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Carbon intensity of global crude oil trading
and market policy implications
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The energy mix transition has accelerated the need for more accurate emis-
sions reporting throughout the petroleum supply chain. Despite increasing
environmental regulations and pressure for emissions disclosure, the low
resolution of existing carbon footprint assessment does not account for the
complexity of crude oil trading. The lack of source crude traceability has led to
poor visibility into the “well-to-refinery-entrance” carbon intensities at the
level of granular pathways between producers and destination markets. Using
high-fidelity datasets, optimization algorithms to facilitate supply chain tra-
ceability and bottom-up, physics-based emission estimators, we show that the
variability in global “well-to-refinery-entrance” carbon intensities at the level of
crude trade pathways is significant: 4.2–214.1 kg-CO2-equivalent/barrel with a
volume-weighted average of 50.5 kg-CO2-equivalent/barrel. Coupled with oil
supply forecasts under 1.5 °C scenarios up to 2050, this variability translates to
additional CO2-equivalent savings of 1.5–6.1 Gigatons that could be realized
solely by prioritizing low-carbon supply chain pathways without other capital-
intensive mitigation measures.

Petroleum fuels account for 32% of the global primary energy supply1.
Future projections under 1.5 °C climate scenarios range from pla-
teauing to decreasing supply, corresponding to up to 40% reduction
from present levels1–4. Moreover, certain applications, such as aviation
and petrochemicals, have limited short-term, scalable alternatives. On
this rapidly-changing market backdrop, crude extraction and trans-
portation together account for ~1.9 Gigatons/year (Gt/year) of CO2-
equivalent (CO2eq), based on the International Energy Agency’s (IEA)
recent assessment5. These emissions are distributed across a complex
global trade network—hundreds of crude blends are transported over
thousands of pipeline miles and millions of ocean shipping miles via
complex interconnected trade networks and refined at hundreds of
refineries6–10. Thus, carbon intensity (CI) based differentiation through

better emissions estimation and reporting at the level of supply chain
pathways can be an effective strategy to optimize the remaining use of
crude oil and thus contribute to a low-carbon future.

Although regulatory efforts such as the Low Carbon Fuel
Standard (LCFS) by the California Air Resources Board (CARB), the
Fuel Quality Directive by European regulators, and the CORSIA
(Carbon Offsetting and Reduction Scheme for International Avia-
tion) criteria have sought to use this differentiation as a policy tool,
they have been hindered by data gaps and inadequate supply chain
traceability11–14. Furthermore, while existing literature is direction-
ally congruent with these policy goals, it is limited by methodolo-
gical challenges. Studies based on the Oil Production Greenhouse
Gas Emissions Estimator (OPGEE) model15, an open-source bottom-
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up emission estimator for upstream oil and gas operations, have
illustrated the heterogeneity of crude production CI at the level of
individual oil fields16,17. However, these emission estimates have not
been translated to the level of marketable crude oil blends, thus
curtailing the design of policies seeking to incentivize demand for
low-carbon crude oil. Additionally, these studies have used fixed
and approximated baseline values for crude oil transportation
emissions based on models such as the Greenhouse Gases, Regu-
lated Emissions, and Energy Use in Technologies model (GREET)15,18.

Consequently, these studies have focused more on quantifying
opportunities for emissions reductions in the oil and gas sector as a
whole and less on introducing incentives for low-carbon practices in
the global crude oil trade. The latter has the potential to impact the
traded price of crude oil in terms of differentials between different
crude grades3. The trading market could apply carbon intensity as a
specification in crude oil valuation in the same way it considers sulfur
content and API density. In such a regulatory environment, crude oil
prices would reflect the associated well-to-refinery-entrance CI, with
lower CI crudes being traded at a premium to those of higher CI. The
blending process is key in establishing traceability—it relates oil fields
to blends (e.g.,West Texas Intermediate fromtheU.S. and Ekofisk from
Norway), which, together with crude demand at refineries, enables the
well-to-refinery-entrance coverage. Thus, a market-based approach
measures the CI of crude oil trades from sources (oil fields) to desti-
nations (refineries) by accounting for crude blending and the full
impact of crude oil transportation. In summary, existing studies lack

the resolution required for effective policy relevance and exhibit
imperfect coverage across the supply chain.

To that end, in this work, we present a global high-resolution
assessment of crude oil CI based on bottom-up engineering-based
methods. This assessment is based on both public and commercial
datasets with optimization algorithms to establish supply chain tra-
ceability. We use bottom-up engineering-based tools, including
OPGEE15; Crude Oil Pipeline Transportation Emissions Model (COP-
TEM), a physics-based estimator for pipeline transport emissions19;
and a shipping emissions estimator based on AIS-tracking data20,21.

