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Mapping the spatial transcriptomic
signature of the hippocampus during
memory consolidation

Yann Vanrobaeys1,2,3, Utsav Mukherjee 1,2,4, Lucy Langmack1,2,5,
Stacy E. Beyer1,2, Ethan Bahl3,6, Li-Chun Lin1,2, Jacob J. Michaelson 2,6,
Ted Abel 1,2 & Snehajyoti Chatterjee 1,2

Memory consolidation involves discrete patterns of transcriptional events in
the hippocampus. Despite the emergence of single-cell transcriptomic profil-
ing techniques,mapping the transcriptomic signature across subregions of the
hippocampus has remained challenging. Here, we utilized unbiased spatial
sequencing to delineate transcriptome-wide gene expression changes across
subregions of the dorsal hippocampus of male mice following learning. We
find that each subregion of the hippocampus exhibits distinct yet overlapping
transcriptomic signatures. The CA1 region exhibited increased expression of
genes related to transcriptional regulation, while the DG showed upregulation
of genes associated with protein folding. Importantly, our approach enabled
us to define the transcriptomic signature of learning within two less-defined
hippocampal subregions, CA1 stratum radiatum, andoriens.Wedemonstrated
thatCA1 subregion-specific expressionof a transcription factor subfamily has a
critical functional role in the consolidation of long-term memory. This work
demonstrates the power of spatial molecular approaches to reveal simulta-
neous transcriptional events across the hippocampus during memory
consolidation.

Activity-dependent gene expression occurs in wave-like patterns fol-
lowing experience. The early wave of transcriptional events involves
increased expression of immediate early genes (IEGs) and newly syn-
thesized proteins to regulate downstream gene expression1–3. IEGs
encoding transcription factors, such as Fos, Egr1, and the Nr4a sub-
family, regulate a larger, more diverse set of effector genes that
mediate the structural and functional changes underlying synaptic
plasticity. Gene expression at these critical time points is essential to
drive responses to experience, including memory consolidation.
Newly formed memory is thought to be stored within functionally
connected neuronal populations in the hippocampus through
dynamic gene expression patterns, known as engram ensembles4–7.

Dynamic transcriptional patterns within the circuitry supporting
engram ensembles enable the consolidation of memory from the
hippocampus to multiple brain regions4,8–11. Neuronal populations
contributing to engram ensembles are activated by learning and
endure cellular changes10,12, which can later be reactivated formemory
retrieval13 or inhibited inducing memory impairments14. Therefore,
understanding the transcriptional dynamics throughout the hippo-
campus following an experience would provide important insights
into the molecular mechanisms underlying memory consolidation.

The circuitry encompassing different subregions of the dorsal
hippocampushas distinct roles inmemoryconsolidation15–17. Layer II of
the entorhinal cortex (EC) projects to granule cells of thedentate gyrus
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(DG) and pyramidal neurons of the CA3 region through the perforant
pathway (PP), and layer III of EC projects to the pyramidal neurons of
CA1 through the temporoammonic and alvear pathways18–20. Thedirect
EC input to CA1 is essential for spatial memory consolidation and
novelty detection21–24. DG granule cells project onto CA3 pyramidal
neurons through mossy fibers, and CA3 pyramidal neurons send pro-
jections to CA2 and CA1 pyramidal neurons through the Schaffer col-
lateral (SC) pathway25–27. The axons from CA1 pyramidal neurons
project onto subiculum and EC neurons, forming the major output
pathway of hippocampal circuits28. The DG is the site of adult neuro-
genesis in the hippocampus29. Adult newborn granule cells mediate
pattern separation in the DG30, while mature granule cells in DG and
CA3 pyramidal neurons are essential for pattern completion, involving
associative memory recall from a partial cue31,32. Thus, hippocampal
memory relies on the association between items and contexts33, with
neurons in the CA1 processing information about objects and
locations34 and DG neurons driving pattern separation to reduce
overlap between neural representations of similar learning
experiences35–37. Nevertheless, the spatial transcriptomic changes in
response to learning underlying the circuitry across subregions of the
dorsal hippocampus remain largely unknown.

Hippocampal engram ensembles have been studied using the
expression of individual IEGs11 within the whole hippocampus38,39,
CA140,41, DG42,43, and hippocampal neuronal nuclei41,44,45, but not across
all subregions simultaneously. A relatively new approach is targeted
recombination of active neuronal populations (TRAP) to study
unbiased cell-type specific gene expression in the hippocampus fol-
lowing a learning experience4,45. Fos is one IEG that is thought to link
hippocampal engrams and place codes underlying spatial maps7,46.
Single-nuclei RNA sequencing identified downstream targets of Fos in
CA1 pyramidal cells following neuronal stimulation47 and defined the
role of cell type-specific expression of Fos in CA1 for spatial
memory7,46,47. Single-nuclei transcriptomic studies from Fos+ (acti-
vated) and Fos- (non-activated) hippocampal neurons following
exposure to a novel environment revealed transcriptomic differences
between DG and CA1 neurons48. Other studies have applied a similar
approach in the hippocampus to capture engram cells following
learning45 or activated neurons following neuronal stimulation2,43.
These advancements allow transcriptional profiles to be sorted into
cell types based on canonical marker genes49,50. However, it is still
unclear how gene expression differs after learning across each sub-
region without using engram-specific or IEG markers. Understanding
unbiased expression will help define engram ensembles and identify
unique roles for each of these subregions in memory consolidation.

Utilizing the spatial coordinates within intact brain tissue
enables unbiased yet precise identification of transcriptomic chan-
ges at high spatial resolution51,52. Spatial transcriptomics combines
both histology and spatial profiling of RNA expression to provide
high-resolution transcriptomic characterization of distinct tran-
scriptional profiles within individual brain subregions53. We have
recently used the spatial transcriptomic approach to demonstrate
neuronal activation patterns within brain regions using a deep-
learning computational tool54. In this work, we have applied this
state-of-the-art approach to examine activity-driven spatial tran-
scriptomic diversity within the hippocampal network. We define
genome-wide transcriptomic changes in the CA1 pyramidal layer,
CA1 stratum radiatum, CA1 stratum oriens, CA2 + 3 pyramidal layer,
and dentate gyrus (DG) granular and molecular layers of the dorsal
hippocampus within the first hour following spatial exploration.
Moreover, we demonstrated the functional relevance of our findings
by selectively manipulating the function of the Nr4a subfamily of
transcription factors within CA1 pyramidal neurons. Mapping the
precise learning-induced expression pattern of genes across the
hippocampus enhances our understanding of their subregion-
specific role in memory consolidation.

Results
Pseudobulk analysis of hippocampal spatial transcriptomics
following learning correlates with bulk RNA sequencing
The growing knowledge of transcriptomic heterogeneity in the hip-
pocampus raises the critical question of which genes are selectively
regulated within each subregion during a critical early time point of
memory consolidation. We performed spatial transcriptomic analyses
using the 10x Genomics Visium platform in coronal brain slices
obtained from adult C57BL/6 J male mice 1 hr after training in a
hippocampus-dependent learning task compared to homecage con-
trols (Spatial object recognition task, SOR,n = 4/group, Fig. 1a).We and
others have previously demonstrated that the learning-induced early
waveof gene expressionpeaks at this timepoint after learning39,55,56.We
analyzed additional transcriptomic profiles by integrating our pre-
vious spatial transcriptomics dataset following SOR training54 (GEO
GSE201610, n = 3/group). Increasing the number of biological repli-
cates can improve statistical power and improve the robustness of the
results as shown previously57,58. The profiles used for all spatial tran-
scriptomics data analyses (pseudobulk analysis, total n = 7/group,
Supplementary Fig. 1) include the hippocampal subregions CA1 pyr-
amidal layer, CA1 stratum radiatum, CA1 stratum oriens, CA2 and CA3
pyramidal layers and DG granular layers (Fig. 1b). Here, pseudobulk
analysis refers to grouping of each dot from a given brain slice to form
a single pseudo-sample. Differential gene expression analysis of this
pseudobulk data revealed 119 differentially expressed genes (DEGs),
with 101 upregulated and 18 downregulated genes following learning
(Fig. 1c, d, Supplementary Data 1). The gene expression changes across
the two datasets correlated significantly (Supplementary Fig. 2).
Enrichment network analysis was used to identify the pathways most
represented among the DEGs. The upregulated pathways include
nuclear receptor activity, nucleotide transmembrane transporter
activity, protein kinase inhibitor activity, dioxygenase activity and
histone demethylase activity (Fig. 1e). The nuclear receptor activity
includes the genes Nr4a1, Nr4a2 and Nr4a3, that comprise a subfamily
of transcription factors known to be involved in learning and
memory59,60. Histone demethylation activity has been linked to mem-
ory consolidation61, while mutations in JMJD1C are associated with
intellectual disability62. Protein kinase inhibitors are often found to be
upregulated following learning, acting as a negative regulators of
transcription activation pathways, such as MAPK pathway63, and
memory suppressor genes64. Other IEGs upregulated following learn-
ing include Egr1, Arc, Homer1, Per1, Dusp5, and Junb and are all asso-
ciated with learning and memory2,38,65.

