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Defining the condensate landscape of fusion
oncoproteins
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Yongsheng Li 4, Ilaria Iacobucci 5, Qingsong Gao5, Michael N. Edmonson 6,
Stephen V. Rice6, Xin Zhou6, John Bollinger1, Diana M. Mitrea1,18,
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Jinghui Zhang 6,21, Nidhi Sahni 12,13,14,21 & Richard W. Kriwacki 1,15,21

Fusion oncoproteins (FOs) arise from chromosomal translocations in ~17% of
cancers and are often oncogenic drivers. Although some FOs can promote
oncogenesis by undergoing liquid-liquid phase separation (LLPS) to form
aberrant biomolecular condensates, the generality of this phenomenon is
unknown. We explored this question by testing 166 FOs in HeLa cells and
found that 58% formed condensates. The condensate-forming FOs displayed
physicochemical features distinct from those of condensate-negative FOs and
segregated into distinct feature-based groups that aligned with their sub-
cellular localization and biological function. Using Machine Learning, we
developed a predictor of FO condensation behavior, and discovered that 67%
of ~3000 additional FOs likely form condensates, with 35% of those predicted
to function by altering gene expression. 47% of the predicted condensate-
negative FOs were associated with cell signaling functions, suggesting a
functional dichotomy between condensate-positive and -negative FOs. Our
Datasets and reagents are rich resources to interrogate FO condensation in the
future.

Fusiononcoproteins (FOs) arise fromchromosomal translocations and
are observed in ~17% of all cancers1. FOs commonly drive cell trans-
formation and oncogenesis, and are prevalent in pediatric cancers,
especially those with poor clinical prognosis2. The advent of cancer
genome and transcriptome sequence databases has led to the identi-
fication of thousands of FOs across diverse cancer types1,3,4, increasing
the need to understand the molecular mechanisms underlying their
roles in cancer. Most FOs fall into one of two general classes, deter-
mined by the parent genes involved in translocation events. The first
class incorporates enzymatic kinase domains that become mis-
regulated due to elimination of allosteric regulatory regions and/or
sequence motifs that govern degradation in the fusion proteins5. The

second encodes aberrant transcription factors that commonly join an
intrinsically disordered region (IDR) of one parent to a folded chro-
matin- or DNA-binding domain of the other; FOs in this class recruit
components of the transcriptional and/or chromatin remodeling
machinery and drive aberrant gene expression6–13. While themolecular
mechanisms underlying oncogenesis by several FOs are understood in
some detail14,15, this knowledge is lacking for hundreds of other FOs
with known cancer associations.

In the first class, two FOs, EML4-ALK andCCDC6-RET, incorporate
enzymatic domains from receptor tyrosine kinases and promote
oncogenic Ras signaling by undergoing liquid–liquid phase separation
(LLPS) to form cytoplasmic condensates that exhibit elevated kinase

Received: 10 November 2022

Accepted: 13 September 2023

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: richard.kriwacki@stjude.org

Nature Communications |         (2023) 14:6008 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6685-2586
http://orcid.org/0000-0002-6685-2586
http://orcid.org/0000-0002-6685-2586
http://orcid.org/0000-0002-6685-2586
http://orcid.org/0000-0002-6685-2586
http://orcid.org/0000-0002-0601-6383
http://orcid.org/0000-0002-0601-6383
http://orcid.org/0000-0002-0601-6383
http://orcid.org/0000-0002-0601-6383
http://orcid.org/0000-0002-0601-6383
http://orcid.org/0000-0003-1721-1616
http://orcid.org/0000-0003-1721-1616
http://orcid.org/0000-0003-1721-1616
http://orcid.org/0000-0003-1721-1616
http://orcid.org/0000-0003-1721-1616
http://orcid.org/0000-0001-6358-8380
http://orcid.org/0000-0001-6358-8380
http://orcid.org/0000-0001-6358-8380
http://orcid.org/0000-0001-6358-8380
http://orcid.org/0000-0001-6358-8380
http://orcid.org/0000-0002-0123-8905
http://orcid.org/0000-0002-0123-8905
http://orcid.org/0000-0002-0123-8905
http://orcid.org/0000-0002-0123-8905
http://orcid.org/0000-0002-0123-8905
http://orcid.org/0000-0001-6047-9592
http://orcid.org/0000-0001-6047-9592
http://orcid.org/0000-0001-6047-9592
http://orcid.org/0000-0001-6047-9592
http://orcid.org/0000-0001-6047-9592
http://orcid.org/0000-0003-2008-1365
http://orcid.org/0000-0003-2008-1365
http://orcid.org/0000-0003-2008-1365
http://orcid.org/0000-0003-2008-1365
http://orcid.org/0000-0003-2008-1365
http://orcid.org/0000-0003-0339-700X
http://orcid.org/0000-0003-0339-700X
http://orcid.org/0000-0003-0339-700X
http://orcid.org/0000-0003-0339-700X
http://orcid.org/0000-0003-0339-700X
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0003-3497-5888
http://orcid.org/0000-0003-3497-5888
http://orcid.org/0000-0003-3497-5888
http://orcid.org/0000-0003-3497-5888
http://orcid.org/0000-0003-3497-5888
http://orcid.org/0000-0003-0047-8103
http://orcid.org/0000-0003-0047-8103
http://orcid.org/0000-0003-0047-8103
http://orcid.org/0000-0003-0047-8103
http://orcid.org/0000-0003-0047-8103
http://orcid.org/0000-0003-0556-6196
http://orcid.org/0000-0003-0556-6196
http://orcid.org/0000-0003-0556-6196
http://orcid.org/0000-0003-0556-6196
http://orcid.org/0000-0003-0556-6196
http://orcid.org/0000-0002-1871-1850
http://orcid.org/0000-0002-1871-1850
http://orcid.org/0000-0002-1871-1850
http://orcid.org/0000-0002-1871-1850
http://orcid.org/0000-0002-1871-1850
http://orcid.org/0000-0003-3350-9682
http://orcid.org/0000-0003-3350-9682
http://orcid.org/0000-0003-3350-9682
http://orcid.org/0000-0003-3350-9682
http://orcid.org/0000-0003-3350-9682
http://orcid.org/0000-0002-9155-5882
http://orcid.org/0000-0002-9155-5882
http://orcid.org/0000-0002-9155-5882
http://orcid.org/0000-0002-9155-5882
http://orcid.org/0000-0002-9155-5882
http://orcid.org/0000-0002-9798-6018
http://orcid.org/0000-0002-9798-6018
http://orcid.org/0000-0002-9798-6018
http://orcid.org/0000-0002-9798-6018
http://orcid.org/0000-0002-9798-6018
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41655-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41655-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41655-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41655-2&domain=pdf
mailto:richard.kriwacki@stjude.org


activity16–18. These FOs display folded domains that mediate multi-
valent interactions, promoting formation of round condensates, or
puncta, with heterogeneous material properties in cells. In the second
class, several FOs that function as aberrant transcription factors, such
as EWS-FLI17, FUS-CHOP10,11, and several NUP98 FOs6,8,12,19, undergo
LLPS to form aberrant transcriptional condensates that mis-regulate
gene expression. These condensates appear as round puncta in cells
and the FOs that form them display IDRs that promote multivalent
interactions. These observations implicate LLPS in the oncogenic
mechanismsofbothmajor classes of FOs. However, becauseonly a few
FOs have been studied through the lens of LLPS, it is not currently
known whether condensate formation is a general property of FOs.