Results and discussion
Scope and resolution of the life cycle assessment (LCA)
This analysis uses life cycle assessment (LCA) to account for the well-
to-refinery-entrance greenhouse gas (GHG) emissions from the pet-
roleum supply chain. The foundation of the LCA is a network repre-
senting the global oil supply chain where oil fields, shipping terminals,
pipeline stations and refineries are nodes; pipelines and shipping
routes areedges.At the level of eachproducing country, the network is
jointly used with a multi-objective optimization algorithm to estimate
crude blending. In conjunction with data on crude demand at refi-
neries, this enables a resolution at the level of individual supply chain
pathways, as illustrated in Fig. 1.

The “well-to-refinery-entrance” scope points toward two emission
categories—crude extraction (upstream) and crude transportation
(midstream). The crude blending algorithm, in conjunction with

Fig. 1 | Case study of crudes from Saudi Arabia to India: the supply chain
network, blend formation and tracking of crude barrels from sources to des-
tinations (volume shown in kilo-barrels/day or kbbl/d). Our method captures
the global supply with a well-to-refinery-entrance scope. To detail its different
aspects, the infrastructure details for Saudi Arabia and its connectivity to India are
shown here for illustrative purposes. As shown by the network architecture (a), the
supply chain consists of nodes (oil fields, shipping terminals, pipeline stations and

refineries) and edges (pipelines and shipping routes). The sizes of field nodes and
refinery nodes are scaled in proportion of production volume and total intake
volume, respectively. To estimate blend formation, we use the network with a
multi-objective optimization algorithm that estimates how crude from oil fields
combines to form blends (b). Tying these elements with information about crude
demand at refineries, we track crude at the level of individual supply chain path-
ways from fields to refineries (c).
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field-level crude extraction CI calculated by OPGEE16, constitutes the
former, while the latter is estimated using mode-specific emission
models (refer to “Methods”). The resolution of the LCA enables the
accounting of life cycle emissions at different levels of aggregation. As
shown in Fig. 2, this not only generates estimates of carbon intensity
for global crude blends but also destination-specific CI to inform
policymaking addressing refineries and/or petroleum products.

Carbon intensity of marketed global crude oil blends
Figure 3 shows the volumeandupstreamCI ofmarketableglobal crude
blends, where the latter is computed by coupling the blend estimation
algorithm with the field-level crude production CI. Uncertainties are
quantified by varying parameters of the algorithm weighting different
factors, such as proximity, pipeline connectivity, etc., in the optimi-
zation approach (refer to Supplementary Note 4). We examine blend-
level variability within and between countries in addition to the
aggregated country-level variability.

Blends in Russia show less inter-blend variation in carbon inten-
sities—standard deviation of 3.32 kg-CO2-equivalent/barrel (kg-CO2eq/
bbl) versus the global standard deviation of 32.08 kg-CO2eq/bbl. In
addition, the volume-weighted country upstream CI of 48.38 kg-
CO2eq/bbl is close to the global volume-weighted average of 45.03 kg-
CO2eq/bbl. This is due to the low standarddeviation in thefield-level CI
(volume-weighted country standard deviation of 12.76 kg-CO2eq/bbl
versus the global standard deviation of 34.49 kg-CO2eq/bbl) and the
presence of proximate blend clusters connected by common large-
scale infrastructure suchas the ESPOpipeline network.Moregenerally,
the former is the key driver behind inter-blend variability and uncer-
tainties. For example, the low inter-blend variability in Angola can be
contrasted to the high inter-blend variability in Canada based on the
respective volume-weighted field-level distributions (The mean and
standarddeviation of theweightedCI distributionof Angolanfields are

50.34 and6.88 kg-CO2eq/bbl, respectively, whereas for Canadianfields
are 71.73 and 46.62 kg-CO2eq/bbl, respectively).

With a range of 3.4–181.6 kg-CO2eq/bbl, the Middle East region
shows significant variability, primarily down to differences in field-
level CI as described byMasnadi et al. 16 The uncertainties in the CI of
Iranian blends are, in general, higher than some of the other major
producing countries (major countries defined as the top 15 oil-
producing countries as indicated in Fig. 3) due to the greater number
of blends (~2.5 million-barrels/day spread over 11 blends) in the
country (and less degreeof differentiationbetween crude properties,
which makes the blending algorithm sensitive to the weighting
parameters. On the other hand, the presence of a predominant blend
in Saudi Arabia (~9.8 million-barrels/day spread over 6 blends) and
Iraq (~3.1 million-barrels/day spread over 5 blends), namely Arab
Light and Basrah Light, respectively, results in low uncertainties.
More generally, the presence of fewer blends and one predominant
blend indicates lower uncertainties due to the resulting stability of
optimal solutions found through the gradient-descent approach
(refer to “Methods”).

A similar degree of inter-blend variability is seen across Latin
America—blends from Mexico, Brazil and Argentina are found to be
near the global volume-weighted average, whereas Venezuelan blends
have significantly higher CI due to the heavy oil type of reservoirs and
the use of carbon-intensive operational practices (e.g., steam
flooding)16.

In North America, the energy-intensive Oil Sands Synthetic blend
from Canada has the highest carbon intensity among the major global
blends (144.5 kg-CO2eq/bbl). This closely tracks the fields with similar
API density from the oil sands region, which shows a carbon intensity
range of 82.5–160.2 kg-CO2eq/bbl and a volume-weighted mean of
139.3 kg-CO2eq/bbl, thus attesting to the efficacy of the blending
algorithm.

