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River interlinking alters land-atmosphere
feedback and changes the Indian summer
monsoon

Tejasvi Chauhan 1, Anjana Devanand 2,3,4, Mathew Koll Roxy 5,
Karumuri Ashok6,7 & Subimal Ghosh 1,2

Massive river interlinking projects are proposed to offset observed increasing
droughts and floods in India, the most populated country in the world. These
projects involve water transfer from surplus to deficit river basins through
reservoirs and canals without an in-depth understanding of the hydro-
meteorological consequences. Here, we use causal delineation techniques, a
coupled regional climate model, and multiple reanalysis datasets, and show
that land-atmosphere feedbacks generate causal pathways between river
basins in India. We further find that increased irrigation from the transferred
water reduces mean rainfall in September by up to 12% in already water-
stressed regions of India. We observe more drying in La Niña years compared
to El Niño years. Reduced September precipitation can dry rivers post-mon-
soon, augmenting water stress across the country and rendering interlinking
dysfunctional. Our findings highlight the need for model-guided impact
assessment studies of large-scale hydrological projects across the globe.

Large international rivers, such as theGanga, the Brahmaputra, and the
Indus, are central to the development of agriculture-dominated India,
with a 1.4 billion population1. However, like river basins around the
globe2, Indian river basins are also under severe stress due to global
climate change3,massivepopulationgrowth3–5, increaseduncontrolled
human water use6,7, and pollution8,9. Indian summer monsoon (ISM)
from June to September is the primary source of water in Indian river
basins, which accounts for almost 80% of the country’s annual rainfall
and governs the Gross Domestic Product (GDP)10. Over the last few
decades, ISM has experienced a decline in the mean rainfall11,12 and an
increase in the intensity, occurrences, and spatial variability of extreme
rainfall13–16. Such changing meteorological patterns have increased
hydrologic extremes, floods, and droughts in India13,17–22. These
hydrologic changes have augmented the water stress across the
country, elevating the risk of disasters. As an adaptation measure to
combat the increasing hydrologic extremes, India hasplannedmassive

interlinking projects on its rivers with a proposed budget of USD 168
billion23–25. The proposal23,26 involves a network of canals with an
approximate length of 15,000 km and 3000 reservoirs with a capacity
to transfer 174 billion cubic meters of water each year from surplus to
deficit basins and generate 34 million kilowatts of hydropower along
with benefits27 like flood control, drought mitigation, and navigation.
The experiences of river interlinking in China showed the stabilization
of groundwater28; however, such an ambitious plan may significantly
impact the ecology29 of the aquatic ecosystem and fish diversity30.
Literature also shows that increased river regulation could increase the
water foot print7. Hence, interlinking must be carefully designed to
optimize the conflicting objectives of ecological sustainability and
meeting water demands31.

So far, no scientific studies have explored the possibility of feed-
back from the inter-basin water transfer to the water cycle. We hypo-
thesize that the water transfer may impact the donor or adjacent
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basins through land-atmosphere feedback. Such possibilities could be
high in the Indian region,where the land feedback to the atmosphere is
also high32,33. In the present study, we test the hypothesis by devel-
oping a causal network between the atmosphere and land variables
across river basins in India. We use Granger Causality (GC)34, infor-
mation theory-based transfer entropy (TE)35,36 and a causal network
learning algorithm, PCMCI37 (see “Methods” for details), to generate
causal networks between different hydrometeorological variables.

We use these approaches on the variables (ST1), soil moisture
(SM), latent heat flux (LH), sensible heat flux (SH), precipitation (P),

relative humidity (R), wind speed (WS) (resultant of u-wind (U), v-wind
(V)), incoming shortwave radiation (SR), and temperature (T) over the
major river basins of India (Fig. 1a), Ganga (G, 808,334 km2), Godavari
(Go, 302,063 km2), Mahanadi (M, 139,659 km2), Krishna (K,
254,743 km2), Narmada-Tapi (NT, 98,796 km2, 65,145 km2, respectively
—two river basins taken together), and Cauvery (C, 85,624 km2). Since
Narmada and Tapi basins are relatively small, we club them together
and represent them as a single basin. Relative humidity, u-wind, and
v-wind are taken at 850hpa pressure level, and the remaining variables
are near-surface. We first use 40 years (1980–2019) of daily reanalysis
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Fig. 1 | Connections between land variables of different river basins. a River
Basins in India considered in the study.b Irrigated grid cells under river interlinking
schemes showing change in percentage irrigated area from control run (CTL) to
irrigation run (IRR) run (see “Methods”) to increase irrigated area fraction to 80%.
c Network between land variable across river basins generated using the algorithm
PCMCI (ParCorr). Sectors are labeled as variable symbols (soil moisture-SM, latent
heat flux-LH, sensible heat flux-SH) followed by the basin they belong to (Ganga (G,
808,334 km2), Godavari (Go, 302,063 km2), Mahanadi (M, 139,659 km2), Krishna (K,

254,743 km2), Narmada-Tapi (NT, 98,796 km2, 65,145 km2, respectively—two river
basins taken together), and Cauvery (C, 85,624 km2)). Links are only shown if found
statistically significant at 99% confidence and are colored same as the node they
originate from. For example, link from LH_G to LH_M shows that there is a con-
nection between latent heat fluxes from Ganga and Mahanadi basin. Ratio of
incoming to outgoing links in Cauvery basin is very high compared to Ganga and
Narmada-Tapi basin.
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data from the European Center for Medium-Range Weather Forecast
(ECMWF, ERA-5)38. Figure S1 presents the climatology of soil moisture,
precipitation, and Evapotranspiration (ET, generated from latent heat
flux) for different basins generated using ERA-5 variables. All the basins
receive maximum precipitation during the Indian summer monsoon
(also called southwest monsoon) from June to September39. The
Cauvery basin also receives significant rainfall during
October–December during the northeast monsoon40 and has two
peaks in annual precipitation. The soil moisture in Ganga, Godavari,
Krishna Mahanadi, and Narmada-Tapi basin peaks during August and
starts declining by the end of the summer monsoon season. The soil
moisture in Cauvery peaks during late October, showing cumulative
effects of rainfall from the Indian summer monsoon and northeast
monsoon. Evapotranspiration in all basins increases during the start of
the Indian summer monsoon and is highest during post-monsoon
because moisture accumulated during monsoon gets evaporated by
solar radiation.

After performing causal analysis, we represent the association
between variables across different basins as networks. We demon-
strate the causal relationships between land variables across basins
through land-atmosphere, atmosphere-atmosphere, and atmosphere-
land interactions showing that the basins are not hydrologically inde-
pendent. A perturbation in a river basin due to the proposed inter-
linking can travel to the neighboring basins by atmospheric pathways.
Further, we used a modified regional climate model—Weather
Research and Forecast coupled with Community Land Model 4 (WRF-
CLM4, details in “Methods”)41—to test the hypothesis that by land-
atmosphere feedback, the additional irrigation from river interlinking
can lead to changes in the Indian summer monsoon spatial patterns
and the hydrology of the neighboring basins. To our knowledge, such
feedbacks have not been considered in the literature for any globally
existing or planned interlinking projects.