Herewe address this knowledge gap by asking whether formation
of aberrant cellular condensates is a common property of the thou-
sands of FOs associated with diverse human cancers. To investigate
this question, we assembled a database of the amino acid sequences of
several thousandFOs and tested 166of them forcondensate formation
in cells.We note that while the observation of FO-induced condensates
is suggestive of formation through phase separation, other tests
beyond the scope of the current investigations would be needed to
establish this assembly mechanism. Therefore, our use of the term
“condensates” is agnostic as to formation mechanism. Using fluores-
cence imaging, we found that 58% of 166 fluorescently labeled FOs
form round condensates (puncta) in cells. To understand the factors
that drive condensate formation, we computed amino acid sequence-
derived physicochemical features for all tested FOs and identified
distinct patterns of features associated with condensate-positive and
negative FOs. Remarkably, for many FOs, feature patterns also corre-
lated with their sub-cellular localization and function, including reg-
ulation of gene expression for nuclear FOs and regulation of cell
signaling for cytoplasmic FOs, respectively. Surprisingly, most of the
cytoplasmic FOs with cell signaling functional terms did not form
condensates. Using Machine Learning, we leveraged physicochemical
features to predict condensate formation by 2999 additional, untested
FOs associated with diverse cancers. Amongst these, 1999 (67%) were
predicted to form condensates in cells, with 35% of those further
predicted to localize within the nucleus and regulate gene expression.
1000 (33%) FOs were predicted to not form condensates, with 47% of
those predicted to localize within the cytoplasm and regulate cell
signaling. The databases, imaging datasets, computational tools, and
cellular expression reagents, we have generated for FOs will serve as a
resource for testing the roles and molecular mechanisms of con-
densate formation by FOs in cancer biology in the future.

Results
FOs are significantly enriched in physicochemical features
associated with phase separation
We assembled a database of 4540 FO protein sequences derived from
a combination of patient genomic and transcriptomic data, termed the
“FOdb”, from sources at St. Jude Children’s Research Hospital (SJCRH)
and from The Cancer Genome Atlas (TCGA) (Fig. 1a, Supplementary
Dataset 1; see “Methods”). For a subset of 3174 FOs, we could obtain
verified data on cancer type and number of patient occurrences
(termed “FOdb-II”; Supplementary Dataset 2). Those FOs were derived
from diverse cancers, ranging from B-cell acute lymphoblastic leuke-
mia to solid tumors such as breast invasive carcinoma, osteosarcoma,
prostate adenocarcinoma, lung carcinomas, and others (Supplemen-
tary Dataset 3, Fig. 1b). Many FOs were observed in multiple patients,
although the majority of FOs were seen in a single patient (Fig. 1c).

To assess the potential for condensate formation by FOs in FOdb-
II, we analyzed their enrichment (or depletion) in a few physico-
chemical features associated with phase separation20,21. In comparison
to the human proteome, the amino acid sequences in the FOdb-II were
significantly enriched (two-sided t-test, p ≤ 10−4) in predicted intrinsic
protein disorder (quantified as the fraction of residues in predicted

disordered regions); potential for pi-pi and pi-cation interactions
(quantified as the PScore value22), and for prion-like domains (quanti-
fied as the PLAAC NLLR prion propensity score23); and depleted in
hydrophobic residues (quantified as the fraction of hydrophobic
residues using CIDER24; Fig. 1d). Further, we found that the parent
proteins of FOs in FOdbwere significantlymore likely to undergo LLPS
than proteins across the human proteome (odds ratio, 2.06 and p-
value, 1.8e−23; Fig. 1e). Together, these observations showed that FOs
are enriched in features associated with phase separation and led us to
hypothesize that many form condensates in cells.

Many mEGFP-tagged FOs form condensates in HeLa cells
To test our hypothesis, we expressed monomeric, enhanced green
fluorescent protein (mEGFP)-tagged forms of 166 FOs (termed the
Expressed FOs, SupplementaryDataset 4; we note that Supplementary
Dataset 3 provides a glossary describing the various groups of FOs
presented in this work) in live HeLa cells and used confocal fluores-
cencemicroscopy to evaluate them for condensate formation (Fig. 2a).
The 166 FOs spanned both adult and pediatric cancers and included 77
of the 110 FOs with a patient count of ≥3 and 36 FOs previously
demonstrated to drive oncogenic phenotypes in cancer-relevant cell
types (Supplementary Dataset 4).

Live HeLa cells were transfected with mEGFP-tagged FOs under
identical conditions (e.g., protocol, DNA concentration, number of
cells) and imaged 24 h post transfection to test for condensate for-
mation. Due to the nature of transient transfections, the mEGFP-
tagged FOs were expressed at variable levels, both for a given FO
within a cell population and between different FOs, and we recorded
fluorescence microscopy images of ≥50 cells for each FO to broadly
sample their expression profiles. We observed that 96 (58%) of the
Expressed FOs formed round condensates in HeLa cells, and those
were termed puncta(+) FOs (see “Methods” for criteria for scoring an
FO as puncta(+); Fig. 2b, left panel; Supplementary Dataset 4). We
excluded from this puncta(+) group eight FOs that localized within
nucleoli (“Methods”; Supplementary Fig. 1A, SupplementaryDataset 4;
termed the “Nucleolar” category) and nine FOs that formed organized
structures in the cytoplasm that were not round (termed the “Other”
category, 9 FOs; see “Methods”; Supplementary Fig. 1B, Supplemen-
taryDataset 4). Puncta(+) FOs formedpuncta that localized exclusively
within nuclei (50%), exclusively within the cytoplasm (33%), or within
both compartments (17%) (Fig. 2b, middle panel; Supplementary
Dataset 4). The abundance and sizes of puncta formed by FOs varied
widely, in the nucleus (Fig. 2c), cytoplasm (Fig. 2d), and in both the
nucleus and cytoplasm (Fig. 2e). Their morphologies were similar to
those of several proteins shown previously to form condensates
through phase separation and used here as positive controls7,8,25–30

(Supplementary Fig. 1C). We reiterate, however, that our observation
of condensate formation by a large proportion of the Expressed FOs is
insufficient to establish whether formation occurs through phase
separation. 53 FOs did not form puncta (termed puncta(-) FOs) and
exhibited varied sub-cellular localization (Fig. 2b, right panel; Supple-
mentary Dataset 4) and a diffuse fluorescence appearance consistent
with an mEGFP empty vector negative control (Fig. 2f, g).

