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Patient-specific models link
neurotransmitter receptor mechanisms
with motor and visuospatial axes of
Parkinson’s disease

Ahmed Faraz Khan1,2,3, Quadri Adewale1,2,3, Sue-Jin Lin 1,2,3,
Tobias R. Baumeister1,2,3, Yashar Zeighami1,4, Felix Carbonell5,
Nicola Palomero-Gallagher 6,7,8 & Yasser Iturria-Medina 1,2,3

Parkinson’s disease involves multiple neurotransmitter systems beyond the
classical dopaminergic circuit, but their influence on structural and functional
alterations is not well understood. Here, we use patient-specific causal brain
modeling to identify latent neurotransmitter receptor-mediated mechanisms
contributing to Parkinson’s disease progression. Combining the spatial dis-
tribution of 15 receptors from post-mortem autoradiography with 6
neuroimaging-derived pathological factors, we detect a diverse set of recep-
tors influencing gray matter atrophy, functional activity dysregulation,
microstructural degeneration, and dendrite and dopaminergic transporter
loss. Inter-individual variability in receptor mechanisms correlates with
symptom severity along two distinct axes, representing motor and psycho-
motor symptoms with large GABAergic and glutamatergic contributions, and
cholinergically-dominant visuospatial, psychiatric and memory dysfunction.
Our work demonstrates that receptor architecture helps explain multi-
factorial brain re-organization, and suggests that distinct, co-existing receptor-
mediated processes underlie Parkinson’s disease.

Parkinson’s disease (PD) is primarily associated with a nigrostriatal
dopamine deficit resulting in the characteristic motor symptoms of
tremor, rigidity, and bradykinesia. However, the involvement of other
brain circuits is now widely recognized1, and the majority of patients
also present numerous non-motor symptoms such as dementia,
depression, sleep disorders, or apathy2. For this multi-system disease
with significant inter-patient heterogeneity in pathology, symptoms
and treatment response3–5 consistent links between genetic,

neuropathological and clinical subtypes remain elusive6.With no cure7,
symptomatic pharmacological treatment (e.g., levodopa) is at best
partially effective8 and may result in undesired side effects with
chronic administration9. Given that diagnostic accuracy in untreated
or medication non-responder PD patients is as low as 26%10, an
improved understanding of biological mechanisms and potential
therapeutic targets underlying pathological and symptomatic hetero-
geneity is imperative to bridging the treatment gap in PD11–13.
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Neurotransmission underlies many disease-related mechanisms
as well as pharmacological response8,14. Regional variability in neuro-
transmitter receptor gene expression correlates with altered macro-
scopic interactions such as neurovascular15 and structural-functional
decoupling16. Multiple non-dopaminergic nuclei are affected in PD17,18,
with specific neurotransmitter systems linked to symptoms such as
cholinergic freezing of gait and dementia19, serotonergic depression
and tremor20, and adrenergic postural symptoms21. The dual-
syndrome hypothesis of PD18 proposes a dichotomy between
dopamine-mediated fronto-striatal executive impairment and a
cholinergically-mediated prodromal visuospatial dementia. To better
characterize the role of neurotransmission in mediating neurodegen-
erative brain reorganization, an integrative model linking multiple
receptor systems, macroscopic brain reorganization and clinical
symptoms would be essential. However, we are limited by the absence
of whole-brain spatial distributionmaps of neurotransmitter receptors
in PD patients8.

On the other hand, neuroimaging supports themulti-factorial and
heterogeneous view of PD22. Various modalities are routinely used to
support differential diagnosis11,23,24 and evaluate treatment effects25.
Multi-modal modeling of neuroimaging alterations can elucidate the
temporal ordering, disease trajectories, and interactions of various
pathologies in neurodegeneration26,27, and link these macroscopic
observations with underlying genetic and transcriptomic
determinants28. Multifactorial causal modeling (MCM) is amechanistic
modeling approach that is able to identify contributions of interacting
factors to longitudinal changes29, which can be used in a personalized
medicine context to design optimal therapeutic interventions30.
Combining multi-modal neuroimaging with spatial distribution tem-
plates of 15 neurotransmitter receptors from post-mortem
autoradiography31 in an MCM-based approach significantly improved
the explanation of degenerative changes in individual patients’ neu-
roimaging data, and linked specific receptor-pathology interactions to
clinical symptoms in Alzheimer’s disease (AD)32. Furthermore, this
approach was able to estimate individualized receptor alterations
based on inter-subject differences in receptor-neuroimaging
interactions.

Here, we extend previous molecular-phenotypic PD character-
izations in four fundamental ways: (i) by combining spatial distribution
maps of 15 key neurotransmitter receptors derived from post-mortem
autoradiography31 with longitudinal neuroimaging data in a persona-
lized modeling framework to infer the individualized importance of
various receptor-mediated interactions (N = 71, PPMI data), (ii) by
demonstrating the improved ability of receptor-enriched multi-
factorial causal modeling (re-MCM) to explain imaging-measured
neurodegeneration and identify consistent mechanistic changes
across patients, (iii) by characterizing inter-patient heterogeneity,
specifically linking receptor-basedmechanistic alterations to twomain
axes of motor, cognitive and psychiatric symptoms, (iv) quantitatively
mapping brain regions with high receptor influence on PD
neurodegeneration.

Results
Model-based approach to inferring personalized neuro-
transmitter receptor alterations
To characterize neurotransmitter receptor contributions to the mul-
tifaceted neurodegenerative processes of PD,we fit receptor-informed
individualized generative computational models to the longitudinal
alterations of 6 biological factors. Each biological factor is associated
with neurodegeneration in PD, namely atrophy, dysregulated func-
tional activity, dopaminergic deficiency, directed and microstructural
damage, and dendrite loss, represented by the neuroimaging-derived
measures of gray matter density (GM), fractional amplitude of low
frequency fluctuations (fALFF), dopamine transporter SPECT (DAT-
SPECT), fractional anisotropy (FA), mean diffusivity (MD), and t1/t2

ratio33,34. Neuroimaging data was acquired overmultiple imaging scans
for N = 71 PD patients (PPMI data, Methods: Data description and
processing). In addition, regional densities for 15 neurotransmitter
receptors (from glutamatergic, GABAergic, cholinergic, adrenergic,
serotonergic, and dopaminergic families) were derived from averaged
templates (Methods: Data description and processing: Receptor den-
sities and brain parcellation), and anatomical connectivity was esti-
mated from the high-resolution Human Connectome Project template
(HCP-1065; Methods: Anatomical connectivity estimation).

The neurotransmitter receptor-enriched multifactorial causal
model (re-MCM; Fig. 1) decomposes the spatiotemporal evolution of
pathology of multiple biological factors into localized receptor- and
network-mediated effects (Fig. 1a). Model parameters explicitly
represent distinct biological mechanisms, namely (i) direct and (ii)
receptor-mediated pairwise interactions between imaging-derived
biological factors (dopaminergic deficiency, functional activity,
microstructural damage, dendrite density, and atrophy), iii) effects of
local neurotransmitter receptor densities on factor-specific long-
itudinal deterioration, and (iv) spreading of pathology to and from
anatomically connected regions. Notice that, in the absence of true
personalized longitudinal receptor imaging, model weights of specific
receptor-mediated biological mechanisms compensate to fit indivi-
dualized trajectories of neurodegeneration. Thus, inter-subject varia-
bility in model weights serves as a proxy for the corresponding
receptor densities or receptor-pathology interactions. Specifically, (i)
the improvement ofmodelfit by the inclusionof healthy aged receptor
templates validates their application to this clinical population, (ii)
biological mechanisms that are statistically stable across subjects
represent mechanistic pathways shared by all PD patients in our
cohort, (iii) inter-patient co-variability between biologicalmechanisms
and clinical symptoms represents overlapping disease processes
(Fig. 1b), and (iv) inter-region variability in the model fit improvement
due to receptor templates can identify regions differentially affected
by neurotransmitter receptor alterations in PD (Fig. 1c).