This study shows that river basins are linked to eachother by land-
atmosphere feedback, and any perturbation in one basin can travel to
neighboring basins. This result is at odds with the conventional
assumption of the absence of atmospheric links between river basins
while planning hydrological projects. We also show that by land-
atmosphere feedback, river interlinking projects in India will affect the
Indian summer monsoon leading to a reduction in September rainfall
in dry regions of the country, further aggravating the water stress. The
methodology and results presented here pave the way for similar sci-
entific impact assessments of river interlinking and other large-scale
hydrological projects across the globe.

Results and discussion
Information links between the basins
Figure 1c shows the causal links between land variables across basins
found using PCMCI (see “Methods”) on 40 years of continuous daily
reanalysis data from ERA-5 (1981–2020). Links are shown only if found
statistically significant at a 99% confidence level. Each arc is a variable,
and the arrow represents the link’s direction to the other variable it
projects onto. We get many links between land variables across all
basins, indicating that surface soil moisture is connected across dif-
ferent river basins. Figure 1c shows that some basins show more out-
going links than incoming links. For example, latent heat flux from the
Ganga basin, LH_G, has outgoing links to almost all river basins.
However, it has incoming links only from land variables of the Maha-
nadi and Godavari basins. High recycled precipitation due to land-
atmosphere feedback is well established for the Ganga basin32,33,42.
Cauvery basin, on the other hand, has a large number of incoming links
from all other basins, as evident from Fig. 1c. Literature shows that the
Cauvery basin receives recycled precipitation generated by evapo-
transpiration from the neighboring regions43. Stronger causal con-
nections exist between the land variables of other basins (Figs. 1c, S2).
This means that the river basins can have characteristic properties of

being ‘donor basins’ or ‘recipient basins’ depending on the net transfer
of moisture through atmospheric pathways. Supplementary table ST3
shows the sign of each link in Fig. 1c. We observe both positive and
negative land-atmosphere feedback across different river basins. For
example, land variables from Ganga have positive links to land vari-
ables of the Mahanadi basin but negative links to land variables of the
Cauvery basin. The presence of both positive and negative connec-
tions between different river basins indicates that soil moisture from
one basin may reduce or amplify soil moisture in another basin. We
also generated the network between land variables using Granger
Causality (GC) and Transfer Entropy (TE), and the results are shown in
Fig. S2 (a, b, respectively). GC shows the highest number of links with
all variables connected at a 99% confidence level (Fig. S2a). TE is
argued to be a non-linear extension of GC44. We observe fewer links
using TE (Fig. S2b) compared to GC because, while conditioning, it can
remove strong non-linear autocorrelations. Since both methods are
bivariate, they fail to resolve for cross-correlation effects of other
variables in a high dimensional dataset; PCMCI is known to be superior
to thesemethods (even theirmultivariate extensions)45. However, both
TE and PCMCI generate almost the same number of links (Figs. 1c and
S2b), which indicates the presence of common drivers or indirect links
outside the land variables.

The above-discussed analysis shows causal relationships across
land variables. Since land variables cannot directly transfer water from
one basin to another, the links we see in Fig. 1c, and S2, are indirect
links or are showing due to common drivers such as the El Niño-
Southern Oscillation (ENSO). ENSO is known to control ISM and hence
can simultaneously control soil moisture in different basins. A causal
delineation techniquewould showa connectionbetweenbasins unless
the confounder (here ENSO) is included in the conditioning set. Actual
links might be from ENSO (or Precipitation) to soil moisture indivi-
dually for the three basins, which we fail to capture. It is also possible
that the local changes in soil moisture in a river basin may indirectly
affect that in another river basin through land-atmosphere feedback
(called an indirect link because the true link from land-atmosphere
feedback is getting delineated as links between land variables as seen
in Fig. 1c), which in turnwould affect the large-scale flow. The presence
of indirect links (or confounders) is confirmed by Fig. 1c, generated
using PCMCI. Since PCMCI conditions on all necessary variables from
the input set (“Methods”), it should show fewer links than Granger
Causality (GC, Fig. S2a) or Transfer Entropy (TE, Fig. S2b), if con-
founding variableswerepresent among land variables, which is not the
case. Hence, from the links in Fig. 1c, it can be concluded that the
variables forming the pathways between land variables need to be
included to find true causal linkages between different river basins.

To address these challenges, we include atmospheric variables
and generate a causal network using a non-linear estimator of PCMCI
(see “Methods” section for details), which tries to account for common
drivers while controlling the high dimensionality. Themonsoon drives
the climate and the water cycle in India. To understand the land-
atmosphere processes and their impacts on the water cycle, we have
performed an analysis using PCMCI for the summer monsoon season.
We have applied PCMCI to all the land and atmospheric variables from
reanalysis data separately for each year’s monsoon seasons with
122 days each, considering a maximum of 10 days’ lag. Figure 2 pre-
sents the links which were found statistically significant at 95% con-
fidence (p < 0.05) for more than 20 out of 40 years (1981–2020). We
hypothesized that the causal connections between land variables of
two different basins, A and B, exist through a series of indirect links:
land variable (river basin A) → atmospheric variable (river basin A) →
atmospheric variable (river basin B) → land variable (river basin B). We
present the links in the same way in Fig. 2. The nodes in the leftmost
column are the source land variables. The links from these nodes go to
the second layers, the atmospheric variables of the same basin. For
example, the link originating from the latent heat ofGanga (LH_G) goes
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to the temperature, precipitation, and humidity of Ganga (T_G, P_G,
R_G), showing that the evapotranspiration (ET) of Ganga basins con-
tributes to themoisture content in the air and hence, temperature and
precipitation received within the Basin. This precipitation is called
recycled precipitation32. We observe direct within-basin links from LH
to P in Godavari, Krishna, and Mahanadi, indicating that these basins
might have a high within-basin recycling ratio (ratio of precipitation
caused by within-basin ET to the total precipitation in that basin). We
also see that in some basins (like Cauvery and Narmada-Tapi), there is
no link from LH to P; however, there are links from LH to R and T. This
might indicate that ET leads to changes in the moisture content of the
air however, it doesn’t always translate into recycled precipitation. In
such cases, the moisture supplied to air is transported to other basins,
which should reflect as links between atmospheric variables of differ-
ent basins (Fig. 2, 2nd column to 3rd column). This result is consistent
with PCMCI showing some river basins with higher outgoing links than
others in Fig. 1c. The land variables cannot cross the river basin
boundary, but the atmospheric variables can. The 3rd vertical layer
from the left presents the atmospheric variables of the information-
receiving basins. The “apostrophe” sign after a basin symbol (for
example, M for Mahanadi in T_M’) signifies the receiving basin’s
atmospheric variable. For example, there is a link from precipitation in
Ganga (P_G) basin to incoming radiation in theMahanadi basin (SR_M’),
which indicates that moisture from the Ganga basin might contribute
to cloud formation in the Mahanadi basin. Precipitation from the
Godavari basin (P_Go) is connected to precipitation from the Krishna,
Mahanadi, andNarmada-Tapi basin (P_K’, P_M’, P_NT’). The 4th layer, or
the rightmost layer, contains the land variable of the receiving basin.
The temperature of the Mahanadi basin (T_M’) impacts the latent and
sensible heats of theMahanadi basin (LH_M, SH_M).Hence thepathway
from the Ganga basin to the Mahanadi basin (as seen as a link from
LH_G to LH_M in Fig. 1) can be traced as LH_G→P_G→SR_M’→LH_M.

