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A phylogenetically-conserved axis of
thalamocortical connectivity in the
human brain

Stuart Oldham 1,2 & Gareth Ball1,3

The thalamus enables key sensory, motor, emotive, and cognitive processes
via connections to the cortex. These projection patterns are traditionally
considered to originate from discrete thalamic nuclei, however recent work
showing gradients of molecular and connectivity features in the thalamus
suggests the organisation of thalamocortical connections occurs along a
continuous dimension. By performing a joint decomposition of densely sam-
pled gene expression and non-invasive diffusion tractography in the adult
human thalamus, we define a principal axis of genetic and connectomic var-
iation along a medial-lateral thalamic gradient. Projections along this axis
correspond to an anterior-posterior cortical pattern and are aligned with
electrophysiological properties of the cortex. The medial-lateral axis demon-
strates phylogenetic conservation, reflects transitions in neuronal subtypes,
and shows associations with neurodevelopment and common brain disorders.
This study provides evidence for a supra-nuclear axis of thalamocortical
organisation characterised by a graded transition in molecular properties and
anatomical connectivity.

The thalamus is central to the structure and function of the mamma-
lian brain. Enabled by widespread connections to the cortex, basal
ganglia and the peripheral nervous system, the thalamus is engaged in
a range of functions from sensory processing and motor control,
through to attention and memory1–5. Traditionally, this breadth of
functionality has been assigned to the diverse nuclear structure of the
thalamus, with around 50–60 distinct nuclei gathered into 4–6 func-
tional groups anddefinedon thebasis of cytoarchitectureandpatterns
of anatomical connections6–8.

While efforts to understand the organisation and function of the
thalamus have often focused on the properties of its nuclei, a con-
sensus on a precise nomenclature and nuclear grouping remain
elusive9. Further, while the specificity of projections from certain
thalamic nuclei to distinct cortical targets is clearly evident, not all
thalamic connections are circumscribed by nuclear boundaries10,11.
Neurons within thalamic nuclei may project to multiple cortical

regions and their patterning of cortical projections can overlap
significantly9,10,12. In contrast to nuclear divisions, recent evidence from
single-cell RNA sequencing (RNA-seq) studies has refocused attention
on the significant cellular diversity present within the thalamus as
a potential substrate for functional diversity13,14. While distinct sub-
classes of neurons in the thalamus have long been recognised10,15,16, the
degree of cellular heterogeneity recently revealed through genetic
profiling of both cortical and subcortical structures is a striking and
potentially defining feature of mammalian brain organisation17,18.

At the cellular level, neuronal subtypes can form subunits sup-
porting a diversity of functions, the spatial arrangement of which are
dictated by organisational molecular gradients14,19–21. In the thalamus,
as with other cortical and subcortical structures, early circuit forma-
tion is scaffolded by the differential areal patterning ofmorphogenetic
gradients during development22–24. These early developmental
sequences are reflected by concerted variation of structural and
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functional properties along spatial axes in the adult cortex and
subcortex25–32 Indeed, studies have found evidence for gene expres-
sion gradients and variations in cytoarchitecture both across and
within thalamic nuclei13,14,20,21,33.

In the mouse, Phillips et al. observed that thalamic nuclei are
arranged along an axis of gene expression that runs in a medial to
lateral direction14. The position of neuronal subtypes along this axis
was associated with continuous variations in gene expression accom-
panied by differences in cortical projections, axonal morphology, and
laminar targets, as well as electrophysiological properties. This work
highlights howdelineation of spatial gradients can give key insight into
underlying principles of thalamic organisation and function13,14,20,22.
Preliminary evidence suggests the samemedial-lateral axis of thalamic
organisation extends to the human thalamus14, however it has not been
extensively characterised.

Non-invasive neuroimaging is a key tool for studying thalamocor-
tical organisation in humans9,34–37. While MRI can be used to target
specific subcortical nuclei with a high degree of accuracy38,39, attempts
to resolve the nuclear structure of the thalamus based on patterns of
cortical connectivity or correlated BOLD activation often fail to align to
previously defined cytoarchitectural boundaries40–42. In contrast to
delineating discrete brain regions, recent efforts in neuroimaging have
focused on the definition of continuous axes of spatial variation based
on measures of brain microstructure, anatomy, and/or function25–27.
This approach has proven insightful, identifying continuous and over-
lapping patterns of anatomical variation that converge with patterns of
gene expression and ontogenetic timing in the developing brain43–45;
align with hierarchies of cortical function29,46, and are disrupted in
neurodevelopmental disorders and psychopathology29,30,47,48. As such,
smooth transitions in anatomy, cytoarchitecture and function sup-
ported by spatially-varying gradients of gene expression may be con-
sidered a hallmark organisational motif of themammalian brain25,28,32,49.
Indeed, preliminary evidence suggests that thalamic functional and
structural connectivity patterns are organised along a medial-lateral
gradient35,37.

In this study, we present evidence for a supra-nuclear axis of
thalamocortical organisation characterised by a graded transition in
molecular properties and anatomical connectivity in humans. By per-
forming a joint decomposition of densely sampled gene expression
and non-invasive diffusion tractography in the adult thalamus, we
define a principal axis of genetic variation along the medial-lateral
thalamic axis that corresponds to anterior-posterior patterns of tha-
lamocortical connectivity and electrophysiological properties of the
cortex. Using a large, single-cell RNA-seq survey of the brain, we
demonstrate how continuous transitions in neuronal subtypes along
the medial-lateral axis reflect the developmental origins of excitatory
projection and inhibitory interneurons in the thalamus.We also report
associations between axis-enriched thalamic genes, and genes asso-
ciated with neurodevelopment and common brain disorders, and test
the phylogenetic conservation of the principal axis through compar-
ison to patterns of neuronal tracing in the adult mouse. Taken toge-
ther, this study highlights an organisational axis in the thalamus, that
exists across classical nuclear boundaries, is conserved across species
and associated with distinct anatomical, electrophysiological, mole-
cular, and developmental properties.

Results
A principal axis of thalamocortical connectivity is present in
humans and conserved across species
We hypothesised that a primary organisational axis of thalamocortical
connectivity exists in the human brain that spans specific nuclear
boundaries and is demarcated by patterns of thalamic gene expres-
sion. We performed an unsupervised joint decomposition of post-
mortem gene expression50 (n = 3702 samples across six donor brains51;
2228 genes enriched in brain tissue52,53) and non-invasive estimates of

cortical connectivity to 250 cortical regions (averaged over n = 74
healthy adults aged 22 to 36 years) from 921 thalamic seed points
which we had determined to be consistently aligned across individual
and/or had transcriptomic information available (see Methods; Fig. 1;
Supplementary Data 1). This procedure resulted in a set of overlapping
yet orthogonal components in the thalamus that sum together to
reconstruct the full data matrix. Each component is represented by a
set of PC scores, one per thalamic seed, defining the dominant axes of
variation in both gene expression and cortical connectivity across the
thalamus and a set of PC loadings that capture how strongly connec-
tions to particular cortical regions and expression of particular genes
contribute to the component (Supplementary Data 1).

