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AlphaFold-Multimer predicts cross-kingdom
interactions at the plant-pathogen interface

Felix Homma 1,2, Jie Huang1,2 & Renier A. L. van der Hoorn 1

Adapted plant pathogens fromvariousmicrobial kingdomsproduce hundreds
of unrelated small secreted proteins (SSPs) with elusive roles. Here, we used
AlphaFold-Multimer (AFM) to screen 1879 SSPs of seven tomato pathogens for
interactingwith six defence-related hydrolases of tomato. This screenof 11,274
protein pairs identified 15 non-annotated SSPs that are predicted to obstruct
the active site of chitinases and proteaseswith an intrinsic fold. Four SSPswere
experimentally verified to be inhibitors of pathogenesis-related subtilase
P69B, including extracellular protein-36 (Ecp36) and secreted-into-xylem-15
(Six15) of the fungal pathogensCladosporium fulvum and Fusariumoxysporum,
respectively. Together with a P69B inhibitor from the bacterial pathogen
Xanthomonas perforans and Kazal-like inhibitors of the oomycete pathogen
Phytophthora infestans, P69B emerges as an effector hub targeted by different
microbial kingdoms, consistent with a diversification of P69B orthologs and
paralogs. This studydemonstrates thepower of artificial intelligence topredict
cross-kingdom interactions at the plant-pathogen interface.

The extracellular space inside plant tissues (the apoplast) is heavily
defended1,2. In response to apoplast colonization by bacterial, fungal
and oomycete pathogens, the host plant secretes a broad diversity of
metabolites and proteins that are presumably toxic and harmful to
extracellular microbes. Adapted pathogens, however, have learned to
live in this challenging environment, but molecular mechanisms that
these pathogens use to avoid or suppress extracellular immunity are
largely unknown.

Hydrolytic enzymes, such as proteases, glycosidases and lipases,
are abundantly secreted proteins during the plant defense response.
Many of these defense-induced hydrolases have been described since
the 1980s as pathogenesis-related (PR) proteins, as they accumulate to
high levels in the apoplast of infected plants3. These PR proteins
include glucanases (PR2), chitinases (PR3), and proteases (PR7). The
PR7 proteases are also called P69 subtilases as they are subtilisin-like
proteases that accumulate at ~70 kDa in tomato upon infection with
various pathogens4,5.

The relevance of P69s and other secreted defense-related
hydrolases is underlined by the fact that pathogens suppress their
activity with pathogen-secreted inhibitors. Tomato P69B subtilase,
for instance, is targeted by Kazal-like inhibitors Epi1 and Epi10 from

P. infestans6,7 and the defense-related papain-like Phytophthora-
inhibited protease-1 (Pip1) from tomato is targeted by cystatin-like
EpiC1 and EpiC2B of P. infestans8. Pip1 is also targeted by Avr2 from the
fungal tomatopathogenCladosporium fulvum (syn.Passalora fulva)9,10,
and by the chagasin-like Cip1 from the bacterial tomato pathogen
Pseudomonas syringae pv. syringae11. In all these examples, pathogen-
derived inhibitors are small secreted proteins (SSPs) that are often
stabilized by disulfide bridges. Additional pathogen-produced SSP
targeting host hydrolases include Pit2 from the fungalmaize pathogen
Ustilago maydis;12 and SDE1 from the bacterial citrus pathogen Liberi-
bacter asiaticus13.

The targeting of secreted hydrolases by multiple pathogen-
produced SSPs implies that these secreted hydrolases can play
important roles in immunity and that adapted pathogens are all
secreting inhibitors targeting the most harmful hydrolases. Indeed,
Pip1 depletion by RNAi makes tomato hypersusceptible to bacterial,
fungal and oomycete pathogens14, illustrating that Pip1 provides broad
range immunity, despite being targeted by pathogen-derived inhibi-
tors. Following the same narrative, we discovered that plant-secreted
beta-galactosidaseBGAL1 triggers the release of immunogenicflagellin
fragments, a study that was sparked by the discovery that BGAL1 is
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suppressed during P. syringae infection15. We have uncovered an
additional 59 apoplastic hydrolases that are suppressed during
P. syringae infection, one of which is NbPR3, a neo-functionalised
chitinase that provides antibacterial immunity16.

The plant-pathogen arms race between inhibitors and their
target hydrolases results in the selection of residues at the interaction
interface, as a ‘ring-of-fire’, indicative of a footprint of an arms race
with pathogen-derived inhibitors. Examples include Class-I
chitinases17, soybean endoglucanase EGase18, and tomato papain-like
protease Rcr39. Variant residues in Rcr3 indeed interfere with
Avr2 binding9,19, and variant residues in soybean EGaseA are predicted
to interact with variant residues in the cognate inhibitor GIP1 from
Phytophthora sojae20. These discoveries imply that engineering of
inhibitor-insensitive hydrolases is feasible and can provide a
distinct crop protection strategy. EpiC2B-insensitive Pip1 immune
protease, for instance, causes increased resistance to Phytophthora
infestans21.

New approaches are needed to discover and exploit antagonistic
interactions at the plant-pathogen interface. Here, we tested the use of
AlphaFold-Multimer22 (AFM) to discover extracellular inhibitor-
hydrolase interactions. AlphaFold2 can predict protein structures
using artificial intelligence trained on multiple sequence alignments
(MSA) and structural information23. AlphaFold2 produces a predicted
Template Modeling (pTM) score and visualizes the confidence in
predicted structures using the predicted local DistanceDifferenceTest
(plDDT). AFM is an extension of AlphaFold2 developed by DeepMind
to predict structures of protein complexes and produces the interface
pTM score (ipTM), that weighs heavily in the overall score of predicted
complexes (0.8 ipTM+0.2 pTM)22. AFM has been used for a variety of
predictions, e.g., to confirm and predict protein–protein complexes in
yeast;24 or to predict typical and atypical ATG8 binding motifs in
eukaryote proteins25.

Here, we demonstrate that AFM can also be used for cross-
kingdom discovery screens for protein–protein interactions at the
plant pathogen interface, illustrated with the discovery of four
pathogen-secreted inhibitors targeting a tomato-secreted immune
protease P69B.