Interestingly, we also see a similar pathway from the Mahanadi to that
of the Ganga, indicating feedback.

Tomake sure that the links are not just artifacts of the sample and
are actual characteristics of the system, we applied PCMCI to another
reanalysis data: Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2)46 and outputs of control runs (CTL)
of regional climatemodel (WRF-CLM4, see “Methods”). The results are
shown in Supplementary Figs. S3 and S4, respectively. We found that
links in the networks derived from MERRA-2 and control runs of WRF
have a clear resemblance to Fig. 2, though they are not the same. We
also don’t expect the networks from reanalysis data and the model
outputs to be the same as the model runs contain irrigation which
influences land-atmosphere feedback, whereas the reanalysis data do
not. However, similarity in the causal pathways in the reanalysis data-
set and themodel runs indicates that land-atmosphere feedback leads
to linkages between the river basins regardless of irrigation repre-
sentation, which provides pathways for inter-basin water transfer to
alter the ISM.

Figure 3 shows a simplified schematic explaining the mechanism
of perturbation brought by river interlinking. The intra-basin land-to-
atmosphere connection happens in the form of SM contributing to the
moisture content of the air through evapotranspiration (high evapo-
transpiration during high SM) while also causing surface cooling
(Fig. 3). The LH and SH control the atmosphere’s moisture content
(through wind, driven by temperature). The supplied moisture by
evapotranspirationcan lead to recycledprecipitation in the samebasin
or can get transported to faraway regions by the wind. Evaporative
cooling changes the thermal contrast between ocean and land or in
between different land regions changing wind patterns and, subse-
quently, themoisture transport and rainfall. Earlier studies47 suggested
that surface cooling (due to other reasons like aerosols) leads to a
decline in monsoon rainfall in India. The increased recycled

G – Ganga
Go – Godavari

C – Cauvery
K – Krishna

M – Mahanadi
NT – Narmada-Tapi

LH – Latent heat flux
SH – Sensible heat flux
SM – Soil Moisture
R – Rela ve Humidity
SR - Shortwave Radia on
WS – Wind Speed
T – Temperature
P - Precipita on

Fig. 2 | Inter-basin connections via land-atmosphere feedback. Connections
using PCMCI from Land to atmosphere within basin (first column), between
atmospheric variables across all basins (second column), and from atmosphere to
land within the basin (third column). A link is shown only if it is found statistically
significant at 5% level more than 50% of the time (20 years out of 40 years
(1981–2020)). Names are variable symbols followed by the basin they belong to
for example, LH_G means latent heat flux from Ganga basin. The first and second
column of variables are land variables (soil moisture SM, latent heat flux LH, and

sensible heat flux SH) and atmosphere variables (precipitation P, temperature T,
relative humidity R, wind speed WS, and incoming short wave radiation SR),
respectively, links between which represent land-to-atmosphere connections
within each basin. Links between next two columns represent atmosphere to
atmosphere connections, for example, there is a link from temperature in
Ganga basin (T_Go) to that of Mahanadi basin (T_M’). Links in the last column
represent downward connections from atmospheric variables to land variables
within basin.
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precipitation may have the opposite impact of increasing precipita-
tion, and their resultant processes are quite complex. Overall, the
perturbations in the land water management leading from the inter-
basin water transfer impacts the spatial pattern of rainfall on the land
(Fig. 3). Hence, for upward links (first column in Figs. 2, S3, and S4), in
most cases, PCMCI detects LH as the source variable instead of SM.
Since SM can be directly impacted by precipitation, we can expect
direct downward links from the atmosphere to SM (Figs. 2, S3, and S4).
However, this signal is weak because it is short-lived and dependent on
the duration of precipitation spells. Atmospheric variables possess
long and sustained controls on soilmoisture bymodulating latent heat
fluxes through winds, clouds, etc.; hence, in the case of downward
land-atmosphere connections, links are primarily toward heat fluxes
(Figs. 2, S3, and S4). The atmosphere-to-atmosphere interactions
betweendifferent basins occur throughmoisture andheat transported
by winds across basin boundaries (Fig. 3).

Feedback from the proposed interlinking
Based on the above causal analysis, we hypothesize that a perturbation
in the land variables of a receiver basin due to the proposed inter-
linking can also affect its neighboring basins (for example, feedback
between Ganga and Mahanadi explained above), including the donor
basin through land-atmosphere feedbacks, which altogether, can lead
to changes in spatial patterns of Indian Summer Monsoon (ISM). To
test the hypothesis with a physics-based model, we used the coupled
land-atmosphere model WRF-CLM4 (Details in “Methods”). We have
chosen the period of the Indian Summer Monsoon (15 May to 31
October, initial 16 days from15May to31Mayused as spin-up run every
year) from 1991 to 2012 to see the potential impacts of surplus irriga-
tion by interlinking projects on other basins (see “Methods”). Our
control run (hereafter CTL) contains the currently practiced irrigation
in India as obtained from the agricultural census data and has pre-
viously been demonstrated to possess a reasonable skill in simulating
Indian summer monsoon48. We performed another simulation (the
irrigation run, hereafter IRR) by increasing the percentage of irrigated
area to 80% in regions where interlinking projects target an increase in

the culturable command area, as shown in Fig. 1b. Figure 1b shows the
increase in the percentage of irrigated area in each grid cell to achieve
80% irrigated area in the IRR run. The IRR run provides irrigation (in
addition to irrigation in the CTL run) of 600mm (around 4mm
per day) for normal crops and 1450mm (12mm per day) for paddy to
an area of about 30 million hectares across the country (Fig. 1b). The
simulations consider the India-specific crop and irrigation
practices48–50(details in “Methods”). The differences in results between
the two simulations provide conclusive evidence of the feedback from
the interlinking to ISM through land-atmosphere interactions.