Puncta(+) FOs cluster into distinct groups based on physico-
chemical features
We examined the 96 puncta(+) and 53 puncta(-) FOs to identify pat-
terns of LLPS-associated sequence-derived physicochemical features.
For each sequence, we calculated the values of 39 LLPS-relevant phy-
sicochemical features, a few drawn from the analyses discussed above
(Fig. 1d), which included those known to influence multivalent inter-
actions (Fig. 3a; Supplementary Dataset 5), and reported those as
Z-scores with respect to those of human protein sequences in the
Protein Data Bank (PDB)31. Human protein sequences in the PDB were
used as a reference set due to their folded nature and generally
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reduced propensity for phase separation and condensate formation32.
To reduce redundancy between features, we excluded 14 features that
had amutual information value of > 0.5 with at least one other feature
(Fig. 3b; Supplementary Dataset 5). From the remaining 25 features, we
identified 12 that were discriminatory, i.e., those with Z-score values
that varied the most between the puncta(+) and puncta(-) FO datasets
(two-sided t-test, p ≤0.05; Fig. 3c and SupplementaryDataset 5). Those
12 features captured charged residue content and patterning (Fig. 3c),
disorder content, prion-like domain content, and enrichment in amino
acids that promote pi-pi and pi-cation interactions (PScore)22. They
also probe diverse physicochemical properties of groups of amino
acids within sequences, including tracts of charged residues as probed
by the Acidic/Basic Tract (ABT) algorithm33, which suggests that dif-
ferent types of molecular forces driving multivalent interactions may
underlie condensate formation by the puncta(+) FOs.

We next performed two-dimensional (2D) hierarchical clustering
of puncta(+) FOs based on the 12 discriminatory features, which
revealed four groups displaying different patterns of feature enrich-
ments (Fig. 4a). Groupmembershipwas assessed for significance using
the Pvclust method34, with most members placed within groups with
>90% confidence (Supplementary Fig. 2A). Importantly, the FO group
clustering was not simply a result of high sequence identities amongst

FOs within each group: average sequence identity (SIav) was <17% for
Groups 1,3, and 4, and 23% for Group 2, due to the presenceofmultiple
KMT2A and NUTM1 FOs (Fig. 4b).

Group 1, comprised of 19 FOs (Fig. 4c), showed enrichment (Z-
score values > 2.0) in two prion domain-associated features [Prion
propensity 1 and Fraction polar amino acids (AAs)], suggesting those
types of interactions contribute to condensate formation in this group.
Also enriched was a feature associated with pi-pi and pi-cation inter-
actions (PScore). Two additional features, the number of amino acids
in disordered regions (# Disorder AAs) and charged (chrg.) residue/
proline patterning (Ω, chrg. Propattern), were alsoweakly enriched (Z-
score values > 1.0). These feature profiles derived from enrichments
(>25% above background) of five amino acids: glycine, glutamine,
serine, proline, and methionine (Fig. 4d), some of which are known to
be involved in multivalent interactions underlying phase separation22.

Group 2, comprised of 8 FOs (Fig. 4c), showed enrichment of
disorder and charge-related features [# Disorder AAs, Acidic/Basic
Tract (ABT) valence, # Positive (Pos.) AAs] andweak enrichment of two
additional features, PScore and Prion propensity 1 (Fig. 4c, Group 2).
These feature enrichments were correlated with enrichment of three
amino acids: lysine, serine, and proline (Fig. 4d). The findings above
suggest that different types of molecular forces driving multivalent
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interactions promote cellular condensate formation by FOs in Groups
1 and 2.

FOs in Group 3 (26 FOs, Fig. 4c) exhibited feature enrich-
ments similar to but weaker than those observed in Group 1 (e.g.,
smaller average values of the absolute average Z-score value,
∣Zav∣av) and enrichment of histidine, serine, and proline amino

acids (Fig. 4d). While many of the feature enrichments observed
in Groups 1 and 3 FOs echo properties associated with phase
separation by proteins (e.g., prion domain-like features and
enrichment in pi-pi and pi-cation interactions)22,35, the lack of
enrichment of aromatic amino acids (and depletion in most cases,
Fig. 4d) in these two FO groups is notable.
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Group 4, the largest with 43 FOs, displayed heterogeneous,
weak feature enrichments (Z-scores < 1.0), with only ABT density,
ABT valence, and ABT balance enriched significantly with respect
to the human PDB reference dataset (p-value ≤ 0.05; Fig. 4c).
Amino acid enrichments for this group were correspondingly
weak (Fig. 4d, Group 4). These observations on Group 4 indicate
that our current feature set may not capture the physicochemical
features underlying multivalent interactions associated with
condensation by these FOs.

Interestingly, the sub-cellular localization of condensates
formed by puncta(+) FOs was associated with the four physico-
chemical feature groups identified. The puncta formed by 17/19
FOs in Group 1 (89%), 7/8 FOs in Group 2 (88%), and 23/26 FOs in
Group 3 (88%) localized within the nucleus, whereas 32/43 FOs in
Group 4 (74%) localized within the cytoplasm (Fig. 4a, first col-
umn). These results suggest that the sub-cellular localization of
puncta formed by FOs, a key aspect of their biological func-
tion(s), is encoded in the physicochemical properties that
delineate the four feature groups for puncta(+) FOs.

Puncta(-) FOs also cluster into distinct groups based on physi-
cochemical features
We performed a similar 2D clustering analysis of feature/amino acid
enrichments for the 53 puncta(-) FOs, which revealed three groups
(Supplementary Fig. 2B). Most members were placed within those
groups with high statistical significance (>90% confidence) (Supple-
mentary Fig. 2C). Group clustering for puncta(-) FOs was also not a
result of high sequence identities, which averaged <15% for all groups
(Supplementary Fig. 2D).

