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A digital twin for DNA data storage based on
comprehensive quantification of errors and
biases

Andreas L. Gimpel 1, Wendelin J. Stark1, Reinhard Heckel2 &
Robert N. Grass 1

Archiving data in synthetic DNA offers unprecedented storage density and
longevity. Handling and storage introduce errors and biases into DNA-based
storage systems, necessitating the use of Error Correction Coding (ECC) which
comes at the cost of added redundancy. However, insufficient data on these
errors and biases, as well as a lack of modeling tools, limit data-driven ECC
development and experimental design. In this study, we present a compre-
hensive characterisation of the error sources and biases present in the most
common DNA data storage workflows, including commercial DNA synthesis,
PCR, decay by accelerated aging, and sequencing-by-synthesis. Using the data
from 40 sequencing experiments, we build a digital twin of the DNA data
storage process, capable of simulating state-of-the-art workflows and repro-
ducing their experimental results. We showcase the digital twin’s ability to
replace experiments and rationalize the design of redundancy in two case
studies, highlighting opportunities for tangible cost savings and data-driven
ECC development.

As the amount of digital data to be stored continues to grow by Zet-
tabytes every year, DNA is considered a potential alternative to con-
ventional storage media due to its exceptional stability and storage
density1–3. The use of DNA as a storage medium presents unique
practical challenges, such as affordability and scalability, as well as
design challenges, such as the choice of redundancy and algorithm for
error correction coding (ECC)3–5. The latter challenge is aggravated by
the errors incurred by data stored in DNA, ranging from single-site
errors (i.e., substitutions, deletions, and insertions) to sequence
dropout (i.e., the loss of data-encoding sequences)4. While errors stem
directly from the chemical or biological processes involved in the DNA
data storage workflow (e.g., synthesis, amplification, aging, and
sequencing), sequence dropout is the product of a biased distribution
for the oligonucleotide count per sequence (i.e., the coverage dis-
tribution). Due to these errors and biases, data stored in DNA is
encoded with redundancy using ECC4,6,7. These coding schemes add
redundancy to recover the encoded data from the DNA sequences

while correcting a limited number of errors and tolerating some
missing sequences. In practice, choosing the optimal level and type of
redundancy requires a priori knowledge of the expected error and
dropout rates, forwhich insufficient information isoften available. Due
to this lack of understanding of how experimental choices, from
synthesis provider to storage workflow, affect the expected error and
dropout rates, experience, and overcompensation currently often
guide the choice of redundancy levels.

Beyond just choosing an adequate redundancy level, choosing a
suitable ECC from the many implementations reported to date6,8–11

requires standardized error scenarios facilitating meaningful and fair
comparisons. Computational comparisons have relied on fictitious
error scenarios10,11—considering error types in isolation—while experi-
mental comparisons are costly and potentially misleading due to the
plethora of potentially critical experimental parameters. In silico tools
for the simulation of errors in DNA exist12–14, but they often do not
support the parallel simulation of large oligonucleotide pools, neglect
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sequence dropout due to evolving bias in the coverage distribution, or
directly reproduce experimental error patterns without considering
experimental parameters. To replace experiments or compare ECCs
however, an in-silico tool for DNA data storage must accurately reflect
the errors and sequence dropout of state-of-the-art workflows based
only on experimental parameters. This requires a systematic under-
standing of the individual sources of errors and biases encountered in
such workflows.

Many of the biological and synthetic methods used in common
DNA data storage workflows are well characterized (e.g., oligonu-
cleotide synthesis15,16, PCR17,18, sequencing-by-synthesis (SBS)19,20). In
contrast, studies onDNA data storage often only quantify overall error
rates—if at all—and do not consider coverage biases. The works by
Heckel et al.4 and Chen et al.21 began quantifying these error sources in
isolation, identifying significant biases related to the synthesis and
amplification of oligonucleotide pools. Still, no study has system-
atically investigated the evolution of error rates and coverage biases
throughout the entire DNA data storage workflow.

In this work, we comprehensively characterize the error sources
and biases present in the most widely used DNA data storage work-
flows to date1,7. This includes commercial DNA synthesis from the two
major providers of large-scale oligonucleotide pools used in the
literature1 (i.e., Twist Biosciences and Genscript/CustomArray),
amplification via PCR, long-term storage and decay by accelerated
aging, and sequencing by Illumina’s SBS technology. For our investi-
gation, we systematically sequenced oligonucleotide pools through-
out the workflows to analyze their error profiles and coverage
distributions, for a total of 40 sequencing datasets. By characterizing
the base preferences, positional dependencies, and distributional
inhomogeneities of all errors, we provide a complete description of all
error sources in the various steps of the workflows. In addition, the
analysis of coverage distributions revealed any potential coverage bias
from synthesis, amplification, and aging, which we show to be critical
for understanding sequence dropout. Finally, we condense the data on
error rates and biases into a digital twin of the DNA data storage
process: a tool to explore experimental workflows and provide stan-
dardized simulations for experimental scenarios. We demonstrate the
digital twin’s ability to reproduce state-of-the-art workflows and
showcase its application to the data-driven design of redundancy,
which offers opportunities to replace costly experiments and facilitate
meaningful comparisons between ECCs.

Lastly, while upcoming synthesis (e.g., photochemical or enzy-
matic synthesis) and sequencing processes (e.g., nanopore sequen-
cing)—which are not yet widely adopted for DNA data storage—are not
considered here, our characterization workflow and digital twin pro-
vide a suitable blueprint to analyze these emerging technologies in the
future.

Results
In this work, we characterize errors and biases from sequencing data
using four oligonucleotide pools, eachwith 12000–12472 sequences of
143-157 nucleotides (nt). Two pools were synthesized via an electrode
array-based method (Genscript/CustomArray) and two by a material
deposition-based technology (Twist Biosciences). All pools consisted
of random sequences, with one pool each enforcing a constraint onGC
content of 50% (“GC-constrained”), while the other remained uncon-
strained (seeMethods andSupplementary Table 1). All poolswere used
in two workflows, consisting of either extensive re-amplification with
up to 90 PCR cycles or accelerated aging up to an equivalent storage
duration of 1000 years at 10 °C. Throughout the process, samples of
the pools were sequenced to track the evolution of errors and biases
for a total of 40 experimental endpoints across the twoworkflows. For
our analysis, errors and biases were characterized by aligning
sequencing reads to their respective references, identifyingmutations,

and evaluating the resulting error patterns. For more details on the
analysis procedure and the datasets used, we refer to theMethods and
Supplementary Note 1.