Results
AFM scores distinguish existing from non-existing complexes
To test the prediction of protein complexes at the plant-pathogen
interface with AFM, we first predicted two well-studied protein com-
plexes from the interactions between tomato and the late blight
pathogen P. infestans. The first complex is between the P69B subtilase
of domesticated tomato (Solanum lycopersicum, Sl) and the first Kazal
domain of Epi1 of P. infestans (Epi1a)6. The structure of this P69B-Epi1a
complex has not yet been resolved. Both P69B and Epi1a have high
mean non-gap MSA depth (Fig. 1a) and the best ipTM+pTM score
that AFM predicts for P69B-Epi1a is 0.93, supported with high
plDDT scores, also at the interaction interface (Fig. 1b). The predicted
complex is consistent with the literature because the Reactive Site
Loop (RSL) of Epi1a in the predicted model forms eleven hydrogen
bonds in the active site, and the P1 = Asp residue of Epi1a occupies
the S1 substrate binding pocket of P69B, consistentwith howKazal-like
inhibitors bind to subtilases26. Indeed, the closest similar experimen-
tally resolved protein complex identified by DALI27 is that of subtilisin
with Kazal-like OMTKY3 (1YU628). The calculated root mean square
deviation (RMSD) is 1.74 Å between the predicted P69B model and
the resolved subtilisin structure and 1.44 Å between the predicted
Epi1a model and the resolved OMTKY3 structure (Supplementary
Table 1). We also calculated the Template Modeling (TM) scores
using TMalign29, which is 0.92 for P69B-subtilisin, confirming a high
structural similarity, but only 0.55 for Epi1a-OMTKY3. We therefore
also calculated the structural similarity between the protease-inhibitor

Fig. 1 | AFM correctly distinguishes existing from non-existing hydrolase-
inhibitor complexes. aUsed inhibitors and their target proteaseswith their origin,
mature molecular weight (MW, in kDa) and depth of mean non-gap multiple
sequence alignment (MSA) detected for proteins in compatible complexes. b Best
structures predicted by AFM for existing and non-existing inhibitor-hydrolase
complexes, with their ipTM+pTM scores ranging from 0 (worst) to 1 (best). Pip1
and P69B are shown in gray, with their catalytically active residue in red. EpiC2B

and Epi1a are colored using a rainbow scheme based on their plDDT scores, which
range from 0 (worst) to 100 (best). PDB files of these modeals are provided in
Supplementary Data 3. c plDDT scores within the four proteins in predicted
compatible (blue) and incompatible (red) complexes. d ipTM+pTMquality scores
for each of the n = 5 fivemodels for each of the protein pairs, showing the median,
25th and 75th percentiles, and whiskers representing 1.5 times the interquartile
range. The raw data are provided in Supplementary Data 6.
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interfaces of the predicted P69B-Epi1a model and the resolved
subtilase-OMTKY3 structure (RMSD: 1.12 Å and TM: 0.83, Supplemen-
tary Table 1), indicating that these interfaces are very similar.

The second known complex is between the papain-like protease
Pip1 of tomato and the cystatin-like EpiC2B of P. infestans8. The
structure of this Pip1-EpiC2B complex has not yet been resolved. Also
these two proteins have high mean non-gap MSA depth (Fig. 1a), and
the best AFM-predictedmodel has a high combined ipTM+pTM score
of 0.92, supported by high plDDT scores, also at the predicted inter-
action interface (Fig. 1b). As expected for cystatins, the tripartite
wedge of EpiC2B occupies the substrate binding groove of Pip1
and forms 13 predicted hydrogen bonds with Pip1, consistent with the
literature on cystatin-papain interactions30. DALI identified indeed
that the most similar experimentally-resolved protein complex is
the papain-tarocystatin complex (3IMA30), with RMSD: 0.94 Å and
TM: 0.95 for the proteases and RMSD: 2.27 Å and TM: 0.78 for the
cystatin-like inhibitors, which indicates highly similar structures, fur-
ther supported with high scores for the comparison between the
predicted interface of Pip1-EpiC2B and the resolved interface of
papain-taurocystatin (RMSD: 0.85 Å and TM: 0.89, Supplementary
Table 1).

Taking advantage of the fact that P69B and Pip1 are unrelated
proteases, and Epi1a and EpiC2B are unrelated inhibitors, we next
tested if AFM would produce different scores with incompatible pro-
tein pairs by swapping the inhibitors between the proteases. Indeed,
the best ipTM+pTM scores are now much lower for these incompa-
tible complexes: 0.47 for P69B-EpiC2B and 0.48 for Pip1-Epi1a,
respectively. The individual proteins are still folded as expected, with
good RMSD and TM scores in comparison to resolved structures,
except for Epi1a (Supplementary Table 1), and these inhibitors still
occupy the substrate binding grooves (Fig. 1b). However, the plDTT
scores were reduced in incompatible complexes for whole inhibitors,
and at multiple sites in the proteases (Fig. 1c). For each of the four

protein pairs, all five AFM-predicted models were consistently
assigned similar ipTM+pTM (Fig. 1d), facilitating statistical analysis
that demonstrates that AFM scores are statistically different between
compatible and incompatible complexes (p = 2.1e–09 and 1.8e–9, for
P69B and Pip1, respectively. Two-sided t test, n = 5.).

AFM screen 11,274 protein pairs identifies 376 candidate
complexes
Having established that AFM is able to distinguish between compatible
and incompatible complexes, we decided to use AFM as an inter-
actomic discovery platform to identify pathogen-derived inhibitors
targeting extracellular defense-related hydrolases of tomato, based on
the hypothesis that all extracellular tomato pathogens will secrete
inhibitors targeting harmful extracellular hydrolases of tomato. We
selected 1879 SSPs from seven different tomato pathogens repre-
senting three different kingdoms (Fig. 2a). We included three bacterial
tomato pathogens: Pseudomonas syringae (Ps), Xanthomonas perfor-
ans (Xp), and Ralstonia solanacearum (Rs); three fungal tomato
pathogens: Botrytis cinerea (Bc), Fusarium oxysporum f. sp. lycopersici
(Fo), and Cladosporium fulvum (Cf) and the oomycete pathogen
Phytophthora infestans (Pi). Ps, Xp andCf are biotrophic leaf pathogens
that are exposed to tomato-secreted hydrolases during colonization
of the apoplast. Bc and Pi are hemibiotrophic leaf pathogens that
colonize the tomato apoplast during the initial phase of infection.
Rs and Fo colonize the xylem, which is considered part of the
apoplast and has a similar content as the leaf apoplast31. These seven
very different pathogens cause important diseases on tomato32–34 and
their assembled genomes are publicly available (Ps;35 Rs;36 Bc;37

Fo;38 Cf;39 and Pi40). We selected SSPs from these genomes by
selecting small proteins (<35 kDa) that have a likely apoplastic locali-
zation predicted by either SignalP5.01 or TargetP2.0, supported
by ApoplastP1.0141–43. This selection will not include all possible
secreted pathogen-derived hydrolase inhibitors, but this number

Fig. 2 | AFM screen between 1879 SSPs and 6 hydrolases identifies 376 candi-
date complexes. a 1879 proteins from seven tomato pathogens that are likely
secreted and small (<35 kDa) were screened for complexes with six secreted
defense-related hydrolases of tomato using AlphaFold-Multimer (AFM). The best
of the five generatedAFMmodels for each of the 11,274 protein pairswere selected
if the ipTM+pTM score was 0.75 or higher, resulting in 376 putative complexes.

b best ipTM+pTM scores for all the 11,274 complexes involving 1879 small
secreted proteins (SSPs) of the seven tomato pathogens listed on the bottom.
Symbols for complexeswith the six different hydrolases (explained in (a)) highlight
the 376 candidate complexes with ipTM+pTM ≥0.75. The best and all ipTM+pTM
values for each protein pair used for this figure are provided in Supplementary
Data 7 and Supplementary Data 8, respectively.
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and limited protein size will limit the AFM screen to a computationally
feasible level.

