trials 1–100).
This was followed by a period of internal stability during the acute
decoherence period. Of note, the trials following the ketamine
administration were not spatially correlated with the baseline and
control trials. To quantify the post-decoherence remapping of spatial
firing patterns, we compared the spatial firing fields of neurons to a
spatial template generated from the spatial firing fields of neurons in
the baseline condition. Ketamine significantly decreased the correla-
tion score as compared to the control injection (Fig. 6d–g). These
results, combined with our previous analyses, reveal that ketamine
induced an acute decoherence period in which the firing rates of MEC
neurons and navigational behavior were significantly altered, followed
by a return to stable, albeit remapped, spatial firing patterns.

Given the ketamine-induced changes to the firing rates and spatial
coding of MEC neurons, we considered how these changes impacted
the degree to which spatial information was preserved or disrupted
across ketamine-induced neural activity states. We first trained a
logistic regression decoder on data from the first 50 baseline trials
(Methods, Fig. 6h–j). This decoder was significantly worse at predict-
ing the animal’s position on the VR track during the acute ketamine
period compared to the control period (Fig. 6j). Together with the
previous analyses, these results demonstrate that ketamine adminis-
tration severely disrupts the ability of MEC to encode the spatial
position of the animal.

Ketamine disrupts spatial firing patterns in the hippocampus
The MEC is highly reciprocally connected with the hippocampus,
which contains neurons called place cells that fire in one or few
restricted spatial locations. Inactivating the hippocampus degrades
grid cell firing patterns32, and altering MEC activity impacts place cell
firing patterns51–53. Thus, given the acute disruption caused by keta-
mine to neural activity in MEC, in a final set of experiments, we asked

how ketamine influences the spatial firing patterns of place cells in the
hippocampus. To examine ketamine’s effect across a large population
of hippocampal neurons, we performed in vivo 1-photon calcium
imaging of CA1 neurons using aminiaturized fluorescencemicroscope
(n = 8 mice, 4146 neurons; Fig. 7a). Mice freely explored a circular
arena for one 15min session across four days (days 1–2 served as
baseline sessions, on day 3 ketamine was administered immediately
before the start of the session and day 4 served as a post-ketamine
baseline session; Fig. 7b). While the timescale of hippocampal experi-
ments differed from those performed in MEC, due to constraints on
the amount of time imaging can be performed, this approach allowed
us to examine the impact of ketamine on the coding of large popula-
tions of hippocampal neurons within individual animals.

We observed that the mean and peak calcium event rate and
information score were not significantly different between baseline
sessions 1 and 2 (4146 cells from 8 mice). However, there was a sig-
nificant decrease inmean andpeak calciumevent rate and information
score between the baseline (day 2) and ketamine (day 3) sessions
(Fig. 7c–e). The peak calcium event rate and information score
returned to baseline values on the post-ketamine baseline session (day
4), but the decrease in mean calcium event rate persisted (Fig. 7c–e).
This indicates that ketamine broadly decreased the activity of hippo-
campal CA1 neurons.We next considered how ketamine impacted CA1
place cells. First, we found that ketamine significantly decreased the
number of cells defined as place cells in all 8 recordedmice (Fig. 7f). In
addition, for the place cells identified in the baseline condition (i.e.,
baseline 2), we followed their activity in the ketamine session and
observed significantly different spatial firing patterns between the two
conditions (Fig. 7g). This loss of spatial tuning was not due to a com-
plete shutdown of the cell activity (Fig. 7c), suggesting the activity of
place cellswas dissociated fromthe current locationof the animal after
the administration of ketamine, potentially in a manner similar to that
observed in MEC during the acute decoherence period. Unlike the
spatial cells in MEC, we did not observe place field remapping in the
post-baseline after ketamine administration, as we observed similar
spatial correlation values between the baseline and post-ketamine
sessions as those observed between the two baseline sessions (Fig. 7h,
i). One potential reason for this difference however, is that the post-
baseline session was performed 1 day after the ketamine administra-
tion in the hippocampal experiments, compared to 30min after
ketamine administration in the MEC experiments. The possibility
remains that over longer time scales (e.g., days), MEC neurons may
return to their pre-ketamine baseline spatial firing patterns.

Discussion
Previous clinical work has shown that, while ketamine is both a pro-
mising rapid treatment for depression, it can evoke dissociation (i.e.,
out-of-body experiences) and impair spatial memory7,11,14,54. Here, we
examined ketamine-induced alterations in spatial memory at the level
of behavior, single cells, and neural populations in two interconnected

Fig. 5 | Ketamine acutely disrupts cell-pair connectivity. a Left: Schematic of a
spike raster of a stable cell-pair relationship in the baseline epoch. Right: Spiking
correlations between stable cell-pairs are conserved across perturbations and
result in a diagonal relationship between spiking correlation coefficients (⍴) across
two conditions (top right schematic). If a test perturbation breaks the relationship
between two neurons, then that results in a non-diagonal relationship between the
spiking correlation coefficients (bottom right schematic). b Two example sessions
(each row is a session) of cell-pair correlations across different experimental
epochs (baseline: trials 1–50, control: trials 51–100, acute ketamine: trials 101–150,
late ketamine: trials 251–290, gain change: trials 291–300). To perturb the rela-
tionship between visual cues and locomotion, mice ran 10 trials where the gain was
0.5×.We calculated the correlation coefficient of between the smoothedfiring rates
of thefirst 50baseline trials for all pairsof spatially stable (non-interneurons, spatial
score >0.2) cells in a session, then examined cell-pairs with a significant correlation

(Pearson correlation coefficient, p <0.05). Each point is a cell-pair; line is the least
squares line of the cell pairs. The Pearson correlation (⍴) value for each condition is
at the bottom. c Violin plots of cell-pair correlations across different experimental
states. All violins have the same area, but the width represents the kernel prob-
ability density of thedata at different values. Eachpoint (gray) indicates the Pearson
correlation (calculated as shown in (b)) of a session. Sessions with >5 stable cell
pairs are plotted (n = 27 sessions). Two-sided Wilcoxon matched pairs signed rank
test with Sidak correction for multiple comparisons. Control vs acute ketamine:
Z = −4.31, p =0.0001; control vs late ketamine: Z = −4.72, p = 1.4 × 10−5; control vs
gain change: Z = 1.02, p =0.89; acute vs late ketamine: Z = 1.49, p =0.58; acute
ketamine vs gain change: Z = 4.35, p = 8.2 × 10−5; late ketamine vs gain change:
Z = 4.51, p = 3.9 × 10−5). Significant comparisons highlighted ****p <0.001. Source
data are provided as a Source data file.
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regions involved in spatial navigation. InMEC, we found that ketamine
altered network-level oscillatory dynamics (i.e., theta and gamma),
acutely disrupted spatial coding by increasing firing rates and
degrading the temporal firing-rate relationship between cell pairs and
caused a longer-term remapping of spatial representations. Com-
plementary to these observations in MEC, hippocampal spatial coding
was disrupted during the same period of time as the acute disruption
of MEC spatial coding. Taken together, our results point to the MEC-
hippocampal circuit as a potential substrate for the effects of ketamine
on spatial cognition.