Neurotransmitter receptor maps significantly improve the
explanation of multi-factorial brain reorganization in PD
Before proceeding to identify relevant model-derived biological
mechanisms in PD, we first aimed to validate that re-MCM robustly fits
patient-specific neuroimaging data. For each of the 6 biological factors
and all subjects (N = 71), we calculated the coefficient of determination
(R2) as a measure of the data variance explained. On average, re-MCM
explained 74% ± 18% of the variance in rate of pathology accumulation
(Fig. 2a), although model fit varied by biological factor, with neural
activity dysfunction (fALFF; 81% ± 11%), dopaminergic degeneration
(DAT-SPECT; 80% ± 13%) and dendrite loss (t1/t2 ratio; 80% ± 12%)
being explained better than gray matter atrophy (GM; 58% ± 14%), or
microstructural damage (MD; 70% ± 14%, and FA; 0.74 ±0.13). For
validation, we repeated the model-fitting without receptor-pathology
interactions or direct local receptor density effects. On average,
neuroimaging-onlymodels without receptor data explained 52% ± 20%
of the variance in neuroimaging rate of change (Fig. 2b), and the
inclusion of receptor templates improves the data variance explained
by 42.3%. Dopaminergic loss (DAT-SPECT) was the least improved by
the addition of receptor maps, with imaging-only models explaining
60%± 17%, a drop of 20% of variance on average compared to the full
re-MCM. On the other hand, gray matter atrophy (GM: 22% ± 17% var-
iance explained without receptor maps) was the most reliant on
receptor data. While DAT-SPECT scans themselves already image the
density of presynaptic dopaminergic transporters, gray matter atro-
phy models benefit more from regional differentiation based on
receptor expression.

Figure 2c presents the improvement in each participant’s model
fit due to receptor mechanisms, compared to the restricted,
neuroimaging-only models. Accounting for the increased model size
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from 8 to 113 parameters, the F-statistics of 80.3% (MD) to 100% (DAT-
SPECT) of patients is significant (p <0.05 red dotted line in Fig. 2c). We
then performed a permutation test for the significance of the infor-
mativeness of receptor maps, by randomly shuffling each receptor
map across brain regions 1000 times and fitting the re-MCMwith each
set of permuted maps.

The resulting distribution of model fit (R2) was used to calculate
significance levels for re-MCMwith true receptor data from Fig. 2a. For
each biological factor, we plotted the number of subjects with sig-
nificantly better model fit (p <0.05) compared to the null distribution
in Fig. 2d. Notably, nearly all patients’ biological factor models are
significantly improved by the inclusion of receptor maps, except for

a   Individualized causal modeling of interacting pathological factors

c   Population-level estimation of regional receptor influence
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undirectedmicrostructural damage (MD; 67.6%or48 subjects). Across
all participants, Fisher’s method gives χ2 statistics in the range of
800< χ2 < 2300 (depending on the biological factor), corresponding
to a near-zero combined P value. These analyses validate the use of
averaged receptor templates in patient-specific PD models.

Identifying stable neurobiological mechanisms and receptor-
pathology interactions in PD
Weproceeded to identify biologicalmechanisms consistently involved
in structural, functional, and dopaminergic brain alterations in PD. For

this, 99% confidence intervals for each re-MCM parameter across all
patients were calculated and used to identify stable predictors. Since
all predictors were standardized before data fitting, model weights are
the relative effect sizes of different biological mechanisms on the rate
of change of their target biological factor over the course of PD pro-
gression. Specifically, these neurobiological mechanisms are (i) direct
effects of local pathology, (ii) direct effects of local receptor densities,
(iii) local receptor-pathology interactions, and (iv) network propaga-
tion of pathology (Methods: Receptor-Enriched Multifactorial Cau-
sal Model).

Fig. 1 | Neurotransmitter receptor-enriched multifactorial causal modeling.
a Each patient’s longitudinal pathological progression is decomposed into local
effects due to: (i) direct influence of every imaging-derived biological factor (e.g.,
atrophy on resting state functional activity), (ii) receptor density distribution (e.g.,
D1 receptor density on DAT loss), and (iii) receptor-pathology interactions (e.g., D1

receptors × DAT interactions on functional activity), in addition to (iv) network-
mediated inter-region propagation. Combining this data across (NROI = 95) brain
regions and multiple visits results in a multivariate regression problem to identify
the patient-specific parameters {α}. b Decomposing the covariance matrix of
patients’ model-derived biological mechanism weights and clinical scores

(specifically, the rates of decline of composite clinical scores; Methods: Clinical
scores) identifies multivariate axes of receptor-factor interactions that are robustly
correlated with the severity of combinations of clinical symptoms in PD (Methods:
Biological parameters and relationship with cognition). c The regional contribu-
tions of receptor interactions to neurobiological changes are estimated by a feature
importance analysis. We fit individualized models for every biological factor with
and without each receptor map and performed permutation tests on the
improvement in regional model residuals due to the inclusion of receptor maps.
The resulting improvements are the significant regional influence of receptors on
each target biological factor model.

c  Receptor templates improve most subjects' neuroimaging models

a  Data variance explained by receptor-imaging interaction model b  Data variance explained by neuroimaging-only model
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Fig. 2 | Contribution of receptor distributions to explaining multimodal brain
reorganization in PD. Pathological factors are quantified by 6 neuroimaging-
derived metrics: gray matter density (GM), neuronal activity (fractional amplitude
of low frequency fluctuations; fALFF), dopamine transporter density (DAT) from
SPECT, directed microstructure (fractional anisotropy; FA), undirected micro-
structure (mean diffusivity; MD), and dendrite density (t1/t2 ratio). The improve-
ment in modeling the accumulation of pathology was evaluated in terms of (i) the
additional explanatory power due to receptor information, and (ii) the significance
of true receptor maps compared to null distributions. The histograms show the
distribution of the coefficient of determination (R2) of N = 71 individual models of
longitudinal neuroimaging changes including (a) and excluding (b) receptor pre-
dictors. Notably, including receptor terms improves model fit for all biological

factors, although to varying extents. c Subject-wise F-tests between models with
and without receptor maps (113 and 8 parameters, respectively) show proportions
of subjects for whom the F-statistic is above the critical threshold (red dotted line).
This critical threshold corresponds to a statistically significant (P <0.05)
improvement due to the receptor terms in the re-MCMmodel, accounting for the
increase in adjustable model parameters. Furthermore, to validate the benefit of
the receptor templates over randomized null maps, re-MCMmodels were fit with
1000 spatially permuted receptor maps for each subject. The p value of the model
fit (R2) using true receptor templates compared to the distribution of R2 of models
using randomized templates was calculated for each subject. d Proportion of
subjects for whom the true receptor maps resulted in a statistically significant
improvement in model fit (P <0.05; red dotted line).
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Figure 3a shows the relative effective sizes of stable biological
mechanisms. The most influential stable predictors of each biological
factor’s rate of change are the direct effects of local alterations to the
same modality. Propagation of pathology along the structural con-
nectome is also a minor yet stable predictor for all data modalities
except functional activity (fALFF) and directed microstructural
damage (FA), with a much lower effect than the local evolution of
neurodegeneration. Notably, from Fig. 3b, functional brain alterations
(fALFF) do not appear to drive structural alterations (GM and MD),
instead interacting bidirectionally with dendritic density (t1/t2).

Nevertheless, local interactions between imaging-basedbiological
factors, whether direct or receptor-mediated, constitute a significant
driver of PD neurodegeneration in all cases, and form a complex net-
work with potentially bidirectional influences (Fig. 3b). While com-
paratively smaller for functional activity, dopaminergic transporter
density and directedmicrostructural integrity (FA), receptor-mediated
interactions constitute approximately half the model effects for gray
matter atrophy (GM), overall microstructural integrity (MD) and den-
drite density (t1/t2).

We observed that a relatively sparse set of receptors is involved in
stable interactions for each biological factor (Fig. 4). The muscarinic
M2 and nicotinic α4β2 receptors contribute significantly to graymatter
atrophy, neuronal activity dysfunction, and dopaminergic loss. The Bz
site is also prominently associated with neuronal activity dysfunction
and dopaminergic loss. The serotonergic 5HT2 receptor is involved in
functional and undirected microstructural alterations, while glutama-
tergic effects are marked by NMDA affecting gray matter atrophy,
AMPA and kainate affecting directed microstructure and kainate
affecting dendrite density, respectively.