We focused our AFM screen to identify inhibitors of six defense-
related extracellular hydrolases of tomato that carry the active site in a
substrate binding groove that will aid the selection of hydrolase inhi-
bitors (Fig. 2a). Besides P69B and Pip1, we included defense-induced
chitinases of classes I, III and V. These are abundant andwell-described
pathogenesis-related PR3 and PR8 proteins accumulating in the apo-
plast of tomato upon infection44.We also included anA1-family pepsin-
like protease (A1P), which is homologous to Arabidopsis CDR1 and
AED1, which play positive and negative roles in plant immunity,
respectively45,46. These six hydrolases are predicted to carry an active
site in a substrate binding groove based on their homology to struc-
turally resolved hydrolases for which these features have been

described17,47–51. All tomato hydrolases have high mean non-gap MSA
depth (>1000; Supplementary Fig. 1). By contrast, almost half of the
1879 SSPs have ameannon-gapMSAdepth below 100 (Supplementary
Fig. 1), which puts restrains on AFM modeling.

We next tested 11,274 protein pairs between the 1879 SSPs and the
six hydrolases using a custom-made AFMworkflow where we reduced
computing time by avoiding redundant database searches for the
same protein. The AFM screen required 13,244CPUh (1.51 CPU years)
and 8118GPUh (0.93 GPU years), which equals to 1.17 CPUh and
0.72GPUh per protein pair. These hardware requirements weremade
feasible using the Advanced Research Computing facility of the Uni-
versity of Oxford52.

The AFM screen resulted in 376 protein pairs with a best ipTM+
pTM score of ≥0.75 (Fig. 2a). These 376 protein pairs represent 3.3% of
the tested protein pairs. This percentage is intuitively high because we
expect that most pathogens produce only one or two inhibitors for
each hydrolase (42–84 inhibitors in total) but this total number is
sufficiently low to investigate individually. The 376 hits were dis-
tributedover the pathogens andhydrolases, such thatmostpathogens
had several candidate inhibitors for each hydrolase (Fig. 2b).

Further selection of candidates identifies 15 putative complexes
To analyse the structures of the best models for each of these 376
protein pairs, we established a custom script in Python to present the
surface of the hydrolase structure in gray, with the active site in red
and theputative inhibitor as cartoon and lines, coloredusing a rainbow
scheme based on the plDDT scores. This presentation facilitated a
quick classification of how the SSP binds to the hydrolase.

The 376 complexes were classified into four different groups
(Fig. 3a). One group (19 complexes) were nonsensemodels, where the
two polypeptide strands are entangled into each other, which is unli-
kely when proteins are folded and secreted by different organisms. A
second group (137 complexes) has the substrate binding groove fully
exposed and the SSP binding elsewhere on the hydrolase. Although
some of these SPPs might be allosteric hydrolase regulators, these
complexes were not considered further. In the third group (184 com-
plexes), the active site was blocked by the SSP, but the region blocking
the active site had no intrinsic structure, and was rather an unstruc-
tured strand bound to the substrate binding groove. Some of these
SSPsmight be substrates when bound to proteases, but thesewere not
considered further. The fourth group (36 complexes) contains struc-
tures where the SSP blocks the active site with an intrinsic structure,
often involvingmultiple disulfidebridges and tightly folded structures.
This type of interaction is common for described inhibitor-hydrolase
complexes and these complexes were therefore further analysed.

The 36 complexes included eight complexes of Kazal-like proteins
from Pi bound to P69B, and five complexes of cystatin-like proteins
from Pi bound to Pip1 (Fig. 3b). The selection of these inhibitors vali-
dated our manual screening method. However, since these interac-
tions could also be predicted by sequence homology, these were not
studied further.

To focus further studies on protein complexes that could exist
during infection, we mined transcriptomic databases53–56 for the
expression levels of the remaining 23 inhibitor proteins during infec-
tion. The conditions under which these RNA-seq data were generated
are summarized in Supplementary Table 2. All these data support the
expression of the target hydrolase during infection (Supplementary
Table 3). As most of these studies did not report on pathogen gene
expression, we reanalyzed the RNA-seq data by removing plant
sequences andmapping the remaining reads against predicted coding
sequences of the pathogens, resulting in expression levels for every
pathogen in transcript per million (TPM). This way, we identified
expression during infection for 11 putative inhibitors, with expression
levels ranging from 2.4 to 599TPM reads (Fig. 3c, Table 1, Supple-
mentary Table 4). No transcripts were detected for eight candidate

Fig. 3 | Selection of candidate complexes. a The 376 candidate complexes were
manually screened for complexes where the SSP blocks the active site of the
hydrolase with an intrinsic fold. b The remaining 36 candidate complexes included
13 complexes between Kazal-like inhibitors and P69B and cystatin-like inhibitors
with Pip1, and 23 candidate complexes with other candidate inhibitors. c Of the 23
remaining candidate complexes, transcriptome analysis of infected plants showed
that genes encoding eight SSPs are not expressed at the tested conditions, whereas
genes encoding 11 SSPs are expressed during infection. No transcriptomic datasets
were available for Xp (4 SSPs). d Distribution of the final 15 candidate hydrolase-
inhibitor complexes over the tested tomato pathogens and target hydrolases.
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inhibitors. Although the expression of these candidates might have
been missed by chosen conditions and materials, these eight candi-
dates were not analyzed further. There was no expression data avail-
able for Xp infections, but these four candidates were all retained.

The selection for likely inhibitors that are expressed during
infection resulted in 15 proteins that are not equally distributed over
the hydrolases and pathogens (Fig. 3d and Table 1). P69B emerges as a
putative ‘effector hub’ by being targeted by seven putative inhibitors
produced by five pathogens, in addition to the previously identified
Kazal-like inhibitors of Pi6,7. No novel inhibitors were identified from
pathogens Ps and Pi, or targeting Pip1, but some inhibitors may not
havebeen included inour SSP selectionorhavebeenmissedbyAFMas
false negatives. Unexpectedly, putative chitinase inhibitors are also
produced by bacterial pathogens.