The molecular mechanism by which ketamine affects spatial
coding remains to be determined. Ketamine is a non-competitive N-
methyl-D-aspartate (NMDA) receptor antagonist55,56. In MEC, NMDA
receptor antagonists cause non-specific increases in excitation, as
measured by c-fos mRNA and protein expression23. Ketamine is also a
potent inhibitor of HCN1 ion channels and the associated ionic current
I(h), with knockout of HCN1 channels reducing the hypnotic and dis-
sociative actions of ketamine16,57,58. The loss of HCN1 channels and
inhibition of I(h) impacts multiple features of MEC neural activity. At
the network level, knockout of HCN1 channels decreases MEC

Fig. 6 | Ketamine induces a long-term remapping following the acute deco-
herence period. a Spatial tuning curve of an example cell split into 50 trial blocks.
Solid lines represent mean and shaded regions represent SEM. b Trial-by-trial
correlation matrices of spatial firing rates for three example sessions. Color indi-
cates Pearson correlation between trials. c Spatial correlation matrix averaged
across 30 recorded sessions (8 mice). d Correlation of each trial to the baseline
spatial template (calculated from the 50 baseline trials, n = 3233 cells). Control
epoch in magenta, and ketamine epoch in green. Solid lines represent mean and
shaded regions represent SEM. eCorrelation to thebaseline spatial template for the
first 15min in the baseline (gray), control (magenta), and ketamine (green) condi-
tions. Solid lines represent mean and shaded regions represent SEM. f Ketamine
reduced spatial correlation to the baseline spatial template (two-sided Wilcoxon
matched pairs signed rank test, Z = 35.35, p < 10−10, n = 3233 cells). Width represents
the kernel probability density of thedata at different values. The centralmark of the

boxplot indicates the median, the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively, and the whiskers extend to the most
extreme data points not considered outliers. g Distribution of difference between
mean correlation of 25 trials preceding ketamine and mean correlation 25 trials
following ketamine. h The logistic decoder was trained on spatially-binned firing
rates from the 50 baseline trials, then tested on the control or ketamine epochs.
i Example mouse position predictions from a control epoch trial (top) and a keta-
mine epoch trial (bottom). j The average root mean squared error (RMSE) of the
logistic decoder is shown across all 30 sessions. Control epoch in magenta, keta-
mine epoch in green. Solid line is mean RMSE and shaded region is SEM. RMSE is
higher following ketamine injection (two-sided Wilcoxon matched pairs signed
rank test, Z = −4.64, p = 3.51 × 10−6, n = 30 sessions). Significant comparisons high-
lighted ****p <0.001. Source data are provided as a Source data file.
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measured oscillations in the theta frequency band, consistent with our
observation of decreasedMEC theta after ketamine administration59,60.
At the single cell level, knockout of HCN1 reduces the membrane
resting potential, increases input resistance and enhances excitatory
post synaptic potentiation summation59,61,62. Complementary to this,
ketamine mirrors these single cell effects in MEC neurons in wildtype
mice but not in HCN1 knockout mice57. These HCN1 associated effects
of ketamine, likely together with ketamine’s antagonistic effects on
NMDA receptors, could contribute to the enhanced excitation

observed during the acute decoherence period and the longer-term
remapping ofMEC spatial representations. However, ketamine’s effect
on HCN1 has been mainly tested using higher, anesthetic doses57,63,64.
Future work that combines genetic approaches with large-scale
recordings will be required to pinpoint the potential contributions of
HCN1 channels versus NMDA channels to ketamine-induced effects on
MEC spatial coding.

Ketamine has different effects on physiology and cognition at
different doses. In rodents, the IP anesthetic dose range of ketamine is
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150+ mg/kg65,66 and the sub-anesthetic sensory dissociative range is
25–100mg/kg16,18. However, spatial memory impairments have been
observed in doses as low as 2.5mg/kg67. The dosage effects may be in
part due to different affinity for different target receptors. For
instance, ketamine’s affinity for HCN1 ismuch lower than its affinity for
NMDAR56,57. Here, we find changes in spatial navigation and spatial
representations at a low dissociative dose. Future work should exam-
ine neural activity changes in vivo at lower doses of ketamine, parti-
cularly at subanesthetic non-dissociative doses.

Interestingly, ketamine increased firing rates in MEC while
decreasing calcium event rates in CA1. Ketamine has been shown to
have different effects across different brain regions68. Several ex vivo
studies have found that ketamine acutely reduces excitability in
CA125,68–70 (but see also Widman and McMahon71). In contrast, in vivo
studies have found that ketamine acutely increases excitability in
MEC23. Through its antagonism of NMDAR on inhibitory neurons,
ketamine reduces activity of inhibitory neurons in ex vivo hippo-
campal slices, disinhibiting excitatoryneurons72–74. Ketamine therefore
likely reduces CA1 excitatory neuronal activity through another
mechanism, such as HCN1 channels. Our results also suggest that the
increased firing rate of MEC excitatory neurons was not due to disin-
hibition by blocking NMDAR on inhibitory neurons, but instead
increased effectiveness of excitatory synaptic transmission potentially
combined with increased intrinsic excitability or increased external
inputs.