Over the past decade, bulk RNA sequencing (RNA-seq) has been
extensively used to study transcriptional profiles from brain
tissue40,41,59. Therefore, to complement our spatial transcriptomic
approach with conventional transcriptomic tools, we performed RNA-
seq using whole dorsal hippocampus tissue (bulk RNA-seq) frommice
trained in SOR (1 h) or homecage. Bulk RNA-seq analysis revealed 224
DEGs (Fold change: 1.4, FDR <0.05) following SOR training compared
to control mice, with 147 upregulated and 77 downregulated genes
after learning (Fig. 2a, Supplementary Data 2). We next asked whether
our pseudobulk spatial transcriptomics data overlappedwith learning-
induced gene expression changes of bulk RNA-seq. Among the 101
upregulated genes from pseudobulk spatial transcriptomics, 29 genes
were identified with bulk RNA-seq. Only one gene among 18 down-
regulated genes appeared in bulk RNA-seq. Genes differentially
expressed in pseudobulk RNA-seq significantly correlate with bulk
RNA-seq, and the directionality of the change in expression was
maintained (Fig. 2b). Nr4a1, Dusp5, Arc, Sgk1 appeared among the top
genes both in the pseudobulk and the bulkRNA-seq (Fig. 2b, c). Among
these genes, Nr4a1 and Sgk1 are upregulated within the 30min-1 h
temporal window and their expression is comparable to homecage
post 1 h timepoints (Fig. 2d). Oligodendrocyte differentiation-related
gene Opalin was the only common downregulated gene (Fig. 2b).

Article https://doi.org/10.1038/s41467-023-41715-7

Nature Communications |         (2023) 14:6100 2



Pseudobulk analysis also revealed differentially expressed genes
that were not identified by bulk RNA-seq approach. Some of these
upregulated transcripts identified using pseudobulk spatial tran-
scriptomics include genes related to chromatin binding (Ncoa2, Polg,
Smc3, Bcl6, Jdp2, Sp3), protein kinase inhibitors activity (Spred1, Trib2)
and chaperone binding (Dnajc3, Sacs, Grpel2). Some of the down-
regulated genes includedmyelin oligodendrocyte glycoprotein (Mog),
myelin-associated glycoprotein (Mag) and long noncoding RNA,Mir9-
3hg. These results demonstrate that spatial transcriptomics using the
Visium platform detects DEGs that overlap with other transcriptomic
approaches yet reveals genes that may be undetectable in other
techniques. On the contrary, bulk RNA-seq identified genes that were
not identified in the pseudobulk analysis. Some of these include genes
related to transcription regulation (Fos, Egr2, Hif3a, Fosl2, Nfkbia),
protein processing in the Endoplasmic Reticulum (Hspa1b, Hspa1a,
Herpud1, Pdia6, Pdia4, Hsph1) and protein kinase regulator activity
(Hspb1, Cdkn1a, Trib1, Cables1) (Supplementary Data 1 and 2). Thus,
both the techniques can be applied to understand transcriptomic
changes across hippocampal subregions.

Hippocampal subregions exhibit distinct transcriptomic sig-
natures following learning
The dorsal hippocampus is composed of multiple anatomically and
functionally distinct subregions. Here we distinguished the major
principal neuronal layers and memory-relevant hippocampal
regions: CA1 pyramidal layer, CA1 stratum radiatum, CA1 stratum
oriens, CA2 and CA3 pyramidal layers combined, and DG granular
layer based on spatial topography by H&E staining (Fig. 3a). Com-
putational analysis of the transcriptomic profiles from these hippo-
campal subregions reveals distinct clusters in a UMAP plot (Fig. 3b).
Analyzing the hippocampal subregion-specific transcriptomic sig-
nature after learning revealed 58 differentially expressed genes in the
CA1 pyramidal layer, 16 genes in the CA2 and CA3 pyramidal layers,
and 104 genes in the DG molecular and granular layer (Supplemen-
tary Fig. 3, Supplementary Data 3). Within each subregion, spa-
tial learning resulted in 46 upregulated and 12 downregulated genes
in the CA1 pyramidal layer, 13 upregulated and 3 downregulated
genes in CA2 and CA3 pyramidal layers, and 68 upregulated and 36
downregulated genes inDG (Fig. 3c). In addition to theCA1pyramidal

Fig. 1 | Pseudobulk RNA-seq analysis of spatial transcriptomic data defines
learning-induced gene expression in the hippocampus. a Schematic of the
spatial learning paradigm, followed by a graphic description of the Visiumpipeline.
b Visual depiction of spots across all the hippocampal subregions used for pseu-
dobulk RNA-seq analysis. c Bar graph illustrating the total number of upregulated
and downregulated genes computed from the pseudobulk RNA-seq data. d Heat

map generated from individual Visium spots of the 40 top significant differentially
expressed genes after learning. Red: upregulated, and blue: downregulation genes.
e Gene Ontology (GO) enrichment analysis performed on all the differentially
expressed genes based on their molecular function (MF). Total 7 mice/group,
males only.
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layer, we also investigated the transcriptomic signature exhibited by
the less-defined subregions CA1 stratum radiatum and stratum
oriens that lack subregion-specific marker genes. CA1 stratum
radiatum is the suprapyramidal region containing apical dendrites of
pyramidal cells where CA3 to CA1 SC connections are located.
CA1 stratum oriens is the infrapyramidal region containing basal
dendrites of pyramidal cells where some CA3 to CA1 SC connections
are located. However, heterogenous population of interneurons and
other non-neuronal cells, such as oligodendrocytes66, are also scat-
tered through these layers. Differential gene expression analysis
from these CA1 regions identified 10 upregulated and 1 down-
regulated gene in stratum radiatum and 9 upregulated and 9 down-
regulated genes in stratum oriens (Fig. 3c).

Enrichment network analysis was used to identify the pathways
most represented among the DEGs in each hippocampal subregion.
The pathways enriched in the CA1 pyramidal layer include nuclear
receptor activity and MAP kinase tyrosine/serine/threonine

phosphatase activity (Fig. 3d). In contrast, the pathways in DG include
protein kinase inhibitor activity and protein disulfide isomerase
activity (Fig. 3e). We utilized an upset plot and a heatmap to compare
the differentially expressed genes from each hippocampal subregion
(Fig. 3f, g). This analysis identified 51 genes that were exclusively
upregulated in DG, 22 genes exclusively upregulated in the CA1 pyr-
amidal layer, and 11 genes upregulated in both CA1 and DG, but not in
other hippocampal subregions (Fig. 3f). Some of these 11 common
genes are involved in protein folding (Xbp1, Sdf2l1, Dnajb1) and the
MAPK pathway (Spred1). Genes related to activity-driven transcription
regulation andMAPK pathway regulation (Arc,Nr4a2, Per1, and Dusp5)
were upregulated both in CA1 and CA2 +CA3 pyramidal layers, while
Nr4a1 and Egr3 were upregulated in the CA1 pyramidal layer, stratum
radiatum and stratum oriens. These findings suggest large-scale tran-
scriptional changes in DG, while CA1 and CA2 +CA3 pyramidal regions
showed increased activation state of IEGs linked to engram ensembles
following spatial learning.

