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Neurophysiological signatures of cortical
micro-architecture

Golia Shafiei1,2, Ben D. Fulcher 3, Bradley Voytek 4,
Theodore D. Satterthwaite 2, Sylvain Baillet 1 & Bratislav Misic 1

Systematic spatial variation in micro-architecture is observed across the cor-
tex. These micro-architectural gradients are reflected in neural activity, which
can be captured by neurophysiological time-series. How spontaneous neuro-
physiological dynamics are organized across the cortex and how they arise
from heterogeneous cortical micro-architecture remains unknown. Here we
extensively profile regional neurophysiological dynamics across the human
brain by estimating over 6800 time-series features from the resting state
magnetoencephalography (MEG) signal. We then map regional time-series
profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-
architecture, including microstructure, metabolism, neurotransmitter recep-
tors, cell types and laminar differentiation. We find that the dominant axis of
neurophysiological dynamics reflects characteristics of power spectrum den-
sity and linear correlation structure of the signal, emphasizing the importance
of conventional features of electromagnetic dynamics while identifying addi-
tional informative features that have traditionally received less attention.
Moreover, spatial variation in neurophysiological dynamics is co-localized
with multiple micro-architectural features, including gene expression gra-
dients, intracortical myelin, neurotransmitter receptors and transporters, and
oxygen andglucosemetabolism.Collectively, thisworkopens newavenues for
studying the anatomical basis of neural activity.

Signals, in the form of electrical impulses, are perpetually generated,
propagated, and integrated viamultiple types of neurons andneuronal
populations1,2. The wiring of the brain guides the propagation of sig-
nals through networks of nested polyfunctional neural circuits3,4. The
resulting fluctuations in membrane potentials and firing rates ulti-
mately manifest as patterned neurophysiological activity5–7.

A rich literature demonstrates links between cortical micro-
architecture and dynamics. Numerous studies have investigated the
cellular and laminar origins of cortical rhythms8–13. For instance, elec-
tro- and magneto-encephalography (EEG/MEG) signals appear to be
more sensitive to dipoles originating from pyramidal cells of cortical

layers II-III and V14,15. Moreover, specific time-series features of neuro-
nal electrophysiology depend on neuron type, morphology and local
gene transcription, particularly genes associated with ion channel
regulation16–18. However, previous studies have mostly focused on
single or small sets of features-of-interest, oftenmapping singlemicro-
architectural features to single dynamical features. Starting with the
discovery of 8–12 Hz alpha rhythm in the electroencephalogram19,
conventional time-series analysis in neurosciencehas typically focused
on canonical electrophysiological rhythms20–24. More recently, there
has also been a growing interest in studying the intrinsic timescales
that display a hierarchy of temporal processing from fast fluctuating
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activity in unimodal cortex to slower encoding of contextual infor-
mation in transmodal cortex25–34. How ongoing neurophysiological
dynamics arise from specific features of neural circuit micro-
architecture remains a key question in neuroscience1,2,12.

Recent analytic advances have opened new opportunities to
perform neurophysiological time-series phenotyping by computing
comprehensive feature sets that go beyond power spectral measures,
including measures of signal amplitude distribution, entropy, fractal
scaling and autocorrelation35–40. Concomitant advances in imaging
technologies and data sharing offer new ways to measure brain
structure with unprecedented detail and depth41–43, including gene
expression44, myelination45,46, neurotransmitter receptors47–54,
cytoarchitecture55–57, laminar differentiation56,58, cell type
composition44,59,60, metabolism61,62 and evolutionary expansion63,64.

Herewe comprehensively characterize the dynamical signature of
neurophysiological activity and relate it to the underlying micro-
architecture by integrating multiple, multimodal maps of human cor-
tex. Instead of manually selecting a small number of features-of-
interest, we use extensive sets of dynamical and micro-architectural
features using data-driven approaches. Specifically, we first derive
cortical spontaneous neurophysiological activity using source-
resolved magnetoencephalography (MEG) from the Human Con-
nectome Project (HCP; see ref. 65). We then apply highly comparative
time-series analysis (hctsa; see refs. 35,36) to estimate a compre-
hensive set of time-series features for each brain region (Fig. 1). At the
same time, we construct a micro-architectural atlas of the cortex that
includes maps of microstructure, metabolism, neurotransmitter
receptors and transporters, laminar differentiation and cell types
(Fig. 2). Finally, we map these extensive micro-architectural and
dynamical atlases to one another usingmultivariate statistical analysis.

Results
Regional neurophysiological time-series were estimated by applying
linearly constrained minimum variance (LCMV) beamforming to
resting state MEG data from the Human Connectome Project (HCP;
see ref. 65) using Brainstorm software66(see Methods for details).
Highly comparative time-series analysis (hctsa; see refs. 35,36) was
then used to perform massive time-series feature extraction from
regional MEG recordings. This procedure provides a feature-based
representation of time-series, where given time-series are repre-
sented by time-series feature vectors36,37. This time-series phenotyp-
ing analysis is a data-driven method that quantifies dynamic
repertoire of neural activity using interdisciplinary metrics of

temporal structure of the signal and yields a comprehensive ‘finger-
print’ of dynamical properties of each brain region. Applying time-
series phenotyping to regional MEG time-series, we estimated 6880
time-series features for 100 cortical regions from the Schaefer-100
atlas67. The hctsa library contains a vast and interdisciplinary set of
features with potentially correlated values that span various con-
ceptual time-series characteristics. The list of time-series features
includes, but is not limited to, statistics derived from the auto-
correlation function, power spectrum, amplitude distribution, and
entropy estimates (Fig. 1).

To estimate a comprehensive set of multimodal micro-
architectural features, we used the recently-developed neuromaps
toolbox43 as well as the BigBrainWarp toolbox57, the Allen Human
Brain Atlas (AHBA44) and the abagen toolbox68 to transform and
compile a set of 45 features, including measures of microstructure,
metabolism, cortical expansion, receptors and transporters, layer
thickness and cell type-specific gene expression (Fig. 2). Note that the
microstructure maps include principal gradients of gene expression
and neurotransmitter profiles as they each represent proxy measures
of certain molecular properties. Specifically, the principal component
of gene expression (gene expression PC1) provides a potential proxy
for cell type distribution across the cortex44,69,70 and the principal
component of neurotransmitter receptors and transporters (neuro-
transmitter PC1) provides a summary measure of protein densities of
18 neurotransmitter receptors and transporters47,71. We also included
individual neurotransmitter receptor and transporter maps as well as
cell type-specific gene expression maps to assess their effects
separately.

In subsequent analyses, we first assess the topographic organi-
zation of neurophysiological dynamics by quantifying the dominant
patterns of variations in resting-state MEG time-series properties. We
then characterize the signature of neurophysiological dynamics with
respect to micro-architectural attributes across the cortex. Finally, we
perform sensitivity analyses to investigate potential effects of con-
founding factors on the findings, such as signal-to-noise ratio and
parcellation resolution (see Sensitivity analysis for details).