The principal component (PC1) represents the primary source of
variation in gene expression and thalamocortical connectivity across
thalamic seeds, accounting for 30.3% of variance in total (Supple-
mentary Data 2). The spatial projection of PC1 scores varied primarily
along the medial-lateral axis of the brain (Fig. 2a) with the PC1 score of
each thalamic seed encoding position along the x-axis ofMNI standard
space (Pearson’s rð919Þ=0:83,p= 2:83× 10�239, confidence interval
(CI) = ½0:81,0:85�, two-tailed) more closely than the other Cartesian
axes (anterior-posterior: Pearson’s rð919Þ=0:46,p=2:41 × 10�45, CI =
½0:41,0:51�, two-tailed; dorsal-ventral: Pearson’s r 919ð Þ= � 0:39,p=
2:37× 10�34, CI = ½�0:44,� 0:33�, two-tailed; Fig. S1). The second and
third principal components (PC2 and PC3) explained less variance
overall (22.4% and 13.5%) and were aligned along dorsal-ventral and
anterior-posterior axes, respectively (Fig. S1; Fig. S2a, b). We con-
ducted a series of sensitivity analyses and found that this character-
isation of the principal axis was largely unaffected when applying
alternative, nonlinear decomposition techniques26,54, using a different
subset of genes14, or performing the decomposition using only gene
expression or connectivity data (Figs. S3–S4). As only 921 of the
1348 seeds with transcriptomic information had been used (as the
remaining 427 were judged to be inconsistently aligned across indivi-
duals), this limited our spatial coverage of the thalamus, particularly in
anterior-medial and extreme lateral areas (Fig. S5). To check if this
influenced our results, we also performed the decomposition on the
full set of possible seeds which increased coverage of lateral areas.
Results using these 1348 seeds were quantitatively similar to the main
findings (Fig. S6). To further check our result, we performed boot-
strapping across individuals, as well as leave-one-out cross validation
across seeds, which showed our result was highly stable (Figs. S7–S8).

Graded variation in patterns of connectivity and gene expression
along the medial-lateral thalamic axis is consistent with previous
findings in the mouse14. To replicate this finding more directly, we
repeated our analysis using the same framework applied to anatomical
tract tracing data and transcriptomic data for 447 genes from the Allen
Mouse Brain Atlas (AMBA; Fig. 2b; Supplementary Data 3)55–58. This
revealed a primary component for the mouse data (mPC1) that
explained 30.6% of variance in total (mPC2: 13.50% explained, mPC3:
9.20% explained; Supplementary Data 4) and was preferentially
aligned along amedial-lateral orientation (Fig. S9a–c), as in the human.
mPC1 scores correlatedwith the x-coordinate in standard CCFv3 space
(Pearson’s rð33Þ=0:58; p=0:0003, CI= ½0:30,0:76�, two tailed),
though with some divergence in nuclei of the ventral thalamus (reti-
cular nucleus, ventral division of the lateral geniculate)7 and in the
medial geniculate body (Fig. S10). mPC2 also varied along a medial-
lateral thalamic axis but with a sizeable anterior-posterior orientation
as well, whilemPC3was primarily oriented dorsal-ventrally (Fig. S9d–i;
Fig. S11a, b).

PC1 loadings and mPC1 loadings of homologous genes common
to both datasets (n = 212; Supplementary Data 5) were also highly
correlated (Pearson’s rð210Þ=0:63, p= 1:29× 10�24, CI = [0.54, 0.70],
two tailed; Fig. 2c). We confirmed these observations in an indepen-
dent mouse dataset14, finding highly correlated PC1 loadings of
homologous mouse and human genes in the thalamus (Fig. S12). Gene
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loadings in mPC2 or mPC3 showed considerably weaker relationships
with the first three human PC gene loadings, indicating that mPC1
appeared to be most strongly conserved across species (Fig. S13).

Through detailed mapping of feedforward and feedback thala-
mocortical connections in the mouse, a recent study defined a
detailed model of organisational hierarchy across thalamic nuclei59.
Using these data, we find that medial-lateral position, defined by
mPC1 scores, was significantly correlated with position in the hier-
archy of feedforward–feedback interareal laminar projections59

(Fig. 2d), providing evidence that medial-lateral orientation reflects
key organisational properties of the thalamus. This relationship with
organisational hierarchy appeared to be unique as neither mPC2 nor
mPC3 showed a significant correlation (Fig. S14).

Cortical patterning of thalamic connectivity follows key
patterns of functional organisation
The thalamus has topographical projections to the cerebral cortex7;
therefore, we reasoned that connections seeded along the medial-
lateral gradient of the thalamus would vary along a corresponding
spatial gradient in the cortex. To test this, we plotted the human PC1
loadings for each cortical region onto the cortical surface, revealing an
anterior-posterior gradient (Fig. 3a). We also found these results were
consistent when using a functionally driven parcellation60 (Fig. S15).
Anterior cortical regions were negatively loaded, displaying pre-
ferential connectivity to medial thalamic regions, posterior regions

were positively loaded with preferential connectivity to lateral regions
(Fig. 3b). Using the mPC1 loadings from the AMBA mouse data, we
observed a similar projection patternwhich varied from somatomotor
regions, to visual, and then to frontal/lateral cortex (Fig. 3c), following
a hierarchical gradient28,59. Cortical loadings for mPC2 varied from the
auditory, to visual/medial, and then to somatomotor and prefrontal
areas, while mPC3 varied from the auditory-lateral cortex to medial/
visual areas (Fig. S11c, d).

Recently, large-scale spatial gradients have been used to frame
variation of a range of microstructural, connectomic, and functional
properties across the cortex and subcortex25–27. Given the prominence
of features which follow an anterior-posterior spatial arrangement in
the cortex29,46,61, we expected that PC1 loadings would vary in parallel
withother cortical properties. To test this,we comparedPC1 loadings to
72 cortical feature maps from the neuromaps toolbox61. Statistical
significance was established using spin-tests (see Methods) to ensure
observed correlations were not induced by low-order spatial
autocorrelations62. Significant associations between cortical PC1
loadingswereobservedwith severalmarkers of functional organisation,
including the primary functional gradient26, sensorimotor-
association axis30, electrophysiological properties, and several neuro-
transmitter gradients (Fig. S16). The strongest associationwas observed
with neuronal intrinsic timescales defined using MEG (Pearson’s
rð248Þ= � 0:79, pspin =0:0002, CI = [−0.84, −0.74], two-tailed; Fig. 3d),
with projections from the medial thalamus preferentially connected to
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Fig. 1 | Schematic of methodology. a Defining thalamic seeds. Throughout the
thalamic volume (orange area), a set of seeds 1.75mmapart are defined.Only those
whichwere consistently localised (seeMethods for details) across participants were
used as seed points (black: consistent seeds; white: inconsistent seeds).b Thalamic
seed connectivity. Probabilistic tractographywas conducted from each seed to 250
left hemisphere cortical targets based on a random parcellation. Connectivity
between thalamic seeds and cortical regions was averaged across participants to
produce a 921-by-250 seed-by-cortical target matrix of thalamocortical con-
nectivity. Connectivity to cortical regions was scaled to the unit interval using a
sigmoid transformation. c Assigning transcriptomic data to thalamic seeds. Vox-
elwise estimates of post-mortem gene expression for 2228 genes with differential
expression inbrain tissuewereextracted for the thalamus. For eachgene, eachseed

point is assigned the expression value of the voxel it is located within to produce a
921-by-2228 seed-by-gene matrix. As above, each gene’s expression levels were
normalised to the unit interval according to a scaled sigmoid. d Joint decomposi-
tion. The seed-by-cortical connectivity and seed-by-gene matrices were con-
catenated and decomposed into a set of orthogonal factors by Principal
Component Analysis (PCA). From the resulting principal components (PCs), the
first PC (PC1) explained 30.3% of the variance in the concatenated data matrix. For
each PC, the scores, one per thalamic seed, describe the representation of each
component in the thalamus and the loadings, describe the contribution to the PCof
connectivity strength and gene expression level for each of the cortical regions and
genes, respectively.
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regions with slower cortical intrinsic timescales compared to the lateral
thalamic regions.