In the following, we first quantify the overall error rates in our
experiments, followed by the characterization of each individual error
source in the data storage workflow. We then build and verify a com-
putational model of the workflow, which is used in a case study to
illustrate its value for the data-driven choice of redundancy in ECCs.

Identifying error sources and assessing error independence
To validate our experimental approach, we first compared our overall
error rates to those published in previous studies. Throughout all our
40 datasets, we observed overall error rates of 6.7 ± 6.9 deletions,
7.9 ± 2.0 substitutions, and <0.3 ± 0.2 insertions per thousand
nucleotides (i.e., 10−3 nt−1) on average, in-line with error rates published
in other studies4,22,23. Variation in the observed deletion and substitu-
tion rates between different experimental conditions and different
oligonucleotide pools was large, with maximum rates of 17.1 × 10−3 nt−1

deletions and 12.5 × 10−3 nt−1 substitutions, respectively. Analyzing the
variance across themeasured error rates in this diverse dataset (three-
way ANOVA with HC3 correction, see Fig. 1a)—considering synthesis
provider, number of PCR cycles, and storage duration as factors in a
main effects analysis—showed that synthesis and PCR were the major
error sources in our experiments. The synthesis process explainsmost
of the difference observed in deletion rates (F(1, 76) = 933.7, p = 10−44),
accounting for 92% of its variance. This highlights synthesis as a
dominating source of deletions, as noted by others15,16, and identifies a
large difference in fidelity between synthesis processes. In contrast,
substitution rates varied most between samples with different sample
preparations. PCR was found to be the main factor affecting sub-
stitutions (F(1, 76) = 1251, p = 10−49), accounting for 86% of the variance
(see Fig. 1a). The full ANOVA results are presented in Supplementary
Table 8.

Next, we assessed error independence in our datasets, i.e., the
assumption that mutations occur independently from one to another,
which is often inherently assumed when modeling errors in DNA10,11,13.
To do so, we compared the frequency distributions of consecutive
errors and errors per read to those expected assuming that errors are
introduced independently. Under error independence, we expect to
observe consecutive errors according to a geometric distribution with
a success probability equal to the average error rate. We found that,
while the frequency of consecutive substitutions closely matches its
theoretical distribution (see Fig. 1c), the occurrence of multiple con-
secutive deletions was considerably more frequent (see Fig. 1b). Runs
of consecutive deletions—with amean length of 2.6 bases and referred
to as a deletion event—were overrepresented and accounted for
10–14% of all deletions, depending on the synthesis process. Going
further, the frequency distribution of errors per read is expected to be
binomially distributed under the assumption of error independence,
with the length of the sequence and the average error rate as para-
meters. Substitutions showed good agreement to this theoretical dis-
tribution (see Fig. 1e), whereas deletion events behaved differently
depending on synthesis technology (see Fig. 1d). For electrochemical
synthesis, deletion events were heavily clustered in a small subset of
reads.While this led to a greater proportion of deletion-free reads (52%
vs. 35% expected) and a small number of reads with only one or two
deletions (35% vs. 56% expected), about 13% (vs. 9% expected) of oli-
gonucleotides in these pools featured at least three deletions. No
clustering across reads was evident for the material deposition-based
synthesis, as deletions were generally rare. Taken together, this ana-
lysis established that the assumption of error independence is gen-
erally valid for substitutions, but is violated for deletions, which tend
to cluster both within and across reads in the electrochemical
synthesis.
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Not all DNA is created equal: synthesis errors and coverage
biases
As noted above, the large difference in mean deletion rate between
electrochemical (13.5 ± 2.0 × 10−3 nt−1) and material deposition-based
(0.58 ±0.15 × 10−3 nt−1) synthesis identified synthesis as the main error
source for deletions. This is corroborated by the positional depen-
dence of deletions in the sequencing reads, which showed a distinct
increase in the synthesis direction for the electrochemical synthesis
(i.e., 3′−5′ for the forward read, 5′−3′ for the reverse read, Fig. 2a). The
strongly increasing deletion rate observed towards the 5′-end of the
electrochemically synthesized oligonucleotides, >5% per nucleotide,
likely stems from mass transfer limitations. As the synthesized oligo-
nucleotide becomes longer, the distance to the acid-generating elec-
trode grows and steric hindrance increases the electrochemical cell
resistance, impeding acid-induced deprotection and preventing both
subsequent addition of the next nucleotide and blocking of the erro-
neous oligonucleotide by capping24,25. This also explains the observed
deviation from statistical independence for deletions noted pre-
viously: oligonucleotides that have already suffered from mass
transfer-induceddeletions aremore likely to do so again in subsequent
deprotection steps, leading to a cluster of deletions. Material
deposition-based synthesis on the other hand exhibited neither a high
deletion rate nor any considerable positional dependence. With a
fidelity exceeding one deletion error in 2000 nucleotides, these
amplified oligonucleotides were essentially error-free for the purposes
of DNA data storage. Despite this large difference in deletion rates,
both synthesis processes find broad application in DNA data storage1,

likely due to considerations of scalability and cost. For both synthesis
processes, deletions also did not show any relevant bias towards any
nucleotide, and only a negligible number of substitutions were intro-
duced (see Supplementary Note 3 and Supplementary Figure 12).

Focussing on the coverage distributions of the oligonucleotide
pools after synthesis, we compared sequencing data obtained after
minimal sample preparation (15 PCR cycles and size selection by
agarose gel electrophoresis). Similar to other studies6,21, the normal-
ized coverage distributions of all oligonucleotide pools in our study
were positively skewed—featuring a long tail of few sequences at high
coverages—and were well approximated by lognormal distributions
(see Fig. 2b). Quantifying this coverage bias with the standard devia-
tion of the corresponding lognormal distribution (σ) highlighted the
severe effects of the GC-constraint on the electrochemically synthe-
sized pools. While synthesis by material deposition yielded near-
gaussian coverage both with unconstrained and GC-constrained
sequences (σ =0:27 vs. σ =0:30), electrochemical synthesis yielded
slightly biased coverage with GC-constrained sequences (σ =0:58),
and severe bias without constraints (σ = 1:30, see Fig. 2b). Combined
with the significant difference in mean deletion rates between these
synthesis methods, the choice of synthesis provider critically affects
the baseline error level and coverage bias for DNA data storage.