Topographic distribution of neurophysiological dynamics
The hctsa time-series phenotyping procedure generated 6880 time-
series features per brain region. Since hctsa contains multiple algo-
rithmic variants for quantifying any given time-series property, the
identified time-series features potentially capture related dynamical
behaviour and include groups of correlated properties. Hence, we first
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Fig. 1 | Feature-based representation of neurophysiological time-series. Highly
comparative time-series analysis (hctsa; see ref. 35) toolbox was used to perform
time-series feature extraction on regional MEG time-series. This time-series

phenotyping procedure generated 6 880 time-series features for each region,
including measures of autocorrelation, entropy, power spectrum and amplitude
distribution. Source data are provided as a Source Data file.
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sought to identify dominant macroscopic patterns or gradients of
neurophysiological dynamics using principal component analysis
(PCA)38. Applying PCA to the group-average region × feature matrix,
we find evidence of a single dominant component that captures 48.7%
of the variance in regional time-series features (Fig. 3a). The dominant
component or “gradient”of neurophysiological dynamics (PC1)mainly
spans the posterior parietal cortex and sensory-motor cortices on one
end and the anterior temporal, orbitofrontal and ventromedial cor-
tices on the other end (Fig. 3a). Focusing on intrinsic functional net-
works, we find that the topographic organization of the dominant
neurophysiological dynamics varies along a sensory–fugal axis from
dorsal attention, somatomotor and visual networks to limbic and
default mode networks72 (Fig. 3a).

We next investigated the top-loading time-series features on the
first component, using the univariate correlations between each of the
original feature maps and the PC1 map (i.e., PCA loadings). All corre-
lations were statistically assessed using spatial autocorrelation-
preserving null models ("spin tests”73,74; see Methods for details). Fig-
ure 3b shows that numerous features are positively and negatively
correlated with PC1; the full list of features, their correlation coeffi-
cients and p-values are available in the online Supplementary Data-
set S1. Inspection of the top loading features reveals that the majority
are statistics derived from the structure of the power spectrum or
closely related measures. Examples include power in different fre-
quency bands, parameters of various model fits to the power spec-
trum, and related measures, such as the shape of the autocorrelation
function andmeasures offluctuation analysis. Figure 3b showshowthe
power spectrum varies across the cortex, with each line representing a
brain region. Regions are coloured by their position in the putative
unimodal–transmodal hierarchy75; the variation visually suggests that

unimodal regions display more prominent alpha (8–12Hz) and beta
(15–29Hz) power peaks. Collectively, these results demonstrate that
the traditional focus of electrophysiological time-series analysis on
statistics of the power spectrum is consistent with the dominant var-
iations inMEGdynamics captured by the diverse library ofhctsa time-
series features.

Given that the topographicorganizationofPC1was closely related
to power spectral features, we directly tested the link between PC1 and
conventional band-limited power spectral measures21–23, as well as
intrinsic timescale30 (Supplementary Figure 1). Figure 3c shows the
correlations between PC1 and delta (2–4Hz), theta (5–7Hz), alpha
(8–12 Hz), beta (15–29Hz), lo-gamma (30–59Hz) and hi-gamma
(60–90Hz) power maps, and intrinsic neural timescale28,30–34,76. We
find that PC1 is significantly correlated with intrinsic timescale
(rs = 0.84, pspin = 0.038; FDR-corrected) and hi-gamma (rs = 0.87,
pspin = 0.006; FDR-corrected). The results were consistent when we
used band-limited power maps that were adjusted for the aperiodic
component of the power spectrum as opposed to the total power21

(Supplementary Fig. 2). The fact that PC1 correlates with intrinsic
timescale is consistent with the notion that both capture broad var-
iations in the power spectrum. Given that the intrinsic timescale
reflects characteristics of the aperiodic component of the power
spectrum (thesemeasures aremathematically related; seeMethods for
details), we also directly assessed the association between PC1 and the
exponent and offset of the aperiodic component. The exponent
describes the “curve” or the overall “line” or the slope of the aperiodic
component and the offset describes the overall vertical shift (up and
down translation) of thewhole power spectrum21. PC1 was significantly
correlated with both measures, suggesting that time-series features
captured by PC1 also reflect properties of the aperiodic component of
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Fig. 2 | Multimodal brain maps. neuromaps toolbox43, BigBrainWarp toolbox57,
the Allen Human Brain Atlas (AHBA44) and the abagen toolbox68 were used to
compile a set of 45 micro-architectural brain maps, including measures of micro-
structure, metabolism, cortical expansion, receptors and transporters, layer
thickness and cell type-specific gene expression (astro = astrocytes; endo = endo-
thelial cells; micro = microglia; neuron-ex = excitatory neurons; neuron-in = inhi-
bitory neurons; oligo = oligodendrocytes; and opc = oligodendrocyte precursors)

(seeMethods formoredetails). Note that themicrostructuremaps includeprincipal
gradients of gene expression and neurotransmitter profiles, for whichwe have also
separately included feature sub-sets (specific receptor maps and cell type-specific
gene expression). All obtained brain maps are depicted across the cortex at 95%
confidence interval (Schaefer-100 atlas67). Source data are provided as a Source
Data file.
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the power spectrum (Supplementary Fig. 3). In addition, previous
reports suggest that broadband gamma activity also partly reflects the
aperiodic neurophysiological activity and broadband shifts in the
power spectrum77–79. This is consistent with our findings that PC1 is
associated with gamma power and intrinsic timescale, mainly captur-
ing broad variations in power spectrum and characteristics of the
aperiodic activity.

Note that we focused on PC1 because the other components (PC2
and above) accounted for 10% or less of the variance in time-series
features and were not significantly associated with hctsa time-series
features. Moreover, to verify that the apparent low-dimensionality of
the data and the identified PC patterns were not driven by the smaller
number of samples (i.e., brain regions) than features (i.e., time-series
features), we performed a sensitivity analysis where we randomly
selected 100 time-series features (from the original list of 6 880 fea-
tures) and re-ran PCA (1 000 repetitions). The identified PC patterns
and their corresponding amountof varianceexplainedwereconsistent
with the original analysis using the full set of time-series features
(Supplementary Fig. 4).

Neurophysiological signatures of micro-architecture
Howdo the regional neurophysiological time-series featuresmap onto
multimodal micro-architectural features? To address this question, we
implemented a multivariate partial least squares analysis (PLS; see
refs. 80,81) that integrates multiple multimodal brain maps into the
analysis and seeks to identify linear combinations of time-series fea-
tures and linear combinations of micro-architectural features that
optimally covary with one another. Figure 4a shows that the analysis
identifies multiple such combinations, termed latent variables (similar
results were obtained using sparse canonical correlation analysis
(sCCA); Supplementary Fig. 5). Statistical significance of each latent
variable was assessed using spatial autocorrelation-preserving per-
mutation tests70,74. The first latent variable was statistically significant,
capturing the greatest covariance between time-series and micro-
architectural features (covariance explained = 75.4%, pspin = 0.011).