The cortical projections of PC2 varied along a sensorimotor-
frontal axis (Fig. S2c). For some measures of the cortical hierarchy,
such as T1:T2 ratio, sensorimotor-association axis, and primary
functional gradient, PC2’s cortical projections were more highly
correlated than PC1 (Fig. S17). However, PC1 was more strongly cor-
related with electrophysiological measures, including the intrinsic
timescale. Furthermore, the cortical projections of PC3 showed an
anterior/dorsal-posterior/ventral orientation (Fig. S2d). In general,
PC3 was highly correlated with some electrophysiological properties
(low gamma and theta power), but otherwise showed weaker rela-
tionships with certain functional gradients and neurotransmitter
distributions (Fig. S18).

We performed a similar analysis in the mouse, observing that
cortical mPC1 loadings were correlated with multiple properties that
together characterise cortical hierarchical organisation (Fig. 3e;
Fig. S19). This relationship with measures of the cortical hierarchy
appears to be unique tomPC1 as bothmPC2 andmPC3 showedweaker
relationships across all the cortical properties tested (Figs. S20–S21).

Cellular and molecular composition varies as a function of the
medial-lateral thalamic axis
Neuronal cell types are distributed non-uniformly in the thalamus63,64

with distinct cellular subtypes differentiated by graded variations in
gene expression both across and within discrete thalamic nuclei13,14,20.
Therefore, we hypothesised that cellular composition, evidenced by
differential gene expression, would vary systematically along the
medial-lateral axis. Using genes with the largest positive and negative
PC1 loadings in the human data (Supplementary Data 6; n = 100 each;

after accounting for spatial autocorrelation across thalamic seeds
using spin tests; see Methods65), we queried a comprehensive Drop-
seq analysis of 89,027 cells from the adult mouse thalamus33 to test if
genes with medial-lateral patterns of expression were enriched for
different thalamic cell type markers.

Both lateral- (n = 100) and medial-genes (n = 100) were sig-
nificantly enriched for neuron class markers (lateral-genes: enrich-
ment = 6.57, pFDR =3:44× 10�28; medial-genes: enrichment = 2.09,
pFDR =0:02); while lateral-genes were additionally enriched for oligo-
dendrocyte markers (enrichment = 8.03, pFDR =2:28× 10

�11), and
medial-genes for glial (astrocyte: enrichment = 3.39, pFDR =0:007;
ependymal: enrichment = 5.96, pFDR = 1:12 × 10

�11) markers (Fig. 4a;
Supplementary Data 7). To further differentiate between medial
and lateral gene sets, we focused on neuronal classes and tested
enrichment of three previously identified neuronal subtypes33:
Rora (excitatory neurons expressing Slc17a6), Gad2/Ahi1 (neurons
largely expressing inhibitory markers Gad1 and Gad2), and Habenula
(cholinergic and glutamatergic neurons in the habenula). Lateral- and
medial-genes showed differential patterns of enrichment, with
genes expressed by Rora subtypes and enriched in lateral genes
(enrichment = 8.64, pFDR = 3:11 × 10

�26) encoding glutamate receptors
(Grid1/Grm1), voltage-gated channels (Scn1b/Kcna2/Scn8a) and
calcium transporters (Slc24a2) with medial-genes where enriched
for Habenula (enrichment = 5.81, pFDR = 7:41 × 10

�6) and Gad2/Ahi1
(enrichment = 8.19, pFDR = 1:12 × 10

�7) makers, including those for
forebrain interneurons (Dlx166) and GABAergic neurons (Cnr1; Fig. 4b;
Supplementary Data 7).

Each neuronal class comprised several closely related clusters
revealed through two-dimensional embedding of gene expression in
each subtype33. Though distinct in identity, the close proximity of

b

c d

a

Fig. 2 | The principal thalamic axis runs medial-laterally in the human and
mouse. a Projection of PC1 scores of the human data onto thalamic voxels.
PC1 scores for each seed are projected onto the closest voxels in the thalamicmask,
overlaid on six axial sections (inset; the colour of the number corresponds to the
slice in the insert). PC1 scores vary along a medial-lateral direction. b Projection of
PC1 scores of the Allen Mouse Brain Atlas (AMBA) data (mPC1) onto respective
thalamic nuclei shown on six axial sections (inset; the color of the number corre-
sponds to the slice in the insert). Note that while axonal-tracing data was obtained

in the right hemisphere, we project the PC1 scores onto the left to enable
straightforward comparison with the human data. c Scatter plot showing the
relationship between PC1 loadings for homologous genes in the human and AMBA
datasets (Pearson’s rð210Þ=0:63, p = 1:29× 10�24, CI = ½0:54,0:70�, two tailed).
d Relationship betweenmouse thalamic nuclei PC1 (mPC1) score and a measure of
hierarchical organisation59 (Pearson’s rð17Þ= � 0:57, p=0:011, CI = ½�0:81,� 0:17�,
two-tailed). Source data are provided as a Source Data file.
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neuronal classes/subtypes, and clusters within these classes (which we
refer to as subclusters), suggested overall similar patterns of gene
expression across cellswith graded transitions across bordersbetween
both clusters and neuronal class13,33. Based on this, we reasoned that a
graded pattern of gene enrichment would be evident across adjacent
subclusters within each neuronal class, rather than discrete clusters
with or without enrichment. We repeated the overrepresentation
analysis focusing on neuronal cell subclusters (SupplementaryData 7),
finding the degree of medial and lateral enrichment transitioned
smoothly across subclusters (Fig. 4c), thereby encoding position of
individual cell types across the thalamus. This smooth transition across
subclusters is evident when projecting enrichment ratios onto
embedded cells (Fig. 4d), and supports previous work demonstrating
that cell types near the border of adjacent thalamic nuclei can display
similar patterns gene expression to each other and do not belong to
separate populations, although for certain sub-regions clearer
boundaries can be observed14.

As with PC1, we identified the top 100 genes associated with the
most negative and positive PC2 and PC3 loadings (Supplementary
Data 6) were also enriched for several cell-classes. For PC2, ventral-
genes were enriched for glial markers (astrocyte: enrichment = 4.62,
pFDR =3:34× 10

�5; polydendrocyte: enrichment = 4.56, pFDR =0:004;
oligodendrocyte: enrichment = 7.75, pFDR =2:27× 10

�10), while dorsal-
geneswereenriched forneurons (enrichment = 7.78,pFDR = 1:83× 10

�32;
Fig. S22a; Supplementary Data 8). In PC3, both anterior- and posterior-
genes were enriched for glial (anterior astrocyte genes: enrichment =
3.60, pFDR =0:02; posterior astrocyte genes: enrichment = 3.82,
pFDR =0:02; anterior oligodendrocyte genes: enrichment = 5.02,
pFDR =0:004) and neuronalmarkers (anterior-genes: enrichment = 2.45,
pFDR =0:03; posterior-genes: enrichment = 3.56, pFDR = 1:89× 10�4;
Fig. S23a; Supplementary Data 9). PC2, but not PC3, also
showed a graded transition across neuronal subclusters, although this

transition was less apparent across Gad2/Ahi1 than was seen with PC1
(Figs. S22c, d, S23c, d).