Generally, the dopaminergic, cholinergic, serotonergic, glutama-
tergic and GABAergic systems broadly affect (micro-)structural

alterations (GM, MD and t1/t2). Serotonergic mechanisms are most
associated with undirected microstructural alterations (MD), and
secondarily dysfunctional neural activity (fALFF). Cholinergic recep-
tors are prominent predictors of atrophy,microstructural damage and
loss of dendrites (GM, MD and t1/t2), with minor influence on func-
tional activity and dopaminergic transporter density. Glutamatergic
receptors have amoderate influence across structuralmodalities (GM,
MD, FA and t1/t2). GABAergic influence is minor yet stable across
functional (fALFF and SPECT) and (micro-)structural (MD and t1/t2)
modalities. Adrenergic and dopaminergic receptors are the least
involved in stable neurobiological mechanisms, with α2 adrenergic
receptormodulating directedmicrostructural damage (FA), and theD1

dopaminergic receptors mediating the effect of atrophy on micro-
structure (MD).

For atrophy (GM), functional activity (fALFF) and microstructure
(MD) models, the direct effects of specific receptor density maps
reflect local susceptibility to neurodegeneration. The densities of the
muscarinic M2 and nicotinic α4β2 cholinergic receptors help explain
inter-region variability in the rate of graymatter atrophy, whileM2 and
the serotonergic 5HT2 receptor densities are stable predictors of both
altered activity (fALFF) and microstructural damage (MD).

Two axes of receptor-pathology alterations underlie clinical
symptoms in PD
To link model-derived receptor-mediated neurobiological mechan-
isms with clinical presentation in PD, we identified shared axes of
covariance between re-MCM-derived biological mechanisms and
motor, non-motor, cognitive and psychiatric symptoms (Methods:
Clinical scores). Partial least squares (PLS) regression using singular
value decomposition (SVD) across all patients (N = 71) was used to
identify multivariate and overlapping relationships between
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identified biological parameters and clinical symptoms (Methods:
Covariance of biological mechanisms with clinical symptoms) via
projections to a latent space. Two latent components were relevant
based on permutation tests, explaining 48.4% (P = 0.001, FWE-cor-
rected) and 13.2% (P = 0.069, FWE-corrected) of the population co-
variance, respectively. Projections of biological mechanisms and
clinical scores to these components show moderate to high corre-
lations of r = 0.70 (P = 3.11 × 10−11; Fig. 5a) and 0.86 (P = 3.75 ×
10−21; Fig. 5b).

Interestingly, the first component (primary axis; Fig. 5c) largely
corresponds to variance of the MDS-UPDRS Parts 1–3 scores (com-
posed of cognitive, psychiatric and motor aspects of daily living, as
well as a motor exam), and SDM (assessing attention, perceptual
speed, motor speed, and visual scanning35). On the other hand, the
second component (secondary axis; Fig. 5d) is associated with the
BJLOT (visuospatial judgment), LNS (working memory), STAIAD

(anxiety) and the GDS (depression in older adults). The statistically
stable biological mechanisms contributing to each axis are sum-
marized in Fig. 6. Both components show that inter-subject symptom
variability is associated with multiple receptor-mediated biological
mechanisms and neuropathological changes. The primary axis is
largely driven by GABAergic alterations (explaining 5.97% of the total
covariance via this component), although glutamatergic (4.85%),
cholinergic (4.77%), and serotonergic (3.77%) alterations are also
prominent. The secondary axis is instead associated primarily with
cholinergic alterations (1.74%), although GABAergic (1.24%) and glu-
tamatergic (1.19%) alterations also play a role.

While the local (regional) evolution of pathology in each con-
sidered biological factor and its network propagation are prominent
stable predictors of PD neurodegeneration (Fig. 3), the influence of
these mechanisms does not co-vary prominently with symptom
severity. Instead, wefind a broad array of receptorswith clinical effects

Fig. 4 | Receptorsmediating degenerative alterations to differentmacroscopic
biological factors in PD. The combined statistically stable model effects of each
receptor type on each biological factor are shown. ThemuscarinicM2 and nicotinic
α4β2 receptors contribute significantly to graymatter density, neuronal activity and
dopamine transporter alterations. The Bz site is prominently associated with
activity and dopamine transporter alterations. The serotonergic 5HT2 receptor is

involved in functional and microstructural (MD) alterations, while glutamatergic
effects are marked by NMDA affecting gray matter atrophy, AMPA and kainate
affecting directed microstructural damage (FA) and kainate affecting dendrite
density (t1/t2), respectively. Notably, the D1 receptor distribution is relatively
homogeneous and not marginally informative in the presence of DAT imaging.
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along both latent axes, as shown in Fig. 5. For example, the mainly
motor symptoms of the primary axis are associated with inter-subject
variability in glutamatergic and GABAergic interactions affecting
microstructural integrity (MD and FA) and dendrite density (t1/t2). In
contrast, the visuospatial, psychiatric and memory dysfunction of the
secondary axis is associated more with inter-subject variability in
cholinergic interactions affecting microstructure (MD) and dendritic
density (t1/2), as well as changes to GM density.

Mapping receptor influence in PD
Finally, we inferred the degree of receptor influence on multi-modal
PD neurodegeneration at different brain regions, by identifying brain
regions where the inclusion of a specific receptor predictor con-
sistently improves the explanation of a particular type of neuro-
pathology across all subjects. For each receptor, we fit individualized,
single receptor-enrichedmodels, and compared their ability to explain
the accumulation of pathology at each brain region with restricted,

a  Correlation between biological mechanisms 
    and symptom severity along the primary axis

b  Correlation between biological mechanisms 
     and symptom severity along the secondary axis
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Fig. 5 | Two axes of covariance between biological mechanisms and symptom
severity in PD. a Based on a permutation analysis, two latent SVD components
were significant or near-significant, explaining 48.4% (P =0.001, FWE-corrected)
and 13.2% (P =0.069, FWE-corrected) of the covariance respectively. a, b High
correlations of r =0.70 (P = 3.11 × 10−11) and 0.86 (P = 3.75 × 10−21), between the
projections of statistically stable (based on 95% confidence intervals from boot-
strapping) biological mechanisms and rates of clinical decline onto the latent

components were observed. c, dBootstrap ratios of each clinical assessment to the
two latent components, providing a relative ranking of motor, nom-motor, psy-
chiatric and cognitive domains. These saliences are proportional to the contribu-
tion of each term relative to every other term, for example showing that MDS-
UPDRS scores, SDM and HVLT scores are the top contributors to the primary axis.
Details about specific scores can be found in Methods: Clinical scores.
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neuroimaging-only models (see Methods: Regional influence). At each
brain region, we studentized residuals across all patients, with each
residual representing the unexplained pathology in a region at a given
imaging visit. Then, for all regions, we computed the Wilcoxon rank-
sum statistics of the population residuals from the two models, and
repeated the model-fitting procedure with 1000 randomly shuffled
receptor maps to obtain a null distribution of Wilcoxon statistics. We
used this permutation test to filter brain regions with significant resi-
dual improvements (P <0.05) over the null distributions. These maps
donot represent the regionswith thehighest pathological severity, but
rather those where longitudinal alterations are significantly better
explained by the inclusion of a particular receptor distribution. In
Fig. 7, we summarize the receptor influence maps for the top 4
receptor-pathology pathways (Fig. 3a): 5HT2 and M2 on micro-
structural alterations (MD), α4β2 on gray matter atrophy (GM), and
kainate on dendrite density (t1/t2). Receptor influence maps for all
biological factors are presented in Supplementary Figs. S1–S6.