Another possible mechanism by which ketamine administration
might alter MEC spatial coding is via its effects on the hippocampus.
Importantly, back-projections from the hippocampus to MEC are
important for grid patterns in the MEC, as inactivating the hippo-
campus deteriorates grid cell firing patterns32. A role for intact hip-
pocampal input in the emergence of MEC spatial coding is consistent
with attractor-network models, a class of computational models cap-
able of generating grid cell firing patterns29,33,75. In these models, grid
cell firing patterns emerge from a network of neurons with asymme-
trically centered inhibitory center-surround synaptic weight profiles.
This connectivity profile, in the presence of broad-field excitation, will
generate a grid pattern of activity. Individual grid cell responses then
emerge when the movement of the pattern of activity across the net-
work is coupled to the velocity of the animal. If the inhibitory neurons
compose the inhibitory center-surround synaptic weight profiles of
the grid network, a reduction in the excitatory drive from the hippo-
campus can result in a loss of correlations between grid cell pairs30,32.
Our finding that hippocampal place cell activity diminishes during the
acute ketamine period, combined with the decrease in cell-pair tem-
poral correlations of MEC cells during the same period, is consistent
with this framework and points to the degradation in hippocampal
place cells as a possible circuit mechanism for ketamine-induced
changes in MEC spatial representations. However, any circuit
mechanism likely interacts with ketamine’s effects on MEC NMDA
receptors or HCN1 channels. For example, previous work has shown
that inactivation of the hippocampus does not result in an increase in

firing rates of MEC neurons32. Thus, the effect of ketamine on MEC
spatial representations likely reflects an interplay between ketamine-
induced circuit, cellular and molecular changes.

Ketaminemayalso affect spatial coding through its effecton theta
and gamma frequency oscillations. Theta frequency oscillations
organize spatial cell firing in CA176,77 and MEC38,39. The reduced theta
power we observed cannot explain the spatial decoherence, as theta
oscillations do not affect spatial firing of grid cells78–80, but could
explain the loss of spatial stability, as reducing theta power in MEC by
silencing the medial septum (MS) impairs MEC spatial stability41. Spe-
cifically, this spatial stability was lost in grid cells and not non-grid
spatial cells, which could explainwhywe observed that spatial stability
recovered in excitatory cells following acute ketamine, but not in grid
cells. MS also projects to CA1 to drive theta oscillations, but whether
suppressing theta by silencingMS reduces the spatial stability of place
cells depends on the method of inactivation used41,81. This mechanism
of altering spatial navigation circuits could be through ketamine’s
effects on GABAergic neurons in MS. Suppressing theta by silencing
GABAergic neurons inMSdisrupts grid stability, but suppressing theta
by silencing cholinergic neurons does not80. Moreover, ketamine’s
effect on gamma oscillations is suppressed by silencing GABAergic,
but not cholinergic, MS neurons37. Fast gamma in particular coordi-
nates communication between MEC and CA182. The observed increase
in fast gammacould lead to aberrant synchronybetweenMECandCA1,
similar to the aberrant synchrony between cortical regions observed
during ketamine-induced sensory dissociation16. Thus, both the
decrease in theta power and increase in fast gamma power we
observed may be through ketamine’s effect on MS and could impair
spatial representations.

The effects of ketamine on MEC and hippocampal spatial repre-
sentations likely interact with the effect of ketamine on other regions
involved in spatial navigation, such as the retrosplenial cortex16. Spatial
navigation and its supporting cortical and subcortical regions also
receive direct and indirect inputs from visual and somatosensory
cortices. Alterations in spatial representations may be in part due to
altered primary cortex representations that lead to the visual and
proprioceptive hallucinations found at subanesthetic dissociative
doses2,83. Given that ketamine produces a wide repertoire of cognitive
changes, ranging from unconsciousness, dissociation and spatial
memory impairments to clinically relevant improvements in depres-
sion and anxiety, future work will be needed to disentangle how
ketamine’s effects on specific brain circuits are associatedwith specific
cognitive changes. For example, infusing ketamine into MS could
reveal whether the loss of spatial stability and temporal relationships
between pairs of cells we observed was due to decreased theta from
MS to MEC. Furthermore, with the advent of technologies that can
administer drugs with higher anatomical specificity84, for example, it
may soon be possible to apply ketamine in a way that targets depres-
sion without inducing disturbances in spatial cognition. Another con-
sideration for future work is how ketamine impacts neural activity in
freely moving animals. Here, we chose to leverage the reduced

Fig. 7 | Ketamine’s effect on the spatial coding of hippocampal place cells. a A
schematic illustration of in vivo calcium imaging via a miniaturized fluorescence
microscope in CA1. Reproduced with permission from Sun and Giocomo96.
b Calcium event rate map of 4 example CA1 cells from 4 mice tracked across the
experimental timeline shown on the top. Top, an example raster plot for one cell,
where black lines are the animal’s trajectory and red dots are the location of each
calciumevent. Scale bar = 10 cm. cMean calciumevent rate comparisononbaseline
1 (bsl 1) vs. baseline 2 (bsl 2), bsl 2 vs. ketamine (K), and bsl 2 vs. post-baseline (p-bsl)
from all recorded neurons (4146 cells from 8mice). Open circles are means across
animals, filled dot is median across animals, and error bars are 25th and 75th per-
centiles across neurons. Ketamine decreases the mean calcium event rate both
during (K) and after (p-bsl) drug treatment (p =0.039 and 0.0078, respectively,
two-tailed sign-rank tested on 8mice).d, eOrganized as in (c). Ketamine decreases

the peak calciumevent rate and spatial information of CA1neurons (p =0.0078 and
0.0078, respectively, two-tailed sign-rank tested on 8 mice). f Ketamine decreases
the number of cells that qualified as place cell only during the drug day
(p = 9.51 × 10−5, two-tailed paired t test). Each dot is onemouse. g Left, histogram of
spatial correlations between sessions (2536 place cells from 8 mice). Right, spatial
correlationper animal averagedover cells. Spatial correlation declines on bsl 2 vs. K
compared to the correlation from the two baseline days (p =0.0078, two-tailed
sign-rank test on 8 mice). h Organized as in (g). There is no significant difference
between the spatial correlation of bsl 2 vs. bsl 1 and bsl 2 vs. p-bsl (p =0.38, two-
tailed sign-rank test on 8 mice). i Spatial correlations averaged over all place cells
per day. Ketamine consistently decreases spatial correlations compared to baseline
sessions. Significant comparisons highlighted *p <0.05, **p <0.01, and ***p <0.001.
Source data are provided as a Source data file.
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freedom of movement that occurs in a 1D head fixed condition, as it
allowed better comparison of spatial maps after ketamine since the
mouse must run along the same path. In freely moving 2D environ-
ments, spatial cells are nearly impossible to observe, as ketamine
induces a stereotyped spinning behavior (Supplementary Fig. 3e).
Thus, the challenge remains of how to best consider the spatial coding
of neurons after ketamine administration in freely moving animals.