Genes expressed along the medial-lateral axis are associated
with thalamic development and disease
Forebrain development is founded on early canonical molecular gra-
dients during gestation, which are reflected in the differential timing of
key developmental processes across structures24,32. Spatial gradients in
adult gene expression data vary along developmental axes29 and
recent evidence has shown transcriptional profiles of neurons retain a
persistent marker of their developmental origins67. Based on this evi-
dence, we examined if the medial-lateral axis captured differences in
developmental timing across the thalamus. Using a database of post-
mortemRNA-seq data acquired frommultiple brain regions across the
human lifespan68, we identified a set of genes differentially expressed
over nine developmental windows (Methods). We observed diver-
gence across the medial-lateral axis, with medial genes enriched
during both the prenatal and postnatal developmental periods, while
lateral genes are largely enriched postnatally (Fig. S24). Differential
expression of several prenatally-enriched genes was identified across
the medial-lateral axis (Supplementary Data 10), with both medially-
and laterally-enriched genes involved in thalamocortical outgrowth
(DSCAML169, SLIT170, and FZD371,72), while medially-enriched genes
were also involved in interneuron migration from the forebrain
ganglionic eminence (DLX166 and GLRA273) and lateral enrichment was
linked to functional maturation of synapses (ADCY174). PC2 also
showed differential expression across development (Fig. S25; Supple-
mentary Data 10), as did PC3 to a lesser extent (Fig. S26; Supplemen-
tary Data 10).

Multiple neurodevelopmental and neurodegenerative disorders
are associated with thalamic dysfunction75,76, therefore we examined if
genes expressed along the medial-lateral axis were also differentially
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Fig. 3 | Cortical patterning of thalamic connections corresponds to key cortical
gradients. a The PC1 loadings for cortical regions are shown projected onto the
cortical surface, revealing an anterior-posterior gradient of thalamocortical con-
nectivity. b Representative tractogram (plotted in MNI152 space) where each
streamline is coloured according to its PC1 score and loading of the corresponding
seed point and cortical region it traverses between. c Projection of PC1 loadings of
theAllenMouseBrainAtlas (AMBA) data onto respective cortical regions, displayed
asaflatmap. The smallerflatmapplot indicatesmajor cortical divisions (prefrontal,
lateral, somatomotor, visual, medial, and auditory)59. Grey regions indicate cortical

areas which no gene expression and/or connectivity data was available.
d Correlation between cortical region PC1 loadings (for the human data) and MEG
intrinsic timescales (Pearson’s rð248Þ= � 0:79, pspin =0:0002, CI = ½�0:84,� 0:74�,
two-tailed). Points are coloured according to their PC1 loading. e Correlation
between mouse cortical PC1 loadings and hierarchical level (Pearson’s
rð30Þ= � 0:48, p=0:006, CI = ½�0:71,� 0:15�, two-tailed). Points are coloured
according to theirmouse cortical PC1 loading. Source data areprovided as a Source
Data file.
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associatedwith disease.We found thatmedial-genes were significantly
enriched (pFDR<:05) for genes associated with alcohol-related dis-
orders (alcoholism, alcoholic intoxication, alcohol withdrawal sei-
zures), eating-related disorders (eating disorders, hyperphagia, and
anorexia), and psychosis-related disorders (psychotic disorders, schi-
zoaffective disorder, and schizophrenia; Supplementary Data 11).
Genes encoding for gamma-aminobutyric acid (GABRB1/GABRG1/
GABRG3), cannabinoid (CNR1), serotonin (HTR2R/HTR2C), and neu-
ropeptide (NPY2R/NPY5R) receptors, in addition to oxytocin (OXT),
were commonly associatedwith the disorders showing enrichment for
medial-genes. For lateral-genes, these showed enrichment for
epilepsy-related (generalised and myoclonic), bipolar disorder, schi-
zophrenia and other generalised movement/neurological conditions
(Supplementary Data 11), with genes for sodium/potassium transport
and channels (ATP1A3/KCNA1/KCNA2/KCNC1/SCN1B/SCN8A), and
glutamate receptors (GRM1/GRM4) implicated across disorders.

PC2 and PC3 also showed significant enrichment for several dis-
orders. PC2 was enriched for mood, substance abuse, and psychosis
disorders along its negative thalamic axis (dorsal-to-ventral), with
genes for gamma-aminobutyric acid (GABRA4/GABRA5), corticotropin
releasing hormone (CRH), opioid receptors (OPRM1), and glutamate
metabotropic receptors (GRM7) being implicated across disorders
(Supplementary Data 12; the positive axis of PC2 did not show any
significant enrichment). The positive axis of PC3 (varying anterior/
medial-to-posterior) also was primarily enriched for mood disorders,
and was linked to serotonin related genes (HTR1A/HTR2B/TPH2;
Supplementary Data 13; the negative axis of PC3 did not show any
significant enrichment).

Discussion
The thalamus and its reciprocal cortical connections are crucial to
shaping whole brain neural activity, yet the underlying organisational
principles of these connections are not well understood7,13,14. In this
study, we have defined a principal organisational axis of the adult
human thalamus, characterised by a graded transition in aggregated

gene expression, that is conserved across species and aligned to
functional cortical organisation via a medial-lateral to anterior-
posterior mapping.

Previous work identified an axis of gene expression running in a
medial-lateral orientation at the level of individual thalamic nuclei in
the mouse14. We extend these observations, demonstrating con-
tinuous variation in structural and molecular properties along this
spatial axis. By decomposing bulk tissue microarray data into con-
stituent cell types using markers from a comprehensive single-cell
database33, we identify potential differences in cell class distribution
across the principal thalamic axis. Lateral areas, adjacent to the white
matter, were enriched for oligodendrocyte markers, while medial
areas, adjacent to ventricles and developmental sources of radiating
glial cells, were enriched for other glial markers. Similar divergence
was observed across neuronal classes suggesting that composition of
neuronal populations also varies along the thalamic axis, with lateral
areas preferentially enriched for excitatory markers, and medial areas
for inhibitory ones.