Figure S5 shows the difference in mean daily precipitation
between IRR and CTL runs (IRR-CTL) for themonsoon season (b); June
to September, JJAS), June (c), July (d), August (e), September (f). Hat-
ched lines in plots indicate the regions where the difference is statis-
tically significant at a 90% confidence level. We observe small regions
of statistically significant increase and decrease in precipitation during
JJA (Fig. S5c–e). During July (Fig. S5d), we find an increase in rainfall
over the eastern parts of the Ganga basin. At the same time, there is
also a substantial decline in precipitation in the Narmada-Tapi basin
and western parts of the Ganga basin. Overall, there is no spatially
consistent increase/decrease in precipitation during JJA. September
sees the most widespread and maximum statistically significant
reduction in precipitation (Fig. S5b). This is also evident from mean
monsoon rainfall (Fig. S5b), which shows a statistically significant
change in precipitation that is spatially similar to September month
(Fig. S5f). JJA rainfall changes cannot compensate for the decrease in
September rainfall as we don’t observe any spatially consistent wide-
spread statistically significant increase in JJA (Fig. S5). The simulated
changes in September rainfall can be attributed to land-atmosphere
feedback. The mean daily precipitation during September shows a
statistically significant reduction of up to 4mm/day in central India
and some parts of north and western India (S5, f). The contribution of
the land-atmosphere feedback to the Indian monsoon is maximum in
September due to the widespread high soil moisture (resulting from
JJA rain) and matured crop conditions (Kharif season crop) in
September32,51. This is also consistent with our results which show

Inter-basin water transfer

Rainfall including recycled
precipita�on (+/-)

Evapotranspira�on (+)

Irriga�on(+)

Basin 1 Basin 2 Basin X

Temperature (-)

Moisture transfer (winds)

Land-sea thermal Contrast (+/-)

Rainfall including recycled precipita�on (+/-)

Evapotranspira�on (+/-)
Temperature (+/-)

Evapotranspira�on(+/-)
Temperature (+/-)

Land-atmosphere
Feedback

Land-atmosphere
Feedback

To other basins

Fig. 3 | Schematic diagram explaining the land-atmosphere feedback and
changes in monsoon rainfall in response to river-interlinking. The perturba-
tions in the land water management leading from the inter-basin water transfer
impact the spatial pattern of rainfall on the distant basins. The intra-basin land-to-
atmosphere connection happens in the form of soil moisture contributing to the
moisture content of the air through evapotranspiration (high evapotranspiration

during high soil moisture (SM)) while also causing surface cooling. The supplied
moistureby evapotranspiration can lead to recycled precipitation in the samebasin
or can get transported to faraway regions by the wind, which can then change the
precipitation patterns of the region. Evaporative cooling changes the thermal
contrast between ocean and land or in between different land regions changing
wind patterns and, subsequently, the moisture transport and rainfall.
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minimal statistically significant changes in precipitation during JJA
(Fig. S5). After September, the long dry period starts in the country
with another cropping season, the Rabi season, in
November–December. Hence, the rainfall and subsequent recharge in
September has a longer-term impact on meeting the water demand in
thenon-monsoonmonths and reducingwater scarcity. Hence,wehave
selected September month for further analysis.

Figure 4a shows the spatial distribution of mean percentage
change in September rainfall for various regions in India for all years.
The statistical significance of mean precipitation change was tested
using a t-test on September precipitation from CTL and IRR runs (660
data points). Statistically significant regions have been hatched in the
figure. The regions which experience statistically significant (p < 0.05)
declines in September monsoon rainfall are central India (R1), east
peninsular India (R2), coastal Gujrat (R3), east-central India (R4), the
dry western region of Rajasthan (R5), western Himalayan foothills in
Uttarakhand (R6). Figure 4b shows the probability distribution of
percentage change in these regions as violin plots with themedian and
mean value shown by a red and black colored horizontal line,
respectively, and p-values of the t-test on mean precipitation change
written below each violin plot. Notably, the distribution of precipita-
tion changes in these regions contains huge tails on the positive
changes, particularly R3, R4, R5, R7, and R8. They experience sporadic
events of precipitation increase in the form of extreme precipitation
(more than 100% increase) with a systematic precipitation decrease
where most of the values in the distribution are negative. Due to this,
while a region experiences multiple years of precipitation deficits, we
underestimate the precipitation reduction due to the heavy tails of
surplus years. For example, in R3, R4, and R5, the precipitation
reduction with the highest frequency is between 20–30%, whereas the
mean value in these regions reports negligible or a positive change
which could bemisleading. Hence, while the driest region of India, the
western region of Rajasthan (Fig. 4, R4), shows a mean increase in
September precipitation of around 10%, it experiences a 10% median
decline in rainfall. The highestmedian reduction is about 12% in region
R4 (the state of Odisha), followed by 10% in R2 (the state of Andhra
Pradesh), 10% in R5 (the state of Rajasthan), and 9% in R3 (the state of
Gujarat). The rainfall in central India, a part of the coremonsoon zone,
also shows an 8% decline in the simulated September rainfall due to
interlinking. The western Himalayan foothills in Uttarakhand and east-
central India also shows a moderate decline (6.4%) in September
rainfall due to excess irrigation from the proposed interlinking. It is

worth noting thatwhile there is a reduction in September precipitation
in generally dry parts of the country, there is also an increase in Sep-
tember precipitation by up to 12% in east India (R8, states of Bihar,
Jharkhand, and eastern Uttar Pradesh) and up to 10% in parts of the
Deccan plateau (R7, states of Maharashtra and Telangana). Hence,
there is conclusive evidence that river interlinking projects can alter
the spatial pattern of ISM rainfall.

Moreover, the interlinking will also result in a changing spatial
pattern of temperature over India (Fig. S6, a). Figure S6 shows the
difference in mean daily values for daily maximum temperature, sur-
face latent heat flux(b), and root zone soil moisture (c) between IRR
and CTL runs for September. The changing meteorological patterns
result in statistically significant meanmonthly soil moisture and latent
heat flux changes. However, there is a lack of one-to-one consistency
everywhere due to complex hydrometeorological processes. The
regions with less precipitation are accompanied by an increase in daily
maximum temperatures of up to 1 °C. and a decrease in soil moisture
of around 15mm (Fig. S6; a, c, respectively). The changes in soil
moisture in the grids receiving daily irrigation cannot be used to
quantify the impacts of land-atmospheric feedback andhence,masked
with gray color. The irrigated grids are also visible as having high latent
heat flux in Fig. S6b. The proposed interlinking aims to improve soil
moisture everywhere by taking surplus runoff from surplus regions
and irrigating the deficit regions. However, contrary to this expecta-
tion, the feedback from the extra irrigation at the deficit basins results
in declining rainfall in many neighboring areas, with a decline in soil
moisture there. While there is a post-interlinking increase in soil
moisture in the Krishna basin, the western portion of the Godavari and
Narmada-Tapi basins, and the eastern Ganga basin, there is a pro-
nounced decline in soil moisture of the Mahanadi, Godavari, and
western part of Ganga basin in Indian states of Odisha, Chhattisgarh,
norther Maharashtra, Madhya Pradesh, and Rajasthan. Hence, the
purpose of improving soil moisture in deficit regions is met but at the
cost of declining available water in the neighboring regions. Such
unexpected feedbacks were unforeseen in the planning stage, and we
contend that it is necessary to consider the land-atmosphere feedback
processes in arriving at the policy decisions related to the interlinking.