Methods
Subjects for electrophysiological recordings
All techniques were approved by the Institutional Animal Care andUse
Committee at Stanford University School of Medicine. Neural record-
ings with ketamine injections were made from 8 mice (5 wild type
C57Bl/6 and 3 wild type 129S6/SvEvTac) aged 12 weeks to 16 weeks at
the time of the first surgery (14.3–24.4 g). All mice were female except
for 2 mice. An additional 2 mice (female wild-type 129S6/SvEvTac)
received two blank IP injections (control insertion); data from these
mice are only shown in Fig. 1e. Animals were housed at 21–23 °C and
30–70%humidity. Before surgery,micewere group housedwith same-
sex littermates, unless separationwas requireddue towater restriction
or aggression. After surgery,mice were housed individually. Mice were
housed in transparent cages on a 12-h light-dark cycle and experiments
were performedduring the light phase. All datawere collected bymale
experimenters, which has been shown to have an effect on CA1-
projecting entorhinal cortex corticotrophin releasing factor neurons85.

In vivo survival surgeries
For all surgeries, anesthesia was induced with isoflurane (4%; main-
tained at 0.5–1.5%) followed by an injection of buprenorphine
(0.05–0.1mg/kg). Animals were injected with baytril (10mg/kg) and
rimadyl (5mg/kg) immediately following both the first and second
surgery and for 3 days afterwards. In the first surgery, animals were
implanted with a custom-built metal headbar containing two holes for
head fixation. The craniotomy sites were exposed and marked during
headbar implantation and the surface of the skull was coated in
metabond. Additionally, a jewelers’ screwwith an attached gold pin, to
be used as a ground, was implanted anterior to the metal headbar.
After completion of training, a second surgery was performed tomake
bilateral craniotomies at 3.3mm lateral to the central suture and
immediately anterior of the transverse sinus. A small plastic well was
implanted around each craniotomy and affixed with metabond. Cra-
niotomy sites were covered with a drop of sterile saline and with sili-
cone elastomer (Kwik-sil, WPI) in between surgery and recordings.

Virtual reality (VR) environment
TheVR recording set-upwas basedon that described inCambell et al.86

and Low et al.47. Head-fixedmice ran on a 15.2-cm-diameter foam roller
(ethylene vinyl acetate) constrained to rotate about one axis. The
cylinder’s rotation was measured by a high-resolution quadrature
encoder (Yumo, 1024P/R) and processed by a microcontroller (Ardu-
ino UNO) using custom software.. The virtual environment was dis-
played on three 24-inch monitors surrounding the mouse and
generated using commercial software (Unity 3D) and updated
according to themotion signal. The gain of the virtual reality trackwas
calibrated so that the virtual track was 400 cm long. Upon completing
the track, the mouse was teleported seamlessly back to the start in a
way such that the track seemed infinite to themouse (visual cues of the
next track were repeated and visible in the distance as the animal
approached track end). The floor of the virtual environment was a
checkerboard texture, and there were 5 pairs of evenly spaced (80 cm
apart) visual towers thatwere the sameon the left and right sides of the
track (see Fig. 1b). Each of the 5 pairs of towers were different heights,
widths, and patterns (all were black and white and had neutral lumi-
nance). Water rewards were delivered via Tygon tubing attached to a
metal lick spout mounted in front of the mouse, and delivery was

triggered via a solenoid valve, which produced an audible clicking
sound upon reward delivery. The mouse’s licks were detected with a
custom-built infrared light barrier. The Neuropixels probes were
mounted on a motorized micromanipulator (UMP Micromanipulator,
Sensapex). Probe holders were placed behind the mouse to minimize
visual disturbance.

Recording session structure and drug administration
Mice ran 300 trials per recording session. The first 50 trials served as
the baseline epoch, in which no manipulation was performed. Trials
51–100 served as the control epoch, which occurred after a blank IP
injection (control insertion) was given. Trials 101–290 served as the
ketamine epochwhich occurred after the administration of a 25mg/kg
IP injection. Trials 290–300 served as the gain manipulation trials
where the gain of visual flow was set to 0.5 speed relative to the ani-
mal’s movement on the running wheel. IP injections were delivered to
the head-fixed animals in about 10 s between VR trials. The 25mg/kg
dose of ketamine was determined based on previous literature and an
in-house ketamine dose-response curve (Supplementary Fig. 3 and see
“Ketamine dose response curve” section of “Methods”).

Training and handling
After headbar implantation, mice recovered for three days and then
were put onwater deprivation. They received0.8–1.0mLofwater each
day and their weights were monitored to ensure that they remained
above 80% of baseline. Mice were handled for 15min at least once
every 2 days following headbar implantation and given an in-cage
running wheel. Training progressed in three stages. In stage one, they
were head-fixed on the VR rig and trained to receive water from the
lickspout. Water delivery was associated with an audible click of the
solenoid. Mice quickly learned this association and began licking upon
hearing the click. After stage one, mice progressed to stage two, in
which they ran on a training track consisting of a floor with checker-
board texture and evenly spaced, visual landmarks on both sides to
receive water rewards at a reward tower. Water rewards (2μL) were
automatically deliveredwhenever themouse passed the reward tower.
The reward tower spacing started at 40 cm and the track was length-
ened daily up to a maximum of 200 cm, such that the reward tower
moved further down the track, to encourage running. The reward
tower on the habituation track was visually identical to the reward
tower on the track used for recording. Once mice ran consistently
on the training track (average running speed >10 cm/s), they pro-
gressed to stage three, in which they ran on the same track that would
eventually be used for recording, increasing from 50 to 400 trials
per day. During this final phase of training, mice developed stereo-
typed running and licking patterns in which they slowed down and
licked prior to the reward tower. Some training sessions were per-
formedona training rig, butmicewerealways trainedon the recording
rig for several days prior to the first recording day to familiarize them
with the setup. Mice were deemed fully trained and ready to record
when they completed 400 trials within 1 h for 2 consecutive days. Mice
that never learned the task were excluded from further experiments.