Traditionally, the identity and functional role of thalamic nuclei
have been in part determined through examination of afferent con-
nections and cortical projection targets1,7. We examined patterns of
cortical connectivity with the thalamus using non-invasive diffusion
tractography, validating our findings using anatomical tracing data in
the mouse. Cortical projections from the medial-lateral thalamic axis
mapped to an anterior-posterior cortical gradient, aligning with
cytoarchitectural and function markers of cortical hierarchy25,29,32,46.
Wefind this cortical projection gradientmirrored variation in neuronal
intrinsic timescales, fundamental patterns of oscillatory activity and
neural dynamics in the cortex77. This cortical patterning is likely con-
served across species. The gradient of thalamic projections in the
mouse cortex was also related to measures of cortical hierarchies28,59

and the thalamic medial-lateral to cortical anterior-posterior mapping
has been observed in tract-tracing experiments in rodents and
primates78,79. In themouse, electrophysiological properties of neurons
including action potential threshold/width, ion channel and receptor

Fig. 4 | PC1 reflects graded distinctions in cytoarchitecture. a Enrichment ratio
formedial- and lateral-genes expressed by cell class. Themedial-lateral enrichment
ratio is positive when that cell class is enriched for lateral-genes and negative when
enriched for medial-genes. b Enrichment ratio for medial- and lateral-genes
expressed by each neuron class33. c Enrichment ratio for medial- and lateral-genes
expressed by eachneuronal subcluster. Subclustersweredefinedby clustering cells

within each neuron class by their pattern of gene expression. In the bar plot,
neuronal subclusters are ordered by their summedmedial-lateral enrichment ratio.
d Enrichment ratios projected onto t-SNE plots for the different neuron type sub-
clusters. Cells belonging to each subcluster are coloured according to their
enrichment value as indicated in (c) for medial- (left) and lateral-genes (right).
Source data are provided as a Source Data file.
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profiles vary as a function of position along the primary axis14. We
additionally find that medial-lateral position encodes flow of hier-
archical information across the mouse connectome59, further high-
lighting potential functional importance of the thalamic axis. This
relationship between measures of cortical hierarchy and thalamic
cortical projections appeared distinct to PC1 (i.e., the medial-lateral
axis) in the mouse as compared to other thalamic axis, but in the
human data PC2 (corresponding to a dorsal-ventral thalamic axis) also
showed a clear relationship with these measures, which may reflect
phylogenetic differences. Mammalian species can differ in their tha-
lamic composition, for example having different proportions and
distributions of inhibitory neurons amongst thalamic nuclei63,80 and
this likely translates to functional differences, however the patterning
of these distributions may remain phylogenetically conserved63.
Overall our results indicate a close alignment of thalamocortical con-
nectivity with cortical organisational principles and suggest a con-
served thalamus-to cortical mapping across species.

Prior studies have observed that measures of functional con-
nectivity between the thalamus and cortex in humans form large-scale
gradients37 that partially align with spatial distribution of core/matrix
neuronal cell types and are correlatedwith timescales of neural activity
in the cortex81. Electrophysiological signals in the cortex are shaped by
a balance of excitatory and inhibitory inputs, which the thalamus is
involved in the regulation of82. Systematic variation in thalamic elec-
trophysiological properties also influence functional activity in the
cortex11,14. Taken alongside previous findings, our work supports the
notion that intrinsic cortical dynamics, at least in part, are constrained
by a principal mapping of thalamic projections to the cortex, poten-
tially underwritten by distributional variations of specific neuronal
populations13 along the medial-lateral axis.

Expression gradients across and within nuclei may offer a more
parsimonious account of function attributed to thalamic nuclei13.
However, while prominent, several aspects of thalamic organisation
remain unaccounted for by the medial-lateral axis. Different projection
systems of the thalamus have distinct patterns of gene expression14 and
cytoarchitectonic boundaries between nuclei are well-documented7,13.
As an example, in the mouse data, we found the reticular nucleus and
geniculate bodies diverged from the primary axis. The reticular nucleus
and ventral division of the lateral geniculate form part of the ventral
thalamus, or prethalamus, a structure distinct from the rest of the
(dorsal) thalamus in terms of development, connectivity and
function7,22,83. In our human data, however, due to the position at the
extreme lateral border of the thalamus, these structures were only
sparsely sampled and were unable to be fully characterised. Similarly,
anterior-medial areas were also not fully represented in our analysis,
and so future research should assess if the thalamic gradients fully
extend to these areas as well.

We recognise that our estimates of connectivity along thalamic
gradientsmay be affected by biases inherent to diffusion tractography
including difficulty tracing from deep thalamic regions and the
potential for false positive or negative connections. We note that
tractography-derived thalamocortical connectivity broadly aligns with
tract-tracing findings in primates34,84,85, and we have attempted to
mitigate this risk through validation of our human tractography results
to those obtained using gold-standard tract-tracing in the mouse.
Thus, while some finer details may be missed with tractography, we
would expect the major patterns of connectivity we have described to
be robust to specific tracking limitations. Nevertheless, addressing
these limitations through new tractography techniques, improvedMRI
acquisitions, or comparison to thalamocortical gradients in non-
human primates using tract-tracing data represents an exciting direc-
tion for future research.

We note that, as with cortical arealisation, the presence of supra-
areal organisational gradients does not preclude functional localisa-
tion to discrete regions, nor does it dismiss clear neurobiological

differences between nuclei25. Localisation of functions to discrete
nuclei is well supported by an extensive body of evidence. Specific
thalamic nuclei are directly involved in specific cognitive8, sensory86,
and motor87 activity and display preferential connectivity to focal
cortical targets7. However, these focal projections vary in a spatially
systematic way which we and others have observed14,35,37 and the
notion of discrete thalamic units cannot account for all functional
heterogeneity observed in the thalamus. Similarly, thalamic nuclei are
clearly distinguishable by certain neurobiological properties, implying
a degree of specificity, but in other features they show continuous
variation. Therefore, discrete and continuous organisational principles
of the thalamus are not mutually exclusive, and may indeed be com-
plementary. It has been noted that different theories of how neurons
within specific nuclei are recruited to enable specific functions, often
require some form of intra-thalamic communication10, therefore the
cardinal gradients we observe in the thalamusmay correspond to such
a system. Indeed, intrinsic patterns of thalamic functional connectivity
occur along continuous spatial dimensions88, suggesting that internal
thalamic activity may be shaped via connectivity along these spatial
axes. Reconciling how continuous and discrete patterns of thalamic
organisation interact to support whole brain dynamics, and what
specific functional roles each may have, is a point of keen interest
going forward.

Our results also suggest that multiple organisational axes may
exist in the thalamus. When considering PC2 and PC3, we find that,
much like PC1, these correspond to spatial variations along approxi-
mately cartesian planes (dorsal-ventral and anterior-posterior,
respectively). Other subcortical structures, like the hippocampus and
striatum, also showorganisational variation along similar planes89–95, as
does the cortex32,96–98. The alignment of features along these axes may
be reflective of molecular gradients that arise in development which
shape the formation of the brain96,99. Indeed, work has indicated the
thalamus develops along lateral-medial100–102 anddorsal-ventral axes103,
which matches our observations of these axes show differential gene-
expression across development. Thus, the alignment of thalamic
neurobiological and functional properties along similar axes may be a
function of developmental molecular gradients. Distinguishing how
neurobiological features in cortical and subcortical structures vary
along different axes will be important for understanding how shared
and distinctive developmental and genetic mechanisms shape brain
organisation.

We found genes expressed along the medial-lateral axis were
associated with numerous disorders including eating-related, alco-
hol-related, psychosis, neurodevelopmental, and epilepsy related
disorders, reflecting the diversity of thalamic function in human
behaviour and neurophysiology. The specific genes enriched for
these disorders included thosewhich encode for GABA, cannabinoid,
serotonin, glutamate, and neuropeptide receptors as well as sodium/
potassium transport. Eating, alcohol-related, psychosis, neurodeve-
lopmental and epilepsy disorders have been associated with both
thalamic and neurotransmitter abnormalities75,76,104–108. As the thala-
mus has a key role in neuromodulation109, disruptions to thalamic
and/or neurotransmitter systems may be reflected by altered neu-
rotransmitter signalling along the medial-lateral axis. Furthermore,
several genes were also differentially enriched across early devel-
opmental windows, and temporal sequences of neurogenesis occur
along a medial-lateral direction in the thalamus100,101. Thus, disrup-
tions along the medial-lateral axis during development could cause
substantial alterations in connectivity. Our study provides a potential
framework for interrogating fundamental properties of thalamo-
cortical organisation across species. Examining how principles of
thalamocortical connectivity emerge and are potentially disturbed,
remains an underexamined area of research which addressing would
promote new insights into the course of healthy and abnormal
development.
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In summary, we find a principal axis of transcriptomic and struc-
tural connectivity in the human thalamus that is situated along a
medial-lateral axis and conserved across species. Position along this
axis encodes functional hierarchy, variations in cellular composition,
and ismapped to keyproperties of cortical function, revealing a simple
organisational principle of thalamocortical connectivity.