Fig. 2 | Case study of crudes from Saudi Arabia to India: carbon intensity (CI)
estimates (in kg-CO2eq/barrel) at different levels of policy-relevant aggrega-
tion (sample refineries in India selected based on refining volume >20 kilo-
barrels/day or kbbl/d). After estimating the upstream and midstream carbon
intensities for every individualpathway,weaggregate themat the refineries (a); the
bars shown at the chosen refinery nodes represent the blend-level well-to-refinery-

entranceCI in kg-CO2eq/bbl. Theweighted carbon intensities of crudeblends from
Saudi Arabia to India (b) are not only variable across the relevant four crudeblends
but also exhibit a wider variability when accounting for different refinery desti-
nations. This demonstrates that the heterogeneity in upstream and midstream
emissions leads to each refinery in a country having a unique profile of crudeblend
carbon intensities.
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Figure 4 shows the cumulative well-to-refinery-entrance CI at the
blend level by combining the upstream and midstream CI for the 20
highest volume global crude blends, in addition to showing the varia-
bility within midstream emissions. The global volume-weighted mid-
stream CI of 5.37 kg-CO2eq/bbl, as shown in the sub-figure, contributes
~10% to thewell-to-refinery-entrance emissions (refer to Supplementary
Note 8 for comparisons with relevant literature). Although in magni-
tude, the average upstreamCI is 9 times themidstreamCI, the variation

in midstream CI, for a given blend, across all supply chain pathways is
significant, as shown in the right sub-figure. All the distributions in the
chosen set are asymmetrical and have long tails indicative of the com-
plexity of crude transportation networks; these skewed, irregular pat-
terns emphasize the need to identify specific opportunities for policy
intervention instead of applying a blanket approach.

Notable examples showing high variability include West Texas
Intermediate (WTI) from the U.S. and Maya from Mexico. Given that

Fig. 3 | Carbon Intensity (CI) associatedwithcrudeextractionaggregated at the
level of crude blends (top 3 blends by volume with >0.1 million barrels/day or
Mbbl/d) in the top 15 oil-producing countries. The key blends (based on the
aforementioned criterion), their CI, the aggregate country-level volumes and CI are
shown for the chosen set of countries. This illustrates how producing countries
compareagainst the global average andhowblends compareagainst the respective

country averages. Note that some countries (Russian Federation and Angola)
exhibit low uncertainty in carbon intensity for each crude blend and low variability
across crude blends; conversely, other countries (Canada, Venezuela, and Iran)
have wide uncertainty within and wide variability across crude blends. Source data
are provided as a Source Data file.
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WTI is a benchmark blend centralized in Cushing, Oklahoma, and that
it is consumed in 49 North American refineries, the corresponding
midstream entails high variability in pipeline miles traversed through
an extensive and well-connected pipeline transport system. While for
Maya, the variation is explained by a large spread of destinations
ranging fromdomestic refineries to shipped exports to Southeast Asia.
Like WTI, the Bakken blend shows high transportation CI due to the
long distances between the source fields (Bakken region in Central

North America) and destination refineries, which are as far out as the
Gulf Coast and the East Coast of the U.S.

Comparing the midstream CI distributions, we find that blends
with a large export footprint, e.g., Arab Medium (100% exported),
Merey (>93% exported), and Basrah Light (>94% exported), havemulti-
modal distributions. This is due to the prevalence of shipped exports
and specific features of trade lanes connected to the key import hubs
across different continents.

Fig. 4 | Well-to-refinery-entrance carbon intensity (CI) with the variability in
crude transportationCI (in kg-CO2eq/barrel) for the top20global crudeblends
by volume. Segmenting well-to-refinery-entrance carbon intensity into upstream
and midstream (a) demonstrates the wide variability in CI, with Arab Heavy and
Western Canadian Select representing the low and high bounds, respectively. This
sub-figure also illustrates how the proportion of upstream andmidstream CI varies
across blends. Violin plots (b) show the distribution of midstream CI. Specifically,

they illustrate the volume-weighted distribution of midstream CI values (thicker
parts of the violin indicate higher probabilities) that the listed crude blends exhibit
across different supply chain pathways in the global network. The dashed black line
shows the global volume-weighted average, the white dots show the blend-specific
volume-weighted averages, and the dashed white lines show the volume-weighted
quartiles for each blend. Source data are provided as a Source Data file.
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Crude transportation CI from producer to consumer countries
The variability in transportation CI aggregated at the country
level shows noticeable patterns in the supply chain (Figs. 5 and 6).
Specifically, Fig. 5 illustrates the volume-weighted average CI
associated with crude transportation from a given producer
country to a given consumer country, while Fig. 6 illustrates the
CI trends at the region level.