Figure 4b shows the spatial topography of time-series features
and micro-architectural scores for the first latent variable. These are
the weighted sums of the original input features according to the
weighting identifiedby the latent variable. The correlationbetween the
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putative unimodal–transmodal hierarchy75. c To contextualize the principal com-
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score maps is maximized by the analysis (rs = 0.73, pspin = 0.0059). We
therefore sought to estimate whether the same mapping between
time-series and micro-architectural features can be observed out-of-
sample. We adopted a distance-dependent cross-validation procedure
where “seed” regions were randomly chosen and the 75% most physi-
cally proximal regions were selected as the training set, while the
remaining 25% most physically distal regions were selected as the test
set70 (see Methods for more details). For each train-test split, we fit a
PLSmodel to the train set andproject the test set onto theweights (i.e.,
singular vectors) derived from the train set. The resulting test set
scores are then correlated to estimate an out-of-sample correlation
coefficient. Figure 4b shows that micro-architecture and time-series
feature scores are correlated in training set (mean rs = 0.75) and test set
(mean rs = 0.5), demonstrating consistent findings in out-of-sample
analysis.

We next examined the corresponding time-series and micro-
architecture feature loadings and identified the most contributing
features to the spatial patterns captured by the first latent variable
(Fig. 4c, d). The top loading time-series features weremainly related to
measures of self-correlation or predictability of the MEG signal. The
self-correlation measures mostly reflect the linear correlation struc-
ture of neurophysiological time-series, particularly long-lag auto-
correlations (at lags > 15 time steps, or > 30ms). A wide range of other
highly weighted time-series features captured other aspects of signal
predictability, including measures of the shape of the autocorrelation
function (e.g., the time lag at which the autocorrelation function
crosses zero), how the autocorrelation structure changes after
removing low-order local trends (e.g., residuals from fitting linear
models to rolling 5-time-step, or 10 ms, windows), scaling properties
assessed using fluctuation analysis (e.g., scaling of signal variance
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across timescales), and measures derived from a wavelet decomposi-
tion (e.g., wavelet coefficients at different timescales). The full list of
time-series feature loadings for the first latent variable is available in
the online Supplementary Dataset S2.

To illustrate the spatial distribution of highly contributing time-
series features, Fig. 4c shows three top-loading features thatmirror the
spatial variation of the first PLS latent variable. For example, Figure 4c,
left depicts the distribution of the group-average first zero-crossing
point of the autocorrelation function. The autocorrelation function of
the unimodal cortex (marked with a pink circle) crosses zero auto-
correlation at a lower lag than the transmodal cortex (marked with a
purple circle), suggesting faster autocorrelation decay and longer
correlation length in transmodal cortex than in unimodal cortex.
Another example is the linear autocorrelation of the MEG signal at
longer time lags. Figure 4c, left shows autocorrelation at a lag of 48ms
(24 time steps), demonstrating lower autocorrelation in unimodal
cortex and higher autocorrelation in transmodal cortex. Note that the
list of top-loading features includes linear autocorrelation at other
time lags and autocorrelation at a lag of 48ms was only selected as an
illustrative example (Supplementary Fig. 6 depicts the full range of
loadings for linear autocorrelation at all time lags included in hctsa).
Finally, we examined the scaling exponent, α, estimated using
detrended fluctuation analysis as the slope of a linear fit to the log-log
plot of the fluctuations of the detrended signal across timescales82,83.
Figure 4c, right depicts this scaling exponent across the cortex, which
exhibits a similar spatial pattern as the previous two examples, indi-
cating lower self-correlation inunimodal cortex (pink circle) compared
to transmodal cortex (purple circle). Other variations of fluctuation
analysis also featured heavily in the list of top-loading features,
including goodness of fit of the linear fit, fitting of multiple scaling
regimes, and different types of detrending and mathematical for-
mulation of fluctuation size.

Figure 4d shows the corresponding micro-architectural loadings.
The most contributing micro-architectural features to the spatial pat-
terns captured by the first latent variable are the principal component
of gene expression (gene expression PC1; a potential proxy for cell
type distribution44,69,70), T1w/T2w ratio (a proxy for intracortical
myelin46), principal component of neurotransmitter receptors and
transporters (neurotransmitter PC1), and oxygen and glucose meta-
bolism (strong positive loadings). We also find high contributions
(strong negative loadings) from specific neurotransmitter receptor
and transporters, in particular metabotropic serotonergic and dopa-
minergic receptors, as well as from cell type-specific gene expression
of oligodendrocyte precursors (opc), which are involved in
myelinogenesis84–88. Consistent findings were obtained when we used
univariate analysis to relate regional time-series features and the top

loading micro-architectural maps, in particular principal component
of gene expression and T1w/T2w ratio, which have previously been
extensively studied as archetypical micro-architectural
gradients30,41,69,89,90 (Supplementary Fig. 7). Altogether, this analysis
provides a comprehensive chart or ‘lookup table’ of how micro-
architectural and time-series feature maps are associated with one
another. These results demonstrate that cortical variation in multiple
micro-architectural attributes manifests as a gradient of time-series
properties of neurophysiological activity, particularly the properties
that reflect the long-range self-correlation structure of the signal.

Sensitivity analysis
To assess the extent to which the results are affected by potential
confounding factors and methodological choices, we repeated the
analyses using alternative approaches. First, to ensure that the findings
are not influenced by MEG signal-to-noise ratio (SNR), we calculated
SNR at each source location using a noise model that estimates how
sensitive the source-level MEG signal is to source location and
orientation91,92. We performed two follow-up analyses using the SNR
map (Supplementary Fig. 8): (1) SNR was first compared with the full
set of MEG time-series features using mass univariate Pearson corre-
lations. Time-series features that were significantly correlated with
SNR were removed from the feature set without correcting for multi-
ple comparisons (pspin < 0.05; 10,000 spatial autocorrelation-
preserving permutation tests73,74). Note that this is a more con-
servative feature selection procedure compared to conventional
multiple comparisons correction, because fewer features would be
removed if correction for multiple comparisons was applied. PCA was
applied to the remaining set of features (Supplementary Figure 8b).
The principal component of the retained 3819 features (i.e., PC1 -
feature subset) explained 31.6% of the variance and was significantly
correlated with the original PC1 of the full set of features (rs = 0.93,
pspin = 0.0001), reflecting similar spatial pattern as the original analy-
sis. (2) SNR was regressed out from the full set of time-series features
using linear regression analysis. PCA was then applied to the resulting
feature residuals (Supplementary Fig. 8c). The principal component of
SNR-regressed features (i.e., PC1 - SNR regressed) explained 41.4% of
the variance and reflected the same spatial pattern as the original
analysis (rs = 0.70, pspin = 0.0004). Moreover, we assessed the effects
of environmental and instrumental noise on the findings, where we
applied principal component analysis to the hctsa features obtained
from pre-processed empty-room MEG recordings23 (see Methods for
more details). PCA weights of the time-series features of the empty-
room MEG recordings were aligned with the PCA weights of the time-
series features of the resting-state MEG recordings using the Pro-
crustes method (see ref. 93; https://github.com/satra/mapalign). The