Quantifying substitutions and bias introduced via PCR
Generally, PCR introduces both substitution errors and biases into
oligonucleotide pools, mainly due to the limited fidelity of the
polymerase4,21. Previous studies have characterized PCR errors in the

Fig. 1 | Overview of error variance and general error distributions. a The con-
tributions of the synthesis process, PCR cycles, and extent of decay to the overall
variance in mean deletion (Dels., left) and substitution (Subs., right) rates between
samples were assessed by four-way analysis of variance (ANOVA, see Methods and
Supplementary Table 8). b–e Distributional analysis of error independence for
deletions (b, d) and substitutions (c, e) based on the observed frequency of error
runs (b, c) and errors per read (d, e). Bars show the mean frequency for the GC-
unrestricted pools synthesized by electrochemical (dark gray, n=8 sequencing
experiments, with both forward and reverse reads used) and material deposition

(light gray, n= 11 sequencing experiments, with both forward and reverse reads
used) processes, with error bars indicating the standard deviation of the sample.
Theoretical distributions expected under the assumption of error independence
are also shown (black diamonds), representing a geometric distribution para-
meterized by the mean error rate for consecutive errors (b, c) and a binomial
distribution parameterized by the length of the sequence and the mean error rate
for the errors per read (d, e, see also Methods). The histogram for deletions per
read treats any run of deletions as a single event to accommodate the non-ideality
of deletion runs. Source data are provided as a Source Data file.
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context of genomic sample amplification (e.g., for mutation detection
via high-throughput sequencing)17,18, but PCR errors are also relevant
for DNA data storage, where they reduce the fraction of error-free
oligonucleotides. To assess this, we characterized the errors intro-
duced during PCR by amplifying samples of the oligonucleotide pools
with varying numbers of PCR cycles and quantifying the evolution in
error rates (see Fig. 3a). All PCR experiments were stopped well before
reaching the plateau phase to ensure an excess of primers and
nucleotides for exponential amplification. Sequencing data showed
that PCR introduced only substitutions, at a mean rate of
1.09 × 10−4 nt−1 cycle−1 for our Taq-based polymerase (KAPA SYBR
FAST), see Fig. 3b and c. The polymerase exhibited a strong bias
towards A→G/T→C transitions (61% of substitutions), with further
preference for A→T/T→A transversions (13%). This is in-line with the
studies quantifying polymerase fidelity based on single amplicons,
which found substitution rates within 1 × 10−5 to 2 × 10−4 nt−1 cycle−1 for
Taq-polymerase, and similar substitution patterns17,18,26. Consequently,
the established polymerase fidelity metric (i.e., polymerase fidelity
relative toTaq-polymerase) canbeused to extrapolate the substitution
rates expected fromother commonly used polymerases in the context
of DNA data storage17,18. The C→T/G→A transition was also relevant in
our experiments (19% of substitutions), but is thought to occur due to
temperature-induced cytosine deamination during thermocycling
rather than polymerase errors18.

Stochastic effects of PCR and non-uniform amplification lead to
biases in coverage distributions4,21,27–29. To quantify this amplification
bias in aDNAdata storage context,we characterized thedistributionof
normalized amplification efficiencies, i.e., the ratio 1 + ϵi

1 + �ϵ between an
individual sequence’s efficiency, ϵi, and the pool’s mean efficiency, �ϵ,
for our datasets. Here, the individual sequence efficiency, ϵi 2 ½0,1�,

represents the probability of successful amplification for each copy of
sequence i during one PCR cycle. Assuming negligible stochastic
effects (i.e., at high initial coverage), the relative amplification effi-
ciency is related to the experimentally observed fold change in nor-
malized sequence coverage, xi, from sequencing before and after
amplification with c cycles, as shown in Eq. 129.

1 + ϵi
1 + �ϵ

=
xi cð Þ
xi 0ð Þ

� �1
c

: ð1Þ

We found that the relative amplification efficiencies are normally
distributed in our material deposition-based oligonucleotide pools,
with a standard deviation of 0.0051 (unconstrained pool) and 0.0048
(GC-constrained pool), see Fig. 3d and Supplementary Fig. 13. To
validate our estimate of the overall PCRbias, we replicated this analysis
for the sequencing data reported by Chen et al.21 (change of 31 PCR
cycles), Erlich et al.6 (90 cycles), and Koch et al.23 (60 cycles).We found
amplification biases that were larger, but comparable to ours (see
Fig. 3d), with standard deviations ranging from0.0058 to 0.012. Given
these datasets, the broadness of the efficiency distribution does not
appear to directly depend on GC constraints and is thus likely caused
by experimental conditions. To this end, factors such as the choice of
primer, the temperature, and duration of the steps, or the polymerase
itself are known to affect amplification efficiency and thus amplifica-
tion bias, amongst others30–33. Specifically the use of high-fidelity,
proofreading polymerases (such as by Erlich et al.6 and Chen et al.21),
which stall DNA synthesis upon reading uracil, might incur a stronger
amplification bias due to cytosine deamination to uracil during
storage34. Moreover, the repeated dilutions needed after each ampli-
fication, albeit performed at high physical coverage, may introduce

Fig. 2 | Errors andbiases fromsynthesis. aMediandeletion rate (solid line)over all
experiments as a function of position in synthesis direction, grouped by synthesis
process and read direction. The deletion rate is strongly position-dependent for
electrochemical synthesis (dark purple) but negligible for DNA synthesized via
material deposition (light purple, magnified in the inset). Both forward (solid lines)
and reverse reads (dotted lines) are shown, each in the synthesis direction, for all
samples irrespective of their sample preparation. Shaded areas enclose all data
points from the set, i.e., from minimum to maximum. Co-synthesized priming
regions flanking the data-encoding bases are not considered, as PCR is expected to
select error-free priming regions22. Mean deletion rates over all positions (dashed

line) and the indexing region (shaded in gray), where the sequences have very low
diversity, are also shown. b Coverage distributions normalized to the mean
sequencing coverage (given as n) for oligonucleotide pools with (bottom) and
without (top) constraints on GC content from electrochemical (dark purple) and
material deposition-based synthesis (light purple) after 15 PCR cycles. All pools fit a
lognormal distribution (solid line), but the material deposition-based pools show
more even oligonucleotide coverage for both pool types. Standard deviations of
the fitted lognormal distributions, σ, are shown in the plot. Source data are pro-
vided as a Source Data file.
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stochastic effects. The data by Koch et al.23 is an extreme example of
this: after amplification, the DNA was incorporated into silica nano-
particles embedded in polymer involving many handling and dilution
steps. In contrast, all experiments of the present studywere conducted
at high physical coverages (>1000) with sufficient sequencing cover-
age (>50) to circumvent such stochastic effects. However, as these
confounding factors increase the experimentally observed bias, the
empirical distributions of the relative amplification efficiencies shown
in Fig. 3d can be interpreted as an upper bound on the bias caused
directly by PCR amplification in typical DNA data storage experiments.