Among other regions, the 5HT2 receptor most prominently
influences microstructure (MD) in the anterior and medial thalamus,
left posterior cingulate region (Brodmann area 31), anterior prefrontal
cortex, left primarily motor cortex, right premotor cortex and sup-
plementary motor area (Brodmann area 6). The muscarinic M2
receptor influences microstructural alterations in the somatosensory
cortex, left distal visual area V3d, right primary motor cortex, left
hippocampus (CA), right primary somatosensory cortex (Brodmann
area 2), lateral prefrontal cortex (Brodmann areas 46 - left and 47 -
right), and entorhinal cortex (Brodmann areas 36-right and 37-left).
The nicotinic α4β2 receptor influences gray matter atrophy in the (left
and right) thalamus, primary somatosensory cortex (Brodmann area
2), right temporal inferior parietal area, left caudate nucleus and
entorhinal cortex (left Brodmann region 22). Kainate influences den-
drite density in a broad set of regions, focused on the thalamus, visual
areas (V1, V2 and the ventral parts of V3 andV4 in the right hemisphere,
and V1 and ventral V4 in the left hemisphere), and prefrontal areas.

Across biological factors, glutamatergic receptors contribute
significantly to explaining neurodegeneration in fronto-temporal
regions (Supplementary Fig. S1). Particularly, both AMPA and kainate
receptors contribute strongly to most factors (except for dopamine
transporter loss) in frontal regions. The influences of GABAA receptors,
GABAB receptors and the benzodiazepine binding site (Bz site) gen-
erally follow their distribution (Supplementary Fig. S2), peaking at
visual, visual-parietal and fronto-temporal areas, respectively. Notably,
dendrite loss is most pronounced at subcortical and fronto-temporal
regions for all GABAeric receptors.

Discussion
The complex pathophysiology of PD involves multiple difficult-to-
map neurotransmitter systems, and the selective vulnerability of
various non-dopaminergic nuclei4. We apply a personalized, causal
brain modeling approach that combines longitudinal neuroimaging
data and clinical assessments with averaged spatial receptor tem-
plates, to infer the previously uncharacterized roles of receptor-
mediated interactions in PD neurodegeneration and symptomatic
heterogeneity.

In PD, dopaminergic neuroimaging is common36, and some non-
dopaminergic targets such as acetylcholinesterase have been
characterized37. However, the expense of PET imaging and the lack of
suitable in vivo radioligands have impeded the study of many other
receptor alterations in a PD population. Our method circumvents this
limitation by inferring the importance of receptor interactions in
individualized models of brain reorganization. We note that the dif-
ferent receptor maps are not very correlated with each other (Sup-
plementary Figs. S1–S6) and the “multi-receptor fingerprint” of each
(cyto-architectonically defined) brain region is distinct, particularly
differing across the functional hierarchy31. In vitro multi-receptor
autoradiography of the caudate nucleus and midcingulate area 24 of
progressive supranuclear palsy (PSP) patients showed differentiation
of patients from age-matched controls, as well as diverging alterations

b  Biological mechanisms contributing to the secondary axisa  Biological mechanisms contributing to the primary axis
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Fig. 6 | Distinct combinations of receptor-mediated interactions are associated
with the two axes of clinical symptoms. Biological mechanisms correlated with
clinical severity in PD via the (a)motor/psychomotor and (b) visuospatial/memory/
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clinical symptoms. Sector colors represent the output pathological factor of each
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proportional to the percentage of mechanistic-clinical covariance explained. The
outer sector contains the specific mechanisms, while the middle sector is grouped
by receptor families and the inner sector by target biological factor.
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in clinical subgroups of PSP38. In this related movement disorder,
notable, previously unknown receptor associations (to kainate and
adenosine type 1 receptors) were discovered, supporting the case for
more thorough receptor mapping studies in neurodegenerative
populations.

Lacking in vivo or in vitro receptor mapping data in PD patients,
we attempted to use in silico modeling to infer regional susceptibility
to neurodegeneration based on receptor expression, and characterize
the relationship between inter-individual variability in receptor-
mediated neurodegeneration and symptomatic variability. Recent
works in Alzheimer’s disease (AD) have demonstrated that model
parameters from personalized brain models can represent otherwise
unobservable, latent mechanisms that relate to phenotype better than
raw imaging data32,39,40.

While we used autoradiography-derived templates of receptor
density, receptor gene expression may be used as a proxy41. For
example, the Allen Human Brain Atlas (http://human.brain-map.org)
gene expression template has been used to identify transcriptomic
pathways mediating neurodegeneration in AD40. However, several
translational and trafficking steps separate gene expression and
synaptically integrated receptors. Although receptor densities and
gene expression are correlated for selected receptor subunit genes
and across certain cytoarchitectonically-defined regions42, this is not
universally true43. Low correlations are also observed between gene
expression and in vivo PET imaging of dopamine transporters44. Other
works combining unimodal neuroimaging from disease cohorts with
PET- and SPECT-derived healthy neurotransmitter receptor and
transporter templates have uncovered the co-localization of specific
neurotransmitter systems with PD resting state fMRI alterations45,
dyskinesia- and parkinsonism-associated atrophy in schizophrenia
patients46, gray matter atrophy in symptomatic FTD and its genetic
subtypes47, and functional alterations in behavioral variant FTD48.
Furthermore, our averaged autoradiography-derived receptor tem-
plates are correlated with neurobiological processes such as drug-
induced cerebral blood flow changes49. In addition, in vitro auto-
radiography allows access to a broader class of receptors (without
in vivo ligands) at a sub-millimeter resolution (as low as 0.3mm slice
width per receptor31) compared to PET with its theoretical bound of
~2mm spatial resolution50. Future work will extend the presented

results with voxel-scale whole brain receptor maps rather than mac-
roscopically averaged values.

We incorporated several neuroimaging-derived measures sensi-
tive to PDprogression51, fromstructuralMRI-basedgraymatter density
(GM) and dendrite density (t1/t2 ratio), diffusion-based measures of
microstructural integrity (MD and FA)52, functional neuronal activity
(fALFF) and presynaptic dopamine transporter availability (DAT-
SPECT). Resting-state fMRI-derived metrics such as fALFF can distin-
guish PD patients from controls53, with fALFF being able to explain up
to 25% of variability inMDS-UPDRS scores54.While initially proposed as
a quantitative measure of demyelination from routine MRI scans, t1/t2
ratio has since been demonstrated to have a stronger correlation with
dendritic density33,34, particularly relevant to synaptic integrity and
receptor activity. Furthermore, our flexible modeling approach can be
extended to incorporate other relevant modalities.

Although receptor maps were averaged from neurologically
healthy aged brains, earlier work has demonstrated their utility in
other cohorts, namely healthy aged subjects, mildly cognitively
impaired subjects, and AD patients from the Alzheimer’s disease
Neuroimaging Initiative (ADNI)32. Extending this validation to the PPMI
cohort, we note an ~42.3% improvement in the explanation of neuro-
pathology accumulation in receptor-enriched models. These
improvements are statistically significant for well over 90% of subjects
(P < 0.05 in both F-tests and permutation tests; Fig. 2c, d) for all bio-
logical factors with the exception of undirected microstructural
damage (MD).We used a non-parametric permutation to generate null
receptor distributions, which does not consider any spatial auto-
correlation in the receptor maps55. The lack of voxel-scale receptor
maps and the inclusionof subcortical regions inour parcellationwould
preclude both cortical surface rotation-based methods as well as
parametrized models requiring autocorrelation information in other,
more typical statistical analyses.

For a third of all subjects, the improvement in model fit of
undirected microstructure was not significantly better than permuted
null distributions of receptors. While diffusion MRI can be sensitive to
aspects of gray matter microstructure56,57, it is less accurate than in
white matter due to the heterogeneity of tissues and their (lack of)
organization58. Yet, despite the limitation of partial volume effects in
gray matter ROIs59, receptor-enriched models fit longitudinal

a   Receptor densities

b   Receptor influence on biological factors

5HT2 M2 α4β2 Kainate

Undirected 
microstructure

5HT2
Gray matter

densityα4β2
Dendrite
densityKainateUndirected 

microstructure
M2

Fig. 7 | Model-derived maps of receptor influence on PD neurodegeneration.
We compared the (a) receptor densities and (b) influence maps. Influence maps
show the brain regions where specific receptors are consistently informative to
explaining the neuropathological changes across all PD subjects, and are re-scaled
to arbitrary units for visualization. They represent the population-wide

improvement in model residuals at each region due to the inclusion of receptor
density maps and receptor-pathology interactions asmodel predictors for each PD
patient. Receptor influences are calculated as the Wilcoxon rank-sum statistics of
eachmodel’s residuals for a region, and themaps showonly regionswith significant
z-scores (P <0.05) of Wilcoxon rank-sum statistics relative to the null distributions.
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alterations to microstructure reasonably well (average r2 = 0.70 for
undirected MD and r2 = 0.74 for directed FA; Fig. 2).