Fig. 4 |Neurophysiological signatureofmicro-architecture. aPartial least square
(PLS) analysis was used to assess the multivariate relationship between micro-
architectural and time-series features. PLS identified a single significant latent
variable (covariance explained = 75.4%, pspin = 0.011, two-tailed). Centre line of the
box plots represents the median, whiskers represent the minima and maxima, and
bounds represent the 1st (25%) and 3rd (75%) quartiles of the distribution. Number
of observations (i.e., null covariance explained) for each box plot is N = 10000
(number of applied spin tests). b Spatial patterns of micro-architecture and time-
series features scores are depicted for the first latent variable. The two brain score
maps are significantly correlated (rs = 0.73, pspin = 0.0059, two-tailed). rs denotes
the Spearman’s rank correlation coefficient; linear regression line is added to the
scatter plot for visualization purposes only (shaded area denotes 95% confidence
interval for the regression). To assess the out-of-sample correlation of brain scores,
a distance-dependent cross-validation analysis was used (seeMethods). Micro-
architecture and time-series feature scores are consistently correlated in both
training set (75% of regions; mean rs = 0.75) and test set (25% of regions; mean
rs = 0.5). Centre line of the box plots represents themedian, whiskers represent the
minima andmaxima, and bounds represent the 1st (25%) and 3rd (75%) quartiles of

the distribution. Number of observations (i.e., score correlation) for each box plot
is N = 99 (number of applied train-test splits). c Top loading time-series features
were mainly related to measures of self-correlation or predictability of the signal.
Three examples of top loading features are depicted across the cortex. Left: first
zero-crossing time point of the autocorrelation function, tc, and linear auto-
correlation at a lag of 48 ms, ac48; right: the scaling exponent of detrended fluc-
tuation analysis, α. Short segments of raw time-series, autocorrelation functions,
and fluctuation analysis plots (log-log plot of detrended fluctuations at multiple
timescales) are also shown for a randomly selected participant at three cortical
regions (circles on the brain surface: pink ≈ 5th percentile, green≈ 50th percentile,
purple≈95th percentile). Time points corresponding to zero-crossing point (tc)
and 48 ms are indicated with grey dashed lines on the autocorrelation function
plots. d PLS loadings for micro-architectural features are shown for each set of
brain maps as bar charts (left; only reliable loadings are shown) and scatter plots
(right). Bar charts depict PLS loadings (a single PLS loading permicro-architectural
map) with their corresponding 95% confidence intervals from 10,000 bootstrap
resamplings. Cell types: astro astrocytes, micro microglia, opc oligodendrocyte
precursors. Source data are provided as a Source Data file.
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principal component of neurophysiological dynamics was then com-
pared with the principal component of time-series features obtained
from empty-room recordings, where no significant associations were
identified (Supplementary Fig. 9; rs = −0.17, pspin = 0.69). These ana-
lyses demonstrate that the time-series features captured by the
dominant axis of variation in neurophysiological dynamics are inde-
pendent from measures of MEG signal-to-noise ratio.

Finally, to ensure that the findings are independent from the
parcellation resolution, we repeated the analyses using a higher reso-
lution parcellation (Schaefer-400 atlas with 400 cortical regions67).
The results were consistent with the original analysis (Supplementary
Figs. 10, 11). In particular, the first principal component (PC1)
accounted for 48.6% of the variance and displayed a similar spatial
organization as the one originally obtained for the Schaefer-100 atlas
(Supplementary Fig. 10a). As before, the top loading time-series fea-
tures were mainly related to the characteristics of the power spectral
density (Supplementary Fig. 10b, c). The full list of features, their
loadings and p-values are available in the online Supplementary
Dataset S3. Moreover, PLS analysis identified a single significant latent
variable (pspin = 0.0083) that accounted for 75.7% of the covariance
(Supplementary Fig. 11a). Micro-architecture and time-series feature
scores displayed similar spatial patterns to the ones obtained for the
Schaefer-100 atlas (Supplementary Fig. 11b). The corresponding fea-
ture loadings were also consistent with the original findings (micro-
architectural loadings in Supplementary Fig. 11c and time-series fea-
ture loadings in the online Supplementary Dataset S4.)

Discussion
In the present study, we use time-series phenotyping analysis to
comprehensively chart the dynamic fingerprint of neurophysiological
activity from the resting-state MEG signal. We then map the resulting
dynamical atlas to a multimodal micro-architectural atlas to identify
the neurophysiological signatures of cortical micro-architecture. We
demonstrate that cortical variation in neurophysiological time-series
properties mainly reflects power spectral density and is closely asso-
ciated with intrinsic timescale and self-correlation structure of the
signal. Moreover, the spatial organization of neurophysiological
dynamics follows gradients of micro-architecture, such as neuro-
transmitter receptor and transporters, gene expression and T1w/T2w
ratios, and reflects cortical metabolic demands.

Numerous studies have previously investigated neural oscillations
and their relationship with neural communication patterns in the
brain8,10,11,94. Previous reports also suggest that neural oscillations
influence behaviour and cognition94–98 and are involved in multiple
neurological diseases and disorders97,99. Neural oscillationsmanifest as
the variations of power amplitude of neurophysiological signal in the
frequency domain10,21,100,101. Power spectral characteristics of the neu-
rophysiological signal, such as mean power amplitude in canonical
frequency bands, have previously been used to investigate the
underlying mechanisms of large-scale brain activity and to better
understand the individual differences in brain function22,23,31,98,102,103.
Other time-series properties that are related to the power spectral
density have also been used to study neural dynamics, including
measures of intrinsic timescale and self-affinity or self-similarity of the
signal (e.g., autocorrelation and fluctuation analysis)25,30,82,83,104–106.

Applying a data-driven time-series feature extraction analysis, we
find that the topographic organization of neurophysiological time-
series signature follows a sensory–fugal axis, separating somatomotor,
occipital and parietal cortices from anterior temporal, orbitofrontal
and ventromedial cortices. This dynamic fingerprint of neurophysio-
logical activity is mainly characterized by linear correlation structure
of MEG signal captured by hctsa time-series features. The linear
correlation structure manifests in both power spectral properties and
the autocorrelation function. This dominant spatial variation of time-
series features also resembles the spatial distribution of intrinsic

timescale, another measure related to the characteristics of power
spectral density28,30,33. Altogether, while the findings highlight under-
represented time-series features, they emphasize the importance of
conventional methods in characterizing neurophysiological activity
and the key role of linear correlation structure in MEG dynamics.

Earlier reports found that regional neural dynamics, including
measures of power spectrum and intrinsic timescale, reflect the
underlying circuit properties and corticalmicro-architecture25,28,30. The
relationship between neural dynamics and cortical micro-architecture
is often examined using a single, or a few microstructural features.
Recent advances in data collection and integration and the increasing
number of data sharing initiatives have provided a unique opportunity
to comprehensively study cortical circuit properties and micro-
architecture using a wide range of multimodal datasets43,44,47,56,57,65,107.
Here we use such datasets and compile multiple micro-architectural
maps, including measures of microstructure, metabolism, cortical
expansion, receptors and transporters, layer thickness and cell type-
specific gene expressions, to chart the multivariate associations
between neurophysiological dynamics and cortical micro-
architecture.