Due to the exponential nature of PCR, the normally distributed
amplification efficiency leads to a progressively more positively
skewed coverage distribution with a long tail (see Fig. 3d). This initially
small effect thus gains relevance as many amplifications are per-
formed, in-line with observations in literature28,35. Considering that
data storage workflows routinely use >60 PCR cycles and pools might
already be highly skewed from synthesis (see Fig. 2b), PCR con-
siderably biases the oligonucleotide pool. Thus, the efficiency bias
presents a constraint on the number of re-amplifications that a DNA
data storage system may go through before the uneven coverage
distribution either prevents successful decodingor necessitates higher
physical coverage and sequencing depth4,21.

Quantifying errors during storage
The detrimental impact of long-term storage on DNA data storage
systems is well established, and usually quantified by the loss of
amplifiable DNA over time5,36,37. Here, in addition to quantifying this
loss of DNA, we also tracked the evolution of errors and biases during
rapid aging by sequencing theoligonucleotide pools at various storage
durations, up to the equivalent of >1000 years at 10 °C (7 days at 70 °C,
see Fig. 4a). We observed a linear increase in C→T and G→A transitions
as the major type of substitution errors, with ~1.64 × 10−4 nt−1 per half
time of decay overall (see Fig. 4b, c). In addition, a small number of
deletions were introduced. These were negligible compared to the
deletions present due to the synthesis (see Supplementary Fig. 14).
Overall, the measured error rates show that storage-induced decay is
not a significant error source in the context of DNA data storage.
Comparing to other error sources, storage for eight half-lives—
equivalent to the loss of 99.6% of DNA—introduces less errors than just
15 cycles of standard, Taq-based PCR. Therefore, the main effect of
storage-induced decay is limited to the loss of sequences, and we
focussed on characterizing any possible bias in this loss.

To assess the overall bias in decay, we compared the coverage
distributions between aged samples and an equally diluted and
amplified, but unaged, reference. We observed no difference in the

Fig. 3 | Errors and biases from PCR. a Experimental workflow for estimating the
error rates and biases during PCR.b, c Substitutions introduced as a function of the
number of additional PCR cycles for the oligonucleotide pools from material
deposition-based synthesis, using the substitution rate at 15 cycles as the baseline.
The regression slope (solid lines) yields an overall error rate of 1.09 × 10−4 per
nucleotide per cycle (nt−1 cy−1) and shows A→G/T→C transitions account for 61% of
substitutions, followed by C→T/G→A transitions (20%) and A→T/T→A transversions
(13%). d The normalized coverage distributions (left) of sequencing pools are
shown before (dark orange) and after repeated amplification (light orange). Any
difference between the pre-PCR and post-PCR coverage distributions can be
attributed to PCR bias and/or stochastic effects. Relating the change in coverage

pre- and post-PCR to the number of PCR cycles on the sequence level yields an
estimate of the efficiency relative to the pool (right). The broadness of the resulting
efficiency distribution, characterized by the standard deviation of the fitted normal
distributions given in the plots (solid lines), can be interpreted as an upper bound
on the overall PCR bias. Comparison shown of efficiency distributions between our
experiments, the deep amplification performed by Erlich et al.6, the bias experi-
ment by Chen et al.21, and the bunny experiments by Koch et al.23. Individual
sequences with <10 reads in the sequencing data were removed from this analysis,
due to the large uncertainty associated with sampling at low coverage. Source data
are provided as a Source Data file.
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coverage of aged samples compared to unaged, but diluted samples
(see Fig. 4d),meaning decay did not introduce considerable additional
bias over random sampling. As such, the considerable difference in
coverage bias between the two different synthesis processes remains
dominant, as observable in Fig. 2b and discussed in the synthesis
section above. Thus, the impact of decay on coverage distribution is
well approximated by random sampling and any potential bias is likely
secondary to the stochastic effects from sampling at low physical
coverage. As aging neither introduced errors at relevant rates, nor
significantly affected the coverage distribution in our experiments,
recovered oligonucleotides (i.e., those without strand breaks induced
by β-elimination) remained virtually unaffected by decay. This implies
that long-term storage does not negatively impact the error resilience
or fidelity, as long as sequence dropout is limited by sufficient cover-
age or enzymatic repair36.

Inhomogeneities in sequencing errors
We further investigated the errors introduced during Illumina
sequencing by characterizing the error profile of reads mapped to
PhiX, a common spike-in used as sequencing control and for color
balancing. For our analysis, we consider PhiX—a PCR-free, adapter-
ligated sample derived fromgenomicDNA38—essentially error-free and
attribute all errors in its sequencing data to the sequencer. Using the
eight PhiX datasets generated during sequencing on the Illumina iSeq

100 sequencer, we found substitutions are dominating, at
1.8 ± 0.8 × 10−3 nt−1 on average, versus <0.1 × 10−3 nt−1 for both deletions
and insertions. This is in-line with other reports for other SBS-based
sequencers19,20,39 and the analysis of non-consensus errors between
paired reads in our datasets (see Supplementary Fig. 15). The sub-
stitution rates in our experiments differed substantially between for-
ward (1.1 ± 0.3 × 10−3 nt−1) and reverse reads (2.5 ± 0.6 × 10−3 nt−1), and
were strongly cycle-dependent (see Fig. 5a). They declined rapidly
towards a minimum around cycle 20, which coincides well with the
calculations for phasing/pre-phasing and color-matrix corrections
occurring at cycle 2540. After cycle 25, the number of substitutions
slowly increased each cycle (see Fig. 5a).