Searches with DALI showed that the structures of the hydrolases
in the predicted complexes are very similar to those of experimentally
determined structures (RMSD< 1.86 Å; TM>0.92, Supplementary
Table 5), with the exception of A1P (RMSD: 3.02 Å and TM: 0.7323). By
contrast, theseDALI searches identifiednohighly similar structures for
10 SSPs (RMSD> 2Å, TM<0.71), and no similar structure at all for the
remaining 5 SSPs (Supplementary Table 6). Any resolved structure
similar to SSPs, is not in a complex with proteins that have structural
similarity to our tomato hydrolase models. In conclusion, our 15 SSP-
hydrolase complexes uncover candidate targets of these SSPs.

Four P69B inhibitors were identified by activity labeling
We decided to confirm inhibitors of P69B because this hydrolase is
targeted by most putative inhibitors and we have robust assays avail-
able to monitor P69B inhibition. A C-terminally His-tagged P69B was
efficiently producedby agroinfiltration ofN. benthamiana andpurified
on immobilized Ni-NTA57. Active-site labeling with fluorescent fluor-
ophosphonate probe FP-TAMRA58 is a sensitive and specific assay to
detect P69B inhibition and has been used to confirm that Epi1 inhibits
P69B57.

Seven candidate P69B inhibitors were expressed in E. coliRosetta-
gami B cells to facilitate the folding of proteins having disulfide
bridges. The putative inhibitors were fused to an N-terminal double
purification tag consisting of a His tag, maltose binding protein (MBP)
and a cleavage site for tobacco etch virus (TEV) protease

(Supplementary Fig. 2). Two inhibitor candidates (XP001545484 and
WP011000405) did not express sufficiently to pursue further pur-
ification. The remaining five fusion proteins were purified over Ni-NTA
and amylose resin, subsequently. Next, the purification tag was
removed with the TEV protease and the protease and purification tags
were removed using the Ni-NTA matrix and 30 kDa centrifugal con-
centrator. Finally, the samples were desalted using a 3 kDa centrifugal
concentrator (Supplementary Fig. 2). One inhibitor candidate
(WP008576433) was too small to be retained on the 3 kDa con-
centrator. Thus, this procedure yielded four purified inhibitor proteins
containing only an additional N-terminal Gly-Glu-Phe tripeptide
(Fig. 4a). Epi1 (positive control) and EpiC1 (negative control) were
produced and purified following the same procedure.

To test for P69B inhibition, the purified inhibitor candidates and
the Epi1 and EpiC1 controls were preincubated with purified P69B.
Subsequent labeling with FP-TAMRA and detection from protein gels
by fluorescence scanning revealed that P69B labeling is significantly
reduced upon preincubation with Epi1 and all four candidate inhibi-
tors, when compared to the EpiC1 negative control (Fig. 4b). These
data confirm that all four tested candidate inhibitors indeed inhi-
bit P69B.

P69B is an effector hub targeted by five distinct inhibitors
We finally investigated the four P69B inhibitors more closely, by
studying their AFM-predicted binding to P69B in combination with
alignments of inhibitor homologs from public databases (Fig. 5).
Mapping sequencing reads from eleven wild tomato species against
the tomato reference genome to generate phased P69B alleles from
wild tomato relatives revealed that P69B has only one hyper-variant
residue at position 400, being either His, Arg, Asp or Gly (Supple-
mentary Fig. 3). Interestingly, this variant site locates close to the
substrate binding groove in P69B (Fig. 5a). The predicted substrate
binding groove of P69B contains clear S4-S4’ pockets for binding
P4-P4’ residues in peptide substrates, similar to previous subtilase
structures28,47.

The first P69B inhibitor is an SSP of the bacterial tomato pathogen
Xanthomonas perforans we named XpSsp1. XpSsp1 is predicted to fit
nicely in the substrate binding groove of P69B with high plDDT scores
at the interface (Fig. 5b). XpSsp1 is highly conserved in plant

Table 1 | 15 candidate hydrolase-inhibitor complexes at the plant-pathogen interface

ipTM+pTM

Spa SSP accession Target hydrolase Annotation All models Best model MSA depth Expression (TPM) MWb (kDa)

Xp WP046932418.1 P69B XpSsp1 0.64 ±0.16 0.82 213.55 NA 12.57

Cf KAH3648627.1 P69B CfEcp36 0.55 ±0.11 0.75 13.43 480 ± 206 5.94

Fo XP018243121.1 P69B FoTIL 0.79 ± 0.05 0.87 815.69 341 ± 199 8.69

Fo APP91304.1 P69B FoSix15 0.69 ±0.12 0.83 3.88 207 ±89 6.83

Bc XP001545484.1 P69B - 0.57 ± 0.16 0.82 238.30 2.4 ± 0.8 20.9

Rs WP011000405.1 P69B - 0.59 ±0.12 0.81 614.55 6.8 ± 7.0 12.65

Xp WP008576433.1 P69B - 0.65 ±0.06 0.77 96.22 NA 3.43

Rs WP011001815.1 C-I - 0.50±0.19 0.83 1798.12 599 ±65 17.86

Fo XP018236493.1 C-I - 0.85 ±0.03 0.88 355.35 216 ± 16 19.95

Xp WP046931881.1 C-III - 0.76 ±0.20 0.87 141.47 NA 14.11

Bc XP001560184.1 C-III - 0.63 ± 0.24 0.88 296.23 60± 28 19.88

Fo XP018248187.1 C-III - 0.55 ±0.28 0.92 171.59 5.6 ± 0.2 13.07

Fo XP018241286.1 C-III - 0.43 ± 0.23 0.87 62.22 3.9 ± 2.9 24.26

Xp WP008572913.1 C-V - 0.49 ±0.18 0.83 107.08 NA 9.58

Rs WP011002292.1 A1P - 0.67 ± 0.10 0.76 576.77 2.9 ± 0.2 8.34

NA not available.
apathogen species.
bcalculated from protein sequence not including signal peptide.
Values >100 are printed bold.
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pathogenic Xanthomonas species and contains five conserved dis-
ulfide bridges and several residues that are predicted to contact the
hypervariable residue in P69B (Fig. 5g). A conserved methionine,
valine, and phenylalanine are predicted to occupy the S4, S2 and S2’
pockets in P69B (Fig. 5b). And a conserveddisulfidebridge is predicted
to occupy the S1 pocket and this structure is probably the reason why
this SSP inhibits P69B. The XpSsp1 ortholog inXanthomonas oryzaepv.
oryzicola (XOC_0943) is expressed during infection of rice59, so it is
likely that XpSsp1 homologs play an active role during Xanthomonas
infections.

The second P69B inhibitor is from the fungal pathogen Clados-
porium fulvum and has been previously detected in apoplastic fluids
from infected plants as Extracellular Protein-36 (CfEcp3660). Its
detection by proteomics is consistent with a high expression of the
CfEcp36 gene throughout infection of susceptible tomato (480 TPM
fungal reads over four time points combined, Supplementary Table 4).
The predicted binding of CfEcp36 is distinct from all the other inhi-
bitors as it does not use a single strand to occupy the substrate
binding groove (Fig. 5c). Instead, CfEcp36 is predicted to use two
strands and two disulfide bonds with an aspartate interacting with two
active site residues to avoid processing by P69B (Fig. 5c). CfEcp36 has

homologs in other ascomycete plant pathogens including Zymo-
septoria, Verticillium and Colletotrichum that share the aspartate and
five AFM-predicted disulfide bridges (Fig. 5g). Several variant residues
in CfEcp36 homologs are predicted to be in close proximity to the
hyper-variant residue in P69B (Fig. 5c, g).