Methods
Human neuroimaging data
Minimally-processed structural and diffusion data from 100 unrelated
participants were acquired from the Human Connectome Project110,111.
Of these 76 (46 females, age mean± SD: 28.39 ± 3.95 years) were
retained after quality control (see below). Data were acquired on a
customised Siemens 3T Connectome Skyra scanner at Washington
University in St Louis, Missouri, USA. Structural T1-weighted data were
acquired with 0.7mm3 voxels, TR = 2400ms, TE = 2.14ms, FOV of
224 × 224mm. Diffusion datawas acquired using amulti-shell protocol
for the DWI (1.25mm3 voxel size; TR= 5520ms; TE= 89.5ms; FOV of
210 × 180mm; 270 directions with b = 1000, 2000, 3000 s/mm2, 90
per b value, and 18 b = 0 volumes). Image pre-processing is described
in detail elsewhere110–112. Briefly, diffusion data were corrected for EPI
susceptibility and signal outliers, eddy-current-induced distortions,
slice dropouts, gradient-non-linearities and subject motion112. T1-
weighted data were corrected for gradient and readout distortions
prior to being processed with FreeSurfer.

From the pre-processed data, the fibre orientation distributions
were extracted from the diffusion data using the multi-shell multi-
tissue Constrained Spherical Deconvolution algorithm in MRtrix
(version: 3.0.15)113–115. A five-tissue-type segmentation was extracted
from the T1w-weighted image116. To parcellate the left cortex, the
cortical surface was divided 250 approximately equally sized regions
using the parcellation_fragmenter tool (https://github.com/miykael/
parcellation_fragmenter). A volumetric representation of this par-
cellation was then created using FreeSurfer (version: 5.3.0)117. As an
additional robustness check, we also used the Schaefer 400, 17 net-
work parcellation60 for a supplementary analysis. These processing
steps described here had been previously performed for separate
studies118,119, and this processed data was accessed on the MASSIVE
high-performance computing system120.

Human gene expression data
Gene expression levels were assigned to thalamic seeds using high-
resolutionmaps of estimated gene expression in the thalamus50. Briefly,
Gaussian Process Regression was used to estimate the spatial depen-
dence of gene expression between neighbouring locations in the cor-
tical and subcortical structures based on post mortem microarray data
from the Allen Human Brain Atlas (AHBA)51. The AHBA contains 3702
microarray samples of 58,692 probes across six brains. Microarray pre-
processing is detailed elsewhere50,51. Using spatial models of gene
expression estimated at discrete locations in volumetric space, voxel-
wise expression maps of 18,836 genes were generated50. In the present
study, we focused on a previously identified list of 2413 genes with
differential expression in the human brain52,53, of which 2228 were
present in the high-resolution dataset (Fig. 1c) which were downloaded
fromanonline repository (http://www.meduniwien.ac.at/neuroimaging/
mRNA.html). As few samples in the AHBA were obtained in the right
hemisphere, we elicited to only use data from the left hemisphere.

Thalamic seed definition and quality control
To measure variation in connectivity and gene expression across the
thalamus,wedefined a set of seeds. Seeds are definedwithin anMNI152
thalamic mask95 (1811 seeds total; 1.75mm apart) and are registered to
each participant using transforms (FLIRT and FNIRT) provided by the
HCP111. This number of seeds was selected to maintain a balance
between dense spatial coverage of the thalamus and minimising

computational burden. Quality control was performed by defining a
binary vector indicating if a seed was inside or outside each partici-
pants own thalamicmask (definedusing tissue segmentationwith FSL’s
FIRST121). Participants whose vector was not highly correlated with
others (mean r<0:7) were excluded (n = 24), as these participants likely
have an inconsistent spatial distribution of seeds to other participants.
The choice of only including seeds which could be consistently regis-
tered across participants was done so we could reliably ensure that
only thalamic areas were being sampled. Seeds that were (a) present in
over 85% of the remaining participants and (b) were located within
areas where transcription data was available (i.e., the seed resided in a
voxel for which expression data was available) were retained (Fig. 1a).
Of the 1811 possible seeds, 1348 had transcriptomic information asso-
ciated with them, and 921 passed the quality control procedure out-
lined above. As a consequence of this, areas of the anterior-medial and
lateral thalamus did not have complete coverage (Fig. S5).

Thalamic seed connectivity
To estimate connectivity between the thalamus and cortex, for the
remaining 76 participants, 5000 streamlines were generated from
each of the 921 spatially-consistent thalamic seeds using the second-
order integration over fibre orientation distributions tractography
algorithm114,122 (1.25mm step size; 45° maximum angle; 0.05 fibre
orientation distribution cut-off) with Anatomically Constrained Trac-
tography (using the five-tissue-type image)116 applied using MRtrix3
(version 3.0.15)114 (Fig. 1b). Streamlines were assigned to the nearest
left hemisphere cortical targets within a 5mm radius of their endpoint.
Cortical target regions were based on a random parcellation where
each parcel had approximately equal surface area (Fig. 1b). Con-
nectivity between seeds and cortical regions was averaged across
participants to produce a 921-by-250 matrix of thalamocortical con-
nectivity. Expression values were sampled from the voxelwise gene
expressionmaps by assigning seeds the expression values of the voxel
they resided in, producing a 921-by-2228matrix of thalamic seed gene
expression.We then concatenated these twomatrices tomake a single
921-by-2478 data matrix defining the cortical connectivity and gene
expression across thalamic seeds.

To ensure comparison between genes and cortical connection
values, these data were normalised using a scaled sigmoid transfor-
mation to the interval [0,1]. This first involved applying a sigmoidal
transformation to the raw data:

S xð Þ= 1

1 + exp � x� xh i
σx

� � , ð1Þ

where S xð Þ is the normalised value of a gene/connection, x is the raw
value, xh i is the mean and σx is the standard deviation of the values of
that gene/connection across thalamic seeds. Following the sigmoidal
transform, each gene or cortical connection was linearly scaled to the
unit interval. This transformation was used to reduce the impact of
outliers in the data55,123 (Fig. 1d). The same concatenation and nor-
malisation procedure was applied to the mouse axonal tracing and
thalamic gene expression data.

Mouse data
We used gene expression58 and anatomical connectivity56 data for the
mouse from the AMBA. Data processing has been detailed
elsewhere55,57. Expression data were extracted for the 213-region
mouse parcellation of ref. 56. Of the 19,417 genes for which expres-
sion had been measured across all 213 regions, we extract those for
which therewas (a) complete expressiondata for all 35 thalamicnuclei,
and (b) were part of the 500 most DE genes across mouse thalamic
nuclei as identified by ref. 14. This resulted in a total of 447 genes being
retained, producing a 35-by-447 thalamic-by-gene expression matrix.
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Connectivity data was derived from the Allen Mouse Brain Con-
nectivity Atlas, which consists of 469 anterograde viral microinjection
experiments conducted on C57BL/6J male mice at age P5656. We
extracted connections from 35 thalamic nuclei to 38 cortical targets,
producing a 35-by-38 axonal thalamic-by-cortical region connectivity
matrix for use in the decomposition. For visualisation and calculation
of mouse thalamic nuclei coordinates, the Common Coordinate Fra-
mework version 3 atlas for the AMBA was used58,124.