The extensive pipeline systems in the U.S. and Canada together
account for ~40% of the total pipeline miles in the world while repre-
senting ~23% of the total refining volume and ~17% of the total crude
production volume22. These pipeline miles span across a distributed,
decentralized network of refineries (~34% of the global number of
refineries). In addition, the global volume-weighted averagepermileCI
of pipeline transport is 2.5 times that of shipping transport. These
factors together increase the CI of crude transport in the region to
8.7–12.1 kg-CO2eq/bbl against the global average of 5.37 kg-CO2eq/bbl.
In comparison, the CI of the pipeline system in Russia (with extensions
into Western/Eastern Europe and China) exhibits a range of 1.5–5.1 kg-
CO2eq/bbl, with the differences due to the fact that overall pipeline
miles are comparable to crude production (~12% of total global pipe-
line miles and ~12% of total crude production) as opposed to North
America and higher centralization (~62 refineries compared to ~100 in
the U.S.). Additionally, given the regions of Eastern Europe, Western
Europe and China represent ~88% of Russia’s net export volume, the
corresponding midstream CI is skewed toward pipeline transport,
unlike other exporting regions.

Among shipped exports, as seen in Fig. 6, the volume-
weighted shipping CI from Latin America to Asia is 10.7 kg-CO2eq/
bbl in contrast to that from the Middle East, which is 5.2 kg-
CO2eq/bbl. This difference is attributable to inefficiencies in
shipping, the usage of smaller tankers (all things equal, tankers
with larger capacities result in lower per-barrel emissions), and
longer distances (route carbon intensity has a correlation coeffi-
cient of ~0.74 with route distance). The differences can also be
seen in the country-level breakdown as shown in Fig. 5—for
example, CI values from Venezuela to India, Colombia to China,
Mexico to Japan are 15.29, 16.05 and 14.10 kg-CO2eq/bbl,
respectively; those from Iraq to India, Iran to China, Saudi Arabia
to Japan are 5.18, 2.07 and 4.20 kg-CO2eq/bbl, respectively. This is
consistent with the patterns in crude tanker activity that indicate
high traffic of ultra and very-large crude carriers (ULCCs, VLCCs)
with capacities >2 million barrels from the Middle East. Seg-
menting shipped exports from the Middle East based on desti-
nations, we observe that the CI of trade with North America is two
times more than that with South and Southeast Asia. The primary
driver behind this difference is the shipping distance—the
volume-weighted average shipping distance from the Middle East
to North America is 2.5 times the shipping distance to South and
Southeast Asia.

Comparing the different sources of transportation emissions
(pipeline, shipping and other), we observe that while the global
volume-weighted averages for pipeline and shipping are similar (2.55

Fig. 5 | Midstream carbon intensity (CI) and trade volumes between producer
and consumer countries. This figure illustrates how supply chain traceability
allows us to see the pairings between producer and consumer countries and the
associated trade volumes and carbon intensities for each of these pairings. This is a

level of detail aggregated from the individual source blend and destination refinery
pairs. Blank values in the visualization matrix correspond to producer, consumer
country pairs that do not have a crude trading relationship. Source data are pro-
vided as a Source Data file.
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and 2.61 kg-CO2eq/bbl), there exist significant inter-regional differ-
ences as discussed above and demonstrated by Fig. 6. On a global
basis, the shipping emissions estimated here are within the bounds of
previous studies, where these emissions have been estimated to be up
to 14% higher or 20% lower than the present results (refer to Supple-
mentary Note 8 for the detailed comparison of these CI values with
relevant literature). Note that the “other” category represents the
heuristic edges in the network, which can be conceptually interpreted
as the intra-field pipeline connections and approximations to sub-
stitute for missing pipeline data. The global volume-weighted average
for the “other” edges in the network is 0.21 kg-CO2eq/bbl, i.e., ~8% of
the core pipeline emissions (refer to “Methods” and Supplementary
Note 3 for more details about the network creation process).

These averages can be further contextualized through the scale
of the different modes of transportation in terms of barrel-miles
per day: ~33,000 for pipeline, ~145,000 for shipping (and 3000 for
other) and CI per unit distance: 5.56 kg-CO2eq/bbl per thousand
miles for pipeline (hence also for the “other” category, refer to
SupplementaryNote 1) and 2.28 kg-CO2eq/bbl per thousandmiles for
shipping.

Net carbon footprint attributed to consumer countries
Upon aggregating the well-to-refinery-entrance CI at all global refi-
neries, Fig. 7 illustrates the attribution of CO2eq emissions to countries
based on the crude blends they consume. Themap shows all countries

with refining capacity included in the assessment. We further examine
countries that process >1 million barrels of crude per day (which
cumulatively represent ~78% of the total refining volume included in
the study) in the accompanying bar chart and sort them in order of the
corresponding net annual kg-CO2eq emissions. Compared to the glo-
bal volume-weighted average of 50.46 kg-CO2eq/bbl, among these
countries, thewell-to-refinery-gate carbon intensity varies from8.84 to
86.39 kg-CO2eq/bbl.