In vivo electrophysiological data collection
All recordings were performed at least 24-h after the craniotomy sur-
gery, at which point themousewas head-fixed on the VR recording rig.
The craniotomy site was exposed and rinsed with saline; debris was
removed using a syringe tip. Recordings were performed using Phase
3B Neuropixels 1.0 silicon probes34 with 384 active recording sites (out
of 960 sites total) located at the bottom ~4mm of a ~10mm shank
(70 µm wide shank diameter, 24 µm thick, 20 µm electrode spacing),
with the reference and ground shorted together. The probe was
positioned over the craniotomy site at 10° from vertical and targeted
to ~50–300 µm anterior of the transverse sinus using a micro-
manipulator. On consecutive recording days, probes were targeted
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medial or lateral of previous recording sites, as permitted by the cra-
niotomy. The reference electrode was then connected to a gold
ground pin implanted in the skull. The probe was advanced slowly
(~10 µm/s) into the brain until it encountered resistanceor until activity
quieted on channels near the probe tip, then retracted 100–500 µm
and allowed to sit for at least 30min prior to recording. While the
probe was implanted, the craniotomy site was covered with sterile
saline and silicone oil. Signals were sampled at 30 kHz with gain = 500
(2.34 µV/bit at 10 bit resolution) in the action potential band (high-pass
300+ Hz filter), digitized with a CMOS amplifier and multiplexer built
into the electrode array, then written to disk using SpikeGLX software.
Local field potentials were similarly sampled at 2.5 kHz with gain = 250
(4.69 µV/bit at 10 bit resolution) and 0–300Hz low-pass filter.

Histology and probe localization
In order to identify the probe location after the completion of all
experiments, probes were dipped 10 times at 10 s intervals in a fixable
lipophilic dye before each probe insertion (1mM DiI, DiO or DiD,
ThermoFisher).Micewere sacrificedwith anoverdoseof pentobarbital
and transcardially perfused with phosphate-buffered saline (PBS) fol-
lowed by 4% paraformaldehyde within 7 days of the first probe inser-
tion. Brains were extracted and stored in 4% paraformaldehyde for at
least 24 h before transfer to 30% sucrose in PBS. The brains were then
flash frozen, cut into 45-µm sagittal sections with a cryostat, mounted
and stainedwith cresyl violet. Histological sections were examined and
the location of the probe tip and entry into the dorsal MEC for each
recording were determined based on the reference Allen Brain Atlas87

(Supplementary Fig. 1). The location of each recording site along the
line delineated by the probe tip and entry point was then determined
based on each site’s distance from the probe tip. Depth reported is the
ventral distance from the location of the dorsal boundary ofMEC in the
medial section where the probe enters MEC.

Offline spike sorting
Neuropixels probes electrophysiological recordings using SpikeGLX
software and Matlab were common-average referenced to the median
across channels and high-pass filtered above 150Hz. Automatic spike
sorting was then performed using Kilosort2, a high-throughput spike
sorting algorithm that identifies clusters in neural data and is designed
to track small amounts of neural drift over time (open source software
by Marius Pachitariu, Nick Steinmetz, and Jennifer Colonell, https://
github.com/MouseLand/Kilosort2)88. All clusters with peak-to-peak
amplitude over noise ratio <3 (with noise defined as the standard
deviationof voltage traces in a 10mswindowprecedingdetected spike
times), total number of spikes <100, and repeated refractory period
violations (0–1ms autocorrelogram bin >20% of maximum auto-
correlation) were excluded after automatic spike-sorting. All remain-
ing clusters were manually examined using Phy (an open-source
Python graphical user interface for visualization and manual curation
of large-scale electrophysiological data) and labeled as “good” (i.e.
stable and likelybelonging to a single, well-isolatedneural unit), “MUA”
(i.e. likely to represent multi-unit activity), or “noise.” This paper only
analyzed well-isolated “good” units fromwithinMEC with greater than
100 spikes from sessions with >10 cells.

Virtual reality behavioral data preprocessing
Virtual position and time stamps were recorded on each frame of the
VR scene, and a synchronizing TTL pulse was generated from an
Arduino UNO and recorded in SpikeGLX using an auxiliary National
Instruments data acquisition card (NI PXIe-6341withNI BNC-2110). The
time of each lick (identified by the breaking of an IR beam by the
mouse tongue) was also synchronized to the neurophysiological data.
Time stamps were adjusted to start at 0 and all behavioral data was
interpolated to convert the variable VR frame rate to a constant frame
rate of 50Hz. Since the virtual 400 cm track was effectively infinite,

recorded positions less than 0 or greater than 400 cmwere converted
to the appropriate position on the circular track. Trial transitions were
identified as timepoints where the difference in position across time
bins was less than −100 cm (i.e. a transition from ~400 cm to ~0 cm)
and a trial number was accordingly assigned to each time point. Run-
ning speed for each time point was computed by calculating the dif-
ference in position between that time point and the previous, divided
by the framerate (speed at the first timepoint was assigned to be equal
to that at the second time point). Speed was then interpolated to fill
removed time points and smoothed with a Gaussian filter (standard
deviation 0.2 time bins).

Statistics
Analysis was conducted inMatlab and Python. All tests were two-sided
unless otherwise noted, values are presented asmean ± standard error
of the mean (SEM), and correlation coefficients are Pearson’s correla-
tions unless otherwise noted. Wilcoxon signed-rank tests and Wil-
coxon rank-sum tests were used to assess significance for paired and
unpaired data respectively. Experimenters were not blinded during
data collection and experimental analysis. Sample sizes were con-
sistent with previous similar studies and not predetermined.

Lick accuracy and running speed
Licking behavior wasmeasured with an infrared light barrier. Breaking
the IR light barrier resulted in photodiode voltage output drops, which
were monitored by an Arduino UNO. The VR computer queried the
voltage on each frame and individual licks were defined as the voltage
dropping below a predefined threshold. Accurate licks were defined as
occurring within 50 cm of the reward tower placed at 400 cm. VR lick
accuracy percentage was calculated by dividing the number of accu-
rate licks by the total number of licks. Trials where the animal did not
lick were considered to have a lick accuracy of 0. To calculate the
running speed of the mouse, we calculated the difference in VR posi-
tion between consecutive VR frames. The resulting running speed
trace was smoothed with a Gaussian kernel (σ =0.2 s).