The substitutions introduced during sequencing showed a clear
bias towards base transitions (e.g., A↔G and C↔T) over transversions
(all other combinations, see Fig. 5b), which differed slightly between
forward and reverse reads. Moreover, the increase in substitution rate
after cycle 20 appears to be primarily caused by A→T and T→G sub-
stitutions, while all other substitution patterns remain nearly constant
throughout the duration of the sequencing run (see Supplementary
Fig. 16). The comparison to the base-calling method used in the iSeq’s
one-dye sequencing (see Fig. 5b, inset) shows that base transitions
correspond to false positive and false negative calls in the primary
image, accounting for 54%of all sequencing errors on average. Amajor
exception is the A→T transition, responsible for an additional 17 ± 5%

Fig. 4 | Errors and biases during storage. a Experimental workflow for estimating
the error rates and biases during aging. b, c Substitutions introduced as a function
of the total storage duration in half-lives, using the error rates of the unaged
reference as baseline. Substitutions increase at a rate of 1.64 × 10−4 per nucleotide
per half-live (nt−1 τ−1) based on the regression slope (solid line). Substitutions are
mainly C→T/G→A transitions (dark green, 77%) with minor C→A/G→T and C→G/G→C
transversions (7% and 6%, respectively). d Kernel density estimate plot of the oli-
gonucleotide coverage for the GC-unconstrained samples which were only diluted

(reference, gray), and samples that underwent decay for 2–7 days (green), for both
electrochemical (left) and material deposition-based synthesis (right). All samples
werediluted to the sameconcentrationprior to amplification. The gray distribution
shows the effect of subsampling via dilution, whereas the other distributions show
the combined effects of dilution and decay. The standard deviations of the log-
normalized distributions, σ, and the mean sequencing coverage, n, are given in the
plot. Source data are provided as a Source Data file.
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and 37 ± 5% of substitutions in the forward and reverse reads respec-
tively, which corresponds to a false positive in the secondary image.
Thus, unlike for sequencers with other dye chemistries20, substitution
bias on the iSeq 100 appears to be related to its base-calling matrix.
Underlining this, substitutions involving miscalling intensities in both
images (“cross-over” in Fig. 5b)were rare and accounted for only 15%of
substitution errors. Additionally, the analysis of non-consensus errors
between paired reads in our datasets (see Supplementary Fig. 15)
suggests that polymerase errors during clonal amplification (i.e., the
clustering step in SBS) also skew the substitution bias.

A digital twin for DNA data storage
Towards our goal of providing an accurate virtual representation of
DNA data storage experiments, we implemented the error sources and
biases characterized above into a digital twin of the DNA data storage
process (see Fig. 6a). The digital twin’s underlying model simulates all
process steps (e.g., synthesis, PCR) by stochastically introducing
mutations into sequences at rates estimated from user-supplied
experimental parameters. Specifically, we represent an oligonucleo-
tide pool as a collection of sequences with associated abundances and
use many oligonucleotides for each sequence to accurately represent
the experimentally observed diversity of error patterns. Importantly,
the biases introduced into the coverage distributions by synthesis,
amplification, and dilution are also modeled (e.g., by skewed initial
distributions as in Fig. 2b, or non-homogeneous amplification as in
Fig. 3d), so that their negative effects on coverage homogeneity and
sequence dropout are included. Additional information and details on
the implementation of each process step are given in theMethods and
Supplementary Note 2.

To assess ourmodel’s accuracy and versatility in predicting errors
and biases from an experimental workflow, we reproduced the
experiments presented in this study (as internal validation) and

modeled the generational experiments by Koch et al.23 (as external
validation). These generational experiments, starting from an elec-
trochemically synthesized oligonucleotide pool, are ideal for model
validation: they consist of multiple dilutions and error-prone re-
amplifications—exceeding 100 PCR cycles in total—and include seven
sequencing datasets for comparison. We observed good agreement in
the overall error rates and the coverage bias for both internal
(R2

error = 0:98, R2
bias = 0:74, see Supplementary Note 5) and external

validation (R2
error = 0:87, R

2
bias = 0:64, see Fig. 6b and Supplementary

Note 5). Notably, the experimental deletion rates in the generational
experiments by Koch et al.23 exceeded the prediction of ourmodel by
about 20%, mostly due to differences in the position-dependent
deletion rates during synthesis (see Supplementary Fig. 17). This
difference is likely caused by the implementation of process
improvements by the synthesis provider sometime between the
study by Koch et al. and this work. This highlights the possible rele-
vance of the digital twin for the investigation of process deviations.
Turning to coverage bias, we considered the rate of sequence
dropout—i.e., the ratio of original sequences which are no longer
present in the sequencingdata—as ourmetric, due to its relevance for
successful data recovery in a data storage context. We found that our
simulated sequencing data, downsampled to the original experi-
ment’s read counts, accurately reproduced the sequence dropout
observed over all seven generations (see Fig. 6c). Importantly, had
Koch et al.23 been able tomodel their workflow, theywould have been
able to increase storage capacity (by reducing redundancy) or lower
costs (by synthesizing fewer sequences) by more than threefold (the
authors included redundancy for a sequence dropout of 80%, but a
maximum of 30% was required). Alternatively, using the model to
forecast future generations of Koch’s experiment, at least four more
generations would have been feasible at their redundancy level. This
analysis highlights the value of the digital twin for the rational design

Fig. 5 | Errors and biases from Illumina sequencing. a Substitution rate during
sequencing on the Illumina iSeq 100, estimated from the PhiX reads obtained
during all eight sequencing runs. Points show the individual substitution rate of the
forward (dark blue) and reverse reads (light blue) at every position, with their
respective moving median (10 base window, black lines). Only the positions until
cycle 112 are shown, as low base diversity in the priming regions of the co-
sequenced oligonucleotides drastically skews base-calling accuracy. b Base bias of
substitutions occurring during sequencing in the forward (dark blue) and reverse

reads (light blue), shown as fractions of the total substitutions. The one-dye
sequencing system used by the iSeq 100 sequencer (inset) uses the fluorescence
intensity in two separate images for base calling40. Depending on which fluores-
cence signal is miscalled, false positive (solid), false negative (dashed), or cross-
over (dotted) errors occur and introduce a substitution into the sequencing data.
Colored bars show the mean and error bars the standard deviation of the sample
(gray points, n=8 sequencing experiments), grouped by read direction during
sequencing. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41729-1

Nature Communications |         (2023) 14:6026 7



of redundancy: it enables cost-saving optimizations and facilitates
experimental planning.

Case study: optimal redundancy in extreme scenarios
To highlight the value of modeling each process step for the design of
redundancy in DNA data storage systems, we implemented a proto-
typical storage workflow in our model as a case study. To investigate
optimal physical and logical redundancy, our prototypical workflow
(see Fig. 6d)—involving post-synthesis amplification, dilution to a
specified physical coverage, storage for one half-live, re-amplification,
and sequencing—was further divided into two extreme cases. In our
worst-case scenario, an unconstrained, electrochemically synthesized
oligonucleotide pool was used (see Fig. 2b) together with a low-fidelity
polymerase forPCR.Due to thehighly skewedcoverage and large error
rate, this scenario is representative of studies in which high redun-
dancy is favored and storage density is not the main concern7,23,41. In
contrast, the best-case scenario utilized a narrowly distributed oligo-
nucleotide pool synthesized by a material deposition-based process,
and further used a high-fidelity polymerase for amplification. This is a

low-error, low-bias scenario like those used inmany studies on ECC6,10.
As expected, our model predicted that the physical redundancy used
during storage, i.e., the effectively achieved storage density, strongly
influences the sequence loss in both our scenarios (see Fig. 6e). The
less biased best-case scenario yielded near-complete recovery (98%) of
error-free sequences with only 10 copies per sequence during storage,
corresponding to a storage density close to the experimentally
demonstrated state-of-the-art (6.2× coverage, 15% redundancy)21,22. In
contrast, the worst-case scenario lost 24% of all sequences at the same
physical redundancy, highlighting the importance of coverage
homogeneity for high-density DNA data storage.