Fig. 2 | Comparison of the pseudobulk RNA-seq with the bulk RNA-seq dataset
after learning. a Volcano plot illustrating the most significant differentially
expressed genes after learning from a bulk RNA-seq experiment performed from
the dorsal hippocampus 1 h after learning. homecage (n = 4), SOR (n = 4), males
only. b Quadrant plot depicting the correlation between differentially expressed
genes identified in bulk RNA-seq and pseudobulk RNA-seq. c Heatmap showing
expression of the top 15 genes frombulkRNA-seq in the pseudobulk samples. *Star
indicates significant in both bulk- and pseudobulk-RNA-seq. Rpl7a-ps3, Gm19439,
Olfr1344 genes were not detected in pseudobulk analysis. d Expression of Sgk1 and
Nr4a1 in C57BL/6 Jmalemice trained in SOR and euthanized at the early timepoints
after training (0.5 hour, 1 hour and 2 hours: n = 4 per group), expressed as fold
difference from thatofmicehandledonly in the homecage (HC) (baseline controls,
n = 4). One-way ANOVA: Sgk1: F (3, 12) = 128.3, P <0.0001. Dunnett’s multiple

comparisons tests: ****P <0.0001 (HC versus 0.5-hour, P =0.000000038587),
****P< 0.0001 (HC versus 1 hour, P =0.000000026741), P =0.0972 (HC versus
2 hour). One-way ANOVA: Nr4a1: F (3, 12) = 43.31, P <0.0001. Dunnett’s multiple
comparisons tests: ****P<0.0001 (HC versus 0.5-hour, P =0.00000064817),
***P =0.0005 (HC versus 1 hour, P =0.000495606787944), P =0.331 (HC versus
2 hour). Error bars represent ± SEM. e Expression of Sgk1 and Nr4a1 in C57BL/6 J
male mice trained in SOR and euthanized at the late timepoints after training
(6hours and 8 hours: n = 4 per group), expressed as fold difference from that of
mice handled only in the homecage (HC) (baseline controls, n = 4). One-way
ANOVA: Sgk1: F (2, 9) = 0.4798, P =0.6339. Dunnett’s multiple comparisons tests:
P =0.1623 (HC versus 6-hour), P =0.488 (HC versus 8-hour). One-way ANOVA:
Nr4a1: F (2,9) = 0.083, P =0.921. Dunnett’s multiple comparisons tests: P =0.9931
(HC versus 6-hour), P =0.8969 (HC versus 8-hour). Error bars represent ± SEM.
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Although fewer genes were downregulated following learning
compared to upregulated genes, Kcna4, Usp2, and Shisa4 were
downregulated in bothCA1 andDG subregions (Supplementary Fig. 4).
Kcna4 (Potassium Voltage-Gated Channel Subfamily A Member 4)
expression was found to be increased in amyloid beta-induced cog-
nitive impairment67, suggesting its downregulation couldhave a role in
learning and memory. Similarly, genes encoding two evolutionarily
conserved RNA-binding proteins, Rbm3 and Cirbp, were exclusively
downregulated in DG (Supplementary Fig. 4) and shown to be differ-
entially expressed in the hippocampus when memory is impaired68,69.
Among the genes downregulated exclusively in CA1 stratum oriens,
Mbp,Mobp and Plp1 are associated with structural constituents of the
myelin sheath, and Opalin is involved in oligodendrocyte differentia-
tion.While adult oligodendrogenesis andmyelination in the cortex are
required for memory consolidation70, the underlying relevance of the
downregulation of these genes in hippocampal subregion CA1 stratum
oriens is not clear.

Functional relevance of subregion-specific expression of genes
encoding the Nr4a family members
The nuclear receptor 4a (Nr4a) subfamily of transcription factors are
critical mediators of memory consolidation. They are robustly upre-
gulated in the hippocampus within minutes after learning to regulate
downstream gene expression56,71,72. We have previously generated a
dominant negative mouse model of Nr4a transcription factors, which
expresses a mutant form of Nr4a1 (Nr4ADN) lacking a key transcrip-
tional activation domain59 and blocking downstream gene expression
of all the Nr4a subfamily members through dimerization73. Our spatial
transcriptomicsdata revealedupregulation of all the threemembers of
the Nr4a subfamily (Nr4a1, Nr4a2 and Nr4a3) in the CA1 pyramidal
layer following learning (Fig. 3). This signature was absent in the den-
tate gyrus. We validated Nr4a1 and Nr4a2 gene expression following
SOR training using an in situ-based approach. We found that both
Nr4a1 was upregulated at both 30min and 1 hr, and Nr4a2 was upre-
gulated at 1 hr in CA1 but not in DG after learning (Supplementary

Fig. 3 | Utilizing spatial transcriptomics to dissect subregion-specific tran-
scriptomic signature of learning in the hippocampus. a Representative depic-
tion of the Visium spots considered to distinguish hippocampal subregions.
bUMAPplot showing spot-clusters demarcating themost prominent hippocampal
subregions. Homecage (n = 7), SOR (n = 7). c Bar graph depicting the total number
of differentially expressed genes corresponding to hippocampal subregions.
d Gene Ontology (GO) enrichment analysis performed on the differentially

upregulated genes in area CA1 pyramidal layer. e Gene Ontology (GO) enrichment
analysis of all differentially upregulated genes in Dentate Gyrus (DG). f UpSet plot
illustrating the spatial pattern of all the significantly upregulated learning-induced
genes throughout the hippocampus. g Heatmap showing extent of expression of
genes that are induced in two or more hippocampal subregions. Dots inside the
box indicate the genes that pass the threshold of FDR <0.05 and log2 fold-
change >1.4.
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Fig. 5a–f, and Supplementary Fig. 6). Importantly Nr4a1 and Nr4a2
upregulation was found in Arc-positive cells in CA1 (Supplementary
Fig. 5g–j).

Previous reports suggest that selectively knocking down the
expression of either Nr4a1 or Nr4a2 in CA1 impairs spatial memory72.
Therefore, we sought to understand whether blocking the transcrip-
tional activation function of all the three Nr4a family members exclu-
sively in CA1 excitatory neurons would impair long-term memory
consolidation.We used an adeno-associated viral construct of Nr4ADN
(AAV-Nr4ADN; 2/2 stereotype to enable minimum diffusion across
different subregions) under a CaMKIIαpromoter to restrict expression
to only CA1 excitatory neurons (Fig. 4a, b and c). AAV-Nr4ADN or
control (AAV-eGFP) was infused into the dorsal CA1 of wild-type mice
4 weeks before SOR training (Fig. 4d). Both AAV-Nr4ADN and control
AAV-eGFP mice showed similar performances in open field during
habituation (Supplementary Fig. 7a, b). During training, they showed a
progressive decrease in exploration towards objects across training
sessions, indicating that learning had occurred (Supplementary
Fig. 7c). During the 24 h test session, control mice showed a significant
increase inpreference for thedisplacedobjectduring the 24 hSOR test
session relative to training, while AAV-Nr4ADN mice failed to show a
preference for the displaced object (Fig. 4e). This demonstrates the
CA1-specific Nr4ADN mice had impairments in long-term memory.
Total explorationof the objects during the test sessionwas unchanged
and did not affect preference for the displaced object (Fig. 4f).