Group 1′ (8 FOs) was enriched in three charge-related fea-
tures [ABT density; δ, Charge (chrg.) pattern; and Fraction
negative (neg.) AAs; Supplementary Fig. 2E] with corresponding
enrichment of the two negatively charged amino acids (Supple-
mentary Fig. 2F). In contrast, FOs in Group 3′ (10 FOs) displayed
enrichment in two LLPS-associated features (PScore and Prion
propensity 1) and weak enrichment of another feature (Fraction
polar AAs, Supplementary Fig. 2E), with corresponding enrich-
ment of glycine and proline amino acids (Supplementary Fig. 2F).
Finally, Group 2′ (35 FOs) displayed diverse, weak enrichments
that, on average, resulted in average Z-scores <1 (Supplementary
Fig. 2E) and amino acid enrichments <25% (Supplementary
Fig. 2F), indicating that FOs with physicochemical features similar
to the average features of the human PDB reference set have a
low propensity to form condensates.

Overall, these results show that the features and amino acid
enrichments associated with FOs that do not form condensates
are diverse, with two groups (Groups 1′ and 3′) exhibiting distinct
enrichments and the third, the largest (Group 2′), being indistinct.
Interestingly, the largest groups for puncta(+) and puncta(-) FOs,
Groups 4 and 2′, respectively, exhibit similar average feature
Z-score values and amino acid enrichments, suggesting that
combinations of features and amino acid enrichments not
revealed by our current analyses, and/or protein features we have
not probed, determine the condensate-forming behavior of
these FOs.

Relationships between FO physicochemical features and con-
densate features
We next probed the properties of the condensates formed by 22
puncta(+) FOs using fluorescence recovery after photobleaching
(FRAP). We randomly selected FOs from each of the four physico-
chemical feature groups (~20% of the members of each group) (Sup-
plementary Fig. 3). The rate of recovery of mEGFP fluorescence after
photobleaching reflects, at least in part, the rate of diffusion of the
mEGFP-tagged FOs within, and into and out of, their respective con-
densates. However, quantitative analysis of FRAP data to obtain dif-
fusion rates can be problematic36, and we thus report average
normalized FRAP curves (Supplementary Fig. 3A) and values of the
average normalizedfluorescence recoverybetween40 and 50 seconds
after bleaching (% recovery; Supplementary Fig. 3B). The results show
that fluorescence recovery for FOs varied within each group, with
notable differences between groups. None of the 10 FOs that formed
cytoplasmic condensates recovered >50% after photobleaching,
whereas 6/11 FOs that formed nuclear condensates exhibited recovery
>50%; consequently, the average recoveries of cytoplasmic and
nuclear FO condensates were different (Supplementary Fig. 3C). These
findings recapitulate previous observations on the NUP98-HOXA9 FO,
which forms hundreds of small nuclear condensates and exhibited
FRAP;8 and on EML4-ALK, which forms cytoplasmic condensates with
variable and generally incomplete recovery16. Our results, together
with the noted prior findings, suggest that themobility of FOs into, out
of, and within condensates may on average be higher for nuclear than
cytoplasmic condensates, and can differ depending upon protein
sequence and cellular context.

While performing time-lapse live cell fluorescence imaging for
FRAP experiments, we noticed that puncta formed by 8 FOs, members
ofGroups 1, 3 and4, underwent fusion events (i.e., smaller condensates
coalesce to form larger condensates) on variable timescales (Supple-
mentary Fig. 3D). These results indicate that the condensates formed
by this set of FOs display surface tension, suggesting that they have
liquid-like properties.

Predicting cellular condensation by FOs using physicochemical
features and Machine Learning
With the experimentally validated puncta(+) and puncta(-) list of 149
FOs (excluding Nucleolar and Other FOs; Fig. 2b), we hypothesized
that differences between the patterns of physicochemical features
couldbe used to train aMachine Learningmodel to predict the cellular
condensationbehavior of the remaining FOs inFOdb-II. To this end,we
applied supervised Machine Learning (ML) using the H2O AutoML
package37 to develop a model to predict condensate formation pro-
pensity of FOs. To broadly represent physicochemical feature space,
we used the 25 features with lowmutual information (MI) (Fig. 3b) for
all 96 puncta(+) and 53puncta(-) FOs (termed the Training FOs; Fig. 5a)
as training data. A Gradient Boosting Machines (GBM) model with 50
trees performed best amongst the 220 models tested (termed the FO-
Puncta ML model). Using 25-fold cross validation with the Training
FOs, performance metrics were: AUC [area under the ROC (receiver
operating characteristic) curve], 0.88; AUCPR (area under the
precision-recall curve), 0.94, and accuracy, 0.81 (Supplementary
Dataset 6).

Fig. 2 | Results of live cell imaging of mEGFP-tagged FOs from diverse human
cancers. a Schematic representation of the FO imagingworkflow. A total of 166 FOs
were analyzed for condensate formation in HeLa cells, termed the Expressed FOs.
bQuantification of the number of FOs classified as puncta(+), puncta(-), nucleolar,
or other (left). Within the puncta(+) and puncta(-) FOs, the number of FOs localized
to either the nucleus, cytoplasm, or both was quantified based on puncta [for
puncta(+) FOs] (middle) or diffuse GFP localization [for puncta(-) FOs] (right).
Percentages are reported in parentheses. See “Methods” for details of these clas-
sifications. (C-E) Representative confocal microscopy images of live HeLa cells

expressingmEGFP-tagged puncta(+) FOs localized to the nucleus (c), cytoplasm (d)
or both compartments (e) based upon two biological replicates. f Representative
confocal microscopy images of live HeLa cells expressing mEGFP-tagged puncta(-)
FOs localized to the nucleus (left), cytoplasm (middle) or both (right) based upon
two biological replicates. g Representative confocal microscopy images of live
HeLa cells expressing mEGFP empty vector as a negative control based upon two
biological replicates. In all images, the FO signal (green) is overlayed with the DNA
signal (Hoechst dye, blue). All scale bars are 5 μm. All source data are provided as a
Source Data File.
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To verify FO-Puncta ML model performance, we applied it to 29
additional FOs (Verification FOs) with low sequence identity with the
Expressed FOs (average sequence identity, 7.6 ± 0.0%), obtaining
condensate formation probability values that ranged from ~0.01 to
0.99. We experimentally tested the 29 Verification FOs for condensate
formation in live cells and observed that 19 displayed puncta(+) and 10

puncta(-) behavior (Supplementary Fig. 4A–D, Supplementary Data-
set 4). Using a probability value of 0.83 as the threshold for predicting
puncta(+) behavior, the FO-Puncta ML model correctly predicted
condensate formation for 17/19 puncta(+) FOs and diffuse localization
for 6/10 puncta(-) FOs (Supplementary Fig. 4E). The performance
metrics [AUC, 0.73; accuracy, 0.79 (Fig. 5b; Supplementary Dataset 6)],
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were similar to those of our cross validation testing (Supplementary
Dataset 6).