We observe that among producers, the net well-to-refinery-
entrance carbon footprint aggregated at the country level based
on crude consumption is a strong function of the domestic
upstream CI. The main reasons for this are that, on average,
upstream CI makes up for 90% of the net CI as discussed earlier,
most major producers consume crude produced domestically,
and the presence of established and efficient pipeline routes to
key domestic refineries—e.g., Saudi Arabia, Iraq, UAE and Russia
all consume crude produced 100% domestically (the U.S. is an
exception with a significant import footprint, which thus adds
transportation emissions due to the resulting shipping activity).
Consequently, countries such as Venezuela, Canada and Algeria,
with above-average upstream CI, rank accordingly upon aggre-
gation of the well-to-refinery-gate CI. Furthermore, within this
subset, countries that are more expansive (i.e., with relatively
greater pipeline miles) have a relatively higher transportation CI,
most notably Canada and the U.S. This is based on the

Fig. 6 | Volume-weighted midstream carbon intensity (CI) in from selected oil-
producing regions, segmented by consumer regions and crude transport
modes. Volume-weighted midstream CI in kg-CO2-equivalent/barrel (kg-CO2eq/
bbl) from theMiddle East (a), Latin America (b), Africa (c) andRussia (d) segmented
by consumer regions and crude transport modes. Midstream characteristics are

highly variable, making the life cycle carbon intensities attributed to crude trans-
portation highly dependent on the consumer region. Themain drivers guiding this
heterogeneity are total shipping distances, the proportions of pipeline and ocean
transport and the overall transport efficiency. (C.A.—Central Asia, SE Asia—South-
east Asia) Source data are provided as a Source Data file.
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proportionality between length and emissions observed in the
fluid mechanics-based approach used for estimating pipeline
emissions (refer to “Methods” and Supplementary Note 7 for
more details).

Among countries that are predominantly importers, the varia-
bility in the blend upstream CI and the midstream CI associated with
specific source-destination routes drives the net CI aggregated at the
country level based on the crudes they consume. Additionally,
importers relying on shipping have a marginally higher refining-
attributed CI, as seen by comparing regions ofWestern Europe (access
to pipeline systems from Scandinavia, Russia) and Asia (sparse pipe-
lines; heavy reliance on shipping for imports).

These findings are relevant to regulators that seek to encourage
low-carbon sourcing and supply chain pathway prioritization by

differentiating crude blends at the point of refinery intake.While Fig. 7
provides a snapshot of the net annual impact of source crudes, the
methodology, resolution of the LCA and the modular nature of the
analyses act as enablers for climate-aware trade decisions in the near
future.

Implications for decarbonization policy
At the highest resolution of the LCA, i.e., individual source field to
destination refinery pathways, carbon intensities vary from 0.74 to
39.41 gCO2/MJ with a volume-weighted average of 9.01 gCO2/MJ or
50.46 kg-CO2eq/bbl (this average compares to the IEA’s estimate of
57.23 kg-CO2eq/bbl

5). This heterogeneity in life-cycle emissions
represents an untapped decarbonization opportunity that can be
realized through policy action.

Well-to-refinery-gate carbon footprint at consumer countries
Volume-weighted aggregation of carbon intensity at refineries based on source crudes (crude extraction + transportation)

8.84 94.80

Well-to-refinery gate
carbon intensity
volume weighted average

a

b
© 2022 Mapbox © OpenStreetMap

kg-CO2eq/barrel

c

Fig. 7 | Well-to-refinery-entrance carbon intensity (CI) with the variability in CI
and absolute emissions for countries with major refining volume. The map (a)
shows the well-to-refinery entrance CI for countries with refinery volumes greater
than 20,000 barrel/day. The results in this figure are aggregated at the level of
consuming countries anddemonstratewide variability across theworld’s top crude

oil refiners (b), ranging from 8.84 to 86.4 kg CO2eq/barrel, among countries with
refinery volumes greater than 1 million barrels/day. This variability leads to coun-
tries with the lowest CIs having less total emissions attributable to well-to-refinery-
gate emissions (c) than some other countries with half the refining volume. Source
data are provided as a Source Data file.
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Specifically, through our approach, we fill the gaps related to
supply chain traceability which have limited policy efforts such as
the LCFS by CARB11 and the Fuel Quality Directive by European
regulators13 that sought to differentiate between sources of
crude. The future success of such policies built on high-fidelity
life-cycle assessment could impact crude oil pricing and cause a
non-linear shift in the global supply curve. These estimates, along
with the high resolution of the LCA, lay the foundation for
effective decarbonization policies that can prioritize low-carbon
trades. The different levels of aggregation (pathway, blend trade,
country) facilitate the flexibility needed to implement these
policies. This flexibility could be utilized through multiple policy
channels with regional (e.g., CARB in California) and sectoral
(e.g., CORSIA by the ICAO for the aviation sector) scopes, thus
creating a multi-pronged structure to incentivize CI-based crude
differentiation. Furthermore, the significance of these emissions
over the 30-year horizon (as shown in Fig. 8) can motivate real-
time, granular carbon emissions estimation and reporting from
industry. Reporting systems can use appropriate technology (e.g.,
blockchain)23, thereby leading to better and more data. This can
enable more accurate emission inventories and, in turn, lead to
more effective decarbonization through policy action and busi-
ness strategy. Additionally, with the high granularity and broad
coverage of our approach, the analysis creates the framework to
fill the gaps that would eventually lead to the convergence of
model-based approaches and reporting practices.