El Niño Southern Oscillation (ENSO) is a significant driver of
interannual variability of the monsoon rainfall over India. To under-
stand the interannual variations of the land-atmosphere feedback from
the excess irrigation proposed through interlinking, we separately
analyzed El Niño and La Niña years (ST2, Fig. S7 for El Niño and Fig. S8
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Fig. 4 | Change in Septemberprecipitation after river-interlinking. a Percentage
change in mean daily precipitation between WRF irrigation run (IRR) and control
run (CTL) (IRR-CTL) for the month of September. Hatch lines mark regions where
the difference was found statistically significant at 90% confidence tested on 660
data points. b Violin plots of percentage change for all years in mean September
rainfall for regions marked in (a). Median and mean change for all years are

represented by red and black horizontal lines, respectively. Median percentage
change is also writtenwith the nameof each region. There is a significant reduction
in September precipitation of up to 12% in central (state of Madhya Pradesh),
eastern (states of Odisha and Chhattisgarh), northern (state of Uttarakhand in
western Himalaya), and western arid region (states of Rajasthan and Gujarat)
of India.
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for LaNiña). These include both canonical andModoki types of ENSOs,
given that the impacts are qualitatively the same52. We have produced
the differences in mean daily values of precipitation (a), daily max-
imum temperature (b), root zone soil moisture (c), and surface latent
heat flux (d) between IRR and CTL runs in both the supplementary
figures (Figs. S7, S8) for September. Interestingly, soil moisture drying
due to excess irrigation is more prominent in La Niña years compared
to the El Niño years. The whole central Indian belt from the desert
regions of Rajasthan to the eastern coast shows a decline in rainfall and
temperature increase; hence, soil moisture declines in the La Niña
years (Fig. S8). The dry western region shows a decline in rainfall and
soilmoistureeven for the El Niño yearswith an increase in temperature
(Fig. S7). The drying of the arid region due to interlinking could be
alarming and hence, needs to be addressed in the planning for inter-
linking. Central Indian regions show an improvement in the rain due to
interlinking inElNiño years,which is good for thedryyears.Overall, we
found that the perturbed water management from the proposed
interlinking can lead to changes in the spatial distribution of the Indian

Summermonsoon and a systematic reduction of precipitation inmany
regions, including the dry arid regions.

Further, to demonstrate the causal relationship between river-
interlinking and the Indian summer monsoon, we find causal connec-
tions from the regions with surplus irrigation to regions that experi-
ence drying in the IRR experiments. Figure 5a shows three chosen
regions (southern peninsula—region A, western India—region B, and a
part of Ganga basin—region C) out of areas where irrigation was
applied, and Fig. 5b shows a few selected regions where maximum
drying was witnessed (Region 1—central-eastern India, Region 2—
Central India, Region 3—western India, and Region 4—western Hima-
layas). Both variables, i.e., LH from regions A, B, and C and P from
regions 1, 2, 3, and 4, were taken as differences between CTL and IRR
runs. The results are shown in Fig. 5. We tried to find the causal links
from the latent heat flux (LH, IRR-CTL) of regions A, B, and C to pre-
cipitation (P, IRR-CTL) from regions 1, 2, 3, and 4.We use TE here, aswe
want to capture both direct and indirect connections in model simu-
lations. The link thickness and labels written at the beginning of the

72.00

72.00

80.00

80.00

88.00

88.00

96.00

96.00

7.00 7.00

14.00 14.00

21.00 21.00

28.00 28.00

35.00 35.00

0 250 500 km

India
Regions where irrigation applied

Region A
Region B
Region C

72.00

72.00

80.00

80.00

88.00

88.00

96.00

96.00

7.00

14.00

21.00

28.00

35.00

0 250 500 km

India

Regions with Precipitation deficit
Region 1
Region 2
Region 3
Region 4

(a) (b)

LH_C LH_A

LH_B

P1

P2

P3

P4

16

17

15

13

19 16 13 12

22

19

16
9

(c)

Fig. 5 | Causal connections from river-interlinking to reduced precipitation.
a Selected regions where irrigation was applied in irrigation run (IRR). b Selected
regions of September precipitation where drying is observed due to interlinking.
c Connections form change in latent heat flux (IRR - control run (CTL)) in the
irrigated regions to change in precipitation (IRR-CTL) in the highlighted regions

using Transfer Entropy. Links are labeled as the number of years, when they were
found out to be statistically significant (p <0.05) out of 22 years of simulations
(1991–2012). This shows that change in precipitation fromCTL to IRR experiment is
causally related to the corresponding change in latent heat flux of other regions
indicating consistent land-atmosphere feedback.
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link show the number of times the link was found statistically sig-
nificant (p < 0.05) out of 22 years of simulations. The node names are
written as the variable symbol followed by the region they belong to.
For example, P1 means precipitation over region one, and LH_Ameans
latent heat flux in region A. The presence of causal links from LH to P
fromall regions indicates the influenceof irrigation at regions A, B, and
C on precipitation over regions 1, 2, 3, and 4 via land-atmosphere
feedback. It shows that the reduction in precipitation from CTL to IRR
experiment is causally linked to extra irrigation applied in the IRR
experiment. The most robust links (present during most number of
years) from all three irrigated regions are toward P1. The link from
LH_C to P1 has the highest consistency and was found across all years.
Our irrigation feedback results are consistent with the earlier studies
that show the Ganga basin is the global land-atmosphere feedback
hotspot32,42,51,53. Figure S9 shows similar results for El Niño (Fig. S9, a)
and La Niña (Fig. S9, b) years. Considering a link as consistent if it was
found statistically significant (p <0.05) in more than 50% of years (at
least 3 out of 5 years), the connection from the LH_A, LH_B, and LH_C
toward P1, P4, and P2 remain consistent for both El Niño and La Nina
years. While links to P3 are consistent during El Niño years, they were
found to be less consistent from LH_B and LH_C during La Niña. The
presence of a link here is a measure of the consistency of land-
atmosphere feedback and cannot be attributed to the relative strength
of drying during El Niño and La Niña years. Our results show that the
land-atmosphere feedback from irrigated areas, especially from the
Ganga basin and southern peninsula, remains consistent during El
Niño and La Niña years.

Implications of interlinking projects
India has a rapidly growing problem of water stress due to global
warming, population growth, pollution, and change in land use. As per
the Central Water Commission, Government of India, the current per
capita availability of water in India is around 1400 cubicmeters, slated
to reduce to about 1200 cubic meters by 2050, and a large portion of
the country is already classified aswater stressed54,55. A large fraction of
India’s water resources is used for irrigation in agriculture. The water
demand will further increase with the rapid intensification of agri-
culture. As water demand is rising rapidly, within the next 20 years,
India might need most of its runoff to meet its urban and agricultural
needs56. As a solution to this problem, India has planned river-
interlinking projects to transfer water from surplus to deficit basins to
cater to the water demand of the growing population. The goal is to
keep themaximumpossible water—which earlier used to reach oceans
from river basins—on the land to meet the growing water demand of
the country. The assumption behind such planning is that the river
basins do not have atmospheric connections, and hence, feedback
from linking a basin to other river basins will not affect the rainfall
patterns in the source basin. Multiple studies32,43,47,57,58 have demon-
strated the local and distant impacts of land-atmosphere feedback. For
example, one study47 showed that aerosol forcing and subsequent land
cooling is responsible for the reduction in precipitation over north
central India. Excess irrigation also results in similar cooling, and
together with increased recycling32, it may have complex impacts on
the Indian summer monsoon, which we study in the present work
using regional modeling.