Next, we performed a similar approach to block the transcrip-
tional activation function of Nr4a family members in DG, a hippo-
campal region where the Nr4a genes were not induced following
learning. We infused AAV-Nr4ADN or control AAV-eGFP in the DG of
wild-type mice (Supplementary Fig. 8a) 4 weeks before SOR training
(Supplementary Fig. 8b). Due to low diffusion of AAV2/2, the expres-
sion ofNr4ADNwasmostly restrictedwithin the upper bladeofDG.DG
upper blade has been previously shown to exhibit behaviorally
induced IEG expression74,75. Both AAV-Nr4ADN and AAV-eGFP infused
mice showed similar performances during habituation (Supplemen-
tary Fig. 8c, d) and during the training sessions (Supplementary
Fig. 8e).During the 24 h test session, both the groups ofmice exhibited
intact long-termmemory (Supplementary Fig. 8f). Total exploration of

the objects during the test session was unchanged and did not affect
preference for the displaced object (Supplementary Fig. 8g). Thus,
blocking the Nr4a transcription function exclusively in DG does not
impair memory. This finding indicates that CA1 subregion-specific
expression of Nr4a members is essential for long-term memory, pro-
viding functional relevance for our spatial transcriptomics finding of
CA1 expression of the Nr4a subfamily.

Sgk1 is induced in oligodendrocytes of CA1 stratum radiatum
and oriens following learning
Among the genes induced in stratum radiatum and oriens, protein
kinase Sgk1 was the only upregulated gene appearing in both the
stratum radiatum and oriens but not in the CA1 pyramidal layer
(Fig. 5a, b). Tsc22d3 was found to be specifically induced in stratum
radiatum, while Rasgrp1 was exclusively induced in stratum oriens.
This precise signature of Sgk1 induction following learning was
further validated using an in situ-based RNAscope approach
(Fig. 5c–f). To understand the distinct cell types responsible for
upregulation of Sgk1 following learning, we performed a single-
nuclei RNA seq using a droplet capture independent split-pool
barcoding approach (Fig. 5g). We identified 15 clusters of cells from
the dorsal hippocampus of mice (Fig. 5h). Interestingly, we found
that Sgk1 expression was significantly induced within the oligo-
dendrocyte populations after learning (Fig. 5i). To further confirm
this oligodendrocyte-specific induction of Sgk1 expression, we
performed a single nucleus sequencing assay for transposase-
accessible chromatin followed by sequencing (snATAC-seq, Fig. 5j).
Based on the accessibility of the promoters of marker genes within
each cluster, we were able to identify 11 distinct cell types from
dorsal hippocampus of mice (Fig. 5k). Similar to the findings from
the snRNA-seq, we found a significant increase in the accessibility of
the Sgk1 promoter in oligodendrocytes following learning com-
pared to homecage controls (Fig. 5l). The findings from snRNA- and
snATAC-seq suggests that the induction of Sgk1 seen in the
CA1 stratum radiatum and oriens is restricted to oligodendrocyte
population within these regions. Thus, using spatial transcriptomics
combined with single-nuclei multiomics approaches, we can begin
to demonstrate the precise signature of genes within less defined

Fig. 4 | Functional relevance of spatially reserved signatures of learning
induced Nr4a family gene expression. a Design of the constructs packaged into
Adeno-associated viruses (AAV) to ectopically express the dominant negative (DN)
mutant of Nr4a and EGFP in the CA1 hippocampal subregion. b Western Blot
analysis showing the time course of viral expression at 3-weeks and 4-weeks after
viral infusion. One-wayAnova: Šídák’smultiple comparisons test: eGFP vs Nr4ADN;
n = 2 for the 3-weeks Nr4ADN group; n = 3 for the eGFP and 4-weeks Nr4ADN
groups; males only c Immunohistochemistry against YFP to detect the localization
and spread of the AAV in the dorsal hippocampus. Scale bar represents 500 μm.
d Experimental timeline of AAV-infusion into CA1 excitatory neurons followed by

spatial learning paradigm. e Long-term memory assessment by evaluating pre-
ference for the displaced object (DO) in a spatial object recognition (SOR) task.
2-wayAnova: Significant sessions (Train-Test) x virus (Nr4ADN-eGFP) interaction: F
(1, 18) = 4.537, p =0.0472, main effect of sessions: F (1, 18) = 29.93, p <0.0001 and
main effect of virus: F (1, 18) = 10.26, p =0.0049. Šídák’smultiple comparisons test:
eGFP: train vs test: p <0.0001 (p =0.00000139139405), eGFP (test) vs Nr4ADN
(Test): p =0.0014. Nr4ADN (n = 10) and eGFP (n = 10), males only. Error bars
represent ± SEM. f Total exploration time of all the objects during SOR for both the
experimental groups. Unpaired t test: t (18) = 2.091, p =0.0510. Nr4ADN (n = 10)
and eGFP (n = 10), males only. All the bar and dot plots are mean ± SEM.
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Fig. 5 | Region and cell type specific expressionof Sgk1. a Venn diagram showing
the overlap of upregulated genes exclusive to area CA1 pyramidal layer, Stratum
Oriens, and Stratum Radiatum. b Representative heatmap of spatial gene expres-
sion data showing the expression of Sgk1. c In situ hybridization showing expres-
sion of Sgk1 in CA1 pyramidal later (CA1), CA1 stratum radiatum (SR) and
CA1 stratum oriens (SO) in homecaged (HC) and SOR-trained animals. Scale bar
represents 200 μm. dQuantification of the data from c showing Sgk1 expression in
SR. Homecage (n = 4), learning (n = 4). Unpaired t test: t (6) = 3.613, p =0.0112. Error
bars represent ± SEM. e Quantification of the data from c showing Sgk1 expression
in SO. Homecage (n = 4), learning (n = 4). Unpaired t test: t (6) = 2.541, p =0.0440.
Error bars represent ± SEM. f Quantification of the data from c showing Sgk1
expression in CA1 pyramidal layer. Homecage (n = 4), learning (n = 4). Unpaired t
test: t (6) = 1.046, p =0.3359. Error bars represent ± SEM. g Experimental design of

single nuclei RNA seq using split-pool barcoding method. Homecage (n = 6 mice),
SOR (n = 6mice),males only. hUMAP from split-pool barcoding approach showing
cell type-specific clusters from the dorsal hippocampus. i Violin plot showing
expression of Sgk1 across all the cell types between home cage and learning.
j Experimental design of the single nuclei ATAC seq using droplet capturemethod.
(n = 4 mice), SOR (n = 4 mice), males only. k UMAP showing cell type-specific
clusters from dorsal hippocampus based on promoter accessibility of marker
genes. l Coverage plot showing expression of Sgk1 across all the cell types between
home cage and learning. The quantification of differential accessibility (accessi-
bility score) of the Sgk1 promoter after SOR is represented by the heatmap on the
right. The accessibility score was calculated by multiplying fold change with -log10
p value.
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brain regions that are unable to be distinguished from bulk or
single-nuclei transcriptomic datasets alone.

Discussion
In this study, we uncover a precise transcriptomic signature exhibited
by different hippocampal subregions at a critical early timepoint
during memory consolidation. While previous work has focused on
gene expression changes in the whole hippocampus38,39,55,76 and indi-
vidual subregions40–42,44, our study provides a comprehensive analysis
of simultaneous transcriptomic changes spatially distributed across
the hippocampal subregions in response to learning. Moreover, we
demonstrated that blocking the activity of the Nr4a subfamily of
transcription factors selectively withinCA1 leads to long-termmemory
deficits.