To estimate the potential decarbonization impact of the pathway-
level CI heterogeneity, we consider oil supply projections from a
diverse array of Shared Socioeconomic Pathways (SSP) scenarios2,24.
We then use the pathway-level CI estimates to meet future demand by
prioritizing low-carbon pathways, i.e., fulfilling the reduction in the
forecasted annual number of crude barrels by eliminating supply from

pathways having the highest carbon intensities, as illustrated in Fig. 8.
The left sub-figure in Fig. 8 shows the different forecastingmodels and
SSP scenarios under consideration with the projected values of oil
supply in 2050; we exclusively look at scenarios with future oil supply
less thanpresent levels.Next, for every incrementaldecrease in supply,
we quantify the corresponding CO2eq saved by phasing out the high-
carbon supply chain pathways and generate the CO2eq savings curve
shown in the left sub-figure.

For a subset of model/scenario combinations, we then examine
the forecasted time series to estimate the average annual carbon
intensities with the net CO2eq savings according to the aforemen-
tioned demand fulfillment minimizing overall CO2eq. Under 1.5 °C
scenarios up to 2050, this corresponds to additional CO2eq savings of
1.5–6.1 Gt with an average of ~4.5 Gt across all models with SSPs 1–4.
This is comparable in magnitude to removing ∼100 million new
gasoline-powered passenger cars, assuming a typical car is driven for
10 years and emits 4.6t CO2 per year.

It is worth emphasizing that these savings are additional, beyond
the savings from reduced supply or CO2eq emissions management,
and thus can be potentially realized without other capital-intensive
interventions. Thus, these emissions reduction can be realized in
addition to, and not instead of, process-oriented decarbonization
options like reduced flaring and carbon capture. Consequently,
market-oriented decarbonization based on crudeCI differentiation is a
valuable piece in the overall decarbonization puzzle (refer to Supple-
mentary Note 9 for additional details on the emissions reduction
opportunity).

Methods
The methods are based on data sources including but not limited to
supply chain geo-locations, market trades and shipping routes—com-
mercial data providers include Wood Mackenzie, GlobalData, Kpler,

Fig. 8 | Scenario analysis—oil trade prioritization optimized for life-cycle
CO2eq. We estimate the total reduction potential in well-to-refinery-gate CO2eq
emissions by analyzing a variety of Shared Socioeconomic Pathway (SSP) scenar-
ios. The estimation is performed by (1) considering the time series of oil supply,
(2) ranking crude trade supply chain pathways from highest-to-lowest carbon
intensities (CI) and (3) fulfilling supply by prioritizing the low-carbon pathways.

The left sub-figure (a) shows thismitigation curve generatedby removingmarginal
barrels of crude at any given supply level based on CI. To plot all scenarios along
this curve, we use adjusted volumes, i.e., volumes scaled by the ratio of the
scenario-specific 2015 supply value and the net supply from the crude production
data to ensure all scenarios have the same starting point. Source data are provided
as a Source Data file.
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S&P Global, and public data sources include NASA MODIS and Shuttle
Radar Topography Mission (refer to Supplementary Note 1 for more
details)9,10,22,25–27. They are specifically designed to generate life cycle
CO2eq estimates that are actionable from a policy perspective through
incentives for improved emissions reporting and best practices.
Accordingly, we adopt a methodology that preserves the pathway-
level resolution in the supply chain (i.e., granular routes from oil fields
to refineries) and is modular in order to have the flexibility of enhan-
cing emission estimates by ingesting augmented data streams (see
Supplementary Note 2).

This study uses input data fromMasnadi et al. 16 tomodel the field-
level carbon intensities using the latest, most advanced version of the
Oil Production Greenhouse Gas Emissions Estimator (OPGEE version
3.0c)15,28 (See Supplementary Note 10). The upstreamCI data generated
in this study account for ~98% of the global crude oil and condensate
production in 2015, where 95% is crude oil and 3% is condensate. Other
data for the modeling of midstream carbon intensities were obtained
from commercial data sources for the same year (see Supplementary
Note 1). The objective of this work is to understand the physical con-
nections in the crude oil supply chain, making it necessary to allocate
production emissions between co-produced oil and condensate. At
production, where oil and condensate are in the same stream, we use
energy-based co-product allocation to split production emissions
between oil and condensate (i.e., the share of emissions assigned to oil
are calculated by factoring total emissions by the ratio of energy con-
tained in oil to total oil and condensate energy). This type of allocation
is the default method in OPGEE28. The oil and condensate streams are
routed to different markets after the production stage; all models that
we use downstream from production account only for oil flows and do
not require us to account for the emissions from condensate or other
pre-refinery coproducts. Emissions from natural gas gathering and
boosting infrastructure can be a significant contribution to oil and gas
production emissions. However, in this study, data are not available for
estimating such emissions on a bottom-up basis. OPGEE has a
component-level fugitive model that estimates methane emissions
from storage tank and equipment leakage based on a comprehensive
literature review of component-level activity and emissions
measurements28. Nonetheless,more data about gathering and boosting
infrastructure and fugitive emissions measurements could help
improve the accuracy of OPGEE and hence the results of this study
(refer to Supplementary Note 11 for more details).