Here, we find that the assumptions made for the interlinking are
not valid. The perturbed hydrological processes of the receiving river
basins send feedback to the Indianmonsoon, potentially changing the
spatial patterns, specifically in September. Such changing patterns of
monsoon, in turn, affect the hydrology of the neighboring basins.
Hence, the hydrological processes across river basins are not inde-
pendent, a critical result that most large-scale hydrological projects
across the globe, including river-linking projects in India, do not con-
sider while planning. The interdependence of river basins may sig-
nificantly affect water demand-availability tradeoff within a basin. Our

WRF-CLM4simulations attempt toquantify thepossible changes in the
Indian monsoon due to the proposed interlinking project. The results
from these simulations show a systematic reduction of mean Sep-
tember precipitation of up to 12% in the western arid region (states of
Rajasthan and Gujarat), central (state of Madhya Pradesh), central-
eastern (states of Odisha and Chhattisgarh) and northern (states of
Punjab, Haryana, and Uttarakhand) parts of India, which, based on our
experimental setup, can be attributed to land-atmosphere feedback
from interlinking. Given the minimal statistically significant change in
precipitation in JJA and a reduction in September rainfall, precipitation
in JJA cannot compensate for reduced water availability in September.
The reduction in September precipitation will dry up the rivers in the
subsequent months amplifying water stress manifolds in various parts
of the country, which is an unexpected and unintended result of
interlinking. Reduced September rainfall in a recipient basin in a water
transfer scheme could increase its post-monsoon water demandmore
than anticipated at the design stage. Also, a reduction in precipitation
of a donor basin can reduce its ability to send water to other deficit
basins post-monsoon. Hence, we argue that the water balance of
interlinked river basins needs to be carefully re-evaluated after
including impacts of land-atmosphere feedback. The severity of water
stress will depend on the socio-economy of the region where strong
deficits are experienced. Themajority of the population in the affected
areas is dependent on agriculture. A reduction inmonsoon rainfall can
cause reduced crop yields in these regions increasing climate vulner-
ability and risk.

It is noteworthy that in the face of global warming, climate
change, and rapidly changing land use and land cover (LULC), the
reported inter-basin links will change in the future. Hence, this study
does not intend to convey exactpathways between river basins; rather,
we intend to demonstrate the role of land-atmosphere feedback from
large-scale hydrological projects in perturbing large-scale processes
like the Indian summer monsoon. In addition, we have not considered
the feedback on the monsoon rainfall in response to the reduced
runoff to the ocean due to interlinking. Recent studies show land-to-
ocean runoff can perturb the monsoon rain59 and may intensify the
feedback quantified by us. In addition, the river basins can also
exchange water via inter-catchment groundwater flows60,61, incorpor-
ating which is outside the scope of the current study. Hence, proper
quantification of the feedback from the proposed interlinking policy
needs careful scientific investigation. This study is the first attempt to
quantify the impacts of any large-scale hydrological project, like river
interlinking on the Indian Summer Monsoon, which was not con-
sidered in planning these projects. Our results highlight the impor-
tance of regional land-atmosphere model-driven hypothesis testing
and impact assessment while planning for large-scale hydrological
projects.

Methods
Data
We use 40 years (1980–2019) of daily data from two sources (ST1):
ERA-5 and MERRA-2 reanalysis products provided by the European
Center for Medium-Range Weather Forecast (ECMWF, ERA-5)38 and
Modern-Era Retrospective analysis for Research and Applications
Version 2 (MERRA-2)46, respectively, over the major river basins of
India (Fig. 1a), Ganga (G), Godavari (Go), Mahanadi (M), Krishna (K),
Narmada-Tapi (NT—two river basins taken together), Cauvery(C). Since
Narmada and Tapi are small basins, we club them together and
represent them as a single basin. Variables considered are Latent Heat
Flux (LH), Sensible Heat flux (SH), Precipitation (P), Relative Humidity
(R), Wind Speed (WS) (resultant of u-wind (U), v-wind (V)), Incoming
Shortwave Radiation (SR), Soil Moisture up to root zone (SM) and
Temperature (T). Variables R, U, and V are taken at 850 hpa pressure
level, and the remaining variables are near the surface. Variables were
spatially averaged over each basin (Fig. 1a) and thus generated 48-time
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series (8 variables on 6 basins) were converted to anomalies as
deviations from their climatological mean values of 40 years. All vari-
ables were tested for the presence of non-stationarity using the Aug-
mented Dickey-Fuller (ADF) test and were found to be stationary
(statistically significant, p <0.01). We use Oceanic Nino Index (ONI)
values fromNationalOceanic andAtmosphericAdministration (NOAA,
https://origin.cpc.ncep.noaa.gov), USA, to classify El Niño and La Niña
years asOctober toDecemberONI values of any year being above 1 and
below −1, respectively (Supplementary Table ST2).

Granger causality
Granger causality (GC)34 is a causal delineation technique based on two
conditions: first, that cause must precede the action, and second,
cause must hold predictive information for the effect. A time series Xt

can be argued to ‘granger cause’ a time series Y t if past of Xt can add
unique predictive information for Y t when the predictive information
from the past of Y t has already been accounted for. First, we regress
the time series Y t with its past up to some lag τ followed by addition of
past values of X as regressors.

Y t = c +
Xτ

l = 1

alY t�l + εt ð1Þ

Y t = c +
Xτ

l = 1

alY t�l +
Xτ

l = 1

blXt�l +ηt ð2Þ

If the second regression model is a better fit than the first one, it
means that the past values of Xt hold unique predictive information
for Y t and Xt can be argued to ‘granger cause’ Y t . Above regression
models are also called vector auto-regression (VAR) models. In this
study, we perform pairwise GC analysis using VAR models of max-
imum lag 10 to test causal connections between land variables of
different river basins. The best fit models were classified based on
Akaike Information Criterion (AIC). We present a network using a
binary adjacency matrix which contains value 1 at any ith row and jth
column if ith variable granger found to granger cause jth variable at
99% statistical significance. Themajor assumptions of GC are that the
data is stationary and can adequately be described using a
linear model.