Differential neurotransmitter and receptor expression may
underpin the selective vulnerability of several neuronal populations,
from the dopaminergic substantia nigra to the adrenergic locus
coeruleus and serotonergic raphe nuclei, and their cortical
projections60. Furthermore, PD neurodegeneration may alter both the
spatial distributions as well as functional interactions of specific
dopaminergic and non-dopaminergic receptors, with symptomatic
consequences14. In our mechanistic modeling framework, each model
weight is interpretable as the importance of specific neurobiological
mechanism. Receptors contribute to neurodegeneration in re-MCM
either as (i) direct effects representing regional susceptibility to neu-
rodegeneration based on receptor expression, or (ii) receptor-
mediated interactions involving a source and target biological factor.
In addition, biological factors have (i) local effects on themselves and
other factors, and (ii) intra-factor network effects due to propagation
of pathology along the structural connectome. Lacking inter-subject
variability in receptor data, our model compensates by assigning
weights differently across subjects. Consistent trends inmodelweights
reflect the importance of the corresponding neurobiological
mechanism across the PD population, while co-variability with symp-
toms suggests clinical relevance.

First, we identified specific mechanisms affecting neurodegen-
eration across the PD cohort (Fig. 3). We observed a complex network
of interactions between biological factors, with distinct receptor pro-
files affecting each factor. The large contributions of receptor-
mediated inter-factor interactions (Fig. 3a) supports the multi-system
view of PD. Fewer receptors are statistically stable predictors of
longitudinal changes to functional activity (fALFF), directed micro-
structural damage (FA) and dopaminergic neurotransmission (SPECT),
while gray matter atrophy (GM), dendrite density (t1/t2 ratio) and
undirectedmicrostructural changes (MD) show greater influence from
a more diverse set of receptors.

Notably, the D1 receptor map is not a stable predictor of DAT
alterations. While presynaptic DAT density and postsynaptic dopami-
nergic receptor distributions are strongly related under normal con-
ditions, they may be affected differently by disorders. For example,
while D2 receptor availability is reduced in alcoholism, DAT availability
is preserved61. In PD, DAT-SPECT and receptor PET imaging have dis-
tinct clinical interpretations62, and increased dopamine turnover early
at symptom onset has implicated presynaptic mechanisms at this
disease stage63. Furthermore, healthy aged D1 receptor expression is
relatively uninformative as it is comparatively homogeneous across
cortical regions (Supplementary Fig. S6) and likely redundant to the
model in the presence of individualized DAT imaging. On the other
hand, DAT density also peaks in striatal regions, and DAT-SPECT is not
able to resolve cortical radiotracer uptake as well as DAT-PET64. SPECT
is currently more prevalent clinically for DAT imaging, and was thus
the modality used in a large, multi-center study such as PPMI. Never-
theless, it must be noted that DAT-SPECT is limited in its ability to
resolve cortical alterations, and this is likely reflected in its under-
emphasis in our results.

Network degeneration hypotheses of PD pathogenesis implicate
various mechanisms from the propagation of neurotoxic alpha-
synuclein65 to the structural and functional neurodegeneration fol-
lowing striatal denervation66. We note that propagation is only a small
contributor to the accumulation of pathology, and is dwarfed by local
effects in our models (Fig. 3a). These findings may potentially reflect
distinct disease phases. Our cohort was composed entirely of PD
patients, for whom propagative, disease seeding processes may have
already occurred, and neurodegeneration may now be driven by local
effects. Furthermore, white matter tractography may not completely
capture the connectivity between our cyto- and receptor-
architectonically defined regions. A more complete treatment may

consider vascular connectivity as well29,30, which may also be a sub-
strate for pathology propagation.

We find notable glutamatergic effects on multiple (micro-)struc-
tural factors (Supplementary Fig. S1): gray matter atrophy (NMDA),
directed microstructural damage (AMPA and kainate), and dendrite
density (kainate and NMDA). As NMDA and AMPA receptors are
postsynaptic targets of glutamate, these mechanisms likely reflect the
structural consequences of excitotoxicity and cell death67. On the
other hand, kainate is believed to modulate synaptic transmission and
plasticity68, which may affect dendritic density. In our models, NMDA
receptor influence is focused on occipital and temporal regions, AMPA
influence is highest in frontal regions, and kainate influences mainly
dendrite loss in both frontal and occipital regions. Among glutama-
tergic receptors, influenceonmicrostructure of themotor cortex (MD,
FA and t1/t2) is prominent, although it is more limited for atrophy or
functional alterations.

The stable roles of GABAergic receptors (Fig. 3a) suggest their
involvement via altered neuronal activity inhibition, interaction with
the dopaminergic system, and potential regional vulnerability to
microstructural degradation or dendrite loss. Inter-subject variability
along the primary, mainly motor axis correlates with GABAergic
mechanisms affecting microstructure (FA, MD and t1/t2) and func-
tional activity. Furthermore, a magnetic resonance spectroscopy
(MRS) study found reduced levels of GABA in the visual cortex of PD
patients69, consistent with the regions of maximal influence of GABAA

and GABAB receptors in our model.
Due to the necessity for sufficient longitudinal and multi-modal

scans, no healthy subjects met our inclusion criteria. As each indivi-
dualized model is fit independently, we account for the confounding
effects ofhealthy ageingonmodel-derivedmechanismsbyperforming
a multivariate correlation with 11 assessments representing various
symptomatic domains, with age as a covariate. Presently, PD is defined
primarily by clinical symptoms, and thus any combination of model
mechanisms robustly correlated with multi-domain symptoms can be
considered as contributing to the spectrum of PD rather than healthy
(i.e., non-symptomatic) aging.

Various non-dopaminergic neurotransmitter systems have been
associated with specific symptoms in PD, including cholinergic
memory defects, adrenergic impairment of attention, and serotonin-
driven depression70 and visual hallucinations71,72. Comparing model-
derived receptor mechanisms and clinical assessments across PD
patients, we observe two main axes of co-variability. The primary
component represents motor/psychomotor symptoms associated
prominently with GABAergic mechanisms, with secondary con-
tributions fromglutamatergic, cholinergic, and serotonergic systems
(Supplementary Table S7). The secondary component is defined by
visuospatial, memory and psychiatric symptoms, with the choliner-
gic system being the dominant receptor family. Mechanisms affect-
ing microstructure (FA and MD) are more prominent in the primary
component, while those affecting gray matter density are greater in
the secondary component. Nevertheless, receptor mechanisms
affecting microstructure and dendrite density (t1/t2) contribute
strongly to both axes.

The secondary component is consistent with the cholinergically-
driven visuospatial aspect of the dual-syndrome hypothesis of PD18.
Stable cholinergic mechanisms are also present for every biological
factor except directed microstructure (FA), most notably the con-
tributions to dendrite loss (t1/t2), undirected microstructural damage
(MD) andgraymatter atrophy (Fig. 3a). Specifically,wenoteprominent
muscarinic M2 and nicotinic α4β2 receptor influences (onMD and GM,
respectively) on the primary somatosensory cortex, a site of reduced
activation in PD (Fig. 7)73. Our model suggests that nicotinic and
muscarinic cholinergic systems strongly affect PD symptoms along
specific pathways primarily involving dendritic density, atrophy, and
degradation of microstructure (Fig. 6b). While typically associated
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with cognitive impairment and dementia in PD, cholinergic degen-
eration is also linked to depressive mood, apathy, olfaction, sleep
disorder, and postural and gait disorder74. Epidemiological studies of
smokers suggest a neuroprotective role for nicotinic receptors75,
which experience widespread decrease in PD76. The cholinergic and
dopaminergic systems interact at biochemical, circuit and functional
levels70, tightly coupled by nicotinic receptors expressed on striatal
dopaminergic neurons and acetylcholine70,77 modulate dopaminergic
neurotransmission. An imbalance of cholinergic and dopaminergic
neurotransmission may thus underlie PD cognitive dysfunction70. Our
results suggest that cholinergic receptor distributions contribute to
both motor and non-motor axes, albeit via distinct pathways
(Fig. 6a,b).