The CA1 pyramidal layer, stratum radiatum, and oriens of the
dorsal hippocampus are critical regions for encoding spatial
memory77. While these principal layers play a role in generating spatial
maps of the environment7,46, the granule cells within the DG are
thought to provide stable representations of a specific
environment78–80. In this study, we identified differential expression
patterns for important IEGs related to transcriptional regulation in the
CA principal layers (CA1 and CA2 + 3) after spatial exploration. Nr4a1
and Egr3were predominantly induced in CA1 subregions, whereas Arc,
Nr4a2, Per1, and Dusp5 were upregulated in CA1 and CA2 + 3 regions.
IEGs Egr1 and Homer1 were found to be upregulated in all subregions
studied, while Gadd45b and Per2 were induced exclusively in DG. This
subregion-specific expression could contribute to the afferent and
efferent connections within the hippocampus, observed within our
specific time point at 1 h. Differential gene induction within a time-
frame has been correlated with the activation of engram ensembles4–7

and place codes underlying spatial maps7,46. Although we found that
the CA1 subregion exhibited a greater number of IEGs associated with
engram ensembles5–7, we observe a greater number of DEGs in DG
compared to CA1 following spatial exploration. This is consistent with
single nuclei data from activated and non-activated neurons from DG
and CA148. Our study identified transcriptomic signatures within the
two understudied hippocampal subregions, CA1 stratum radiatum and
oriens, which have been challenging to delineate using conventional
single-cell sequencing strategies due to a lack of specificmarker genes.
Overall, our study elucidates the transcriptomic diversity that exists
among hippocampal subregions and helped define a spatial map
during an early window of memory consolidation.

The Nr4a subfamily, Nr4a1, Nr4a2, and Nr4a3, serve as major
regulators of gene expression in the hippocampus during memory
consolidation59,60,72,73,81,82. Nr4a1 and Nr4a2 are necessary for object
location memory in the dorsal hippocampus, while only Nr4a2 is
necessary for object recognition memory72. Impairments in Nr4a
function59,83 lead to long-term memory deficits56,59 and reduced
transcription-dependent long-term potentiation (LTP) in CA184. On the
contrary, overexpression or pharmacological activation of Nr4a family
members amelioratesmemorydeficits inmousemodelsofAlzheimer’s
disease and related dementias (ADRD) and age-associated memory
decline59,60,71,85. Our identification of upregulation of all Nr4a subfamily
members after learning inCA1 confirms findings fromprevious studies
using hippocampus-dependent learning tasks71,72,86,87. We further
demonstrate that the CA1-specific expression of the Nr4a subfamily is
functionally relevant to long-term spatial memory within the hippo-
campus. Thus, understanding the spatial component of learning-
induced transcriptomic heterogeneity in the hippocampal cell layers
strongly supports the concept of subregion-specific dissociation as a
molecular mechanism underlying memory consolidation.

The basal dendrites of CA1 pyramidal neurons make up stratum
oriens, while stratum radiatum consists of apical dendrites. Both
stratum radiatum and oriens receive inputs from CA3 Schaffer
collaterals88. We found upregulation inNr4a1,Homer1, Egr1, Egr3, Egr4,

Dnajb5, and Hspa5 in the CA1 pyramidal layer, CA1 stratum radiatum
and oriens. Interestingly, Sgk1was restricted only to the stratumoriens
and stratum radiatum and is known to have a functional role in
memory consolidation. Expression of a dominant negative Sgk1 within
CA1 impaired spatial memory32, whereas constitutively active Sgk1
enhanced spatial memory31. Furthermore, in an APP/PS1-based ADRD
model, Sgk1 was downregulated in the hippocampus, whereas over-
expression of Sgk1 could ameliorate spatial memory deficits34. Sgk1
regulates the Egr1 expression89, an IEG thatwe found upregulated in all
subregions of the hippocampus following learning. Our single-nuclei
transcriptomic and epigenomic studies revealed that Sgk1 is induced
within oligodendrocytes of stratum radiatum and oriens. Oligoden-
drocytes form myelin sheath for the axons of CA1 pyramidal cells66,
suggesting that the role of Sgk1 in the dorsal hippocampus lies within
these supporting subregions of CA1. Studying the spatial patterns of
learning-responsive genes like Sgk1 further defines the role of each
hippocampal subregion in memory consolidation.

We identified twoupregulatedpathways inDG that are involved in
protein kinase inhibitor activity and protein processing in the endo-
plasmic reticulum (ER). We have recently shown that learning induces
the expression of molecular chaperones localized in the ER, and this
protein folding machinery is critical in synaptic plasticity and long-
term memory consolidation59. Here, our spatial transcriptomics data
shows upregulation of genes encoding chaperones in distinct sub-
regions; Hspa5 and Dnajb5 across all the hippocampal subregions,
Xbp1, Sdf2l1 and Dnajb1 in areas CA1 and DG, and Pdia6 and Creld2
exclusively inDG. This suggests thatDG could have a prominent role in
ER protein processing during an early time point after spatial learning,
as ER chaperones are indeed critical mediators of long-term memory
storage59. This work also suggests that there may be distinct protein
processing complexes in different hippocampal subregions to facil-
itate the folding and trafficking of distinct proteins during memory
consolidation.

We compared our DEGs detected from pseudobulk spatial tran-
scriptomics with bulk RNA-seq and found a significant correlation
between the profiles. Although we observed an overlap in DEGs, how
the libraries were prepared, the amount of tissue and subregions
sequenced, and statistical approach for each technique explains why
we observe differences in gene expression from these two techniques.
We identified 105 more DEGs by bulk RNA-seq, possibly because this
approach included all RNA, except ribosomal RNA, within all cell types
and subregions of the entire dorsal hippocampus. Pseudobulk spatial
transcriptomics included the poly-AmRNAs in barcoded dots selected
within principal cell layers, stratum radiatum and oriens on a 10 µm
brain slice. Any additional differences in overlap can be attributed to
the type of statistical test used to compute significant changes in gene
expression. Pseudobulk was analyzed by the rank-sum Kruskal-Wallis
test, while bulk RNA-seq was analyzed by the conventional EdgeR
statistical test. We could not use the same statistical test because
EdgeRutilizes themean instead of themedian to compute fold-change
and may increase the number of outliers or false positives for pseu-
dobulk analysis. Therefore, some DEGs in bulk RNA-seq appeared as a
lower fold-change in pseudobulk because they did not surpass the 1.4
threshold for the Kruskal-Wallis test, yet they still displayeddifferential
expression following learning.

Our work demonstrates that the subregions of the dorsal hippo-
campus uniquely respond to learning by exhibiting distinct tran-
scriptomic signatures. These subregions differ by their circuitry, cell
types, and electrophysiological features. A criticism of the spatial
transcriptomic approach is that it lacks cell-type specific information,
yet we see changes in some non-neuronal genes after learning, such as
Sgk1. Therefore, future studies will need to address heterogeneity
between cell types of subregions and how they respond to neuronal
activation after learning. Thus, combining spatial transcriptomics with
single-cell transcriptomics and high throughput in situ approaches90
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provides further insights into cell-type specific changes in gene
expression across different hippocampal subregions, as well as sub-
regions that are challenging to study due to a lack ofmarker genes or a
small density of cells. This approach could be important for under-
standing differential gene expression patterns across the ventral hip-
pocampus and other brain regions91–93 at various timepoints during
memory consolidation. Our attempt to elucidate the spatial tran-
scriptomic signature of memory provides the groundwork for future
studies to understand the precise gene expressionpatterns underlying
memory consolidation, and whether these signatures are affected in
neurological disorders associated with memory impairments.

Methods
Data reporting
No statistical methods were used to predetermine the sample size.

Mouse lines
Adult male C57BL/6 J mice were purchased from Jackson Laboratories
were 2–3 months age during behavioral or biochemical experiments.
All mice had free access to food and water and weremaintained under
pathogen-free conditions with a 12 h light/dark cycle, at a temperature
of 21–22 °C and a relative humidity of 60–70% in the Animal care
facility of the University of Iowa. All experiments were conducted
according toUSNational Institutes ofHealth guidelines for animal care
and use and were approved by the Institutional Animal Care and Use
Committee of the University of Iowa, Iowa.