The accuracy of the predictions indicates that the 25 low-MI
sequence-derived features used to develop the FO-Puncta ML model
capture physicochemical properties of FOs associated with con-
densate formation in cells. However, how the different physicochem-
ical features contribute to the prediction of FO condensation behavior
is inaccessible, an intrinsic limitation of certain types of ML approa-
ches. To address this limitation, we determined the contributions of
the 25 features to FO-Puncta predictions for the 29 Verification FOs
using Shapley Additive exPlanations (SHAP; Fig. 5c)38. The SHAP con-
tribution score enumerates the magnitude of the contribution of the
normalized value of the individual features for a particular FO to
the prediction of puncta(+) or puncta(-) behavior (positive and nega-
tive SHAP contribution values, respectively). These results indicated
that the features that contribute most to FO-Puncta ML model pre-
dictions (located toward the top of Fig. 5c) quantify various charge-,
disorder- and prion propensity-related properties of FO sequences
(Fig. 5c, left) and that no single feature can correctly predict any par-
ticular FO’s condensation behavior. Instead, different combinations of
features contribute to predictions of condensation behavior (Fig. 5c,
right). These results show that the charged residue content and pat-
terning within FO sequences are important determinants of their
condensation behavior.

We next compared the performance of the FO-Puncta ML model
to three established protein phase separation predictors, catGranule39,
DeePhase40 and FuzDrop41 (Fig. 5d; Supplementary Fig. 5A), which
yielded AUC values of 0.59, 0.65 and 0.65, respectively for 178 FOs
(combined Training and Verification FO sets) (Supplementary Data-
set 4 and 6). These results indicate that the sequence and physico-
chemical features of puncta(+) and puncta(-) FOs in our combined FO
set are different from those of the various protein sets used to develop
and/or test those other phase separation predictors. Indeed, cat-
Granule takes into account disorder content and nucleic acid binding
propensities together with sequence length and arginine, glycine, and
phenylalanine content39, whereas DeePhase uses integrated, trained
neural network-based language and knowledge-based models40. In
contrast, FuzDrop applies physical principles to predict the con-
formational entropy associated with nonspecific side-chain interac-
tions, which are utilized by proteins that form condensates41. Thus, our
FO-Puncta ML model is an accurate predictor of condensation beha-
vior by FOs identified in human cancers and will certainly identify
proteins in the human proteome with physicochemical features asso-
ciated with condensate formation by FOs. However, it is not designed
to recognize the broader sequence-based feature landscape of phase
separation-prone human proteins.

Using the FO-Puncta ML model to modulate FO condensation
behavior
To further explore the predictive utility of our FO-Puncta ML model,
we selected eight puncta(+) FOs spanning the four feature groups and

performed mutagenesis guided by analysis of changes in ML model
parameters to weaken condensate formation behavior. Themutant FO
sequences were then tested inHeLa cells for condensate formation. To
guide our mutagenesis strategy, we first identified the physicochem-
ical features with the largest SHAP contribution values for the ML
model predictions for the eight puncta(+) FOs (Suppl. Supplementary
Fig. 6A; Supplementary Dataset 7). We next analyzed the values for
these highly predictive features, and also examined the corresponding
amino acid enrichments within IDRs (Suppl. Supplementary Fig. 6B, C;
Supplementary Dataset 7). To weaken condensation behavior, we
performed mutagenesis of multiple, enriched residues within IDRs to
modulate multivalent interactions42. After introducing mutations, we
reassessed SHAP contribution, physicochemical feature, and amino
acid enrichment values, and the condensation probabilities deter-
mined by the FO-Puncta ML model, to determine whether the muta-
tions switched the FO-Puncta predictions from puncta(+) to puncta(-).
This FO-Puncta ML model-guided mutagenesis process was iterated
until the desired switch was achieved and is illustrated below for
several FOs.

Analysis for the puncta(+) ML model prediction for SS18-SSX1
revealed that “ABT density”, “ABT balance”, and “Fraction neg. AAs”
were the three features with the largest SHAP contribution values
(Fig. 6a, top left). The Z-score values of the “ABTdensity” and “Fraction
neg. AAs” features were lower than for the human PDB reference set,
while that for “ABT balance” was similar to the reference set (Fig. 6a,
bottom left). Further, analysis of amino acid enrichments within IDRs
revealed that glutamine and methionine were the most enriched resi-
dues (Fig. 6b, left). To reverse the puncta(+) FO-Puncta ML model
prediction, we mutated either 50% or 100% of all glutamine and
methionine residues to the negatively charged residues, aspartic acid
or glutamic acid. This resulted in mutant FO sequences with reduced
enrichment of glutamine and methionine, and a reversal of the fea-
tures, “ABT density”, “ABT balance”, and “Fraction neg. AAs”, to
negative SHAP contribution values, corresponding to prediction of
puncta(-) behavior (Fig. 6a, b). These changes led to a decrease in the
FO-Puncta ML model prediction from 0.99 for the unmutated SS18-
SSX1 FO sequence to 0.19 and 0.07, respectively, for the two mutants
(Fig. 6c; Supplementary Dataset 7).

Similarly, analysis of SHAP contribution values for NUP98-
HOXD13 revealed that the features, “ABT density”, “Fraction neg.
AAs”, and “Net chrg. per AA”, were three of the four largest
positive contributors to its puncta(+) prediction (Fig. 6a, top middle).
The features, “ABT density” and “Fraction neg. AAs”, had negative
Z-score values for this FO, while that for “Net chrg. per AA”was slightly
positive (Fig. 6a, bottom middle). Analysis of IDRs in this FO revealed
an enrichment of threonine, phenylalanine, and glycine residues
(Fig. 6B, middle). We therefore mutated all phenylalanine and glycine
residues to negatively charged residues, aspartic acid or glutamic
acid, which caused the SHAP contribution values for the three noted
features to becomenegative (Fig. 6a, topmiddle). Acidic residueswere
introduced in part because they were depleted on average in