We note the mild motor phenotype of the PD patients from PPMI
included in this work (meanMDS-UPDRS Part III score, Supplementary
Table S1). Potential low variability in these scores in combination with
the poor cortical signal in DAT-SPECTmayhave under-emphasized the
dopaminergic-motor axis of PD. Nevertheless, the dopaminergic rela-
tionship with motor symptoms is reproduced in the primary, mainly
motor component, with DAT-SPECT appearing as a target imaging
modality. In addition to the classical dopaminergic-motor axis, our
work presents a multi-modal perspective of PD, associating multi-
variate combinations of receptor distributions with macroscopic
imaging-derived pathological alterations, and motor and non-motor
symptoms.

In addition to mediating inter-factor interactions, dysfunctional
interactions between receptors may also be involved in neurodegen-
eration.Neurotransmitter release is regulatedbypresynaptic auto- and
hetero-receptors78, which in PD is potentially impaired in the dopa-
minergic system79 and in GABAergic inhibition of the motor cortex80.
Where possible, concurrent receptor or transporter imaging in a PD
cohort would help clarify the role of neurotransmission balance in
neurodegeneration.

We attempted to cover a broad variety of (particularly structural)
disease-sensitive neuroimagingmodalities. Yet, PDneurodegeneration
is complex and likely also involves changes to surfacemorphology81,82,
such as gyrification. However, to include the basal ganglia and thala-
mus in our model using the same set of features, we did not include
surface-based measures.

Despite the prevalence of PD, the causes of this neurodegenera-
tive condition remain unknown, and treatment is limited to sympto-
matic therapy complicated by individual variability in clinical
presentation, side effects and treatment response83. Our work sheds
light on the complex, especially non-dopaminergic neurotransmitter
receptor-mediated mechanisms underlying brain reorganization and
symptomatic variability in PD. As longitudinal data collection pro-
gresses in large cohorts, model-derived mechanisms may help differ-
entiatemechanismsdistinct to PDand its (geneticor clinical) subtypes,
Parkinson-plus syndromes, other neurodegenerative diseases, and
healthy ageing. Since neurotransmitter receptors are clinically effica-
cious drug targets8, future work will explore the use of our persona-
lized modeling approach to design personalized receptor-based
therapy.

Methods
Ethics statement
This work has been conducted in accordance with ethical guidelines
and regulations. Neuroimaging and clinical data in this study was
acquired through the multi-center Parkinson’s Progression Markers
Initiative (PPMI; ppmi-info.org). Following good clinical practices and
in accordance with the Declaration of Helsinki guidelines, study sub-
jects and/or authorized representatives gavewritten informed consent
at the time of enrollment for sample collection and completed ques-
tionnaires approved by each participating site Institutional Review
Board (IRB). The authors obtained approval from the PPMI for data use

and publication, see documents https://www.ppmi-info.org/
documents/ppmi-data-use-agreement.pdf and https://www.ppmi-
info.org/documents/ppmi-publication-policy.pdf, respectively.

Data description and processing
Study participants. This study used longitudinal data from N = 71
participants from the PPMI from 12 international sites, with a clinical
diagnosis of PD. Demographic information is summarized in Supple-
mentary Table S1. The inclusion criterion was the presence of at least
three different imaging modalities (i.e., structural MRI, resting func-
tional MRI, diffusion MRI and/or dopamine SPECT) over at least three
visits at the time of our analysis.

Structural MRI acquisition/processing. Brain structural T1- and T2-
weighted 3D images were acquired for all N = 71 subjects. A detailed
description of acquisition details can be found from the PPMI proce-
dures manuals at http://www.ppmi-info.org/. T1- and T2-weighted
images from 3T scanners were acquired as a 3D sequence with a slice
thickness of 1.5mm or less, under three different views: axial, sagittal
and coronal. All images underwent non-uniformity correction using
the N3 algorithm84. Next, they were segmented into gray matter
probabilistic maps using SPM12 (version 12, https://fil.ion.ucl.ac.uk/
spm). Gray matter segmentations were standardized to MNI space85

using the DARTEL tool86. Each map was modulated to preserve the
total amount of signal/tissue. Mean gray matter density86 values were
calculated for the regions described in Methods: Data description and
processing: Receptor densities and brain parcellation.

Resting fMRI acquisition/processing. Resting-state functional images
were obtained using an echo-planar imaging sequence on 3 T MRI
scanners for N = 71 subjects. For a detailed description of acquisition
protocols, please see http://www.ppmi-info.org. Acquisition para-
meters were: 140 time points, repetition time (TR) = 2400ms, echo
time (TE) = 25ms, flip angle = 80°, number of slices = 40, slice thick-
ness = 3.3mm, in plane resolution = 3.3mm and in plane matrix = 68 ×
66. Pre-processing steps included: (1) motion correction, (2) slice
timing correction, (3) alignment to the structural T1 image, and (4)
spatial normalization to MNI space using the registration parameters
obtained for the structural T1 image with the nearest acquisition date,
and (5) signal filtering to keep only low frequency fluctuations
(0.01–0.08Hz)87. For eachbrain region, ourmodel requires a local (i.e.,
intra-regional, non-network) measure of functional activity, to main-
tain mechanistic interpretability and to prevent data leakage of net-
work information into local model terms (described further in
Receptor-Enriched Multifactorial Causal Model). Due to its high cor-
relationwith glucosemetabolism88 and diseaseprogression in PD53, we
calculated regional fractional amplitude of low-frequency fluctuation
(fALFF)89 as a measure of functional integrity.

Diffusion MRI acquisition/processing. Diffusion MRI (dMRI) images
were acquired using standardized protocol on 3 T MRI machines from
32 different international sites. Diffusion-weighted images were
acquired along 64 uniformly distributed directions using a b-value of
1000 s/mm2 and a single b =0 image. Single shot echo-planar imaging
(EPI) sequence was used (116 × 116 matrix, 2mm isotropic resolution,
TR/TE 900/88ms, and twofold acceleration). An anatomical T1-
weighted 1mm3 MPRAGE image was also acquired. Each patient
underwent two baseline acquisitions and a further two 1 year later.
More information on the dMRI acquisition and processing can be
found online at http://www.ppmi-info.org/. Preprocessing steps
included: (1) motion and eddy current correction90, (2) EPI distortion
correction, (2) alignment of the T1-weighted image to the b0 image
based on mutual information, (3) calculation of the deformation field
between the diffusion and T1-weighted images, (4) calculation of the
voxelwise diffusion tensors, (5) alignment to the structural T1 image,
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and (6) spatial normalization to MNI space85 using the registration
parameters obtained for the structural T1 image with the nearest
acquisition date, and (6) calculation of mean values of summary
metrics (FA and MD) for each considered brain region.

Dopamine SPECT acquisition/processing. A 111–185 MBq (3–5mCi)
bolus injection of I-123 FB-CIT was administered to each participant
(N = 71), and the SPECT scan was performed 4h post-injection. Raw
projection data was acquired as a 128 × 128 matrix and the SPECT
image was reconstructed. Attenuation correction and Gaussian blur-
ring with a 3D 6mm filter were applied. The reconstructed and cor-
rected SPECT images were normalized and registered to MNI space85,
and average values were calculated for all considered regions of
interest.

Receptor densities and brain parcellation. In vitro quantitative
receptor autoradiography was applied to measure the densities of 15
receptors in 57 cytoarchitectonically defined cortical areas spread
throughout the brain91. These receptors span major neurotransmitter
systems and show significant regional variability across the brain.
Brains were obtained through the body donor programme of the
University of Düsseldorf. Donors (threemale and one female; between
67 and 77 years of age) had no history of neurological or psychiatric
diseases, or long-term drug treatments. Causes of death were non-
neurological in each case. Each hemisphere was sliced into 3 cm slabs,
shock frozen at −40C, and stored at −80C.