Adeno-associated virus (AAV) constructs and stereotactic
surgeries
AAV2.2-CaMKIIα-Nr4ADN and AAV2.2-CaMKIIα-EGFP were purchased
from VectorBuilder (VectorBuilder Inc). Mice were anesthetized using
5% isoflurane, following which a steady flow of 2.5% isoflurane was
maintained throughout the duration of the stereotactic surgery59. 1 µl
of respective AAVs were injected into the dorsal hippocampal sub-
region CA1 (coordinates: anteroposterior, −1.9mm, mediolateral,
±1.5mm, and 1.5mm below bregma) or DG (coordinates: ante-
roposterior, −1.9mm, mediolateral, ±1.3mm, and 2mm below
bregma). Following viral infusion, drill holes were closed with bone
wax (Lukens) and the incisions were sutured.

Spatial object recognition (SOR) task
All the behavioral tasks were performed during the light cycle between
Zeitgeber time (ZT) 0 to 2. Animals were individually housed for 7 days
before training. Animals were handled for 2mins each day for 5 suc-
cessive days before training. On the day of training, animals were
habituated in an open field for 6min, followed by three 6-min sessions
inside the same open field containing three different glass objects
placed in specific spatial locations with respective to a spatial cue
inside the arena. An intertrial interval of 5min was set in-between the
three training sessions. 24 h later, the animals were returned to the
arena with one of the objects displaced to a novel spatial coordinate.
Exploration time around all the objects were then manually scored59.
Percent preference towards the displaced object was calculated using
the following equation:

Percent pref erence f or displaced object =

ðexploration towards the displaced objectÞ
ðtotal exploration towards all objectsÞ x 100

For spatial gene expression, single nuclei experiments, and in situ
experiments, animals were euthanized by cervical dislocation 1 h after
the last training trial in the SOR task. Whole brains or hippocampal
tissue were flash frozen and stored at −80 °C. Homecage animals were
also euthanized at the same time to eliminate any circadian effect.
Quantification of time spent in the inner and outer zones in the open

field during the habituation sessions was performed using the Etho-
VisionXT software (Noldus Instruments)60.

Spatial transcriptomics sample preparation
After rapidly euthanizedby cervical dislocation, the brains from8mice
were rapidly extracted and flash- frozen with −70 °C isopentane for
5min. Frozen brains were stored at −80C until sectioning. Mouse-
frozen brains were embedded in an optimal cutting temperature
medium (OCT) and cryosectioned at −20 °C with the Leica CM3050 S
Cryostat. 10-microns of coronal sections from the brain region with
dorsal hippocampus were placed on chilled Visium Tissue Optimiza-
tion Slides (10X Genomics) and Visium Spatial Gene Expression Slides
(10X Genomics). We used 8 brains (4 homecage and 4 SOR-trained
animals), 1 slice per animal were placed on barcoded frames on a Vis-
ium slide (10X Genomics). Thus, we used 2 Visium slides with 4 frames
each. Visium slides with the sections were fixed, stained, and imaged
withHematoxylin and Eosin using a 20Xobjective on anOlympusBX61
Upright Microscope. Tissue was then permeabilized for 18min, which
was established an optimal permeabilization time based on tissue
optimization time-course experiments. The poly-A mRNAs from the
slices were released and captured by the poly(dT) primers and pre-
coated on the slide, including a spatial barcode and a Unique Mole-
cular Identifiers (UMIs). After reverse transcription and second-strand
synthesis, the amplificated cDNA samples from the Visium slides were
transferred, purified, and quantified for library preparation. The frag-
mented cDNA samples were used to construct sequencing for Visium
spatial transcriptome on a NovaSeq 6000 (Illumina) at a sequencing
depth of 150 million total read pairs per mouse Visium sample.

Spatial transcriptomics library preparation and sequencing
Sequencing libraries were prepared by the Iowa Institute of Human
Genetics (IIHG) Genomics Division, according to the Visium Spatial
Gene Expression User Guide. Each pooled librarywas sequenced on an
Illumina NovaSeq 6000 using SBS chemistry v1.5 for 100 cycles, at a
sequencing depth of 200 million total read pairs. Data processing of
Visium data, raw FASTQ files and images were output with Space
Ranger software (Version 1.3.1) and analyzed downstream by Partek
Flow (Partek Inc.) with their single-cell analysis pipeline, mm10 refer-
ence genome was used for gene alignment.

Spatial transcriptomics data analysis
Space Ranger outputs were uploaded to Partek Flow (Build version
10.0.23.0720) for downstream analyses. The read counts were nor-
malized by the counts per million (CPM) method and transformed to
log2(CPM+ 1). A general linear model was applied to correct for batch
effect between the two sets of experiment. Hippocampal subregions
were selected based on biological knowledge using anatomical struc-
tures apparent on the H&E staining images. The pyramidal layers of
CA1, CA2 +CA3 and the granular and molecular layer of DG were
selected for their role in neuronal excitability, synaptic plasticity, and
memory. Additionally, CA1 stratum radiatum and oriens were also
selected due to their roles in neuronal circuitry. Differential gene
expression analysis was performed using the non-parametric Kruskal-
Wallis rank sum test because this type of tests have been the most
widely used approach in the field of single-cell transcriptomics (Squair
et al. 2021). Because each cell is assumed to be a biological replicate in
scRNA-seq, the same assumption is made here for each visium spot,
which generates a big sample size that is handled correctly by the
Kruskal-Wallis test. Gene-specific analyses were filtered with false dis-
covery rate (FDR) < 0.05 and fold change > |1.4 | . The spots assigned to
the hippocampus of a Visium slide are spaced apart from each other
(i.e., do not overlap) and correspond to a unique set of cells within the
tissue sample. Therefore, the expression profilemeasured at each spot
can be treated as an independent observation. This approach gives a
sufficient sample size for statistical power to detectdifferences in gene
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expression94. Statistical analyses of spots as sample sizesmust account
for spatial autocorrelation of gene expression levels and genes with
statistically significant spatial patterns95. Spatial autocorrelation is a
statistical phenomenon that occurs when observations within a spa-
tially defined region are more similar to each other than to observa-
tions from other regions. For our spatial transcriptomics, gene
expression levels measured at adjacent spots on the Visium slide are
likely to be more similar to each other than to spots that are further
apart. By accounting for spatial autocorrelation, we can depict each
spot as an independent observation for accurate and precise tran-
scriptomic analysis.

Bulk RNA extraction, cDNA preparation and gene expression
analysis
Dorsal hippocampi were dissected and immediately stored at −80 °C in
RNAlater solution (Ambion). For RNA total extraction, hippocampi
were homogenized in Qiazol (Qiagen) using stainless steel beads
(Qiagen). Chloroform was then added, and the homogenate was cen-
trifuged at 12,000 × g at RT for 15min. Aqueous phase containing RNA
was precipitated using ethanol and then cleaned using the RNeasy kit
(Qiagen). RNA was eluted in nuclease-free water, treated with DNase
(Qiagen) at RT for 25min and precipitated in ethanol, sodium acetate
(pH 5.2) and glycogen overnight at −20 °C. Precipitated RNA samples
were centrifuged at top speed at RT for 20min, washed with 70%
ethanol and centrifuged at top speed for 5min, dried and resuspended
in nuclease-free water. RNA concentrations were estimated using a
Nanodrop (Thermo Fisher Scientific). cDNAs were prepared from 1 µg
RNAusing the SuperScript™ IV First-StrandSynthesis System (Ambion).
Real-time RT-PCR reactions were performed in a 384-well optical
reaction plate with optical adhesive covers (Life Technologies). Each
reaction was composed of 2.25μl cDNA (2 ng/ul), 2.5μl Fast SYBR™
GreenMaster Mix (Thermo Fisher Scientific), and 0.25μl of primermix
(IDT). Three technical replicates per reaction was performed on the
QuantStudio 7 Flex Real-Time PCR system (Applied Biosystems, Life
Technologies). Data was normalized to housekeeping genes (Tubulin,
Pgk1 and Hprt) and 2(-ΔΔCt) method was used for gene expression ana-
lysis. The oligonucleotide sequence of the qRT-PCR primers usedwere:
Sgk1 (FW: 5’ GCCAAGTCCCTCTCAACAAA 3’; Rev 5’ CCCTTTCCGAT-
CACTTTCAA 3’), Nr4a1 (FW 5’ AAAATCCCTGGCTTCATTGAG 3’; REV 5’
TTTAGATCGGTATGCCAGGCG 3’), Tubulin (FW 5’ ATGCGCGAGTG-
CATTTCAG 3’; REV 5’ CACCAATGGTCTTATCGCTGG 3’),
Pgk1 (FW 5’ CGAGCCTCACTGTCCAAACT 3’; REV 5’ TCTGTGGCA-
GATTCACACCC 3’), Hprt (FW 5’ TTGCTGACCTGCTGGATTACA 3’; REV
5’ CCCCGTTGACTGATCATTACA 3’).