Fig. 3 | Physicochemical feature differences between the puncta(+) and
puncta(-) Expressed FOs. a The values of 39 physicochemical features, which fall
into tenbroadcategories, were computedbasedon the amino acid sequences of 96
puncta(+) and 53 puncta(-) FOs. The numbers in parentheses indicate numbers of
features in each category. See Supplementary Dataset 5 for physicochemical fea-
turedefinitions.bMutual informationmatrix assessing redundancybetween the 39
physicochemical features. Amutual information cut-off of 0.5 or lesswas applied to
reduce the number of features to 25. c Quantification of the enrichment or
depletion of the 12 non-redundant and most significant physicochemical features
(out of 25) for puncta(+) and puncta(-) FOs with respect to the human sequences
within the Protein Data Bank (PDB). Values are reported as mean Z-scores ± stan-
dard error. The Z-scores values of the puncta(+) (n = 96) and puncta(-) (n = 53) FOs
for each feature are shown in green circles and red triangles, respectively, along the

y-axis. Significance was assessed using two-sided t-test and no adjustment were
made for multiple comparisons (*p <0.05; **p <0.01; ***p <0.001; ****p <0.0001).
Features include: Net charge per amino acid (Net chrg. per AA); Fraction negative
amino acids (Fraction neg. AAs); Number of disordered amino acids (# Disorder
AAs); prion-like domain content (Prion propensity 1); Acidic/Basic Tract density,
valence and balance (ABT density, ABT valence and ABT balance); Ω, Charged
residue/proline patterning (Ω Chrg. Pro pattern); δ, Charged residue patterning (δ
Chrg. Pattern); Fraction polar amino acids (Fraction polar AAs); Number of positive
amino acids (# Pos. AAs); and pi-pi and pi-cation interaction score (PScore). See
Supplementary Dataset 5 for additional information on these and other physico-
chemical features used in these analyses. All source data are provided as a Source
Data File.
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puncta(+) and enriched in puncta(-) FOs, respectively (Fig. 3c). The
mutations caused the FO-Puncta condensation probability to decrease
from 1 to 0.08 for the mutated sequence (Fig. 6c; Supplementary
Dataset 7). For the DOC2B-USP43 FO, analysis of SHAP contribution
values revealed that the feature, “Net chrg. per AA”, was the largest
positive contributor, and the additional features, “ABT balance”, “ABT
valence”, and “Fraction pos. AAs” were also positive SHAP

contributions (Fig. 6a, top right). The Z-score values of these features
were all positive for the DOC2B-USP43 FO sequence (Fig. 6a, bottom
right). The IDRs within this FO are enriched in proline and arginine
residues (Fig. 6b, right). To reduce enrichment of positive charge, we
mutated all of the positive arginine residues to neutral alanine resi-
dues. This resulted in an FO-Puncta ML model condensation prob-
ability decrease from 1 for the unmutated sequence to 0.75 for the
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mutant (Fig. 6c; Supplementary Dataset 7). A similar analytical process
was applied to mutate five additional FOs, as described in Supple-
mentary Dataset 7. The FO sequence analyses discussed above can be
performedusing the SAKweb server available at https://sak.stjude.org.

Testing of the condensate formation behavior of the 11mutant FO
sequences in HeLa cells showed that seven were experimentally
determined to be puncta(-) (Fig. 6c). The other mutated FOs
(SLC16A14-SP110, PAX7-FOXO1, and SS18-SSX1) displayed condensates
but in a smaller percentage of cells than the unmutated sequences
(Fig. 6c). Highlighting the impact of the ML model-guided sequence
modifications, the morphology of condensates formed by SS18-SSX1
were dramatically altered by the introduced mutations (Supplemen-
tary Fig. 7A). These results illustrate how our FO-Puncta ML model,
together with analysis of SHAP contribution, physicochemical feature,
and amino acid enrichment values, can be used to informmutagenesis
of FOs to reduce their condensate formation behavior.

Relationships between condensate formation, sub-cellular
localization and function of FOs
While the biological functions and contribution to oncogenic pheno-
types are known for many of the FOs that we experimentally tested in
cells (Supplementary Dataset 4), these data are lacking for others. We
addressed this knowledge gap by annotating the functional features of
all tested FOs using sequence analysis. The FOs we studied are com-
prised of both IDRs and folded domains. While assigning function
based on the amino acid sequences of IDRs is challenging, it is
straightforward for folded domains. To do this, we first identified
conserved domains (CD) within the amino acid sequences of all 115
experimentally tested puncta(+) and 63 puncta(-) FOs (Training +
Verification FOs) using the CDD/SPARCLE conserved domain
database43 and extracted functional terms from CD definitions.
Because past studies have established that FOs known to form nuclear
or cytoplasmic condensates through phase separation exhibit differ-
ent biological functions (e.g., transcriptional regulation by nuclear FOs
or regulation of cell signaling by cytoplasmic FOs)6–12,16,17,19, we com-
piled functional terms separately for puncta(+) FOs that formed con-
densates in the nucleus, the cytoplasm, or both compartments
(Supplementary Dataset 8). We also compiled functional terms for all
puncta(-) FOs with those localization patterns (Supplementary
Dataset 8).

A functional term that was significantly enriched for puncta(+)
FOs in all compartments, as well as in puncta(-) FOs, was transcription
(p-value < 0.001; Fig. 7a–c); other functional terms differed between
nuclear and cytoplasmic puncta(+) FOs. For example, apart from
transcription, the terms observed four or more times for nuclear
puncta(+) FOs were chromatin (9 FOs, p-value < 0.01), RNA binding (6
FOs), oligomerization (4 FOs, p-value < 0.01) and ATPase (4 FOs, p-
value < 0.01), while those for cytoplasmic puncta(+) FOs were protein
binding (12 FOs, p-value < 0.0001), protein kinase (7 FOs, p-value <
0.0001), oligomerization (6 FOs, p-value < 0.001), and cell signaling (9
FOs, p-value < 0.05). The association of the terms transcription,

chromatin and RNA binding with nuclear puncta(+) FOs suggested
roles in regulation of gene expression, as has been demonstrated for
NUP98 and other nuclear condensate-forming FOs6–12,19. While several
cytoplasmic puncta(+) FOs displayed transcription as a functional
term, others displayed terms associated with regulation of cell sig-
naling (protein binding, protein kinase and cell signaling), which were
rarely observed for nuclear puncta(+) FOs (Fig. 7a, b). The latter
observation is consistent with previous findings showing that the
EML4-ALK and CCDC6-RET FOs form cytoplasmic condensates that
drive aberrant cell signaling16–18.

Most puncta(-) FOs were localized within the cytoplasm (15 FOs)
or both in the cytoplasm and nucleus (43 FOs), with very few (5 FOs)
localized exclusively within the nucleus (Fig. 7d–f). Interestingly, cell
signaling-related terms [e.g., protein kinase (p-value ≤ 0.001), protein
binding (p-value ≤ 0.001), and cell signaling (p-value ≤ 0.05)] were
enriched in thepuncta(-) FOs that localized in the cytoplasm(Fig. 7e, f).
While a few condensate-forming FOs were previously shown to drive
aberrant cell signaling in the cytoplasm16–18, most of the FOs that we
tested that displayed cell signaling functional features within their
amino acid sequences did not form condensates.