Our findings build on previous reports by showing that neuro-
physiological dynamics follow the underlying cytoarchitectonic and
microstructural gradients. In particular, our findings confirm thatMEG
intrinsic dynamics are associated with the heterogeneous distribution
of gene expression and intracortical myelin30,89,108,109 and neuro-
transmitter receptors and transporters47. In addition, we link the
dynamic signature of ongoing neurophysiological activity with multi-
ple metabolic attributes62,110; for instance, we find that regions with
greater oxygen and glucose metabolism tend to display lower tem-
poral autocorrelation and therefore more variable moment-to-
moment intrinsic activity. This is consistent with previously reported
high metabolic rates of oxygen and glucose consumption in the sen-
sory cortex61. We also find a prominent association with cell type-
specific gene expression of oligodendrocyte precursors (opc), poten-
tially reflecting the contribution of these cells to myelin generation by
giving rise to myelinating oligodendrocytes during development84–88

and tomyelin regulation andmetabolic supportofmyelinated axons in
the adult neural circuits87,88,111. Finally, we find that the dominant
dynamic signature of neural activity covaries with the granular cortical
layer IV, consistent with the idea that layer IV receives prominent
subcortical (including thalamic) feedforward projections112,113. Collec-
tively, our findings build on the emerging literature on how hetero-
geneous micro-architectural properties along with macroscale
network embedding (e.g., cortico-cortical connectivity and subcortical
projections) jointly shape regional neural dynamics38–40,114–117.

The present findings must be interpreted with respect to several
methodological considerations. First, we usedMEG data from a subset
of individuals with no familial relationships from the HCP dataset.
Although all the presented analyses are performed using the group-
level data, future work with larger sample sizes can provide more
generalizable outcomes118,119. Larger sample sizes will also help go
beyond associative analysis and allow for predictive analysis of neural
dynamics and micro-architecture in unseen datasets. Second, MEG is
susceptible to low SNR and has variable sensitivity to neural activity
from different regions (i.e., sources). Thus, electrophysiological
recordings with higher spatial resolution, such as intracranial electro-
encephalography (iEEG and ECoG), may provide more precise mea-
sures of neural dynamics that can be examined with respect to cortical
micro-architecture. However, a major caveat with iEEG and ECoG is
that they lack whole brain coverage, limiting their practical usage in
such analysis. An alternative non-invasive modality is on-scalp MEG,
which offers both high SNR and spatial resolution120–123. Third, we note
that the included micro-architectural maps are by no means direct
measurements of the underlying neurobiological features. For exam-
ple, the “myelin”map is estimated based on the ratio of T1-weighted to
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T2-weighted MRI scans, which is only sensitive to intracortical myelin
and is not a true measure of tissue myelin content46,69. The “cortical
layer thickness” maps are from a deep-learning based layer segmen-
tation of the BigBrain histological atlas and are not precise measure-
ments of laminardifferentiation of the brain56–58. Althoughweaimed to
select non-invasive modalities that are most sensitive to micro-
structure, cytoarchitecture, and cellular and molecular features, the
included maps can only provide proxy, indirect assessments of such
biological properties. Finally, despite the fact that we attempt to use a
comprehensive list of time-series properties and multiple micro-
architectural features, neither the time-series features nor the micro-
architectural maps are exhaustive sets of measures. Moreover, micro-
architectural features are group-average maps that are compiled from
different datasets. Multimodal datasets from the same individuals are
required to perform individual-level comparisons between the dyna-
mical and micro-architectural atlases.

Altogether, using a data-driven approach, the present findings
show that neurophysiological signatures of corticalmicro-architecture
are hierarchically organized across the cortex, reflecting the under-
lying circuit properties. These findings highlight the importance of
conventional measures for studying the characteristics of neurophy-
siological activity, while also identifying less-commonly used time-
series features that covary with cortical micro-architecture. Collec-
tively, this work opens new avenues for studying the anatomical basis
of neurophysiological activity.

Methods
Dataset: human connectome project (HCP)
Resting state magnetoencephalography (MEG) data from a sample of
healthy young adults (n = 33; age range 22–35 years; 16 female and 17
male) with no familial relationships were obtained from Human Con-
nectome Project (HCP; S900 release65; informed consent obtained).
The WU-Minn HCP Consortium (consortium of US and European
institutions led by Washington University and the University of Min-
nesota) approved the study protocol. The obtained data includes
resting state scans of approximately 6 minutes long (sampling rate =
2034.5Hz; anti-aliasing low-pass filter at 400Hz) and empty-room
recordings for all participants. 3T structural magnetic resonance
imaging (MRI) data and MEG anatomical data (i.e., cortical sheet with
8004 vertices and transformation matrix required for co-registration
of MEG sensors and MRI scans) of all participants were also obtained
for MEG pre-processing.

Resting state magnetoencephalography (MEG)
Resting state MEG data was analyzed using Brainstorm software,
which is documented and freely available for download online under
the GNU general public license (see ref. 66; http://neuroimage.usc.
edu/brainstorm). For each individual, MEG sensor recordings were
registered to their structural MRI scan using the anatomical transfor-
mation matrix provided by HCP for co-registration, following the
procedure described in Brainstorm online tutorials for the HCP
dataset (https://neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG).
The data were downsampled to 1/4 of the original sampling rate (i.e.,
509Hz) to facilitate processing. The pre-processing was performed by
applying notch filters at 60, 120, 180, 240, and 300Hz, and was fol-
lowedbyahigh-passfilter at0.3 Hz to remove slow-wave andDC-offset
artifacts. Bad channels were marked based on the information
obtained through the data management platform of HCP (Con-
nectomeDB; https://db.humanconnectome.org/). The artifacts
(including heartbeats, eye blinks, saccades, muscle movements, and
noisy segments) were then removed from the recordings using auto-
matic procedures as proposed by Brainstorm. More specifically,
electrocardiogram (ECG) and electrooculogram (EOG) recordings
were used to detect heartbeats and blinks, respectively. We then used
Signal-Space Projections (SSP) to automatically remove the detected

artifacts. We also used SSP to remove saccades and muscle activity as
low-frequency (1–7Hz) and high-frequency (40–240Hz) components,
respectively.

The pre-processed sensor-level data was then used to obtain a
source estimationonHCP’s fsLR4kcortical surface for eachparticipant
(i.e., 8004 vertices). Head models were computed using overlapping
spheres and the data and noise covariance matrices were estimated
from the resting state MEG and noise recordings. Linearly constrained
minimum variance (LCMV) beamforming from Brainstorm was then
used to obtain the source activity for each participant. We performed
data covariance regularization to avoid the instability of data covar-
iance matrix inversion due to the smallest eigenvalues of its eigen-
spectrum. Data covariance regularization was performed using the
“median eigenvalue” method from Brainstorm66, such that the eigen-
values of the eigenspectrum of data covariance matrix that were
smaller than the median eigenvalue were replaced with the median
eigenvalue itself. The estimated source variance was also normalized
by the noise covariance matrix to reduce the effect of variable source
depth. Source orientations were constrained to be normal to the cor-
tical surface at eachof the 8004vertex locations on the fsLR4k surface.
Source-level time-series were parcellated into 100 regions using the
Schaefer-100 atlas67 for each participant, such that a given parcel’s
time series was estimated as the first principal component of its con-
stituting sources’ time series. Finally, we estimated source-level signal-
to-noise ratio (SNR) as follows91,92:

SNR= 10log10
a2

N

XN

k = 1

b2
k

s2k

 !
, ð1Þ

wherea is the source amplitude (i.e., typical strength of a dipole, which
is 10 nAm5), N is the number of sensors, bk is the signal at sensor k
estimated by the forward model for a source with unit amplitude, and
s2k is the noise variance at sensor k. Group-average source-level SNR
was parcellated using the Schaefer-100 atlas.