Receptors for the neurotransmitters glutamate (AMPA, NMDA,
kainate), GABA (GABAA GABAA-associated benzodiazepine binding
sites, GABAB), acetylcholine (muscarinic M1, M2, M3, nicotinic α4β2),
noradrenaline (α1, α2), serotonin (5-HT1A, 5-HT2), and dopamine (D1)
were labeled according to previously published binding protocols
consisting of pre-incubation, main incubation and rinsing steps91. The
ligands used are summarized in Supplementary Table S3. Receptor
densities were quantified by densitometric analysis of the ensuing
autoradiographs, and areas were identified by cytoarchitectonic ana-
lysis in sections neigbouring those processed for receptor auto-
radiography, and which had been used for the visualization of cell
bodies92.

A brain parcellation was then defined with the aid of the Anatomy
Toolbox93 using 57 regions of interest for which receptor densities
were available31. This parcellation was based on areas identified by
cortical cytoarchitecture, as well as other cyto- and receptor-
architectonically defined regions with receptor measurements
(regions are summarized in SupplementaryTable S4). These57 regions
weremirrored across left and right hemispheres for a total of 114 brain
regions in our parcellation. For each receptor, regional densities were
normalized using the mean and standard deviation across all brain
regions.

The structural T1 images of the Jülich93, Brodmann94, AAL395 and
DISTAL96 brain parcellations were registered to the MNI ICBM152 T1
template using the FSL (version 6.0) FLIRT affine registration tool97,
and the obtained transformations were used to project the corre-
sponding parcellations to the MNI ICBM152 space (using nearest
neighbor interpolation to conserve original parcellation values). In
the MNI ICBM152 space, voxels corresponding to the
cytoarchitectonically-defined regions from31 were identified from the
regions in the Anatomy Toolbox, with the remaining Brodmann
regions filled in using the Brodmann brain atlas. Supplementary
Table S4 summarizes the ROI maps used to create the Brain atlas for
regions with receptor data. The resulting parcellation of 114 brain
regions in the common template space was then quality controlled,
and small regions under 50 voxels were excluded. The resulting atlas
with 155 bilateral brain regions (95 of which had receptor data) was
used to extract whole-brain multi-modal neuroimaging data and esti-
mate the diffusion-based connectivity matrix, as described in

Methods: Multimodal neuroimaging data fusion and Methods: Ana-
tomical connectivity estimation.

Anatomical connectivity estimation. The connectivity matrix was
constructed using DSI Studio (March 8, 2019 build; http://dsi-studio.
labsolver.org). A group average template was constructed from a total
of 1065 subjects98. A multi-shell diffusion scheme was used, and the
b-values were 990, 1985 and 2980 s/mm2. The number of diffusion
sampling directions were 90, 90, and 90, respectively. The in plane
resolution was 1.25mm. The slice thicknesswas 1.25mm. The diffusion
datawere reconstructed in theMNI spaceusing q-space diffeomorphic
reconstruction99 to obtain the spin distribution function100. A diffusion
sampling length ratio of 2.5 was used, and the output resolution was
1mm.The restricted diffusionwasquantified using restricteddiffusion
imaging101. A deterministic fiber tracking algorithm102 was used. A
seeding region was placed at whole brain. The QA threshold was
0.159581. The angular threshold was randomly selected from 15
degrees to 90 degrees. The step size was randomly selected from 0.5
voxel to 1.5 voxels. The fiber trajectories were smoothed by averaging
the propagation direction with a percentage of the previous direction.
The percentage was randomly selected from 0% to 95%. Tracks with
length shorter than 30 or longer than 300mmwere discarded. A total
of 100,000 tracts were calculated. A custom brain atlas based on
cytoarchitectonic regions with neurotransmitter receptor data31 was
used as the brain parcellation, as described in Methods: Data
description and processing: Receptor densities and brain parcellation,
and the connectivity matrix was calculated by using count of the
connecting tracks.

Multimodal neuroimaging data fusion. After pre-processing PPMI
neuroimaging data for all 6 modalities, data harmonization was per-
formed using ComBat (commit 91f8bf3, https://github.com/Jfortin1/
ComBatHarmonization)103. Each site used the same scanner for all
subjects, and our harmonization procedure corrected for batch
effects due to sites while preserving variance due to clinical diag-
nosis, age, education level, sex and (left or right) handedness. After
extracting harmonized neuroimaging data for the cytoarchitectoni-
cally defined atlas described in Methods: Data description and pro-
cessing: Receptor densities and brain parcellation, subjects lacking
sufficient longitudinal or multimodal data were discarded. The dis-
qualification criteria were (i) fewer than 4 imaging modalities with
data, or (ii) fewer than 3 longitudinal samples for all modalities. For
the remaining subjects, missing neuroimaging modalities (primarily
FA, MD and t1/t2 ratios) at each visit were imputed using trimmed
scores regression. Finally, a total of N = 71 subjects were left with all 6
neuroimaging modalities with an average of 3.59 ( ± 0.50) time
points. We used the mean and variance of each neuroimaging mod-
ality across all regions to calculate z-scores of neuroimaging data for
all subjects. Please see Supplementary Table S1 for demographic
characteristics.

Clinical scores. We used multiple composite scores derived from the
PPMI clinical (motor, non-motor, psychiatric, cognitive, etc.) testing
battery, namely the Benton Judgment of Line Orientation Test
(BJLOT104), Geriatric Depression Scale (GDS105), Hopkins Verbal Learn-
ing Test (HVLT106), Letter Number Sequencing (LNS107), Movement
Disorders Society – Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS108) Parts 1 (non-motor aspects of daily living; NP1), 2 (motor
aspects of daily living; NP2), and 3 (motor exam; NP3), the Montreal
Cognitive Assessment (MoCA109), semantic fluency (SF), State-Trait
Anxiety Inventory for Adults (STAIAD110), and Symbol Digit Modalities
(SDM111) tests. Protocols for deriving each score are described in the
respective PPMI protocols documentation. We calculated sympto-
matic decline as the rate of change (linear slope) of the 11 clinical
scores with respect to examination date. Average numbers of
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longitudinal evaluations per clinical score are summarized in Supple-
mentary Table S2.

Receptor-enriched multifactorial causal model (re-MCM). Multi-
factorial causal modeling is a generalized framework29,32 that treats the
brain as a dynamical system of ROIs characterized by multiple inter-
acting neuroimaging-quantified biological factors. Pathology may
develop over time in each factor, affecting other factors locally and
propagating to neighbouring regions via anatomical connections. We
introduce the receptor-enriched multifactorial causal model (re-
MCM), in which the local densities of various neurotransmitter
receptors mediate interactions between biological factors at each
brain region.

In this work, the biological factors are gray matter density, neu-
ronal activity, presynaptic dopamine, demyelination/dendritic density
and twomeasures of whitematter integrity, derived from structural T1
MRI, resting state functionalMRI (rs-fMRI), DAT-SPECT, T1/T2 ratio, FA
and MD, respectively. For any given subject and at a particular brain
region i, the level of pathology of each biological factor m is repre-
sented by a single variable Sm,i, calculated as the deviation from the
neuroimaging signal at the baseline visit. The temporal evolution of
pathology Sm,i in modality m at brain region i is given by following
differential equation:

dSm,iðtÞ
dt

=
Local Effects

f ðS*,i tð Þ,RiÞ+
Inter�regionPropagation

gðSm,*ðtÞ,Ci$*Þ ð1Þ

The functions f and g govern the global biological factor
dynamics that are consistent across all brain regions. The local com-
ponent f S,i tð Þ,R,i

� �
is the cumulative effect of all biological factors on

factor m within region i mediated by Ri, composed of local densities
rk,i of a receptor k at a region i. The propagation term g represents the
net spreading of pathology in factor m along anatomical connections
Ci$* of the region i. Since the inter-visit interval of ~6 months is sig-
nificantly shorter than the temporal scale of neurodegeneration, we
assume a locally linear, time-invariant dynamical system:

dSmi tð Þ
dt

=
XNfac

n= 1

αn!mSn,i tð Þ+
XNrec

k = 1

αm
k rk,i

+αm
prop

XNROI

j = 1,j≠i

Cj!iSm,j tð Þ � Ci!jSm,i tð Þ
h i

,

ð2Þ

where Ci!j is the directed anatomical connectivity from region i to j,

and dSm,i tð Þ
dt the local rate of change of neuroimaging data for successive

longitudinal samples at times t’ and t:

dSm,i tð Þ
dt

=
Sm,i tð Þ � Sm,i t0ð Þ

t � t0
ð3Þ

Local effects include (i) direct factor-factor effects, (ii) interaction
terms mediated by Nrec = 15 receptor types, and (iii) direct receptor
effects on the biological factor rate of change dSm,i

dt (the second term in
Eq. 2). The first term in Eq. 2 is expanded as:

αn!m =
Direct Factor�Factor Term

αn!m
0 +

InteractionTerm

XNrec

k
αn!m
k rki ð4Þ

The propagation term assumes symmetric connectivity Cj$i

between regions i and j, using a template connectivity matrix for all
subjects, as described in Anatomical connectivity estimation, so we

define the propagation component as:

pm,i tð Þ=
XNROI

j = 1,j≠i

Cj$i Sm,j tð Þ � Sm,i tð Þ
h i

ð5Þ

Thus, for each subject, the evolution of pathology in each biolo-
gical factor m at region i is described by:

dSm,i tð Þ
dt

=
XNfac

n= 1

αn!m
0 +

XNrec

k

αn!m
k rk,j

 !
Sn,i tð Þ

+
XNrec

k = 1

αm
k rk,i +α

m
proppm,i tð Þ

ð6Þ

Each model contains a set of
Nparams =Nfac × 1 +Nrec

� �
+Nrec + 1 = 113 parameters fαgmx for subject x

and factorm (or 678 total parameters per subject), eachwith a distinct
neurobiological interpretation (e.g., the effect of reducedwhitematter
integrity on gray matter atrophy mediated by glutamatergic receptor
density). We perform linear regression, using the terms in Eq. 6 as
predictors with longitudinal PPMI neuroimaging samples Sm,i tð Þ and
receptor maps R, to fit parameters fαgmx for each subject x and mod-
alitym. Separate regressionmodels were built for (i) each of the N = 71
qualifying subjects, and (ii) each of the 6 neuroimaging factors. These
subjects were drawn from the PPMI dataset with at least 3 recorded
neuroimaging modalities, and at least 3 longitudinal samples for at
least one modality.

We then calculate the coefficient of determination (R2 for each
model to evaluate model fit, summarized in Fig. 2. With the true
neuroimaging-derived data ym,i,t =

dSm,i tð Þ
dt , subject-wise mean imaging

data <ym> for modality m across all brain regions and longitudinal
samples, andmodel predictions ŷm,i,t , the coefficient of determination
is

R2 = 1�
P

itðym,i,t � ŷm,i,tÞ2P
itðym,i,t � <ym>Þ2

ð7Þ

Model fit. For each subject and neuroimaging modality, we evaluated
the quality of model fit by calculating the coefficient of determination
(R2). Secondly, to evaluate the improvement in model fit due to
receptor and receptor-mediated interaction terms while accounting
for the difference in model size for each subject, we used F-tests
(p < 0.05) to compare the model fit of the full, receptor-neuroimaging
interaction models (113 parameters per modality) with restricted,
neuroimaging-only (8 parameters per modality) models.

Finally, we evaluated the significance of the improvement in
model fit (R2) due to actual receptor distributions with a permutation
test using 1000 iterations of randomly permuted receptor maps (with
receptor densities shuffled across regions independently for
each receptor type), calculating the p value of the model R2 with the
true receptor data compared to the null distribution.

Covariance of biological mechanisms with clinical symptoms. To
identify multivariate links between receptor-mediated biological
mechanisms and to clinical symptoms in PD, we performed a data-
driven partial least squares (PLS) regression analysis. Using singular
value decomposition (SVD) to factorize the population covariance
matrix between re-MCM parameters and clinical assessments (sum-
marized in Methods: Clinical scores) to its eigenvectors, we identify
multivariate axes of co-varying features. Different axes represent
orthogonal disease processes affecting symptom severity. Permuta-
tion tests and bootstrapping ensure the statistical significance of the
axes and the stability of identified mechanisms and symptoms,
respectively. The algorithm is summarized as follows:
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1. We performed SVD on the cross-covariance matrix between all
678 re-MCM parameters and rates of clinical decline for N = 71 PD
patients, adjusted for covariates (baseline age, education, and
sex). SVD simultaneously reduces the dimensionality of features,
and ranks them by their contribution to each axis. The cross-
covariancematrixC =XY ’ of the z-scores of re-MCMparameters X
and the z-scores of the clinical decline rates Y is decomposed as

C =USV 0 ð8Þ

where U and V are orthonormal matrices of spatial loadings for the
parameters and clinical scores, respectively, and S is a diagonal matrix
of singular values fs1, . . . ,s7g.
2. We then performed permutation tests by shuffling the mapping

between subjects’ re-MCM parameters and clinical scores, and
repeating Step 1 for 1000 iterations, to evaluate the significanceof
latent components.We performed a Procrustes transformation to
align the axes of singular components in order to compare
components from permuted iterations. We retained only those
significant (p <0.05 with respect to the permuted distribution)
singular components.

3. To discard non-stable re-MCM parameters and clinical assess-
ments in each axis, we performed 1000 iterations of boot-
strapping on the parameters X and clinical scores Y . To compare
permuted iterations, we performed a Procrustes transformation
to align the axes of singular components. We discarded the
parameters with non-stable 95% confidence intervals.

4. For the remaining stable re-MCM parameters and clinical scores,
and significant latent components, we computed the variance
explained per parameter j along each axis i:

r2i,j =
U2

i,j

Parameter
contribution

P
jU

2
i,j ð9Þ

Regional influence. To infer the spatial patterns of receptor involve-
ment in neurodegeneration, we examined the improvement in neu-
roimagingmodels due to the inclusion of each receptor map. For each
biological factor m, receptor k and brain region i, we fit a restricted,
single-receptor version of the model

dSmi,k tð Þ
dt

=
XNfac

n= 1

αn!m
0 +αn!m

k rk,j
� �

Sn,i tð Þ+αm
k rk,i

+αm
prop

XNROI

j = 1,j≠i

Cj!iSm,j tð Þ � Ci!jSm,i tð Þ
h i

,

ð10Þ

where the longitudinal rate of change of each factor is predicted by its
network propagation, direct factor effects, the local density of a single
receptor k, and factor interactions with the density of only receptor k.
We compare this model with a restricted, neuroimaging-only model
excluding receptor density and interactions:

dSmi,k tð Þ
dt

=
XNfac

n= 1

αn!mSn,i tð Þ+αm
prop

XNROI

j = 1,j≠i

Cj!iSm,j tð Þ � Ci!jSm,i tð Þ
h i

ð11Þ

To generate brain maps representing receptor influence on neu-
roimaging changes,
1. for each subject, we fit the single receptor and neuroimaging-only

models for all biological factors and receptors, and studentize the
residuals across regions and time points,

2. we combine the studentized residuals corresponding to each
region across subjects and time points, and calculate the

Wilcoxon rank-sum statisticwm
i,k between studentized residuals of

the two models,
3. we compute a null distribution of the Wilcoxon statistic by

repeating Steps 1–2with 1000 randomly permuted receptormaps
per imaging modality and receptor,

4. to estimate the significance of the Wilcoxon maps of each
receptor across all 6 imagingmodalities, we calculate the z-scores
zmi,k of the Wilcoxon statistic wm

i,k to its null distribution.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The three datasets used in this study are publicly available. The PPMI
database (neuroimaging and clinical evaluations; https://www.ppmi-
info.org/) is available to access after completing a data use agreement
and submitting an online application (https://www.ppmi-info.org/
access-data-specimens/download-data). The HCP database (HCP-
106598; tractography template for connectivity estimation; http://www.
humanconnectomeproject.org/) is available at https://brain.labsolver.
org/hcp_template.html, and receptor autoradiography data published
in31 is available at https://github.com/AlGoulas/receptor_principles.
Source data are provided with this paper.

Code availability
The PLS-SVD code is available at https://github.com/neuropm-lab/svd_
pls. The re-MCM method (implemented in Matlab 2019b) will be
incorporated as a part of our open-access, user-friendly software
(https://www.neuropm-lab.com/neuropm-box.html)112.
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