Transfer entropy
Information exchange takes place between two variables (Xt and Y t

with time series x1,x2, . . . ,xt and y1, y2, . . . ,yt), when a change in one
variable leads to a change in another. This information exchange gets
reflected as an overlap of Shannon’s Entropy62 of observed time series
of those variables. Binning any time series Xt into m discrete parts,
Shannon’s Entropy can be computed as follows

H Xt

� �
= �

Xm

i = 1

pi xt

� �
log pi xt

� �� �� �
ð3Þ

Herepi xt

� �
is probability of xt being in bin i. Transfer Entropy (TE)

is an information-theoretic tool to delineate asymmetric connections
in a non-linear dynamical system63,64. It is widely used in studying eco-
hydrology and climate systems and is argued to be a well-suited
measure of causality for such system35,65–69. It measures information
from source variable to target variable while conditioning on the past
of target variable, hence, it finds the dependence between two vari-
ables by excluding the effects from the history of the target variable. It
can capture the non-linear and lagged causal connections between
variables and can be considered a non-linear extension of Granger
Causality37. Since TE measures overlap of Shannon’s Entropy, it can be

estimated using H Xt

� �
as follows

T Xt>Y t ,τ
� �

=H Xt�τΔt ,Y t�τΔt

� �
+H Yt ,Y t�τΔt

� �� H Yt�τΔt

� �� H Xt�τΔt ,Y t ,Y t�τΔt

� �

ð4Þ

Where, T Xt>Y t ,τ
� �

is Transfer Entropy from Xt to Y t at lag τ,
H Xt�τΔt ,Y t ,Y t�τΔt

� �
and H Xt ,Y t

� �
are the joint entropies between

variables computed using joint probabilities instead of marginals. TE
can be normalized by entropy of a distribution with m number of bins
where all bins are equally likely ðHmax = log mð ÞÞ. This form of TE esti-
mation has previously been used in literature35,65,69,70. In this study,
number of bins taken is 11 which has been argued to be appropriate for
measuringTEgiven sufficient data length35, time stepΔt is 1 (dailydata)
and lag τ varies from 1 to 10. After computingTEwe test it for statistical
significance at 99% confidence using method of shuffled
surrogates35,71–73 andpresent a network using a binary adjacencymatrix
which contains value 1 at any ith row and jth column if ith variable has
statistically significant TE toward jth variable at 99% statistical
significance.

Conditioning set in TE can include other variables in the system in
addition to the past of target variable alone, however, with the increase
in the number of variables, estimating multivariate TE becomes com-
putationally expensive; hence, we stick to bivariate analysis. Assump-
tions while computing TE are that no other variables are influencing
the target variables except source, the estimated probability density
function (PDF) is close to the PDF of population, and the data is
stationary.

PCMCI
PCMCI algorithmbelongs to a class of causal discoverymethods called
‘Causal Network Learning Algorithms’ which first assume a fully con-
nected causal graph and then iterate through each link testing for its
removal by conditioning37,45,74. While TE faces trouble with high
dimensional data, PCMCI handles the problemof highdimensionality75

by dividing the process into two stages:
The first stage uses a modified PC algorithm (named after its

inventors Peter and Clark)76 to estimate the skeleton of the causal

network. Given �Xt =X
1
t ,X

2
t , . . . ,X

N
t , the set of all variables, to test for

causality between all variable pairs fromup to amaximum lag τmax, one
needs to test for causality using maximum conditioning set of
dimensions Nτmax. This stage reduces the dimensionality of con-
ditioning set by filtering out variables which have no significant con-

tribution in the conditioning set. For each variable �X
j
t 2 �Xt , after

initializing preliminary parents �PðXj
tÞ= ð�Xt�1,�Xt�2, . . . ,�Xt�τmax

Þ the fol-

lowing hypothesis is tested for all variables �X
i
t�τ from �PðXj

tÞ:

PC : Xi
t�τ ?? Xj

t jS ð5Þ

for any set S with cardinality p. Where S contains a subset of
�PðXj

tÞ n fXi
t�τg. We keep on increasing p and test the null hypothesis

which if we fail to reject, the link is removed from P. Hence, the first
iteration (p =0) removes uncorrelated variables from �PðXj

tÞ. In the
second iteration ðp= 1Þ, variables which become independent after
conditioning on the highest correlated variable from first iteration are
removed from �PðXj

tÞ: In the third iteration ðp=2Þ, those variables are
removed from �PðXj

tÞ, which become independent after conditioning
on two strongest drivers from the previous iteration and so on. A
lenient alpha level of α =0:2 is taken for hypothesis testing in this stage
so that true links are not lost. Thus, for each variable Xj , a reduced
conditioning set is generated called ‘Parents, �PðXj

tÞ’, which contains all
significant conditioning variables along with some false positives
depending on our choice of statistical significance.

The second stage, called the momentary conditional indepen-
dence (MCI) stage, finds causal connections for every pair Xi

t�τ ! Xj
t
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by conditioning onparents of Xj
t andXi

t�τ (generated in thefirst stage),
for various time delays τ = f1,2, . . . ,τmaxg and tests the following null
hypothesis at α =0:05

MCI : Xi
t�τ ?? Xj

t j�PðXj
tÞ n fXi

t�τg,�PðXi
t�τÞ8Xi

t�τ 2 X�
t ð6Þ

Where X�
t = ðXt�1,Xt�1, . . . ,Xt�τmax

Þ, and �PðXi
t�τ Þ and �PðXj

tÞ are the
conditioning sets generated in the PC stage.

Both stages (PC and MCI stages) use conditional independence
tests to measure the strength as well as statistical significance of
connections. PCMCI can use a linear and non-linear test statistic based
on partial correlation (ParCorr) and Conditional Mutual information
using the k-nearest neighbor approach (CMI-knn)77, respectively. In
this study, we first find causal connections between land variables of
different basins using TE, GC, and PCMCI on 40 years of continuous
daily data (14,600 values). Here, we use ParCorr as our test statistic in
PCMCI when testing for inter-basin land-land connections (Fig. 1c). We
do not choose CMI-knn here as it involves estimation of multivariate
probability density functions (PDFs) which becomes computationally
expensive at high data lengths (18 variables of length 14,600 in this
case). Next, we find land-atmosphere causal connections between
different basins using PCMCI on land variables and atmospheric vari-
ables for each monsoon season separately (Fig. 2, ensemble of
40 samples containing 48 variables and 122 time-steps). In this step, we
use CMI-knn as our choice of test statistic as we want to consider non-
linear interactions as well. In all causal analysis performed in this study
using various techniques maximum lag, τmax, is taken as 10 days. Each
link goes through a two-stage robustness check. First, it is tested for
statistical significance within PCMCI at a 95% confidence level. Next,
once statistically significant links are found for each year, a link is
considered robust and reliable if foundmore than50%of the time. This
two-stage robustness check strengthens the reliability of our judgment
on a link between two river basins.