To estimate a measure of environmental and instrumental noise,
empty-room MEG recordings of all individuals were obtained from
HCP and were pre-processed using an identical procedure to the
resting-state recordings. The pre-processed source-level time-series
obtained fromempty-room recordingswere parcellated and subjected
to time-series feature extraction analysis to estimate time-series fea-
tures from noise data for each participant (see Time-series feature
extraction using hctsa).

Power spectral analysis
Welch’s method was used to estimate power spectrum density (PSD)
from the source-level time-series for each individual, using over-
lappingwindows of length 4 secondswith 50%overlap. Average power
at each frequency band was then calculated for each vertex (i.e.,
source) as the mean power across the frequency range of a given
frequency band. Source-level power data were parcellated into 100
regions using the Schaefer-100 atlas67 at six canonical electro-
physiological bands (i.e., delta (δ: 2–4Hz), theta (θ: 5–7Hz), alpha (α:
8–12Hz), beta (β: 15–29Hz), low gamma (lo-γ: 30–59Hz), and high
gamma (hi-γ: 60–90Hz)). We contributed the group-average vertex-
level power maps on the fsLR4k surface to the publicly available
neuromaps toolbox43.

Intrinsic timescale
The regional intrinsic timescale was estimated using spectral para-
meterization with the FOOOF (fitting oscillations & one over f)
toolbox21. Specifically, the source-level power spectral density were
used to extract the neural timescale at each vertex and for each indi-
vidual using the procedure described in ref. 30. The FOOOF algorithm
decomposes the power spectra into periodic (oscillatory) and aper-
iodic (1/f-like) components by fitting the power spectral density in the
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log-log space21 (Supplementary Fig. 2). The algorithm identifies the
oscillatory peaks (periodic component), the “knee parameter” k that
controls for the bend in the aperiodic component and the aperiodic
“exponent” χ21,30. The knee parameter k is then used to calculate the
“knee frequency” as fk = k1/χ, which is the frequency where a knee or a
bend occurs in the power spectrum density30. Finally, the intrinsic
timescale τ is estimated as30:

τ =
1

2πf k
: ð2Þ

We used the FOOOF algorithm to fit the power spectral density
with “knee” aperiodicmode over the frequency range of 1–60Hz. Note
that since the first notch filter was applied at 60Hz during the pre-
processing analysis, we did not fit the model above 60Hz. Following
the guidelines from the FOOOF algorithm and Donoghue et al.21, the
rest of the parameters were defined as: peak width limits (peak_-
width_limits) = 1–6Hz; maximum number of peaks (max_n_peaks) = 6;
minimum peak height (min_peak_height) = 0.1; and peak threshold
(peak_threshold) = 2. Intrinsic timescale τwas estimated at each vertex
for each individual and was parcellated using the Schaefer-100 atlas67.
The performance of model fits by the FOOOF algorithm was quantified
as the “goodness of fit” or R2 for each model fitted to a given power
spectrum (Supplementary Fig. 2; range of R2 = [0.95, 0.98]). We con-
tributed the group-average vertex-level intrinsic timescale map on the
fsLR4k surface to the publicly available neuromaps toolbox43.

In addition to the aperiodic component used to calculate the
intrinsic timescale, the FOOOF spectral parameterization algorithm
also provides the extracted peak parameters of the periodic com-
ponent at each vertex for each participant. We used the oscillatory
peak parameters to estimate band-limited power maps that were
adjusted for the aperiodic component as opposed to the total power
maps estimated above21 (see Power spectral analysis). We defined the
power band limits as delta (2–4Hz), theta (5–7 Hz), alpha (8–14 Hz),
and beta (15–30Hz), based on the distribution of peak center fre-
quencies across all vertices and participants (Supplementary Fig. 2b).
Given the lack of clear oscillatory peaks in high frequencies (above
40Hz), the FOOOF algorithm struggles with detecting consistent
peaks in gamma frequencies and above21,22. Thus, we did not analyze
band-limited power in gamma frequencies using spectral para-
meterization. For each of the 4 predefined power bands, we esti-
mated an “oscillation score” following the procedure described by
Donoghue et al.21. Specifically, for each participant and frequency
band, we identified the extracted peak at each vertex. If more than
one peak was detected at a given vertex, the peak with maximum
power was selected. The average peak power was then calculated at
each vertex and frequency band across participants. The group-
average peak power map was then normalized for each frequency
band, such that the average power at each vertex was divided by the
maximum average power across all vertices. Separately, we calcu-
lated a vertex-level probability map for each frequency band as the
percentage of participants with at least one detected peak at a given
vertex at that frequency band. Finally, the band-limited “oscillation
score” maps were obtained by multiplying the normalized group-
average power maps with their corresponding probability maps for
each frequency band. The oscillation score maps were parcellated
using the Schaefer-100 atlas67 (Supplementary Fig. 2a).

Time-series feature extraction using hctsa
We used the highly comparative time-series analysis toolbox,
hctsa35,36, to perform a massive feature extraction of the pre-
processed time-series for each brain region for each participant. The
hctsa package extracted over 7000 local time-series features using a
wide range of time-series analysis methods35,36. The extracted features
include, but are not limited to,measures of data distribution, temporal

dependency and correlation properties, entropy and variability, para-
meters of time-series model fit, and nonlinear properties of a given
time-series35,37.

The hctsa feature extraction analysis was performed on the
parcellated MEG time-series for each participant. Given that applying
hctsa on the full time-series is computationally expensive, we used
80 seconds of data for feature extraction after dropping the first
30 seconds. Previous reports suggest that relatively short segments of
about 30 to 120 seconds of resting-state data are sufficient to estimate
robust properties of intrinsic brain activity22. Nevertheless, to ensure
that we can robustly estimate time-series features from 80 seconds of
data, we calculated a subset of hctsa features using the catch-22
toolbox124 on subsequent segments of time-series with varying length
for each participant. Specifically, we extracted time-series features
from short segments of data ranging from 5 to 125 seconds in incre-
ments of 5 s. To identify the time-series length required to estimate
robust and stable features, we calculated the Pearson correlation
coefficient between features of two subsequent segments (e.g., fea-
tures estimated from 10 and 5 seconds of data). The correlation
coefficient between the estimated features started to stabilize at time-
series segments of around 30 s, consistent with previous reports22

(Supplementary Fig. 12). Following the feature extraction procedure
from time-series segments of 80 s, the outputs of the operations that
produced errors were removed and the remaining features (6880
features) were normalized across nodes using an outlier-robust sig-
moidal transform for each participant separately. A group-average
region × featurematrix was generated from the normalized individual-
level features. We also applied hctsa analysis to the parcellated
empty-room recordings (80 seconds) to estimate time-series features
from noise data using an identical procedure to resting-state data,
identifying 6148 features per region per participant. The time-series
features were normalized across brain regions for each participant. A
group-average empty-room feature set was obtained and used for
further analysis.