Logical redundancy implemented into an ECC provides two main
benefits: first, it tolerates the loss of a certain number of sequences (via
redundant sequences); second, it enables the use and decoding of
erroneous reads if no error-free reads of a sequence are available (via
within-sequence redundancy). The latter benefit effectively yields
either a gain in storage density or a gain in sequence coverage, as
shown when moving from the curve considering only error-free reads
(naive encoding, no within-sequence redundancy) to all reads (ideal

Fig. 6 | Simulation of theDNAdata storage channel. aOverview of the developed
model for the DNA data storage channel. Experimental parameters for the synth-
esis, amplification, decay, and sequencing are used to replicate errors and biases in
an in-silico representation of an oligonucleotide pool. The order and parameters of
all process steps can be customized to describe user-defined workflows.
b, c Verification of simulation results using the generational experiments reported
by Koch et al.23. The mean error rates (b) and sequence loss (c) of the data storage
workflow, as experimentally observed (Exp., light gray) and as replicated in our
model (Sim., dark gray), is shown for the master pool (denoted M), the parent (P),
and all progeny generations (F1 through F5). The model was also used to predict
four further generations (F6 through F9). Datapoints are slightly offset horizontally

to prevent occlusion. Sequencing data from the model was downsampled to the
read count in the experimental sequencing data. d, e Simulation of the effects of
physical coverage on sequence dropout in a best- and worst-case scenario. By
implementing a typical data storageworkflow (d) using high- or low-fidelity process
steps in our model, the sequence dropout (e) as a function of physical redundancy
is determined. The loss of sequences considering both all sequencing reads (solid
line) and only error-free reads (dashed line) is reported, with the shaded area in-
between denoting the improvement possible by error correction coding. For
comparison, the state-of-the-art storage density and redundancy by Organick
et al.22 is shown (black diamond, 6.2× coverage at 15% data redundancy). Source
data are provided as a Source Data file.
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ECC, capable of decoding every erroneous read) in Fig. 6e. To take full
advantage of this gain in density or coverage, an ECCwould have to be
able to correct up to two deletions and two substitutions per sequence
in our low-fidelity scenario. However, our model shows that even just
the capability to correct up to two substitutions would approximately
double the number of eligible reads, as deletions are clustered in only
48% of reads (see Fig. 1d). In contrast, the implementation of such
within-sequence error correction would prove wasteful in our high-
fidelity scenario. There, considering only error-free reads does not
significantly deteriorate sequence coverage, as 81% of reads are error-
free on average anyway. Consequently, a naive encoding without
within-sequence redundancy will achieve a higher storage density in
the best-case scenario than any other ECC in the worst-case scenario,
independently of the ECC’s capabilities.

Discussion
The lackof comprehensivedata on error rates, errorhomogeneity, and
coverage biases throughout the DNA data storage workflow has
restricted users from rationally selecting redundancy levels and
understanding the impact of workflow choices. In this work, we have
comprehensively quantified errors and biases in DNA storage systems
and developed a digital twin for modeling state-of-the-art data storage
workflows. Systematic sequencing of oligonucleotide pools during
processing showed that synthesis and standard PCR account for most
deletions and substitutions, which outnumber insertions by a factor of
>10. Deletions were almost exclusively introduced by synthesis and
heterogeneously distributed in clusters. All other processing steps—
amplification via PCR, aging, and sequencing by SBS—added sub-
stitutions at varying rates, which were homogeneously distributed but
biased towards certain substitution patterns. Remarkably, the state-of-
the-art data storage workflow has become close to error-free (up to
87%of forward readswithout error, 96%deletion-free), as shown inour
idealized high-fidelity storage scenario (see Fig. 6d). This implies some
of the ongoing optimizationof ECCs towards increased error resilience
to be better suited for applications in which low-fidelity synthesis or
sequencing processes require an ECC capable of utilizing highly
erroneous reads41,42. In contrast, the commonly used workflow for
high-density DNA data storage—based on synthesis via material
deposition and high-fidelity PCR—does not appear to benefit from
such ECC optimizations, as storage density is currently limited by
coverage biases.

Synthesis and amplification also emerged as the major con-
tributors to skewed coverage distributions in our systematic analysis
of coverage bias in synthetic oligonucleotide pools. While unopti-
mized synthesis processes and the stochasticity of amplification are
known to affect the coverage distribution21, we identified both a
striking difference in coverage uniformity between two different
synthesis processes and an apparent bias in the amplification effi-
ciency during PCR. The consideration of these coverage biases was
shown tobecrucial for understanding sequencedropout, a vitalmetric
for error-free readout due its severe effect compared to single muta-
tions—necessitating redundant sequences rather than just redundant
symbols.

Our experimentally verified digital twin showcased the value of a
customizable digital representation of the DNA data storage process
for experimental planning and the ECC design. The digital twin facili-
tated the design of redundancy both in a literature scenario and a case
study, which was shown to translate into tangible cost savings. Fur-
thermore, it highlighted that sequence dropout caused by coverage
bias, rather than erroneous sequences caused by mutations, is cur-
rently the limiting factor in designing DNA data storage systems with
increasingly higher storage densities. To this end, novel approaches to
remedy sequence dropout—such as ECCs capable of utilizing partial
sequences43 ormethods for enzymatic DNA repair36—will be invaluable
to facilitate long-term storage at these high storage densities.

Key limitations of our study include the consideration of only two
commercial providers for synthesis and only Illumina’s SBS technology
for sequencing. While these technologies are currently the most rele-
vant and widely used1,7, other emerging technologies—such as
photoarray-based or enzymatic synthesis, as well as nanopore
sequencing—are expected to soon become relevant cost-effective
alternatives despite their lower fidelity3,41,42. For this reason, our digital
twin is modular and thus easily expandable, enabling the imple-
mentation of new processes, irrespective of their error rates and bia-
ses. Importantly, it also accommodates non-ideal error patterns, such
as the burst deletions thatwere observed during synthesis (see Fig. 1b)
and may arise in other processes, such as nanopore sequencing44.
Furthermore, the broad scope of our analysis precluded a detailed
investigation into individual error sources, such as the effects of dif-
ferent polymerases or correlations with sequence properties (e.g., GC
content, homopolymers). Despite these limitations, we hope both our
error characterization and our digital twin will help standardize the
comparison and accelerate the development of ECCs, as well as assist
users in designing redundancy and experimental workflows. For this,
we provide a web platform to simulate both standardized and custo-
mized storage scenarios at dt4dds.ethz.ch, as well as source code for
fully custom workflows at github.com/fml-ethz/dt4dds45. We also
invite others to extend our model with more data, especially for the
emerging, low-fidelity technologies previously mentioned.