Two P69B inhibitors are from the fungal pathogen Fusarium
oxysporum. Both are highly expressed during infection, reaching 341
and 207 TPM fungal reads in infected tomato, respectively (Supple-
mentary Table 4). The first P69B inhibitor shows sequence homology
to a trypsin-inhibitor-like protein61, and is hence coined FoTIL.
Although the overall predicted structure of FoTIL has intermediate
plDDT scores, FoTIL is predicted to bind in the substrate binding
groove of P69B with high plDDT scores occupying S4, S2, S1 and S2’
pockets with proline, threonine, lysine and cysteine residues, respec-
tively (Fig. 5d). The cysteine residues at the P3 and P2’ positions are
involved in predicted disulfide bridges that probably constrain the
structure so it remains uncleavedby P69B.FoTIL has close homologs in
many Fusarium species and shares high homology that includes four of
the five putative disulfide bridges and conserved residues that might
interact with the hyper-variant residue in P69B (Fig. 5g). Interestingly,
although these proteins are highly conserved, the residue predicted to
occupy the S1 pocket is highly variant (K, Q, M or D).

The other P69B inhibitor of Fo has been described as secreted-
into-xylem-15 (FoSix1562). FoSix15 is predicted to use a strand to occupy
the S4, S2 and S1 pockets in P69Bwith tyrosine, leucine and asparagine
residues with high confidence (Fig. 5e). FoSix15 has homologs in fungal
plant pathogens Dactylonectria and Ramularia that share four highly
conserved disulfide bridges and are otherwise highly polymorphic,
including the residues that are predicted to occupy the S4-S2-S1
pockets, though some of the residues that might interact with the
hyper-variable residue in P69B seem more conserved (Fig. 5g).

These four P69B inhibitors are structurally distinct from each
other and from the previously described Kazal-like PiEpi1, which is
predicted to occupy the S4, S2 and S1 and S2’ pockets using tyrosine,
leucine, aspartate and tyrosine residues, respectively (Fig. 5f). Epi1 has
many homologs in plant pathogenic Phytophthora species that share

Fig. 4 | Activity labeling of P69B is suppressed by four inhibitors. a Purified
candidate inhibitors. Candidate inhibitors and Epi1a (positive control) and EpiC1
(negative control) were expressed in E. coli as fusion proteins with N-terminal His-
MBP-TEV. The fusion proteins were purified over Ni-NTA and amylose resin, sub-
sequently, and then cleaved by TEV protease. See Supplementary Fig. 2 for the full
gel. His-TEV protease and purification tags were subsequently removed using Ni-
NTA and MW cut off filter and SSPs were used for inhibition assays in (c). Pur-
ification of candidate inhibitors was repeated at least once for each candidate
independently. b P69B-His was transiently expressed in Nicotiana benthamiana by
agroinfiltration and purified over Ni-NTA from apoplastic fluids isolated at 5 days-
post-agroinfiltration. The eluate was analysed on protein gel stained with Coo-
massie (shown here) and used for inhibition assays (in (c)). Purification of P69B-His
was repeated twice, not including experiments for a previous publication57. c All
four candidate inhibitors and the Epi1 but not EpiC1 suppress activity-based
labeling of P69Bwith FP-TAMRA. Purified P69B-His waspre-incubatedwith purified
(candidate) inhibitors at a 1:100 molar ratio and then labeled with FP-TAMRA in
n = 3 replicates using the same purified proteins. Proteins were separated on pro-
tein gels and scanned for fluorescence. Fluorescence was quantified and the signal
intensity of the negative control (EpiC1) was set at 100% labeling to calculate the
relative labeling upon preincubation with the positive control (Epi1) and the four
candidate inhibitors. Error bars represent STDEV of n = 3 replicates. **p <0.01 (p-
values from two-sided, pairwise t-tests were adjusted formultiple testing using the
Benjamini–Hochberg procedure). These p-values are 0.00065; 0.00091; 0.00063;
0.00046; and 0.0010 for comparing EpiC1 with PiEpi1; XpSSP1; CfEcp36; FoTIL and
FoSix15, respectively.MWmakers are listed in kDa. A similar suppression of labeling
was observed at 2-fold higher candidate inhibitor concentrations and in a repeat
experiment using independently purified proteins. Original images for the gels are
provided in Supplementary Data 9 and the raw quantification data in Supplemen-
tary Data 6.
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twodisulfidebridges. Residues aremorepolymorphic at positions that
are predicted to occupy the S1 and S2 pockets or interact with the
hypervariable residue in P69B (Fig. 5g). Overall, despite the high
structural diversity of the five P69B inhibitors, most inhibitors seem to
occupy the S4 and S2 pockets with similar residues but the predicted
residues occupying the S1 pocket can be strikingly diverse and include

both basic (Lys) and acidic (Asp) residues, as well as serine, asparagine
and a disulfide bridge.

Discussion
We successfully used AFM as a discovery tool to identify cross-
kingdom interactions at the plant-pathogen interface.We used AFM to
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predict complexes between 1879 SSPswith six extracellular hydrolases
and from 376 complexes with high scores, we manually selected 15
putative inhibitors that block the active site with an intrinsic fold and
are likely expressed during infection. Four of the candidates were
produced and confirmed to be P69B inhibitors. This work demon-
strates that the use of artificial intelligence to predict cross-kingdom
protein complexes can make instrumental contributions to predicting
protein functions in host-microbe interactions.

It is important to stress that the AFM-produced structure pre-
dictions of the SSP-hydrolase complexes remain to be verified
experimentally. This can be achieved with crystallography or CryoEM
or by comparison with experimentally-resolved protein complexes.
For instance, we were able to compare the AFM-predicted P69B-Epi1
complex with the resolved subtilisin-OMTKY3 structure28, showing
high structural similarities, especially at the interface (Supplementary
Table 1). Likewise, within the 15 hydrolase-SSP models, we found that
hydrolases are similar to structurally resolved homologs (Supple-
mentary Table 5). However, there are no resolved structures highly
similar to any of the 15 AFM-predicted SSP-hydrolase models. Only 10
SSPs have reported comparable overall folds (Supplementary Table 6),
but these are not in complex with proteins that have structural simi-
larity to the tomato hydrolases. Nevertheless, these AFM models cor-
rectly predicted that four of these SSPs are indeed P69B inhibitors.
Thus, although further assays are required for validation of the pre-
dicted structures, we successfully used AFM to identify functions of
four unrelated, non-annotated SSPs.