Local field potentials
Local field potentials were analyzed on one channel per session,
selected as the channel withinMECwith the highest theta power. Point
source density was calculated using Welch’s method from the scipy
signal package. Power in each frequency band (5–11 Hz for theta,
50–110Hz for fast gamma) was calculated using a multitaper spec-
trogramusing the spectral_connectivity package89with awindowof 1 s.
Frequency band power traces were Z-scored to themean and standard
deviation of the baseline epoch. Frequency band power traces from
the control and ketamine epochs were then resampled to match the
velocities of the baseline epoch, to control for the effects of speed on
theta power. For each 1 s time bin during the baseline epoch, a
matching time bin was selected, with replacement, from the paired
epoch that most closely matched the mean velocity in that time bin.

Spatial information, stability, and crest factor score in VR
Spatial information was calculated in bits per second over 2 cm posi-
tion bins90. Firing rates were computed empirically (number of spikes
in position bin i divided by occupancy time). Spatial firing rate vectors
were generated by dividing the linear VR track into 2 cm bins and
dividing the number of spikes in each bin by the dwell time in that bin.
Time periods when the mouse was moving at less than 2 cm/s were
omitted from the analysis. A spatial stability score was calculated by
smoothing the firing rate vector with a Gaussian filter (standard
deviation = 2 cm), normalizing the data, correlating each trial to the
preceding trial and the subsequent trial, andfinding themeanbetween
those two values. The stability of the first and last trial were calculated
by correlating with only the subsequent and preceding trial respec-
tively. “Crest factor” scores for each trial measuring the “peakiness” of
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each cell’s signal were calculated from a cell’s spatialfiring rate vectors
by calculating the peak value divided by the root mean square of the
spatial tuning curve, as shown in Eq. (1).

xcrest =
xpeak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i= 1x

2
i

q ð1Þ

Transmission probability
Transmission probability for each identified excitatory and inhibitory
connection were calculated as previously described44,45. First, a cross-
correlogram for each cell pair (cell A to cell B)was generated. The spike
times of the downstream neuron (cell B) were temporally shuffled
1000 times. A pair was considered a monosynaptic connection if the
cross-correlogramvalues in the 5ms following a spike from cell Awent
above (excitatory) or below (inhibitory) the 99% confidence interval
generated by the shuffled data. Cross-correlograms were then gener-
ated for each 10 s time bin for each significant monosynaptic con-
nection and divided by the number of spikes fromcell A, so each cross-
correlogram was a spiking probability given a single spike from cell A.
Transmission probability was the area under the cross-correlogram
curve at 1–5ms after a spike from cell A minus was the area under the
cross-correlogram curve at 1–5ms prior to a spike from cell A, to
correct for the effects of changes in the firing rate of cell B indepen-
dent of cell A’s influence. This value reflects the extent to which a spike
from cell A increased firing of cell B independent of cell B’s firing rate.

Functional cell-type identification
Spatially stable cells were classified by first generating spatial firing
rate vectors by dividing the linear VR track into 2 cm bins and dividing
the number of spikes in each bin by the dwell time in that bin. Time
periods when the mouse was moving at less than 2 cm/s were omitted
from the analysis. To identify spatially stable cells at baseline, we
examined the firing rate vectors for each neuron across the 50baseline
trials. The firing rate vectors were smoothed with a Gaussian filter
(standard deviation = 2 cm), the data were normalized, and baseline
spatial stability scores were generated calculating the mean spatial
stability score (see above) for the baseline epoch. Cells with a baseline
spatial stability >0.2 were classified as spatially stable cells.

Putative high-firing rate interneurons were identified by finding
cells with a mean firing rate >15Hz (putative high-firing interneurons).
Excitatory neurons had mean firing rates <15Hz. Animals ran 10 trials
following the completion of the recording session (trials 291–300)
where the correlation between the VR visual environment flow and
locomotion was manipulated to have a gain of 0.5×, such that the
animal had to travel two times the normal distance to cover the same
amount of visual track. Previous work has shown disassociating the
visual flow from locomotion with a gain <1 can be used to identify
putative grid cells—as grid cells in MEC are more sensitive to gain
change46,86. We computed the spatial tuning curves for the last 10
normal trials and the 10 gain manipulation trials and calculated the
Pearson correlation between these tuning curves for each cell. Putative
grid cells were identified asexcitatory cells whose spatial tuning curves
were modulated by changing the visual gain (rho <0.2), whose spatial
firing fields were stable across baseline trials (rho >0.2), and whose
spatial information score averaged across baseline trials was >3. Note
this method is a rough classification of grid cells that likely includes
some false positives and may falsely reject some true grid cells.

To calculate field widths for each grid cell, we took the firing rate
over each position bin and averaged this spatial map over 50-trial
blocks. We spatially shuffled each map 1000 times and set the detec-
tion threshold for peaks as the 80th percentile of all peak heights from
these shuffles, similar to previous methods46. Field width was the
maximumwidth of all detected peaks in each 50-trial block, measured
at the level of half the height of the peak.

Identifying the decoherence period using UMAP/DBSCAN
Temporally binnedfiring vectors for each recorded cellwere generated
by binning spikes into 0.02 s bins. The population of recorded cells
per session was then stacked together to produce a matrix C of size
(number of cells, number of time bins). UMAP and DBSCAN were
performed using corresponding MATLAB packages91–93. UMAP dimen-
sionality reduction was then performed onmatrix C to get embedding
coordinates for each cell. Parameters for UMAP for this embedding
were n_neighbors = 15, n_components = 2, distance metric = euclidean,
min_dist = 0.3. Clustering with DBSCAN was performed in the three-
dimensional embedding space to identify clusters of neural activity
corresponding to the main manifolds. The first major cluster of neural
activity (duration >1min), which started between 2–15min after the
ketamine administration, was labeled the “decoherence period.”