Methods
Reagents
Electrochemically synthesized oligonucleotide pools were ordered
from CustomArray Inc. (Redmond, WA, United States) and Genscript
Biotech Corp. (Piscataway, NJ, United States) and used as delivered.
Material deposition-based oligonucleotide pools were synthesized by
Twist Bioscience (San Francisco, CA, United States) and resuspended
to 10 ng µL−1 in ultrapure water. Primers were purchased from Micro-
synth AG (Balgach, Switzerland). All pools and primers were further
diluted as required with ultrapure water. Additional details about the
design of oligonucleotide pools and primers are given in Supplemen-
tary Tables 1 and 2. KAPA SYBR FAST polymerase master mix was
purchased from Sigma-Aldrich (St. Louis, MI, United States).

PCR and sequencing preparation
Unless otherwise noted, 5 µL of an oligonucleotide pool and 1 µL each
of the forward and reverse primers (0 F/0 R, 10 μM) were added to
10 µL of 2× KAPA SYBR FAST master mix. Ultrapure water was added
up to a final volume of 20 µL. Amplification by PCR used an initial
denaturation at 95 °C for 3min, followed by cycles at 95 °C for 15 s,
54 °C for 30 s, and 72 °C for 30 s. Cycling was stopped as soon as the
fluorescence intensity reached its plateau to prevent resource
exhaustion, except for quantitative PCR (calibration curves are given
in Supplementary Fig. 11). For sequencing preparation, indexed Illu-
mina adapters were added by PCR with overhang primers (2FUF/
2RIF, 7-9 cycles, see Supplementary Table 2). The PCR product from
each well was then run on an agarose gel (E-Gel EX Agarose Gels 2%,
Invitrogen) with a 50 bp ladder (Invitrogen), and the appropriate
band was purified (ZymoClean Gel DNA Recovery Kit, ZymoR-
esearch) before quantification by fluorescence (Qubit dsDNA HS Kit,
Invitrogen)7.

Sequencing
For each sequencing run, 5–6 sampleswere individually diluted to 1 nM
and pooled. The pooled samplewas further diluted to 50pM. Then, 2%
PhiX (PhiX Control v3, Illumina) was spiked into the sample and 20 µL
were added to an Illumina iSeq 100 i1 Reagent v2 cartridge. 150 nt
paired-end sequencing with the Illumina iSeq 100 sequencer yielded
between 4 and 5 million reads, leading to an average sequencing
coverage of 90 paired reads per sequence.
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Protocol for amplification experiments
For the amplification experiments, oligonucleotide pools were
sequentially amplified and diluted multiple times under the same
conditions to yield samples at six different PCR cycle counts. For this,
the pools synthesized by material deposition (500× dilution) were
amplified in twowells each, onewell containing standard primers (0 F/
0R) and one containing the indexed overhang primers with sequen-
cing adapters (2FUF/2RIF). After 15 cycles, the PCR product with
sequencing adapterswas stored at−20 °C. 1 µLof the PCRproductwith
the standard primers was diluted by 3800×, and 5 µL were used for the
next round of amplification (for a total dilution of 15,200×, equivalent
to 1.915, the expected amplification factor after 15 PCR cycles with 90%
efficiency). If the fluorescence observed in the last cycle of an ampli-
fication round was approaching the plateau value, the dilution for the
next round was increased two-fold, i.e., to 7600×. This sequential
procedure was performed for a total of six rounds, yielding samples
with 15 to 90 PCR cycles. The PCR products with sequencing adapters
were then prepared for sequencing (see above) without the additional
indexing step. Theworkflow is shown in Supplementary Figs. 18 and 19.

The procedure and results for the amplification experiments of
the electrochemically synthesized pools (not shown in Fig. 3) are given
in SupplementaryNote 4. Theworkflow is illustrated in Supplementary
Figs. 20 and 21.

Protocol for storage experiments
Both the electrochemically synthesized pools (50× dilution) and the
pools synthesized by material deposition (1000× dilution) were first
amplified for 20–21 cycles, using 96 wells each and 1 µL sample per
well. Then, all wells from each pool were pooled and purified (DNA
Clean & Concentrator-5, ZymoResearch) to yield stock solutions with
30–50ng µL−1 dsDNA in ultrapure water. Of these, 30 ng each were
added tomicrocentrifuge tubes and dried in vacuo for 30min at 45 °C.
After drying, one set of tubes was immediately stored at −20 °C to
represent the unaged reference sample. For accelerated aging, all
other samples were stored in a desiccator over saturated sodium
bromide in water (>99%, Roth AG) at 70 °C and 50% relative humidity5.
Samples were moved to −20 °C storage after around two, four, and
seven days, with each time point at least in triplicate. All samples were
resuspended in 200 µL ultrapurewater and quantified by qPCR to yield
a decay curve, as described below. Calibration curves for this qPCR
analysis were previously established by serial dilution of the stock
solutions and are shown in SupplementaryFig. 11with their parameters
given in Supplementary Table 3. For the decay curve, the concentra-
tion of all samples was normalized to the mean concentration of the
unaged reference sample, and then fitted to a first-order decay model
according to Eq. 2.

c tð Þ
c 0ð Þ = e

�kt , where k =
ln2
τ

: ð2Þ

The decay curves and their parameters are given in Supplemen-
tary Fig. 11 and Supplementary Table 4, respectively.

For sequencing, all samples were diluted to the concentration of
the sample at 7 days to circumvent any dilution effects, amplified for
16-18 cycles, and then underwent the standard sequencing preparation
(see above). The workflow is shown in Supplementary Figs. 22–25. To
normalize the extent of decay across the four oligonucleotide pools
for the estimation of error rates during aging, the number of half-lives,
determined as the storage duration relative to the half-live, was used.
The conversion for all time points is given in Supplementary Table 5.