We found that the vast majority of the SSPs in AFM-predicted
complexes with high scores are probably not hydrolase inhibitors.
Some might, however, rather be substrates or allosteric regulators,
which remains to be explored in the future. Importantly, we were
successful with identifying inhibitor candidates because we used a
stringent selection by manually screening the structures for SSPs that
block the active site and have an intrinsic structure. This stringent
selection resulted in a high hit rate because all four tested candidates
were confirmed to be P69B inhibitors.

In addition to previously described Kazal-like inhibitors of Phy-
tophthora infestans, we discovered four P69B inhibitors from three
additional tomato pathogens: XpSsp1 from Xanthomonas perforans;
CfEcp36 from Cladosporium fulvum and FoTIL and FoSix15 from
Fusarium oxysporum. These pathogens secrete P69B inhibitors
because they are exposed to very high levels of P69B during apoplast
colonization. This suggests that other tomato pathogens probably also
secrete P69B inhibitors that remain to be identified. We may have
missed some putative P69B inhibitors produced by other pathogens
because they were too large (>35 kDa), were not predicted to be
secreted, were not detected in the used transcriptomic dataset, were
false negatives in AFM modeling, or are not proteinaceous in nature.

Our AFM screen also uncovered seven inhibitor candidates of
chitinases, which remain to be validated experimentally. Pathogen-
secreted inhibitors of chitinases were not reported before but are
likely to exist. The existence of Class-I chitinase inhibitors was impli-
cated by the accumulation of variant residues around the substrate
bindinggroove17. Interestingly, in ourAFM-predicted complexes, these
variant positions might directly interact with the predicted inhibitors
of Ralstonia solanacearum and Fusarium oxysporum (Supplementary

Fig. 4). It might be counterintuitive that also bacteria secrete putative
chitinase inhibitors even though they do not have chitin in their cell
wall. However, chitinases may have alternate activities. LYS1, for
instance, belongs to the Class-III chitinase family but hydrolyzes pep-
tidoglycan in the bacterial cell wall63, andNbPR3 belongs to the Class-II
chitinase family but has antibacterial activity and no chitinase
activity16. It seems likely that other proclaimed chitinases may have
antibacterial activities and that this is why they are targeted by bac-
terial inhibitors.

The fact that P69B is targeted bymany pathogens indicates that it
plays an important role in immunity against different pathogens. So
far, immunity phenotypes upon P69B depletion remain to be descri-
bed. P69B is, however, required for the activation of immune protease
Rcr357 and for processing the Pi-secreted SSP PC2, which then triggers
the hypersensitive response HR64. It seems likely that P69B has many
additional substrates in tomato and its apoplastic pathogens. Inter-
estingly, our AFM screen identified 17 pathogen-produced SSPs that
interactwith the substrate binding groove of P69B but lack an intrinsic
structure and might therefore be substrates that can be studied
further.

P69B inhibition is associatedwithdiversification in twodirections.
At the species level, we detected polymorphismwithin P69B orthologs
at position 400. The AFM models suggest that this residue might
directly interfere with P69B inhibitors. In addition to the selection
pressureon P69Borthologs, the selectionprobably also resulted in the
diversification of P69 paralogs in Solanum species. There are nine P69B
paralogs in tomato and all these 10 genes (P69A-J) form a gene array at
a single genomic cluster on chromosome 8 (Supplementary Fig. 5a).
These P69B paralogs are all inducible by biotic stress but their tran-
scriptional induction varies between cultivars and pathogens (Sup-
plementary Fig. 5b). Interestingly, residue variation between P69
paralogs mostly locates at the edge of the substrate binding groove
(Supplementary Fig. 5c). These ‘ring-of-fire’ positions will likely cause
differential sensitivity of the paralogs for the different pathogen-
derived inhibitors. This variation indicates that the P69B paralogs
evolved from parallel arms races with pathogen-secreted inhibitors,
resulting in gene duplication and diversification in the ancestral
Solanum species. Taken together, these observations indicate a fasci-
nating arms race at the plant-pathogen interface.

Although we report a successful use of AFM in predicting cross-
kingdom interactions, we did notice that AFM can produce false
negative scores. Some well-established inhibitor-hydrolase interac-
tions receive relatively low ipTM+pTM scores. Avr2-Rcr3 for instance,
scored only 0.44, despite being well-established65. Scores were also
unexpectedly low for Vap1-Rcr366 (0.51); SDE1-RD21a13 (0.53), Pit2-
CP1A12 (0.35), Pep1-Pox1267 (0.37), and Gip1-EGase20 (0.28), despite
their reported interactions. These low scores indicate that AFM can
produce false negatives. Some of the low scores might be due to low
mean non-gap MSA depth for some of the SSPs, which is below the
desired 100 MSA for 45% of the tested SSPs. This implies that new
interactions might be discovered when additional SSP sequences are
added to the database.

The simultaneous discovery of four novel P69B inhibitors
demonstrates that artificial intelligence can be a powerful ally in the
prediction of cross-kingdom interactions at the plant-pathogen

Fig. 5 | P69B is an effector hub targeted by five pathogen-derived inhibitors.
AFM-predicted models of P69B without inhibitor (a), or with XpSsp1; (b) CfEcp36;
(c) FoTIL; (d) FoSix15 (e) and PiEpi1 (f). P69B is shown in a gray surface repre-
sentation with the hyper-variant residue (crème) and the active site (red), in the
substrate binding groove that has substrate binding pockets (S4-S2-S1-S2’) that
bind to substrate/inhibitor residues P4, P2, P1 and P2’, respectively. The inhibitors
are shown as cartoons and sticks and colored using a rainbow scheme based on
their plDDT scores, which range from 0 (worst) to 100 (best). The zoomed image
(bottom) shows the predicted occupation of the substrate binding pockets in P69B

by different residues of the inhibitor. g Sequence conservation between homologs
of the identified P69B inhibitors. Shown is the sequence logo for n = x close
homologs from other plant pathogen species, identified by BLAST searches in the
NCBI database and presented in Weblogo95. Highlighted are the residues that
probably interact with the substrate binding pockets in P69B (circles); the con-
served Asp residue in CfEcp36 that interacts with the catalytic site (blue); the
residues thatmight interact with the variant residue in P69B (arrows); and putative
disulfide brides observed in the AFM model (gray lines). PDB files for the shown
models are available in Supplementary Data 3.
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interface. This in-silico interactomic approach overcomes important
limitations of traditional assays such as Y2H, CoIP and phage display,
which are challenging to apply for secreted proteins having disulfide
bridges and interacting at apoplastic pH (pH 5–6). Some of the current
limitations of AFMmight be overcomeby increased sequencing andby
further development of prediction algorithms, evaluation and ver-
ification methods such as AF2Complex68, RoseTTAFold69, ESMFold70,
and PAE viewer71. For instance, screens for hydrolase inhibitors can be
automated using a script that searches for residues of candidate
inhibitors that are in close proximity to the active site. We propose
artificial intelligence to predict plant-pathogen interactions will be a
revolutionary approach in future research.