Micro-architectural features from neuromaps
We used the neuromaps toolbox (https://github.com/netneurolab/
neuromaps)43 to obtain micro-architectural and neurotransmitter
receptor and transporter maps in the maps’ native spaces. Details
about all maps and their data sources are available in43. Briefly, all data
that were originally available in any surface spacewere transformed to
the fsLR32k surface space using linear interpolation to resample data
and were parcellated into 100 cortical regions using the Schaefer-100
atlas in fsLR32k space67. All volumetric data were retained in their
native MNI152 volumetric space and were parcellated into 100 cortical
regions using the volumetric Schaefer atlas in MNI152 space67. Micro-
architectural maps included T1w/T2w as a proxy measure of cortical
myelin46,125, cortical thickness125, principal component of gene
expression44,68, principal component of neurotransmitter receptors
and transporters47, synapse density (using [11C]UCB-J PET tracer that
binds to the synaptic vesicle glycoprotein 2A (SV2A))55,126–137, metabo-
lism (i.e., cerebral blood flow and volume, oxygen and glucose meta-
bolism, glycolytic index)61, evolutionary and developmental
expansion63, allometric scaling from Philadelphia Neurodevelop-
mental Cohort (PNC) and National Institutes of Health (NIH)64. Neu-
rotransmitter maps included 18 different neurotransmitter receptors
and transporters across 9 different neurotransmitter systems, namely
serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-HTT), histamine
(H3), dopamine (D1, D2, DAT), norepinephrine (NET), acetylcholine
(α4β2, M1, VAChT), cannabinoid (CB1), opioid (MOR), glutamate
(mGluR5), and GABA (GABAa/bz)47.

BigBrain histological data
Layer thickness data for the 6 cortical layers (I-VI) were obtained from
the BigBrain atlas, which is a volumetric, high-resolution
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(20 × 20 × 20μm) histological atlas of a post-mortemhumanbrain (65-
year-old male)56–58. In the BigBrain atlas, sections of the post mortem
brain are stained for cell bodies using Merker staining technique138.
These sections are then imaged and used to reconstruct a volumetric
histological atlas of the humanbrain that reflects neuronal density and
soma size and captures the regional differentiation of
cytoarchitecture56–58,107,139. The approximate cortical layer thickness
data obtained from the BigBrainWarp toolbox57, were originally
generated using a convolutional neural network that automatically
segments the cortical layers from the pial to white surfaces58. Full
description of how the cortical layer thickness was approximated is
available elsewhere58. The cortical layer thickness data for the 6 cor-
tical layers wereobtained on the fsaverage surface (164k vertices) from
the BigBrainWarp toolbox57 and were parcellated into 100 cortical
regions using the Schaefer-100 atlas67.

Cell type-specific gene expression
Regional microarray expression data were obtained from 6 post-
mortembrains (1 female, ages 24–57, 42.5 ± 13.4) provided by the Allen
Human Brain Atlas (AHBA, https://human.brain-map.org; see ref. 44).
Data were processed with the abagen toolbox (version 0.1.3-doc;
https://github.com/rmarkello/abagen; see ref. 68) using the Schaefer-
100 volumetric atlas in MNI space67.

First, microarray probes were reannotated using data provided
by140; probes not matched to a valid Entrez ID were discarded. Next,
probes were filtered based on their expression intensity relative to
background noise141, such that probes with intensity less than the
background in ≥ 50.00% of samples across donors were discarded.
When multiple probes indexed the expression of the same gene, we
selected and used the probe with the most consistent pattern of
regional variation across donors (i.e., differential stability; see ref. 142),
calculated with:

ΔSðpÞ=
1
N
2

� �
XN�1

i= 1

XN

j = i+ 1

ρ½BiðpÞ,BjðpÞ�, ð3Þ

where ρ is Spearman’s rank correlation of the expression of a single
probe, p, across regions in two donors Bi and Bj, and N is the total
number of donors. Here, regions correspond to the structural desig-
nations provided in the ontology from the AHBA.

The MNI coordinates of tissue samples were updated to those
generated via non-linear registration using the Advanced Normal-
ization Tools (ANTs; https://github.com/chrisfilo/alleninf). To increase
spatial coverage, tissue samples were mirrored bilaterally across the
left and right hemispheres143. Samples were assigned to brain regions
in the provided atlas if their MNI coordinates were within 2mm of a
given parcel. If a brain region was not assigned a tissue sample based
on the above procedure, every voxel in the region was mapped to the
nearest tissue sample from the donor in order to generate a dense,
interpolated expression map. The average of these expression values
was taken across all voxels in the region, weighted by the distance
between each voxel and the samplemapped to it, in order to obtain an
estimate of the parcellated expression values for the missing region.
All tissue samples not assigned to a brain region in the provided atlas
were discarded.

Inter-subject variation was addressed by normalizing tissue sam-
ple expression values across genes using a robust sigmoid function35:

xnorm =
1

1 + expð� ðx�hxiÞ
IQRx

Þ
, ð4Þ

where 〈x〉 is the median and IQRx is the normalized interquartile
range of the expression of a single tissue sample across genes.

Normalized expression values were then rescaled to the unit interval:

xscaled =
xnorm �minðxnormÞ

maxðxnormÞ �minðxnormÞ
: ð5Þ

Gene expression values were then normalized across tissue sam-
ples using an identical procedure. Samples assigned to the same brain
region were averaged separately for each donor and then across
donors, yielding a regional expression matrix of 15,633 genes.

Finally, cell type-specific gene expression maps were calculated
using gene sets identified by a cell type deconvolution analysis59,60,70.
Detailed description of the analysis is available at59. Briefly, cell-specific
gene sets were compiled across 5 single-cell and single-nucleus RNA
sequencing studies of adult human post-mortem cortical
samples144–149. Gene expression maps of the compiled study-specific
cell types were obtained from AHBA. Unsupervised hierarchical clus-
tering analysis was used to identify 7 canonical cell classes that inclu-
ded astrocytes (astro), endothelial cells (endo), microglia (micro),
excitatory neurons (neuron-ex), inhibitory neurons (neuron-in), oli-
godendrocytes (oligo) and oligodendrocyte precursors (opc)59. We
used the resulting gene sets to obtain average cell type-specific
expression maps for each of these 7 cell classes from the regional
expression matrix of 15,633 genes.