Read mapping and error analysis
To estimate error rates from sequencing reads, up to 1 million paired-
end sequencing reads were first mapped to their respective reference
sequence using a custom Python script, and then filtered to exclude

reads with <85% similarity to their reference. This filtering threshold
was chosen based on similarity comparisons between experimental
and random datasets (see Supplementary Fig. 1). From the resulting
mappings, error rates as a function of position, involved bases, read
direction, and error length were derived and used for further data
analysis. Coverage distributions were derived from the alignment
counts given by sequence alignment with BBMap46 after adapter
trimming and normalization to the mean oligonucleotide coverage.
Lognormal distributions were fitted to the normalized coverage dis-
tributions to help with visualization, and the corresponding standard
deviation of the lognormal distribution is shown to quantify the cov-
erage bias. Full details are given in Supplementary Note 2 and the
complete source code is publicly available in the GitHub repository
(see Code Availability statement).

ANOVA and error independence
Three-way ANOVA (n=80) with the factors synthesis provider,
number of PCR cycles, and days of storage was performed using type
II sum of squares, heteroskedasticity-consistent standard errors
(HC3), and without interactions. The analysis was performed for each
error type independently and according to the following linear
model in Equation 3.

Error rate∼C synthesisð Þ+PCRcycles +Daysof storage ð3Þ

For the analysis of error independence, theoretical probabilitymass
functions under the assumption of error independence were indepen-
dently calculated for eachpool andexperiment. For theprobabilitymass
function of consecutive errors, a geometric distribution parameterized
by themeanerror ratewasused, i.e.,n∼Geom ð1�meanerror rateÞ. For
the probability mass function of errors per read, a binomial distribution
parameterized by the length of the sequence and the mean error rate
was used, i.e., n∼Binom ðlength,mean error rateÞ.

Modeling of the DNA data storage process
The model used for the simulation of the DNA data storage process,
implemented in Python, consists of a hash map representing a pool of
oligonucleotides, error generators introducing mutations at specified
rates and with certain biases, and classes encapsulating the error
generators into the individual process steps (i.e., synthesis, PCR, sto-
rage, and sequencing). Starting from a set of reference sequences and
an experimental workflow provided by the user, the model simulates
errors and biases and ultimately yields artificial sequencing data in the
FASTQ format for further use. The individual error sources and cov-
erage biases of each process step are reproduced based on user-
defined experimental parameters (e.g., synthesis provider, choice of
polymerase, storage duration) and the error rates and biases quanti-
fied in this study. Coverage bias is implemented both during synthesis
—via skewed initial count distributions as in Fig. 2d—and during
amplification, using normally distributed relative amplification effi-
ciencies as in Fig. 3d. Additionally, amplification is implemented as a
branching binomial process, based on oligonucleotide count and the
sequence’s amplification efficiency, to account for the stochastic
effects observed at low coverage21,27. Dilution, sequencing, and decay
aremodeled as random sampling, in-line with the findings in Fig. 4 and
the literature4,21. Full details are given in SupplementaryNote 2 and the
complete source code is publicly available in the GitHub repository
(see Code Availability statement).

Internal and external validation
For the internal validation, all experimental conditions from this study
were recreated with our tool and the simulated sequencing data
underwent identical post-processing and error analysis. Only the
position-, length-, and base-dependent error rates, process-specific
error patterns, and coverage biases characterized in this study were
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utilized. Due to small differences in the positional deletion rates
between the two electrochemically synthesized pools, pool-specific
deletion rates were used (see Supplementary Note 3) rather than the
overall deletion rate presented in Fig. 2a.

For the external validation, the workflow for the generational
experiments by Koch et al.23 was reproduced with our tool to the
extent possible given the information provided in their study. Elec-
trochemical synthesis was assumed with positional error rates as in
Fig. 2a, and a coverage bias of σ =0:94 (mean of GC-constrained and
unconstrained pools, see Fig. 2b) due to their use of a partially GC-
constraining ECC. Amplification by PCR assumed a Taq-based poly-
merase with an amplification bias as estimated for the Koch et al.
experiments in Fig. 3d (i.e., σ =0:012). Missing information about
dilutionswere estimated fromother protocols7 and the number of PCR
cycles used. For the analysis in Fig. 6c, only error-free reads were used
—as in the original study—and the simulated sequencing data was
downsampled to the same read count as the experimental data to
ensure comparability. For the generations F6-F9, the average read
count of generations M-F5 was assumed.

More details on the parameters and results for both internal and
external validation are presented in SupplementaryNote 5. The scripts
for both internal and external validation are also provided with the
code in the repository for reproducibility.

Case study on storage density
The best- and worst-case scenarios implemented in our tool were
both based on the error characterization in this study and common
experimental workflows for high-density DNA data storage6,8,11,22. The
scenarios followed an identical workflow (see Fig. 6d and below)
consisting of synthesis, amplification, storage, re-amplification, and
sequencing. Specifically, 12000 sequences were synthesized at a
mean coverage of 200, underwent 20 PCR cycles with an amplifica-
tion bias of σ =0:0051 (see Fig. 3c), were stored for one half-life at
mean coverages ranging from0.5-50 oligonucleotides per sequence,
amplified for another 30 cycles, and finally sequenced with the iSeq
100. In the best-case scenario, the coverage bias and error rate of the
material deposition-based synthesis (see Fig. 2), and the polymerase
fidelity of Q5 High-Fidelity DNA Polymerase (i.e., 280)18 were used. In
the worst-case scenario, the coverage bias and error rate of elec-
trochemical synthesis, and the fidelity of a Taq-based polymerase
(i.e., 1) were used instead. For the analysis in Fig. 6e, either all or only
error-free reads (see Supplementary Note 1) were used to determine
the sequencedropout in both cases, equivalent to an ideal ECC, and a
naive ECC, respectively. The script for this case study is provided
with the code in the repository for full documentation of the
parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental and simulated sequencing data generated in this
study have been deposited in the European Nucleotide Archive under
accession code PRJEB65931. Sequencing data from the literature used
for analysis is available from the studies by Koch et al.23 (PRJEB35217),
Erlich et al.6 (PRJEB19305 and PRJEB19307), and Chen et al.21 (github.-
com/uwmisl/storage-biasing-ncomms20). Source data are provided
with this paper.

Code availability
The code for error analysis and simulation of the DNA data storage
process is deposited in the public GitHub repository at github.com/
fml-ethz/dt4dds (https://doi.org/10.5281/zenodo.8329043)45. The
code for data analysis, in the form of Jupyter Notebooks and data files,

is deposited in the public GitHub repository at github.com/fml-ethz/
dt4dds_notebooks (https://doi.org/10.5281/zenodo.8329037)47.
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