We performed an independent analysis of the functional proper-
ties of the puncta(+) and puncta(-) FOs using InterPro2GO domain
annotations44 to identify Gene Ontology-derived functional terms, and
found generally similar associations between FO condensation beha-
vior, sub-cellular localization, and function (Supplementary Fig. 8A–F
and Supplementary Dataset 9). Together, these results and those
above suggest that the cellular functions of FOs are aligned with their
physicochemical features, condensate formation behavior, and sub-
cellular localization.

Predicting cellular condensation, localization, and function for
~3000 FOs using physicochemical features and Machine
Learning
We applied the FO-Puncta MLmodel to all FOs in FOdb-II not included
in theTrainingorVerification FOsets (2999FOs, termedUntested FOs)
and found that 67% are predicted to form condensates (Fig. 8a; Sup-
plementary Fig. 9A), a percentage slightly larger than that for Expres-
sed FOs that formed condensates in HeLa cells (58%; Fig. 2b). This
result indicates that many FOs beyond those experimentally tested
herein by us, and those characterized previously by us and others, are
likely to form condensates in cells.

We next analyzed the predicted, untested puncta(+) and puncta(-)
FOs (2999 FOs) based on the physicochemical features of their
sequences. Among the 1999 predicted puncta(+) FOs, 41% (Fig. 8b)
matched one of the four feature groups identified for the 96 Training
puncta(+) FOs (Figs. 4a, and 8b, c). Such matches were not rooted in
amino acid sequence identities, as the values of SIav for all pairs of FOs
in matching groups for the two sets of FOs were ≤ 12% (Fig. 8d–g), and
thus should reflect the presence of regions with physicochemical
features that are likely to promote condensate formation by FOs.
Moreover, these matches (35% in Groups 1-3 and 6% in Group 4) allow

Fig. 4 | Physicochemical features of the puncta(+) Expressed FOs.
a 2-dimensional (2D) hierarchical clustering of the puncta(+) FOson the basis of the
12 most discriminatory physicochemical features. FO names are reported on the
vertical axis. The values of features are reported on the horizontal axis. The first
column (left) represents localization of the FO puncta (nucleus, purple; cytoplasm,
green; or both, orange). FOs cluster into four groups (Groups 1–4) based on 2D
hierarchical cluster analysis. The names of the physicochemical features used for
clustering are given at the bottom. The significance of the different clusters/groups
is given in Supplementary Fig. 2A.b Average sequence identity ± standard error for
pairwise comparison of all FOs within each of the individual groups in (d).
c Quantification of the mean enrichment or depletion values for the 12 physico-
chemical features for Groups 1–4. Values are reported asmean Z-scores ± standard
error andnormalized to thehuman sequences in the PDB.The average values of the

absolute mean Z-scores ± standard error are reported in the top right of each plot.
The Z-scores values of the puncta(+) FOs for each feature are shown in solid gray
circles along the y-axis for Groups 1–4. Gray boxes highlight the features with
significant enrichments noted in the text (one standard deviation or greater above
the mean Z-scores). d Quantification of the average amino acid enrichment or
depletion ± standard error for FO sequences in Groups 1–4. The amino acid
enrichment values of the puncta(+) FOs for each amino acid are shown in solid gray
circles along the y-axis. The mean of the absolute average enrichments ± standard
error are reported in the top right of each plot. In both (c) and (d), significance was
calculated using two-sided t-test with respect to the human sequences in the PDB
and no adjustment were made for multiple comparisons (*p <0.05; **p <0.01;
***p <0.001; ****p <0.0001). All source data are provided as a Source Data File.
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us to confidently assign the sub-cellular localization of their con-
densates and their biological function (Groups 1-3, nuclear con-
densates and regulation of gene expression; Group 4, cytoplasmic
condensates and regulation of cell signaling). Among the predicted
puncta(-) FOs (1000 FOs), 47% can be matched to one of the three
original puncta(-) FO groups (Supplementary Figs. 2B and 9B, C), and

those matches were not due to amino acid sequence similarities
(Supplementary Fig. 9D). We note that more than half of the predicted
puncta(+) andpuncta(-) FOs had physicochemical features that did not
match those of the functionally annotated groups. This observation
reflects the highly diverse physicochemical properties of FOs and
indicates that much remains to be learned regarding their
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condensation behavior and function in cells. Nevertheless, the insights
we have gained for the FOs in FOdb-II that matched functionally
annotated feature patterns represent a significant advance in our
understanding of FO behavior.

Visualizing the FO condensate landscape
Some parent proteins comprise many different FOs through fusion to
multiple other parent proteins, some of which in turn are found in
multiple additional FOs. To capture this complexity, we used
Cytoscape45 to create the FO condensate network, or landscape, with
thenetworkedges connectingnodes (one node for eachuniqueparent
protein and edges representing a fusion event) colored to indicate
condensate formation behavior (true behavior for Training and Ver-
ification FOs and predicted behavior for Untested FOs; Fig. 9a and
Supplementary Fig. 10A, respectively). In these landscape graphs,
green edges represent puncta(+) FOs and red edges, puncta(-) FOs,
respectively. As expected, many of the FOs we tested in cells appear
within highly branched regions of the network (Fig. 9a), with green
edges surrounding parent proteins with the greatest number of part-
ners (termed the degree value). Analysis of the 15 parentswith a degree
value of ≥ 3 showed that all except JAK2 formed FOs that were largely
puncta(+) (more than 67% puncta(+); Fig. 9b). The average degree
(computed as the average number of green or red edges, respectively,
associatedwith FOparents; see “Methods”) for parents associatedwith
puncta(+) FOs in this set (0.8 ± 0.1) was greater than that for puncta(-)
FOs (0.5 ± 0.0, p-value, 6.1 × 10−6), showing that FOs formed with high-
degree parents aremore likely to form condensates than those formed
with low-degree parents. Additionally, FOs formed with a high-degree
parent are more likely to function in the regulation of gene expression
than cell signaling (Fig. 9b).