PCMCI is subject to a few assumptions37,74 namely, stationarity of
variables (time series are stationary), causal sufficiency (observed
variables in the dataset are sufficient to capture the causal relation-
ships among them), causal Markov condition (causal relationships
amongvariables formadirected acyclic graph (DAG) and that there are
no direct causal loops), presence of no contemporaneous causal links
(no zero lag links), and faithfulness (no additional non-causal depen-
dencies). In all causal delineation techniques, the fulfillment of causal
sufficiency is left to the researcher’s judgment. Earth science datasets
become even more difficult to handle because systems are complex,
with multiple interacting components and no boundaries. Primary
processes governing land-atmosphere interactions are evapo-
transpiration (which supplies the moisture), advection (winds advect
moisture to nearby/far-away places), and condensation (which then
precipitates that moisture onto distant lands). Our study includes all
the necessary variables reported in the literature that drive these
processes as also documented in the literature78. Hence, we believe
that taking three land variables and five atmospheric variables from
each basin nears causal sufficiency for land-atmosphere interactions.
Some external confounders like ENSO are not included because they
bring about low frequency (interannual) variability in land-atmosphere
processes, and since we performed the analysis for every year sepa-
rately, including low-frequency external confounders is not needed.
Hence, our dataset satisfies the primary assumptions of PCMCI to the
best of our knowledge. Still, there is no denying that the data might
violate other assumptions, for example, the assumption of indepen-
dence of noise terms, which can also lead to spurious links. The results
from causal networks reported in this study, hence, are subject to the
validity of remaining above-mentioned assumptions as violation of an
assumption can also lead to spurious links.

WRF-CLM model setup
To simulate the surplus irrigation provided by river interlinking over
the Indian region, we use a regional climate model - Weather Research
and Forecasting model version-3 coupled with Community Land
Model version 4 (WRF-CLM4)41. The choice of irrigation representation
and amount of water applied are important considerations that affect
land-atmosphere interactions48,79. Here we use a model set-up that
represents realistic irrigation practices andwater amounts to study the
influence of inter-basin water transfer. We use a modified irrigation
module in CLM4 that better represents the Indian practices of irriga-
tion by incorporating groundwithdrawal andflood irrigationpracticed
over paddy fields48,80. The domain used is from 59.5°E to 107°E and
3.7°S to 41.5°N (S3, f) with the model configured at 25 km grid spacing
and 30 pressure levels in the vertical. We use initial and lateral
boundary conditions from European Centre for Medium-Range
Weather Forecast Interim Re-Analysis (ERA-Interim)81 to perform two
sets of experiments for 22 years (1991–2012) of the Indian summer
monsoon (ISM; 15 May to 31 October). India receives almost 80% of its
precipitation during monsoon and hence, any variation in ISM pre-
cipitation will translate into significant changes in water demand and
supply from different basins which will directly impact inter-basin
water transfer projects. Hence, we decided to study the impacts only
during ISM. We performmonsoon simulation for each year separately
as it is computationally efficient and has shown skill in simulating ISM
with irrigation in previous studies43,48,57,82. Control experiment (CTL)
prescribes irrigation water application over India using estimates from
the agricultural census and a gridded reconstructed data48,49. The
Irrigation experiment (IRR) adds additional water as irrigation by
maximizing the irrigated area fractions on the grids which are going to
benefit from interlinking. We incorporate surplus irrigation in the IRR
run by converting crop plant functional types (PFTs) to irrigated crop
PFTs in CLM4. We use MODIS vegetation classes in our simulations.
Most of the cropland area in India corresponds to MODIS vegetation
class 12, and 85%of the area of these grids are assigned to crop PFTs in
CLM4. We increase the irrigated area in unirrigated PFTs to 80% of the
grid area to generate a total irrigated area roughly equal to 30 million
hectares, as proposed by the government of India. Figure 1b shows
(highlighted) the approximate grids to receive the additional irrigation
from the river interlinking project23–25 with the increase in the per-
centage irrigated area from CTL to IRR run for each grid. Each grid cell
projects an area of around 50,000 hectares and out of total 30million
hectares, around 20 million hectares belongs to regions fed by
Himalayan rivers while around 10million hectares belongs regions fed
by peninsular rivers. The relative proportion of area irrigated from
Himalayan and peninsular rivers is as per the publicly available inter-
linking plan and detailed project reports by the government of India26.
The primary use of inter-basin water transfer is to increase the cul-
turable command area across the country by around 30 million hec-
tares, and here we consider the irrigation scenario in which the targets
proposed in the DPRs are achieved. The amount of irrigation water
added on these grids is estimated from the water availability and
proposed culturable command area for the Kharif season from various
projects24 and is approximately equal to 600mm (around 4mm
per day) for normal crops and 1450mm (12mm per day) for paddy.
The model setup that we use has been evaluated for irrigation para-
meterization uncertainty in prior work48. In the present study, we uti-
lize the same model set-up with realistic irrigation practices to apply
extra irrigation to satisfy the targets of the planned inter-basin water
transfer schemes.

A spin up time of 16 days (15 May to 31 May) is used in model runs
tomake sure the outputs are independent of initial conditions. To test
the sensitivity of our simulations to the initializations, we performed
simulationswith varying spin-ups of 15, 30, 45, and 60days for the year
2000, and the results are presented in Fig. S10. We find that the
simulated precipitation for the monsoon period (June, July, August,
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and September) is nearly the same in all four spin-up periods with
minimal differences. Hence, a 15-day spin-up period, which has also
been used in previous studies48, is sufficient to generate stable esti-
mates of precipitation during ISM. WRF simulations of the Indian
monsoon are sensitive to the choice of convective parameterization
scheme used. Here, we use the Betts-Janjic-Miller (BMJ) scheme which
has been evaluated against other schemes and known to correlate well
with spatial distribution of IndianMonsoon at daily scale. This scheme
has also been reported to show reasonable skill in simulating the
Indian Summer Monsoon in other studies83,84. To represent the sub-
gridmicrophysics, planetary boundary layer, longwave, and shortwave
radiation, we use Lin Scheme, Yonsei University Scheme (YSU), Rapid
Radiative Transfer Model (RRTM), and Dudhia scheme, respectively.
The parameterization is kept same for all simulations and the only
difference between the two experiments (IRR and CTL) is the presence
of additional irrigation in the IRR run to analyze changes in the simu-
lated hydrometeorological variables during ISM.

Data availability
ERA 5 reanalysis can be downloaded from https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land. MERRA 2 rea-
nalysis can be downloaded from https://gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/. Oceanic Nino Index (ONI) values are taken
from https://origin.cpc.ncep.noaa.gov. The post-processed outputs
fromWRF-CLM4 CTL and IRR simulations generated in this study have
been deposited in an open repository database under DOI 10.5281/
zenodo.824679985. The raw outputs from WRF-CLM4 simulations are
available upon request. Source data for figures are provided with this
manuscript. Source data are provided with this paper.

Code availability
To perform PCMCI, a publicly available python package ‘tigramite’
(https://github.com/jakobrunge/tigramite) was used. Code from
regional climate model WRF-CLM4 modified to incorporate India
specific irrigation is available at GitHub https://github.com/IMMM-
SFA/WRF_CLM4_Irrigation80. The co-authors of the presentmanuscript
have prepared this India specificmodule. Sankey diagrams (Figs. 2, S3,
and S4) have been plotted using a freely available online tool (https://
flourish.studio).
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