Library preparation and sequencing from bulk RNA
RNA libraries were prepared at the Iowa Institute of Human Genetics
(IIHG), Genomics Division, using the Illumina TruSeq Stranded Total
RNA with Ribo-Zero gold sample preparation kit (Illumina, Inc., San
Diego, CA). Library concentrations were measured using KAPA Illu-
mina Library Quantification Kit (KAPA Biosystems, Wilmington, MA).
Pooled libraries were sequenced on Illumina NovaSeq6000 sequencer
with 150-bp Paired-End chemistry (Illumina) at the IIHG core.

Bulk RNA-seq analysis
Sequencing data was processed with the bcbio-nextgen pipeline
(https://github.com/bcbio/bcbio-nextgen). The pipeline uses STAR96

to align reads to the genome and quantifies expression at the gene
level with featureCounts97. All further analyses were performed using
R. For gene level count data, the R package EDASeq was used to
account for sequencing depth (upper quartile normalization)98. Latent
sources of variation in expression levels were assessed and accounted
for using RUVSeq (RUVs)99. Appropriate choice of the RUVSeq para-
meter k was determined through inspection of RLE plots and PCA
plots. Differential expression analysis was conducted using edgeR100.

Single nuclei RNA-sequencing using SPLiT-pool barcoding
Frozen hippocampal tissue was homogenized in 700μl of homo-
genization buffer (250mM Sucrose, 25mM KCl, 5mM MgCl2, 10mM
Tris buffer (pH-8), 1μM DTT, and 0.1% Triton X-100; supplemented
with RNAse Inhibitors) using Dounce homogenizers. The homogenate
wasfiltered through 40μmstrainer and centrifuged at 600*g for 4min
at 4 °C. The pellet was resuspended in 1ml of 1X PBS containing 1% BSA
and centrifuged at 600*g for 4minutes at 4 °C. The pellet was resus-
pended in 200 μl of 1X PBS and passed through a 40 μm cell strainer.

Postnuclear extraction, nuclear fixation was performed according
to the manufacturer’s manual (Fixation Kit, Parse Biosciences). A total
of 4million nuclei was transferred into a 15mL falcon tube, centrifuged
at 200*g for 10min at 4 °C, and resuspended in ice-cold Nuclei Buffer
containing 0.75%BSA. Resuspended nuclei were then strained through
a 40μmcell strainer, after which 250μl of Nuclei Fixation Solutionwas
added. After 10minutes of incubation on ice, 80μl od ice-cold Nuclei
Permeabilization Buffer was added, and the nuclei were then cen-
trifuged at 200*g for 10min at 4 °C. The nuclear pellet was resus-
pended in 300μl of Nuclei Buffer and passed through a 40 μm cell
strainer. Nuclei DMSO was then added to the nuclei and stored in
−80 °C until the commencement of single-nuclei RNA-Seq.

Single nuclei RNA-Seq was also performed according to the
manufacturer’s protocol (Single Whole Cell Transcriptome Kit, Parse
Biosciences). Briefly, RNA from the fixed nuclei were subjected to
multiple rounds of reverse transcription barcoding and ligation bar-
coding in customized 96-well thermocycler plates that contain bar-
coded primers in each well. After the final round of thermocycling,
nuclei were pooled together and distributed into 8 sublibraries. Bar-
coded DNA in each sublibrary was then amplified, following which
Template Switching and SPRI Clean-Up steps were performed. Sub-
libraries were then subjected to Fragmentation, End Repair, and A-
Tailing; followed by Post-Fragmentation Double sided SPRI selection,
Adaptor Ligation, and Sublibrary Index PCR. Finally, post-
Amplification double-sided size selection was performed before
sequencing them on an Illumina Novaseq Sequencer.

SPLiT-seq analysis
Prior to running the pipeline, Fastq files of each sublibrary from
separate lanes were concatenated into one (i.e. cat sub-
library1_read1_L001.fastq.gz sublibrary1_read1_L002.fastq.gz > sub-
library1_read1_concat.fastq.gz). Pre-processing of SPLIT-seq data was
performed using the split-pipe pipeline developed by Parse Bioscience
(v0.9.6p), --mode comb --kit WT). First the data were processed by the
pipeline from each sublibrary individually (using split-pipe --mode all).
Then the processed data from each sublibrary were combined into a
single dataset (using split-pipe --mode comb).

Downstream analyses were carried out using R programming
language (version 4.2.2) and packages like Seurat. The raw count
matrix was obtained by reading and parsing the pipeline output files
using the “ReadParseBio” function. Empty gene names in the matrix
were identified and replaced with the label “unknown”. Cell metadata,
including sample information,was read fromaCSV file. A Seurat object
was created, specifyingminimumgene and cell thresholds for filtering,
and the sample categories were assigned based on the original “sam-
ple” column in themetadata. Normalization of the expression data was
performed using the NormalizeData function in Seurat. The most
2000 variable features were identified using the FindVariableFeatures
function with the “vst” selection method. The data were then scaled
using the ScaleData function. Principal component analysis (PCA) was
conducted using the RunPCA function to reduce the dimensionality of
the data (npcs = 50). The resulting principal components were used to
findcell-to-cell relationships by calculatingneighbors and clusters. The
FindNeighbors function identified neighboring cells based on PCA
dimensions (reduction = “pca”, dims = 1:20), and the FindClusters
function assigned cells to clusters using a 0.3 resolution. Cluster
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identities were assigned to cells using the Idents function. Clusters
were reordered according to their similarity using the BuildCluster-
Tree function. To visualize the cell clusters, non-linear dimensional
reduction technique such as Uniform Manifold Approximation and
Projection (UMAP) was applied using the RunUMAP function (reduc-
tion = “pca”, dims = 1:20), and the DimPlot function was used to create
a UMAP plot with clusters color-coded (reduction = “umap”). To assess
the expression of specific genes in certain clusters, a list of marker
genes was generated. The FeaturePlot function was used to visualize
the expression of these marker genes. Additionally, a list of clusters
was created to group related cell types for subsequent merging. Cells
within clusters were merged based on the created list of cell types and
corresponding clusters using a for loop. The merged clusters were
assigned new identities. Differential gene expression analysis was
performed using the FindMarkers function with the Wilcoxon statis-
tical test, comparing samples from the HC and SOR conditions. Genes
that surpass the 0.2 threshold log2FC and FDR <0.05 were considered
significant.

Nuclei Isolation and single nuclei ATAC-Seq
Nuclei isolation for Single-Cell ATAC-Seq was performed according to
the manufacturer’s manual (Chromium Nuclei Isolation Kit, 10x
Genomics). Briefly, frozen hippocampal tissue was homogenized in
500μl of pre-chilled lysis buffer using Dounce homogenizers. The
homogenate was then transferred into pre-chilled Nuclei Isolation
Columns, and the columns were centrifuged at 16000*g for 30 sec-
onds at 4 °C. The flowthrough was briefly vortexed for 10 seconds,
followed by centrifugation at 500*g for 3min at 4 °C. The nuclear
pellet was resuspended in 500μl of Debris Removal Buffer and cen-
trifuged at 700*g for 10min at 4 °C. The nuclear pellet was then
resuspended in 1ml of Wash Buffer, centrifuged at 500*g for 5min at
4 °C, and finally resuspended in 50μl of Resuspension Buffer. The
Single Cell ATAC-Seq protocol, comprising of the Transposition, GEM
Generation, Barcoding, and Library Construction steps were carried
out according to the manufacturer’s protocol (Chromium Next GEM
Single Cell ATAC Kit, 10x Genomics). Libraries were sequenced in
paired end in Illumina Novaseq.