Partial Least Squares (PLS)
Partial least squares (PLS) analysis was used to investigate the rela-
tionship between resting-state MEG time-series features and micro-
architecture maps. PLS is a multivariate statistical technique that
identifies mutually orthogonal, weighted linear combinations of the
original variables in the two datasets that maximally covary with each
other, namely the latent variables80,81. In the present analysis, one
dataset is the hctsa feature matrix (i.e., Xn×t) with n = 100 rows as
brain regions and t = 6880 columns as time-series features. The other
dataset is the compiled set ofmicro-architecturalmaps (i.e.,Yn×m) with
n = 100 rows (brain regions) and m = 45 columns (micro-architecture
maps). To identify the latent variables, both data matrices were nor-
malized column-wise (i.e., z-scored) and a singular value decomposi-
tion was applied to the correlation matrix R =X0Y as follows:

R =X0Y=USV0, ð6Þ

where Ut×m and Vm×m are orthonormal matrices of left and right sin-
gular vectors and Sm×m is the diagonal matrix of singular values. Each
column of U and V matrices corresponds to a latent variable. Each
element of the diagonal of S is the corresponding singular value. The
singular values are proportional to the covariance explained by latent
variable and can be used to calculate effect sizes as ηi = s

2
i =
PJ

j = 1 s
2
j

where ηi is the effect size for the i-th latent variable (LVi), si is the
corresponding singular value, and J is the total number of singular
values (here J =m). The left and right singular vectors U and V
demonstrate the extent to which the time-series features and micro-
architectural maps contribute to latent variables, respectively. Time-
series features with positive weights covary with micro-architectural
maps with positive weights, while negatively weighted time-series
features and micro-architectural maps covary together. Singular
vectors can be used to estimate brain scores that demonstrate the
extent to which each brain region expresses the weighted patterns
identified by latent variables. Brain scores for time-series features and
micro-architecturalmaps are calculated by projecting the original data
onto the PLS-derived weights (i.e., U and V):

Brain scores for time� series features =XU

Brain scores formicro� architecture =YV
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Loadings for time-series features and micro-architectural maps
are then computed as the Pearson correlation coefficient between the
original data matrices and their corresponding brain scores. For
example, time-series feature loadings are the correlation coefficients
between the original hctsa time-series feature vectors and PLS-
derived brain scores for time-series features.

The statistical significance of latent variables was assessed using
10,000 permutation tests, where the original data was randomized
using spatial autocorrelation-preserving nulls (see “Null model” for
more details). The PLS analysis was repeated for each permutation,
resulting in a null distributionof singular values. The significanceof the
original singular values were then assessed against the permuted null
distributions (Fig. 4a). The reliability of PLS loadings was estimated
using bootstrap resampling150, where rows of the original datamatrices
X and Y are randomly resampled with replacement 10,000 times. The
PLS analysis was then repeated for each resampled data, generating a
sampling distribution for each time-series feature and micro-
architectural map (i.e., generating 10,000 bootstrap-resampled load-
ings). The bootstrap-resampled loading distributions are then used to
estimate 95% confidence intervals for loadings (e.g., see Fig. 4d).

Given that PLS-derived brain scores are by design highly corre-
lated, we used a distance-dependent cross-validation analysis to assess
the out-of-sample correlations between brain scores70. Specifically,
75% of the closest brain regions in Euclidean distance to a random
“seed” region were selected as training set, while the 25% remaining
distant regions were selected as test set. We then re-ran the PLS ana-
lysis on the training set (i.e., 75% of regions) and used the resulting
weights (i.e., singular values) to estimated brain scores for test set. The
out-of-sample correlation was then calculated as the Spearman’s rank
correlation coefficient between test set brain scores of time-series
features and micro-architectural maps. We repeated this analysis 99
times, such that each time a random brain region was selected as the
seed region, yielding distributions of training set brain scores corre-
lations and test set (out-of-sample) correlations (Fig. 4b). Note that 99
is the maximum number of train-test splits here given that brain maps
consist of 100 regions.

Finally, we used sparse canonical correlation analysis (sCCA; see
ref. 151) as an alternative multivariate analysis technique to assess
whether using a different method with sparsity affects the
results151,152. Similar to PLS, CCA is another reduced-rank regression
analysis that is used to identify multivariate linear relationships
between two sets of data matrices70,81,153–155. The main difference
between CCA and PLS is that in CCA the correlation matrix between
the input sets is corrected for within-set correlations, ensuring that
the identified link between the two input data matrices is not driven
by the correlation structure within one of them81. Moreover, sparse
CCA (sCCA) adds a regularization parameter to the analysis to
impose sparsity and avoid overfitting151. The regularization para-
meter ranges between 0 and 1, where 0 corresponds to highest
possible sparsity and 1 corresponds to lowest possibility sparsity. We
used sCCA (regularization parameter = 0.7) to identify multivariate
associations between neurophysiological time-series features and
micro-architectural features and found similar results to the original
PLS analysis (Supplementary Fig. 5).

Null model
To make inferences about the topographic correlations between any
two brain maps, we implement a null model that systematically dis-
rupts the relationship between two topographic maps but preserves
their spatial autocorrelation73,74,156. We used the Schaefer-100 atlas in
the HCP’s fsLR32k grayordinate space65,67. The spherical projection of
the fsLR32k surface was used to define spatial coordinates for each
parcel by selecting the vertex closest to the center-of-mass of each
parcel157–159. The resulting spatial coordinates were used to generate
null models by applying randomly-sampled rotations and reassigning

node values based on the closest resulting parcel (10,000 repetitions).
The rotation was applied to one hemisphere and then mirrored to the
other hemisphere. Where appropriate, the results were corrected for
multiple comparisons by controlling the false discovery rate (FDR
correction160).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the reported analyses are openly available at https://
github.com/netneurolab/shafiei_megdynamics. Source data to gen-
erate the figures are providedwith this paper. The original data used in
this study were obtained from the Human Connectome Project (HCP;
S900 release) and are publicly available at https://db.
humanconnectome.org/. The original HCP data can be accessed fol-
lowing the HCP data use terms. The micro-architectural data is openly
available in neuromaps at https://netneurolab.github.io/neuromaps/.
The cortical layer thickness data is openly available in BigBrainWarp at
https://bigbrainwarp.readthedocs.io/en/latest/. The Allen Human
Brain Atlas (AHBA) data is openly available at https://human.brain-
map.org. The Schaefer parcellations (i.e., Shcaefer-100 and Schaefer-
400 atlases) are openly available at https://github.com/
ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/
Schaefer2018_LocalGlobal. Source data are provided with this paper.

Code availability
Code used to process and analyze data is available on GitHub (https://
github.com/netneurolab/shafiei_megdynamics) and on Zenodo
(https://doi.org/10.5281/zenodo.8258832161). All analyses were con-
ducted using Python 3.7.9, MATLAB R2020a, netneurotools v0.2.3,
and other standard Pythonpackages (e.g.,Matplotlib,Mayavi, NiBabel,
NumPy, Pandas, Scikit-learn, SciPy, Seaborn). MEG data were pro-
cessed using the open software toolbox Brainstorm v220420
(MATLAB). The open source python toolbox neuromaps v0.0.3 was
used to compile the micro-architectural feature maps (Python). Allen
Human Brain Atlas (AHBA) data was processed using the abagen
toolbox v0.1.3 (Python). BigBrainWarp toolbox was used to obtain the
cortical layer thickness data (Python). Time-series analysis was per-
formed using the highly comparative time-series analysis (hctsa)
toolbox v1.07 (Matlab). Spectral parameterization of MEG power was
performed using the FOOOF toolbox v1.0.0 (Python). PLS analysis was
performed using the pyls package (https://github.com/rmarkello/pyls)
(Python).
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