Methods
Protein complex prediction with AFM
Protein complexes were modeled using AFM v2.1.122,23. Template
sequence searches of individual proteins were re-used to model pro-
tein complexes as they are identical betweenAlphaFold2 andAFM.The
AFM-specific database search against the unclustered Uniprot data-
base with JackHMMer v3.3 was added for each monomer as in AFM
(Supplementary Data 1, script-1). For each protein complex, AFM
additionally matched hidden Markov models extracted from the Uni-
ref90 MSA against the Protein Data Bank (PDB) seqres database. The
small bfd database was used and all databases were downloaded as
instructed in the’download_all_data.sh’ file from the AlphaFold2 v2.1.1
releaseonGitHub. The sequences for the four control complexes are in
Supplementary Data 2. The structure files (.pdb) of the four control
complexes and 15 putative inhibitor-hydrolase complexes are pro-
vided in Supplementary Data 3.

Analysing output parameters of AFM
Mean non-gap amino acid depth for chains of each protein were cal-
culated using the features.pkl output file generated by AFM (Supple-
mentary Data 1, script-2). Mean non-gap MSA depths for proteins
modeled in several different complexes are the mean of their mean
non-gap MSA depths from all complexes. Total computing time cal-
culations of AFM were based on the timings.json file of each protein
complex. To calculate CPU andGPU hours based the timings.json files,
it is necessary to know that all AlphaFold2 monomer computations
were completed with eight CPU cores and one GPU at any time. AFM
computations were executed with one CPU core and one GPU at
any time.

Tomato and plant pathogen proteomes and transcriptomes
Amino acid sequences of tomato proteins were from the S. lycopersi-
cum ITAG4.0 proteome72. Tomato amino acid sequences of Solyc
09g098540.3.1 (class I chitinase), Solyc05g050130.4.1 (class III chit-
inase), Solyc07g005090.4.1 (class V chitinase), Solyc08g079870.3.1
(P69B), Solyc02g077040.4.1 (Pip1) and Solyc08g067100.2.1 (A1P) are
listed in Supplementary Data 4. The proteomes and transcriptomes
were from the following genome assemblies: GCF_000007805.1
(P. syringae pv. tomatoDC3000); GCF_000009125.1 (X. perforansDMS
18975); GCF_000009125.1 (R. solanacearum GMI1000); GCF_000
143535.2 (B. cinerea B05.10); GCF_000149955.1 (F. oxysporum f. sp.
lycopersici 4287); GCA_020509005.1 (C. fulvum Race5_Kim) and
GCF_000142945.1 (P. infestans T30-4).

Comparisons between predicted- and experimentally-resolved
protein structures
We identified experimentally resolved protein structures with similar
fold to predicted protein structures from the PDB using the DALI
protein structure comparison server27. To compare structural similar-
ity betweenmonomers,we aligned alpha carbon atomsof theproteins’
backbones and calculated TM and RMSD metrics using TMalign
v2019042529. To compare structural similarity between full protein

complexes and complex interfaces, we aligned alpha carbon atoms of
the complexes’ protein backbones and calculated TM and RMSD
metrics using USalign v2022092473. All TM scores were normalized
relative to the length of the experimentally resolved proteins. Interface
residues of experimentally resolved protein complexeswere identified
using Pymol’s InterfaceResidues script.

Prediction of small secreted proteins (SSPs)
A custom secretion prediction pipeline was used to predict SSPs likely
to remain in the apoplast74 (Supplementary Data 1). Proteins were
considered apoplastic proteins if they were predicted to be secreted
by either SignalP5.0 or TargetP2.0 or both and were predicted to be
localized in the apoplast by ApoplastP1.0.1. Proteins were considered
small if their full-length sequence was predicted to be <35 kDa. If a
protein had been predicted by SignalP5.0 to be secreted, we used the
mature sequence as predicted by SignalP5.0. If a sequence was only
predicted by TargetP2.0 to be secreted, the mature sequence as pre-
dicted byTargetP2.0. An additional 14 known apoplastic proteins were
added from C. fulvum and F. oxysporum f. sp. lycopersici that did not
have identical copies in the predicted proteomes used for this study.
These additional 14 proteins included C. fulvum proteins AIZ11404.1
(Avr2), AHY02126.1 (Avr5) and AQA29222.1 (Ecp17) and F.oxypsorum f.
sp. lycopersici proteins ALI88770.1 (Six1), UEC48541.1 (partial Six3),
BAM37635.1 (Six4), ALI88836.1 (Six6), AIY35187.1 (Six7), ACN69118.1
(Six8), AGG54051.1 (Six10), AGG54052.1 (Six11), ANF89367.1 (Six12),
AGG54055.1 (Six14) and APP91304.1 (Six15). All mature, small, puta-
tively apoplastic pathogen-derived proteins were filtered against any
duplicated amino acid sequences using seqkit75. All mature 1879 SSP
sequences used for the AFM screen are in Supplementary Data 5.

RNA-seq data mining, raw reads filtering and mapping of trim-
med reads
Publicly available raw-read RNA-seq data sets were downloaded of
infected plant tissue for R. solanacearum infecting tomato petioles
(SRR5467166, SRR5467167, SRR5467168), B. cinerea infecting tomato
leaves (SRR6924534, SRR6924535, SRR6924536), F. oxysporum f. sp.
lycopersici infecting tomato roots (SRR6050413, SRR6050414) and C.
fulvum infecting tomato leaves (SRR1171035, SRR1171040, SRR1171043,
SRR1171047) from NCBI’s sequence read archive. No suitable in planta
RNA-seq dataset for X. perforans was identified. Each sequencing read
was labeled by its likely source of origin with Centrifuge 1.0.476 using
the NCBI nucleotide non-redundant sequences, last updated 03/03/
2018. To analyse gene expression for tomato pathogens, we removed
putative host-derived RNA reads by filtering against taxonomic ids
3700 (Brassicaceae), 3701 (Arabidopsis), 3702 (A. thaliana), 4070
(Solanaceae), 4081 (S. lycopersicum) and 4107 (Solanum). To analyse
gene expression for tomato, we selected reads for taxonomic ids 4070
(Solanaceae) and 4081 (S. lycopersicum) and 4107 (Solanum). Filtered
RNA-seq reads were quality trimmed using timmomatic 0.39 (‘LEAD-
ING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36’ for unpaired and
paired-end reads)77. Host-filtered and quality-trimmed reads were
mapped onto predicted coding sequences from respective genome
assemblies using Kallisto v0.46.278. Genes were considered expressed
during infection if they exceed an average gene expression ≥2 TPM.
The minimum expression level of EBI’s gene expression atlas
is 0.5 TPM.