Single nuclei ATAC-sequencing data analysis
scATAC-seq data analysis was performed using the R programming
language (version 4.2.2) and packages like Seurat (version 4.3.0) and
Signac (version 1.9.0). The analysis pipeline assumed that the cell
ranger-ATAC pipeline (cellranger-atac-2.0.0) from 10x Genomics had
already been run.

Seurat objects were created for each individual dataset (HC and
SOR), using the peak/cell matrix and cell metadata files were gen-
erated by cellranger-atac. Fragment files were associated with each
Seurat object. Quality control metrics were computed for each cell,
including nucleosome signal score, TSS enrichment score, blacklist
ratio, and fraction of reads in peaks. Outlier cells were removed
based on predefined criteria (peak_region_fragments >3000 &
peak_region_fragments <20000 & pct_reads_in_peaks >15 &
nucleosome_signal <4 & TSS.enrichment >2). Gene annotations for
the mouse genome were added to the Seurat object using the Get-
GRangesFromEnsDb function. Normalization and linear dimen-
sional reduction were performed using the Seurat functions
FindTopFeatures, RunTFIDF, and RunSVD. Non-linear dimension
reduction was performed using the RunUMAP function (reduction =
‘lsi’, dims = 2:30). Clustering was performed using the FindNeigh-
bors (reduction = ‘lsi’, dims = 2:30) and FindClusters (algorithm = 3,
resolution = 1.2) functions. All samples weremerged into one Seurat
object using the Merge function. The combined data was visualized
using UMAP to ensure that no cluster of cells were present in one
condition and not the other. Gene activity matrix was created with a
window of 2000 bp before and after the transcription start site of

each gene and added as a new assay to the Seurat object, and the
data were normalized using the NormalizeData function (assay =
‘RNA’, normalization.method = ‘LogNormalize’, scale.factor = med-
ian(seuratobject$nCount_RNA)). Identification of cell types was
performed by loading previously processed SPLIT-seq data for
homecage condition. Transfer anchors were then identified
between the SPLIT-seq data and the gene activity matrix of the
scATAC-seq data using the FindTransferAnchors function. Pre-
dicted labels from the SPLIT-seq data were transferred to the
scATAC-seq data using the TransferData function. Finally, differ-
ential accessibility analysis was performed on the gene activity
matrix to identify differentially accessible promoters between
conditions for a specific cell type. Coverage plots were generated
for specific genes of interest.

Molecular function enrichment analysis
The identified DEGs were analyzed for molecular function enrichment
analysis by using the ClueGO and CluePedia plug-ins of the Cytoscape
3.9.0 software in “Functional analysis” mode against the Gene Ontol-
ogy Molecular Function (4691 terms) database. The GO Term Fusion
was used allowing for the fusion of GO parent-child terms based on
similar associated genes. TheGOTermConnectivity had a kappa score
of 0.4. The enrichment was performed using a two-sided hypergeo-
metric test. The p values were corrected with a Bonferroni step-down
approach. Only significant molecular function with corrected
p values < 0.05 were displayed. UpSet plots were generated using the
online software ExpressAnalyst. Data was plotted using the
distinct mode.

In situ hybridization (RNAscope)
In situ hybridization was performed on 20 μm coronal brain sections
from SOR-trained and homecaged animals using the RNAscope™
Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics).
Briefly, fixed frozen brains were sectioned on a Cryostat and mounted
on Superfrost™ Plus microscope slides (Fisherbrand). Slides then
underwent serial dehydration in Ethanol, followed by Hydrogen Per-
oxide treatment, Target Retrieval, and Protease III treatment. Hybri-
dization of probes was done at 40 °C for 2 h in an HybEZ oven using
probes against Sgk1, Nr4a1, Nr4a2, and Arc. The probe signals were
amplifiedwith Preamplifier 1 (Amp1-FL) and counterstainedwithOPAL
dyes (Akoya Biosciences). The slides were mounted with Vectashield
Antifade Mounting Medium with DAPI (Vector Laboratories) and
stored in 4 °C until they were imaged.

Confocal imaging and RNAScope analysis
Following in situ hybridization, high magnification images of the hip-
pocampuswereobtained in anOlympus FV3000confocalmicroscope
using a 40X NA= 1.25 oil immersion objective at 800 × 800-pixel
resolution and 1.5X optical zoom. All images (16 bit) were acquired
with identical settings for laser power, detector gain and pinhole dia-
meter for each experiment and between experiments. Images from the
different channels were stacked and projected at maximum intensity
using ImageJ (NIH). Hippocampal subregion-specific Mean Fluores-
cence Intensity (MFI) and colocalization analyses were performed
using ImageJ plugins.

Western blot analysis
Whole-cell lysates were run on a 4–20% Tris-HCl Protein Gel (BIO-RAD,
# 3450033) and transferred to methanol-activated polyvinylidene
difluoride membranes. Membranes were blocked with Odyssey®
Blocking Buffer in TBS (LI-COR) and incubated overnight at 4 °C with
the following primary antibodies: pan-HA (1:1000, Cell signaling), YFP
(1:1000, Abcam), and Actin (1:10,000, ThermoFisher Scientific).
Membranes were washed and incubated with anti-rabbit IRDye 800LT
(1:5000, LI-COR, # 926-32211) and anti-mouse IRDye 680CW (1:5000,
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LI-COR, #926-68022). Images were acquired using the Odyssey Infra-
red Imaging System (LI-COR).Quantification ofwestern blot bandswas
performed using Image Studio Lite ver5.2 (LI-COR).

Immunohistochemistry and confocal imaging
Animals were anesthetized using a steady flow of 5% isoflurane and
perfused with 4% PFA, and 20 μm coronal brain sections were made
in a cryostat. Free-floating sections were washed with PBS and
mounted on on Superfrost™ Plus microscope slides (Fisherbrand).
The sections were air-dried, followed by coverslip mounting with
Vectashield® Antifade Mounting Medium with DAPI (Vector
Laboratories). Slides were then imaged using the Olympus FV3000
confocal microscope with a 10X NA = 0.4 objective at 800 × 800-
pixel resolution.

Statistics
Behavioral and biochemical data were analyzed using unpaired two-
tailed t tests and either one-way or two-way ANOVAs (in some cases
with repeated measures as the within subject variable). Sidak’s or
Dunnett’s multiple comparison tests were used for post hoc analyses
where needed. Differences were considered statistically significant
when p < 0.05. As indicated for each figure panel, all data are plotted in
either bar graphs, in which symbols represent each data point, or in
dot plots, where each symbol represents an individual data point.
Graphs were plotted as mean ± SEM.

Ethics
All procedures onmice in this studywere approved by the Institutional
Care and Use Committee at the University of Iowa.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the NCBI Gene Expression Omnibus (GEO) database under accession
code GSE223066. Sequencing files for bulk RNA-seq, spatial tran-
scriptomic, SPLIT-seq and snATAC-seq have been made publicly
available through GSE223066.

The mm10 reference genome for the respective transcriptomic
approaches can be found in the following hyperlinks:

mm10 reference genome for spatial transcriptomic
mm10 reference genome for BCBio bulk RNA-seq pipeline
mm10 reference genome for snATAC-seq
mm10 reference genome for split-pipe pipeline. Source data are

provided with this paper.

Code availability
The code used for differential gene expression analysis related to RNA-
seq data as well as codes for single nuclei RNA seq using Split-poll
barcoding and the single nuclei ATAC seq can be accessed through
GitHub101 (https://github.com/YannVRB/Visium-SOR-mouse).
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