While we perform a static, annualized life cycle analysis, future
work needs to account for the impact of temporal variability in the
supply chain. Factors such as changing operating conditions at
the field level, inventory buffers, dynamic tanker patterns, etc., could
have impacts on both traceability and carbon intensity.

Motivated by the complexity and global heterogeneity of crude
trade, a network-based approach is used to model the locations, spe-
cifications and trade relationships of supply chain assets. Supply chain
assets from all aforementioned data sources are consolidated and are
assumed to be point geospatial objects. After categorization into the
five classes of “fields”, “terminals”, “shipping ports”, “pipeline stations”
and “refineries”, these objects are encoded as nodes in the supply chain
graph. Key node attributes include latitude, longitude, node type (field,
pipeline station, shipping terminal, refinery), asset name and asset
country. In addition, to facilitate subsequent emission estimation,
physical attributes such as annual average ambient temperature and
elevation are also included.We thenuse three classes of edges to create
connections between nodes. First, mode edges to represent connec-
tions capturing the differentmodes of transportation (i.e., pipeline and
shipping) in the supply chain. Second, concurrent edges to represent
connections managing data redundancy and mutual inconsistencies
across datasets. Third, heuristic edges for creating rule-based connec-
tions to complete the network (e.g., linking fields to proximate pipeline
stations). The constructed edges are then given attributes—universal

edge attributes include edge types and distances; type-specific attri-
butes includediameter, length, elevation change for pipeline edges and
shipping route distance, and vessel type for shipping edges (refer to
SupplementaryNote 3 formoredetails). These edges correspond to the
“Other” category mentioned in reporting CI results above.

We exclude barges, trucking and rail transport partly due to the
unavailability of data and poor traceability of barge and trucking
operations. Moreover, not only do these modes of crude transporta-
tion represent aminor share of crude transport compared to pipelines
and tankers, but their economic disadvantage (rail transportation cost,
on average, is shown to be $5 to $10 per barrel higher than pipeline
costs) also makes them merely short-term solutions. For example, in
the U.S., where the crude rail network is relatively more mature, rail,
barges and trucks combined represent ~10% of the total crude trans-
port based on intake receipts at refineries (the remaining ~90% is
through pipelines and tankers)29,30.

We note that improvements can be made to the supply chain
network with respect to data coverage and representation. For
example, while oil fields, in reality, are composed of large areas of
wells, due to the limited availability of data, we represent them
with single geolocation coordinates instead of shapes/areas.
Although the impact of the intra-field connectivity to the rest of
the network on energy consumption would be low compared to
that of the major crude oil pipelines, such spatial modeling can
further enhance the fidelity of the network. Furthermore, the
availability of data pertaining to granular intra-field pipelines is
key in regard to such enhancements.

Next, a “blend estimation” algorithm is designed to predict how
crude blends are formed from oil fields by coupling the properties of
the global network with a multi-objective optimization approach
based on automatic differentiation and unsupervised learning.

Specifically, the blend estimation algorithm is framed as a set of
independent country-specific multi-objective optimization problems.
For a given oil-producing country, the goal is to estimate the rela-
tionship between oil fields and crude blends, which is represented by
the configuration matrixΘ that encodes the fraction of volumes from
all oil fields contributing tomake all crude blends in the given country.
Θ is amatrixof F×BdimensionswhereF is the total number of oilfields
and B is the total number of crude blends. The value corresponding to
the ith row and jth column is the fraction of crude volume from field i
that contributes to blend j.

Θ=

θ11 � � � θ1B

..

. . .
. ..

.

θF1 � � � θFB

2
664

3
775 ð1Þ

The rest of the notation guiding the optimization problem is
summarized below, with the dimensions included in parenthesis (see
Supplementary Note 4 for more details)

VF = Volume vector of oil fields F × 1ð Þ

VB =Volume vector of crude blendsðB× 1Þ

AF =API vector of oil fieldsðF × 1Þ

AB =API vector of crude blends B× 1ð Þ

DF = Distance matrix of oil fieldsðF × FÞ

PF =Connectivity matrix of oil fieldsðF × FÞ
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The goal is to estimate the optimal Θ i.e., Θ* given the following
multi-objective cost function containing four sub-costs corresponding
to distance (Cd), connectivity (Cc), volume (Cv) and API (Ca) (see
Supplementary Note 4 for more details).