Joint decomposition
Wedecomposed the concatenated 921-by-2478 (n ×m) datamatrix,M,
into a set of orthogonal components using Principal Component
Analysis (PCA) via Singular Value Decomposition (SVD):

M =USVT , ð2Þ

where, US is a 921 × k matrix represents the Principal Component (PC)
scores, one per thalamic seed for each of k components; and V is a
2478 × k matrix representing the PC loadings, or coefficients, that
denote the contributions of each cortical region’s (normalised) tha-
lamic connectivity or each gene’s (normalised) thalamic expression to
each component (M was centred prior to SVD/PCA). The decomposi-
tion is normally truncated to k<minðn,mÞ and the variance explained
by each component, λk , is given by its singular values, sk :

λk =
s2k

n� 1
ð3Þ

This approach reduces the dimensionality of the data by finding
components (axes whichmaximise the variance explained in the data)
which are orthogonal to each other. We repeated this analysis in the
mouse using the corresponding, concatenated 35-by-485 data matrix
(38 cortical regions and 447 genes). PCA decompositions were con-
ducted usingMATLAB2020a.Note that all decomposition resultswere
z-score normalised across thalamic seed scores, cortical region load-
ings, and gene loadings, for each component.

Sensitivity analyses
To assess the potential impact of the decomposition approach and the
data used on our observations, we performed a series of sensitivity
analyses:

• Performed the joint decomposition using a nonlinear alternative
to PCA (diffusion embedding using the BrainSpace MATLAB
toolbox; version: 0.1.10; https://brainspace.readthedocs.io/en/
latest/index.html)26,54 to test if our observations were limited by
using a linear model.

• Performed the PCA using only human homologues of genes
previously identified as differentially expressed along the
medial-lateral axis in the mouse14 to test if the results were
consistent when a more restricted gene-set was used.

• Performed the PCA on the connectivity and gene expression
data matrices separately to test if the decomposition was driven
by connectivity or gene expression.

• Performed an initial PCA on the concatenated top ten compo-
nents from the separate PCA of the connectivity and gene
expression data to ensure each data type contributed the same
number of features to the decomposition.

• Calculated the cosine affinity matrix for the connectivity and
gene expression matrices separately, and performed diffusion
embedding on the averaged affinity matrices so each data type
contributed equally to the non-linear decomposition.

To ensure the robustness of our analysis, we conducted
bootstrapping and leave-one-out cross-validation procedures.
Specifically, we performed bootstrapping by randomly selecting

(with replacement) 76 individual connectivity matrices, and then
averaged and normalised them before performing decomposition
with and without the gene data (because the gene data cannot be
bootstrapped and this may bias the decomposition on the full data,
we also examined how the bootstrapping performed when the
decomposition was performed just on the connectivity data). We
evaluated the robustness of the iterative decomposition by com-
paring the variance explained for each component and the correla-
tion between the PC1 scores and loadings between the original and
the iterative decomposition across each bootstrap iteration. Addi-
tionally, we used leave-one-out cross-validation by iterating across
seeds for the original concatenated group averaged connectivity and
gene expression. In each iteration, we removed one seed from the
concatenated matrix and performed the decomposition. We then
calculated the root-mean-square-error for the PC1 scores across the
remaining seeds and compared it with the corresponding scores
from the original decomposition. These procedures allowed us to
ensure the stability and consistency of our findings.

Maps of human cortical properties
We obtained maps of multiple cortical features from the neuromaps
toolbox (version: 0.0.3; https://netneurolab.github.io/neuromaps/)61.
This dataset consists of 72 high-resolution maps of different cortical
properties including measures of tissue microstructure, gene
expression, metabolism, neurotransmitter receptor distribution,
electrophysiology, and cortical expansion amongst others. All maps
were transformed to the fsaverage 164 k template using neuromaps
and the Connectome Workbench (version: 1.5.0; https://www.
humanconnectome.org/software/connectome-workbench). Vertex-
wise properties were averaged within each parcel to get a single
value for each region of the parcellation.

Maps of mouse cortical properties
We used maps of nine different cortical properties of the mouse brain
which have previously been found to be reflective of mouse hier-
archical organisation28. These included the ratio of T1-weighted to T2-
weighted (T1w:T2w) images, mean cell density for parvalbumin-
containing (PV) cells125, cytoarchitectonic classification based on
regional eulamination126, cortical gene expression58, intracortical axo-
nal connectivity56, and inferred hierarchy from feedforward–feedback
laminar projection patterns between cortical and thalamic regions59.
Further details of how these data were extracted and preprocessed are
available elsewhere28,59.

Additional gene expression datasets
Using the DropViz (http://dropviz.org/) database, we downloaded lists
of differentially expressed genes for nine thalamic cell types: neurons,
ependyma, astrocyte, polydendrocyte, endothelial, mural, fibroblast-
like, microglia/macrophage, and oligodendrocyte33. Differentially
expressed genes were defined using the following parameters: mini-
mum fold ratio of three;maximump-value exponent of −50;minimum
log expression in target of one; and a maximum mean expression in
comparison of six).Where cell types constitutedmore than one cluster
(neuron, n = 3; oligodendrocyte, n = 2), they were combined into a
single ‘target’ cluster and compared to all other cell types. Neuron
genes consisted of three clusters/classes, Rora, Gad2/Ahi1, and Habe-
nula, each of which had several subclusters (n = 11, 11, and 4 respec-
tively). For enrichment of subclusters, each subcluster was compared
to a reference set which consisted of all other subclusters in the dif-
ferent subtypes, and the background set was defined as all genes
expressed by neurons.

Gene homologues were identified using Ensembl BioMart (https://
www.ensembl.org/index.html; reference genomes: humanGRCh38.p13;
mouse GRCm39)127. Gene lists were filtered to only include: genes with
identifiedmouse-human homologues; genes with protein expression in
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the human thalamus (list from The Human Protein Atlas; version: 21.1;
https://www.proteinatlas.org/)128; and genes with expression in the top
75% based on aggregated unique molecular identifier across cell types
in the mouse thalamus, ensuring that corresponding genes are
expressed in both the mouse and human thalamus.

Overrepresentation analysis
To assess enrichment of genes across different gene sets, we used the
hypergeometric statistic:

p= 1�
Xx
i =0

K

i

� �
N � K

n� i

� �

N

n

� � , ð4Þ

where p is the probability of finding x ormore genes from a gene list K
in a set of N randomly selected genes drawn from a background set N.
Enrichment was expressed as the ratio of the top n genes present
in the gene list of interest, compared to the proportion in the full
background. The overrepresentation analysis for different cell types,
neuron classes, and neuronal subtypes, was performed in Python
(version: 3.8.5).