Cell-pair connectivity analysis
To calculate cell-pair connectivity, we first calculated the Pearson
correlation coefficient between the smoothed temporally-binned fir-
ing rate of the first 50 baseline trials for all spatially stable pairs of cells
in a session. We then identified cell-pairs as those with significant
Pearson correlations (p <0.05) during the baseline epoch. We then
compared the correlation coefficients of these cell-pairs across five
different epochs: baseline (trial 1–50), control (trials 51–100), acute
ketamine (trials 101–150), late ketamine (trials 251–290), and the visual-
gain change (291–300) epochs. During the 10 trial visual-gain change
epoch, the correlation between the VR visual environment flow and
locomotion was manipulated to have a gain of 0.5×, such that the
animal had to travel two times the normal distance to cover the same
amount of visual track. We chose to focus on gain values <1, as these
tended to show more strongly the influence of path integration on
spatial firing inMEC46,86.We calculated the least squares line of the cell-
pairs in the different conditions and a Pearson correlation (⍴) value for
each the following comparisons: baseline versus control, baseline
versus acute ketamine, control versus late ketamine, late ketamine
versus visual-gain change.

Trial × trial population similarity matrices and correlation
scores
Spatially binned firing matrices Ai (trial × position) for each recorded
cell i = 1…N from a single session were concatenated to form the
population matrix P = [A1|A2|…|AN], where N is the number of cells
recorded in that session. We computed the trial x trial population
similarity matrix S for each session by calculating the Pearson’s cor-
relation coefficient between each row (trial) in the populationmatrixP
(Sij = corr(Pi

T, Pj
T)). To generate the averaged spatial correlationmatrix

S, we found the mean of the 30 recorded session’s trial × trial popu-
lation similarity matrices.

To calculate the correlation score which quantified the post-
decoherence remapping of spatial firing patterns, we first created a
“baseline template” for each cell in a session by computing the mean
spatial firing rate tuning curve across the baseline epoch (trials 1–50),
denoted as b (bi =mean(Ai [a1

T…a50
T], where ai

T is the ith row ofAi). We
then calculated Pearson’s correlation coefficient between the baseline
spatial template b and the remaining trials of the spatial firing fields
(corr(bi, Ai [aj

T]) for j = 51…290).

Logistic decoder
We used a logistic regression model(penalty = “l2,” random_state = 0,
solver = “lbfgs,” multi_class = “multinomial,” max_iter = 10,000,000,
C =0.03) topredict the animal’s position inVR from the spiking activity
of all recorded neurons in a session, and we referred to the optimized
model as a “decoder” following common terminology and practice94.
We used the baseline epoch (trials 1–50) as the training (encoding)
trials. The z-scored firing rate was used to compute spatial tuning
curves for encoding trials by averaging the population activity within
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each spatial bin (2 cm). This defined an average N-dimensional trial
trajectory during encoding trials, where N is the number of neurons.
The model was trained 50 times dropping 1 to find the baseline RMSE.
We then tested the model with the neural population activity from
each subsequent trial during both the control epoch (trials 51–100)
and ketamine epoch (trial 101–290). For each time point during the
decoding (test) trials, we determined the closest point on the average
encoding trajectory by minimizing the Euclidean distance. The deco-
ded position then corresponded to the VR position for this point on
the average trajectory. We calculated the decoding error as the root
mean squared error (RMSE) between decoded position and actual
position of the animal respecting the circularity of the track. We then
found the mean RMSE curve by averaging the RMSE curves (trials
51–290) across the 30 recorded sessions (n = 8 mice).

Ketamine dose–response curve and open-field behavior
To test spatial mobility, 5 female and 5 male (C57BL/6 mice, aged
12 weeks to 24 weeks) were allowed to freely explore a 60 cm ×
60 cm open field. In order to minimize external visual cues, the
open-field was surrounded by black walls. A single white cue was
located on one wall to orient the animal. In order to minimize the
effect of external noise, the open field arena was be placed in a 49”(l)
× 49”(w) × 102”(h) soundproof studio room (reduces noise above
1000Hz by greater than 60 dB, and reduces noise from 250 Hz to
100 Hz by ~50 dB). A HEPA filter was run constantly inside the
behavioral box to both provide a constant source of white noise and
to clean the air of particulates and odors. The open-field behavioral
tasks were recorded via a ceiling mounted infrared camera. Etho-
Vision XT was used to analyze the behavior including animal track-
ing, animal speed, and animal sniffs of the objects (Supplementary
Fig. 3b–e).

To examine spatial memory consolidation, we tested 14 female
mice (C57BL/6 mice, aged 12 weeks to 24 weeks) on the Object-
LocationMemory task (Supplementary Fig. 3a, b). This task specifically
tested hippocampal-dependent spatial memory without needing an
aversive stimulus95. This task leveraged the fact that mice naturally
spendmore time exploring novel objects and the fact thatmice notice
when objects have been moved to a new location. Mice were exposed
to an open field arena with two distinct objects for 10min. Half the
mice (n = 7) were given 25mg/kg ketamine and the other half (n = 7)
were given a control injection. The following day, one of the objects
was moved to a new spatial location and the mice were allowed to
explore freely for 5min. If the animal remembered the previous day, it
would spend more time investigating the object that had moved. The
animals were recorded using an infrared camera mounted above the
arena, and the amount of time spent sniffing the objects was scored
using EthoVision XT. The videos were analyzed and the discrimination
index (DI = {[time spent exploring object in novel location − time spent
exploring object in familiar location]/total time exploring both
objects} during the test phase was calculated as a measure of spatial
memory.

In order to test the dose-response curve of ketamine, mice were
given ketamine at the following doses: 0mg/kg, 10mg/kg, 12.5 mg/
kg, 15 mg/kg, 20mg/kg, and 25mg/kg once a day IP (Supplementary
Fig. 3d). The drug was delivered to mice through an IP injection and
then immediately placed in the open field arena to be tracked for
30min afterwards using EthoVision XT. Different doses of ketamine
(1–25mg/kg) were used to generate a dose-response curve of the
total distance the animal traveled during a recording session (Sup-
plementary Fig. 3). Angular acceleration (radians/s2) was also cal-
culated to quantify the stereotypic post-ketamine spinning
behavior. The mouse underwent only a single injection with a single
concentration of the drug on any given day. The number of lifetime
injections was limited to 20 per animal and nomore than 5 injections
per week (one per day).