Θ* = argminΘ Cost Cð Þ=
X

i2 d,c,v,af g
wiCi

2
4

3
5 ð2Þ

such that 8i,wi >0 and
X

i2 d,c,v,af g
wi

2
4

3
5 = 1; ð3Þ

Cd =
�
ΘΘT� � ðDFÞ

���
���
1

1
; Cc =

�
ΘΘT� � ðPFÞ

���
���
1

1
ð4Þ

Cv = ðVT
FΘÞT � ðVBÞ

���
���
1

1
;Ca = ðAT

FΘÞT � ðABÞ
���

���
1

1
ð5Þ

where � is the Hadamard product and jj11 is the first norm
The optimization problem is solved using a gradient-based tech-

nique coupled with an initialization algorithm. The gradient-based
technique uses autodifferentiation with the concept of momentum,
which is prominent in the training of deep neural networks31–33. The
initialization algorithm acts as a bridge between real-world supply
chain attributes and the configuration matrix. It ingests information
that is not capturedby the cost function, suchas the similarity between
crude blend names and basin and/or oil field names. Furthermore, it
includes unsupervised learning and a genetic algorithm to overcome
issues of local minima traps encountered in gradient descent.

The output from this algorithmgenerates estimates of blend-level
upstream carbon intensities and high-resolution mapping of crude
barrels from sources (oil fields) to destinations (refineries). The latter
serves as the input for the barrel tracking algorithm, which finds the
shortest paths in the global supply chain network, weighted by pipe-
line lengths and shipping route distances for pipeline and shipping
edges, respectively (see Supplementary Note 5). Lastly, results from
the tracking algorithm are used withmode-specific bottom-upmodels
to estimate emissions associated with the transportation of crude oil
via pipelines and shipping tankers.

To estimate the GHG emissions associated with crude oil trans-
port via pipelines, we use a first-principles, fluid mechanics-based
crude oil pipeline transportation emissions model (COPTEM)19. COP-
TEM is built upon the Energy, Darcy-Weisbach, and Colebrook-White
equations, which collectively can be seen as a function of crude oil
parameters, pipeline dimensions, and external factors. It is developed
to be generalizable for a broad range of crude properties and pipeline
dimensions. By default, the model divides any given pipeline into 40
theoretical segments of equal length to mimic a hypothetical distance
between two pump stations. Each segment represents 1/40th of the
total length of the given pipeline. The energy requirement and GHG
emissions associated with maintaining sufficient hydraulic head can
then be calculated accordingly. In COPTEM, the energy equation cal-
culates the change in the fluid head between two given points in a
pipeline by using friction losses, change in elevation, and change in
fluid velocity. The Darcy-Weisbach equation is employed to calculate
the friction loss induced by pipeline transportation. As an important
factor for the calculation of friction loss, the friction factor is calcu-
lated by the recursive Colebrook-White Equation as a function of the
pipeline diameter and roughness factor. COPTEM also considers the
impact of heat transfer between transported crude and the ambient
environment on crude viscosity (see Supplementary Note 7 for more
details).

Emissions associated with crude shipping are estimated using a
bottom-up estimation based on an integrated dataset of terrestrial and
satellite Automatic Identification System (AIS) data along with a global
ship parameter database.We process the data by extracting the subset
relevant to crude tankers, followed by the categorization of tankers
based on size and the identification of trips between shipping term-
inals. We then model CO2 emissions based on power calculations
performed in the processed trip data20,21. Specifically, the emissions are
estimated as a function of the engine power demand, activity time, and
emission factor. The engine power demand for propulsion engines is
calculated using the propeller law, which estimates the power asso-
ciated with propulsion, while the power demand of auxiliary engines
and auxiliary boilers is determined according to the corresponding
ship class, ship capacity, and activitymode (see Supplementary Note 7
for more details).

The CI estimates of the supply chain should be interpreted
separately from the values reported by companies as part of
their environmental, social, and corporate governance (ESG) declara-
tions. ESG reporting may have different system boundaries,
assumptions, and emissions factors. There are ongoing efforts to close
the gap between theoretical models (e.g., OPGEE) and ESG reporting,
both by improving LCA models and standardizing ESG reporting
practices.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The upstream CI data for global crude blends generated in this study
are provided in Supplementary Note 6. The midstream CI data for
global crude blends generated in this study are provided in Supple-
mentary Note 7. The oil field, shipping terminal, pipeline, refinery,
crude trade, and shipping route data that support the findings of this
study are collectively available from Wood Mackenzie10, GlobalData22,
Kpler9, and S&P Global25; commercial restrictions apply to the avail-
ability of these data, which were used under license for the current
study, and so are not publicly available. The earth surface temperature
data used in this study are available from NASA MODIS26. The aug-
mented elevation data from the NASA Shuttle Radar Topography
Mission are available from http://viewfinderpanoramas.org/dem3.
html27. Source data are provided with this paper.

Code availability
Analysis was performed in Python using: NetworkX 2.1 for network
analysis of the supply chain, PyTorch (torch 1.3.0) for creating the
computation graph to perform optimization, Scikit-learn for k-means
clustering, and NumPy 1.15.4 and pandas 1.0.3 for data processing. The
code is available at https://doi.org/10.5281/zenodo.6814485.
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