To identify genes associated with disorders, we used the WEB-
based GEne SeT AnaLysis Toolkit (https://www.webgestalt.org/)129,
using protein encoding genes from the human genome as a reference
set and the DisGeNET130, GLAD4U131, and OMIM132 databases as func-
tional sets. A Benjamini-Hochberg false discovery rate of pFDR<:05,
with a minimum and maximum overlap of 4 and 2000 genes respec-
tively, was used to identify significant categories.

Spatial nulls
As cortical and subcortical features exhibit spatial autocorrelations, we
implemented spatial-autocorrelation-preserving permutation tests to
assess statistical significance (commonly known as “spin-tests”)
between pairs of brain maps and to correct for smooth spatial auto-
correlation in thalamic maps of gene expression. We conducted two
separate spin-tests, one for the cortex and the other for the thalamus.

A cortical spin-test62 was used to find which of the cortical maps
from the neuromaps toolbox was significantly correlated with the PC1
loadings in the cortex. First the centroid of each cortical region on the
FreeSurfer spherical projection was found. These coordinates are then
rotated at three randomly generated angles. The Euclidean distance
between each pair of rotated region centroids and original region
centroids is the calculated. Regions are then iteratively assigned to
rotatedones byfindingwhich rotated region is closeston average to all
original regions, and then mapping that rotated one to the most dis-
tant original region. This process is repeated until each rotated region
is mapped to a unique original one. Based on this mapping, regional
values can be mapped to a new region to preserve spatial contiguity.
This procedure was repeated to produce 10,000 permutations. We
calculated a spin-test derived p-value (pspin) for a pair of brainmaps by
comparing the Pearson correlation between them to a distribution of
correlations between one empirical map and 1000 spatial permuta-
tions of the other (this was repeated such that each brain map was
permuted and compared to the empirical pair, the mean of these runs
p-values was then taken)62. Significancewas determined at pspin < 0.05.

To identify the top 100 genes that were positively/negatively
correlated with PC1, while accounting for the smooth spatial variation
of the gene expression maps, we performed a spin test to derive sig-
nificance of the correlation between each gene’s expression pattern
across and PC1 score across thalamic seeds. For genes showing a sig-
nificant effect, we extracted the 100 with the strongest positive cor-
relation and 100 with the strongest negative correlation. Because
thalamic data is represented as a volume rather than a surface, a
separate spin-test was applied using the BrainSMASH python toolbox

(version: 0.11.0; https://github.com/murraylab/brainsmash)65. In this
method the values of the thalamic seeds are randomly permuted,
whereupon variogram modelling is used to smooth and rescale the
data as to impose the original spatial autocorrelation65. We repeated
this procedure 1000 times for the PC1 scores and calculated the cor-
relation between each of these permutations and expression of all
2228 genes across thalamic seeds. This distribution of correlations for
eachgene-PC1 pair was then compared to the corresponding empirical
correlation to establish significance (pspin < 0.05). The top 100 posi-
tively and negatively correlated genes (as determined by correlation
magnitude) which reached significance were then selected for further
analysis. This same procedure was repeated separate for PC2 and PC3
in order to identify genes which showed significant correlations with
those axes as well.

Modelling gene expression trajectories
Using pre-processed PsychENCODE bulk tissue mRNA data (http://
development.psychencode.org/)68, we first identified genes that were
both expressed in the thalamus and DE across time. Differential
expression was determined through pairwise comparison over nine
developmental windows to determine genes that where enriched
either prenatally or postnatally (a minimum of three significant pair-
wise differences were needed for a gene to be considered enriched for
at least one of these timepoints).

To model the trajectory of medial- and lateral-genes, we used
generalised additive models as previously described43. Briefly, genes
expression was modelled as a nonlinear function of age with sex and
RNA integrity number acting as fixed effects, along with a random
intercept to account for sample-specific variation. The nonlinear
function was specified to use a natural cubic spline with four knots
evenly spaces across the age span for smoothness. AIC and BIC were
used to evaluate model performance. Age-corrected relative gene-
expressed was then calculated using the residuals of the best-fit non-
linear mixed model. Gene trajectories were calculated using a combi-
nation of Python (version: 3.8.5), and the R (version: 3.6.0) libraries
nlme (version: 3.1–161; https://rdrr.io/cran/nlme/) and mgcv (version:
1.8–41; https://rdrr.io/cran/nlme/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data for this project was obtained from open-source repositories.
This included: diffusion and structural MRI data for 100 adults from
the Human Connectome Project S1200 subjects data release (https://
www.humanconnectome.org/study/hcp-young-adult/data-
releases)110–112; the MNI152 template from FSL (version: 5.0.11; https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL)133; Melbourne subcortical atlas
(https://github.com/yetianmed/subcortex)95; the Schaefer400 17 net-
work atlas (https://github.com/ThomasYeoLab/CBIG/tree/master/
stable_projects/brain_parcellation/Schaefer2018_LocalGlobal)60; vox-
elwise expression maps for 2228 genes from the Allen Human Brain
Atlas (http://www.meduniwien.ac.at/neuroimaging/mRNA.html)50,51;
list of 2413 genes showing elevated expression in the human brain
(https://static-content.springer.com/esm/art%3A10.1038%2Fs41593-
018-0195-0/MediaObjects/41593_2018_195_MOESM4_ESM.xlsx)52; list
of the top 500 differentially expressed genes across the mouse thala-
mus and their associated PC1 scores (https://static-content.springer.
com/esm/art%3A10.1038%2Fs41593-019-0483-3/MediaObjects/41593_
2019_483_MOESM3_ESM.xlsx)14; Gene expression data for 19,419 genes
across 213 regions in the Allen Mouse Brain Atlas (https://doi.org/10.
5281/zenodo.4609603)55,57,58; Axonal tracing data for 213 regions in the
Allen Mouse Brain Atlas (https://doi.org/10.5281/zenodo.
4609603)55–57; NiFti volume and flat map for visualising Allen Mouse
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Brain Atlas data in CCFv3 space (https://scalablebrainatlas.incf.org/
mouse/ABA_v3#downloads; http://download.alleninstitute.org/
publications/allen_mouse_brain_common_coordinate_framework/
cortical_surface_views/ccf/annotation/)58,124; 72 brain maps/annota-
tions from the neuromaps toolbox (https://netneurolab.github.io/
neuromaps/)61; the fsaverage 164k vertex surface template from Free-
Surfer (version: 5.3.0; https://surfer.nmr.mgh.harvard.edu/)117; nine
measures of cortical organisation in the mouse (https://doi.org/10.
6084/m9.figshare.7775684.v1; https://github.com/benfulcher/
mouseGradients)28; a measure of mouse brain hierarchy (based on
cortico-cortical, thalamo-cortical, and cortico-thalamic connections;
https://github.com/AllenInstitute/MouseBrainHierarchy/)59; drop-seq
analysis of 89,027 cells in the adult mouse thalamus from the Drop-
Viz database (http://dropviz.org)33; list of genes with protein expres-
sion in the human thalamus from the Human Protein Atlas (version:
21.1; https://v21.proteinatlas.org/humanproteome/brain/thalamus)128;
list of genes with identified mouse-human homologues from the
Ensembl BioMart database (https://www.ensembl.org/index.html)127;
and developmental gene expression from the PsychENCODE database
(http://development.psychencode.org/)68. Data reported in this paper
are provided in the Source Data file. Additionally, data generated and
used in this study is openly available athttps://doi.org/10.5281/zenodo.
8285838. Source data are provided with this paper.

Code availability
Code is available at https://github.com/StuartJO/ThalamicGradients.
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