Generating sequences of P69B orthologs in wild tomato species
Publicly available genomic sequencing reads of eleven wild
tomato species from NCBI’s sequence read archive were downloaded:
S. lycopersicum var. cerasiforme BGV006865 (SRR7279628), S. pimpi-
nellifolium LA2093 (SRR12039813), S. cheesmaniae LA0483 (ERR
418087), S. arcanum LA2157 (ERR418092), S. neorickii LA2133
(ERR418090), S. hualylasense LA1983 (ERR418095), S. chilense LA3111
(SRR13259416), S. corneliomuelleri LA0118 (ERR418061), S. peruvianum
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LA1954 (ERR418094), S. habrochaites LYC4 (ERR410237) and S.
pennellii LA0716 (ERR418107)79–81. Genomic sequencing reads were
quality trimmed using trimmomatic v0.39 with the following setting-
s’LEADING:3 TRAILING:3 SLIDINGWIN- DOW4:15 MINLEN:36’77. Reads
were mapped against the Sol4.0 S. lycopersicum reference genome
assembly using BWA-MEM v0.7.1782. Mapped reads were processed
and sorted using Samtools v1.783,84. InDels were realigned using GATK
v3.8-1-0-gf15c1c3ef85. Variants were called using bcftools v1.7 using a
phred score of 20 as a cut off84, and phased using whatshap v1.086.
Coding sequences from different species were generated from loci
using exonerate v2.4.087. These alleles were generated using
three standardized snakemake v6.7.0 workflows88–90 (Supplemen-
tary Data 1).

P69B cloning and purification
First, pJK187 was generated by introducing fragments from
pAGM4723, pICH41308, pICH51288 and pICH4141491,92 into pJK00157,
resulting in a binary pJK187 plasmid that contains the 35S promoter
and 35S terminator with the nptII kanamycin and LacZ as the fragment
to be replaced by insert sequences.

The gene sequence of P69B (with NtPR1a signal peptide, see
Supplementary Table 7) was synthesized at Twist Bioscience and
inserted into the binary vector pJK187 using BpiI to yield NtPR1a-P69B-
His (pFH20). Plasmids were sequenced using Source Bioscience using
35S promoter (5′-ctatccttcgcaagacccttc-3′) and terminator (5′-ctcaa-
cacatgagcgaaacc-3′) primers to confirm the inserts. Validated binary
plasmids were transformed into A. tumefaciens GV3101 (pMP90) via
heat shock transformation.

Four-week-old N. benthamiana plants were infiltrated with a 1:1
mixture of Agrobacterium tumefaciens GV3101(pMP90) OD600 = 0.5)
containing pFH20 and silencing suppressor p1993, respectively. Apo-
plastic fluid containing P69B-His was extracted 5 days after infiltration
as previously described19. The recombinant protein of P69B-His was
purified by HisPur™ Ni-NTA resin and concentrated in 25mM Tris-HCl
pH= 6.8 using a 50 kDa MWCO Amicon Ultra-15 filter.

Expression and purification of putative inhibitors
A sequence encoding His-MBP-TEV was synthesized at Twist
Bioscience (South San Francisco, Supplementary Table 7) and inserted
into the pET-32/28 vector94 using NheI and XhoI restriction sites to
generate the pET-32/28-His-MBP-TEV vector pHJ000 (Supplementary
Table 8). Codon-optimized sequences encoding the different candi-
date inhibitors were synthesized at Twist Bioscience (Supplementary
Table 7), amplified using cloning primers (Supplementary Table 9) and
ligated into the pHJ000 using ClonExpress Ultra One Step Cloning Kit
(Vazyme Biotech) to yield His-MBP-inhibitor constructs pHJ028 (P3,
XpSsp1); pHJ043 (P4); pHJ033 (P5,CfEcp36); pHJ029 (P6); pHJ032 (P7);
pHJ030 (P8, FoTIL); pHJ031 (P9, FoSix15), respectively (Supplementary
Table 8). The gene fragments of Epi1 and EpiC1 were amplified from
pFlag-Epi16 and pJK155 (pET28b-T7::OmpA-HIS-TEV-EpiC1), respec-
tively, to yield constructs pHJ046 (PiEpi1) and pHJ047 (PiEpiC1),
respectively. All the cloning and sequencing primers are provided in
Supplementary Table 9.

The plasmids were transformed into E. coli Rosetta-gami B(DE3)
pLysS (Novagen, Sigma-Aldrich) and cultures in LB (Luria-Bertani)
liquid medium were induced with 0.1mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) and incubated at 18 °C for 24 h. Cells
were pelleted by centrifugation at 8000 x g for 5min and the super-
natant was discarded. The cell pellet was resuspended in 50mM Tris-
HCl, pH 7.5. The CelLytic™ Express (Sigma-Aldrich) was used for bac-
terial cell lysis, and the supernatant was collected for further protein
purification. The recombinant proteins were purified using HisPur™
Ni-NTA resin (Thermo Fisher Scientific) and amylose resin (NEB), and
then the TEV protease (Sigma-Aldrich) was added to remove the

purification tags. His-tagged TEV protease and purification tags were
removed over Ni-NTA and a 30 kDa Amicon filter, whilst concentrating
the cleaved inhibitor protein in 25mMTris-HCl pH 6.8. Inhibitors were
used immediately or stored at −80 °C.

Inhibition assays
The Bio-Rad DC Protein assay kit was used to measure the protein
concentration of candidate inhibitors and P69B. To test the P69B
inhibition, 85 pmol purified candidate inhibitors were preincubated
with 0.85 pmol purified P69B-His protein at room temperature for
0.5 h in 25mM Tris-HCl (pH 6.8), 1mM DTT, and then labeled by
adding 0.5μM FP-TAMRA (Thermo-Fisher) and incubating for 1 h at
room temperature in the dark. The labeling reaction was stopped by
adding 4× loading buffer (200mMTris-HCl (pH 6.8), 400mMDTT, 8%
SDS, 0.2%bromophenol blue, 40% glycerol) and boiling for 7min at
95 °C. Samples were separated on 15% SDS-PAGE gel. The gel was
washed three times with Milli-Q water and scanned for fluorescence
with the Typhoon scanner (GE Healthcare) using a Cy3 setting. Signal
intensities were quantified using ImageJ and normalized to the EpiC1
negative control. Statistical testing of inhibition was based on two-
sided, pairwise comparisons between the putative inhibitor and the
EpiC1 negative control. Calculated p-values were adjusted for multiple
testing using the Benjamini–Hochberg procedure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
The generated scripts are available in Supplementary Data 1 and on
Zenodo: secretion prediction pipeline;74 variant calling pipeline;88

phasing pipeline;89 and CDS extraction pipeline90.
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