Imaging of the hippocampus in the open field arena
Five male and three female Ai94;Camk2a-tTA;Camk2a-Cre (JAX id:
024115 and 005359)micewere used for imaging experiments in region
CA1 of the hippocampus. Mice were 8–12 weeks old at the time of
surgery. Detailed surgical procedures are described in Sun and
Giocomo,96. Briefly, after fully anesthetizing each mouse, a gradient
refractive index (GRIN) lens (0.25 pitch, 0.55 NA, 1.8mm diameter and
4.31mm in length, Edmund Optics) was implanted above the CA1
region of the hippocampus after aspirating the overlying cortical tis-
sue. The implantation coordinates were centered at −2.30mm ante-
rior/posterior, +1.75mm medial/lateral and −1.53mm dorsal/ventral
relative to bregma. Twoweeks after the implantation of the GRIN lens,
a small aluminumbase plate was cemented to the animal’s headon top
of the existing dental cement. After the installation of the baseplate,
the imaging window was fixed for long-term use with respect to the
miniscope used during installation. For all imaging experiments, each
mousehadadedicatedminiscope.Whennot imaging, a plastic capwas
placed in the baseplate to protect the GRIN lens from dust and dirt.
After mice had fully recovered from the baseplate surgery, they were
handled and allowed to habituate to wearing the head-mounted min-
iscope by freely exploring an open arena (a clean cage bottom) in a
different room for 20min every day for 1 week. Animals were also
habituated tomock IP injections (needle poking) once a day for 4 days.

Before the imaging experiment, mice were further habituated in
the circular open field (36 cm in diameter) 20min/day for 2 days in the
experimental room. The imaging experiment then followed an AABA
paradigm over 4 days, in which A represents two baseline sessions and
a post-baseline session on days 1, 2, and 4, respectively; and B repre-
sents the ketamine session on day 3. Each session was 20min long and
mice were allowed to freely explore the circular open field arena.
Ketamine (25mg/kg) was injected IP on day 3 just before
imaging began.

Miniscope imaging data acquisition and initial batch processing
Details of the general processing steps for the customized miniscope
acquired data are described in Sun and Giocomo96. Briefly, miniscope
videos were acquired using custom software (https://github.com/
daharoni/Miniscope_DAQ_Software). Individual sessions were first
concatenated and down-sampled by a factor of 2 using custom
MATLAB scripts, then motion corrected using the NoRMCorre
MATLAB package. To align miniscope videos across different sessions
for the entire experiment, we applied an automatic 2D image regis-
trationmethod (github.com/fordanic/image-registration) with rigid x-y
translations according to the maximum intensity projection images for
each session. The registered videos for each animal were then con-
catenated together in chronological order to generate a combined data
set for extracting calcium activity. This process made it unnecessary to
perform individual footprint alignment or cell registration across ses-
sions. We then used the CNMF-E package to extract an individual
neuron’s calcium activity for the concatenated video data. CNMF-E is
based on the CNMF framework, which enables simultaneous de-nois-
ing, de-convolving and de-mixing of calcium imaging data. These
extracted calcium signals for the combined data set were then split
back into each session according to their individual frame numbers.

Place cell analyses
To calculate spatial rate maps, the position and speed of the animal
was determined by applying a custom MATLAB script to the animal’s
behavioral tracking video. Time points at which the speed of the ani-
mal was lower than 2 cm/s were identified and excluded from further
analysis. We then used linear interpolation to temporally align the
position data to the calcium imaging data. After we obtained the
deconvolved spiking activity of neurons, we extracted and binarized
the effective neuronal calcium events from the deconvolved spiking
activity by applying a threshold (3 × standard deviation of all the
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deconvolved spiking activity for each neuron). We then treated the
binarized deconvolved spikes as calcium events. The position data was
sorted into 1.75 × 1.75 cmnon-overlapping spatial bins. The spatial rate
map for each neuron was constructed by dividing the total number of
calcium events by the animal’s total occupancy in a given spatial bin.
The rate maps were smoothed using a 2D convolution with a Gaussian
filter that had a standard deviation of 2.

To identify place cells, and quantify the information content of a
given neuron’s activity, we calculated spatial information scores in
bits/s (each calcium event is treated as a spike here) for each neuron
according to the previously published formula90. Bins with total
occupancy time of less than 0.1 s were excluded from the calculation.
To identify place cells, the timing of calcium events for each neuron
was circularly shuffled 1000 times and spatial information (bits/sec)
recalculated for each shuffle. This generated a distribution of shuffled
information scores for each individual neuron. The value at the 95th
percentile of each shuffled distribution was used as the threshold for
classifying a given neuron as a place cell, andwe excluded cells with an
overall mean calcium event rate less than 0.1 Hz. This threshold was
roughly equal to the 5th percentile of the mean event rate distribution
for all neurons.

Position-matching for comparisons of cell activity across
sessions
Analyses that compare hippocampal neuronal activity across different
sessions (longitudinal comparisons) can be influenced by biases in the
animal’s spatial occupancy, which can arise due to the effects of
ketamine. To circumvent the effect of differences in occupancy on our
analyses, we implemented a position-matched down-sampling proto-
col when performing longitudinal comparisons of place cell activity.
For down-sampling, wefirst binned the spatial arena into 1.75 × 1.75 cm
non-overlapping bins. We then computed the number of position
samples (frames) observed in each spatial bin for the to-be-matched
sessions. Finally, the number of samples in each corresponding spatial
bin were down-sampled by randomly removing position samples, and
the corresponding neural activity, from the session with greater
occupancy. Due to the stochastic nature of the down-sampling pro-
cess, we repeated this procedure 50 times (unless otherwise specified)
for each cell, and the final value for each cell was calculated as the
average of all 50 iterations. This final value was then used to obtain the
reported means or perform statistical comparisons. This protocol was
applied to our analyses for all the within subject comparisons includ-
ingmean and peak calcium event rates, spatial information and spatial
correlations. To avoid over-downsampling using many sessions
simultaneously, we only performed pairwise downsampling with two
sessions at a time.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MEC binned firing rates, hippocampal calcium traces, and mouse
position data generated in this study have been deposited in the Fig-
share database under accession code https://doi.org/10.6084/m9.
figshare.22696309 [https://figshare.com/articles/dataset/Ketamine_
evoked_disruption_of_entorhinal_and_hippocampal_spatial_maps/
22696309]97. Source data are provided with this paper.

Code availability
Code for replicating the analyses in this study have been deposited on
GitHub at https://github.com/GiocomoLab/Masuda_et_al_2023 and
deposited in the Zenododatabase under the accession code: https://doi.
org/10.5281/ZENODO.7903214 [https://zenodo.org/record/7903214]98.
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