We also analyzed the Untested FOs (2999 FOs; 67% predicted to
bepuncta(+) and 33% tobepuncta(-)) usingCytoscape. Theprevalence
of puncta(+) FOs can be appreciated in the context of the FO con-
densate network (Supplementary Fig. 10A). The puncta(+) versus
degree visualization of theUntested FOcondensate landscape (Fig. 9c)
revealed a dichotomy between predicted FO condensation behavior,
and likely sub-cellular localization and biological function. For exam-
ple, FOs with one high-degree parent (degree ≥ 3) that are often pre-
dicted to form condensates (e.g., FOs represented within circles above
the 50% puncta(+) value in Fig. 9c) are also often predicted to localize
within the nucleus and regulate gene expression (purple shades in
Fig. 9c). In contrast, FOs with high-degree parents that are often pre-
dicted to not form condensates (e.g, FOs within circles below the 50%
puncta(+) value in Fig. 9c) are mostly predicted to localize within the
cytoplasm and regulate cell signaling (blue shades in Fig. 9c). Inter-
estingly, the color shading in Fig. 9c, which encodes the percentage of
functionally annotated FOs within a circle predicted to be involved in
either gene expression or cell signaling function, intensifies at the top
and bottom of the graph, respectively, thus revealing a dichotomy
between predicted condensation behavior and biological function.We
note that the FOs represented in the different regions of Fig. 9c are
associated with diverse cancer types and variable patient numbers.

Finally, we noted the striking juxtaposition of two high-degree
FO parents in the network for the Training and Verification FOs,
PAX5 and JAK2, that displayed almost completely opposite puncta
formation behavior (PAX5, mostly puncta(+) FOs and JAK2, all FOs
puncta(-); Fig. 9A). We leveraged the SHAP contribution values for
the PAX5 and JAK2 FOs determined through analysis of the FO-
PunctaMLmodel to identify physicochemical features whose values
were different between the two groups of FOs. No single physico-
chemical feature explains the switch in condensation behavior
between the two FOparent sub-networks. Instead, differences in the
normalized Z-score values and SHAP contribution values for three
features, ABT density, ABT balance, and Net charge per AA (Sup-
plementary Fig. 10B) collectively provide insight into the switch.
These features capture different types of charge characteristics of
the FO amino acid sequences, with the greatest difference in values
between the puncta(+) and puncta(-) FOs observed for the ABT
density and Net charge per AA features. These observations reveal
the complexity of relationships between the amino acid sequences,
physicochemical features and condensation behavior of FOs and
highlight the need for Machine Learning methods to identify pat-
terns underlying these relationships.

Discussion
We present databases, microscopy images, reagents, and computa-
tional tools to understand the relationships between the amino acid
sequence-based physicochemical features of FOs and their cellular
behavior, including condensate formation, sub-cellular localization
and biological function (Fig. 10). We provide experimental results for
condensate formation for 195 FOs, alongwith vectors for theirmEGFP-
tagged expression, and annotation of their physicochemical features,
sub-cellular localization, andbiological functions. Importantly, the FOs
we tested are associated with diverse cancer types. The extensive data
we report will be a valuable resource to investigate the molecular
mechanisms, and involvement of condensate formation by FOs in the
oncogenic mechanisms underlying their associations with diverse
cancers.

We leveraged our findings and the physicochemical features of
FOs to develop an accurate predictor of condensate formation beha-
vior (the FO-Puncta ML model) and provide predictions for ~3000
additional, cancer-associated FOs. For 44% of these, we also provide
annotation of predicted sub-cellular localization and biological func-
tion. These data are a resource for hypothesis-based research into the
roles and mechanisms of condensate formation by FOs in cancer
biology and beyond, by providing insight into patterns of protein
physicochemical features and cellular condensate formation behavior.
Further, we demonstrate how analysis of FO-Puncta ML model para-
meters, physicochemical features, and amino acid enrichments, canbe
leveraged to modulate the condensation behavior of FOs, providing
opportunities to engineer synthetic, condensate-forming FOs in the
future. Our FO sequence data, imaging Datasets, reagents, and com-
putational tools will be valuable to members of the growing biomo-
lecular condensate community.

Fig. 6 |Mutagenesis of puncta(+) expressed FOs. a SHapley Additive exPlanations
(SHAP) (top) and feature value (bottom) analysis for unmutated (orange) and
mutated (purple shades) FOs. Positive SHAP contribution values indicate the
magnitude of contributions to puncta(+) predictions, while negative SHAP con-
tribution values indicate the magnitude of contributions to puncta(-) predictions.
The five features with the largest SHAP contributions based on absolute values are
listed for each FO and those used in mutant design are highlighted in gray. See
Figure S6 and Supplementary Dataset 7 for the full complement of features and
values for all eight FOs that were mutated. See Supplementary Dataset 5 for addi-
tional information on the physicochemical features used in these analyses. b The
top three amino acid enrichments or depletions within the intrinsically disordered
regions (IDRs) of the specified unmutated (orange) and mutated (purple shades)

FOs. Those used in mutant design are highlighted in gray. See Figure S6 and Sup-
plementary Dataset 7 for the full complement of IDR amino acid enrichments or
depletions for the eight FOs that were mutated. c Plot of the FO-puncta ML model
condensation probability prediction on the y-axis and experimentally determined
percentage of puncta(+) cells on the x-axis. Unmutated FOs are in orange. Mutated
FOs that were correctly predicted as puncta(-) are in purple. Mutant FOs that were
puncta(+) are in gray. Lines connect unmutated FOs to their mutated counterparts
and are color-coded based on the group (Group 1–4) from which the original FO
was derived. FO names are indicated along the lines. The FO-Puncta MLmodel cut-
off for puncta(-) classification is less than0.83. The experimental puncta(-) cut-off is
less than 17% of cells with puncta. See Fig. S7 for representative cell images of each
unmutated and mutated FO. All source data are provided as a Source Data File.
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The physicochemical features of the experimentally tested,
puncta(+) FOs are diverse, indicating that multiple mechanisms of
multivalent interactions are operative during condensate formation.
However, our analyses did reveal certain patterns of feature enrich-
ment. For example, puncta(+) FOs are enriched inmost charge-related

features, with the exception being depletion in negative charge.
Additionally, they are enriched inpriondomain-like features and score
highly for pi-pi and pi-cation interactions. Interestingly, these enrich-
ments are not distributed uniformly amongst puncta(+) FOs, with
Groups 1 and 3 enriched in the latter features and generally depleted
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Fig. 7 | Conserved Domain and functional analysis of puncta(+) and puncta(-)
Training and Verification FOs. Functional terms identified from the Conserved
Domain Database (CDD) are shown for the 115 puncta(+) Training and Verification
FOs localized to the nucleus (a), cytoplasm (b), and both compartments (c).
Functional terms identified from theConservedDomainDatabase (CDD) are shown
for the 63 puncta(-) Training and Verification FOs localized to nucleus (d), cyto-
plasm (e), and both compartments (f). The colors of the bars represent the three
major functional classes, regulation of gene expression (including transcription,

chromatin, and RNA binding Conserved Domain functional terms; purple), reg-
ulation of cell signaling (including protein kinase, protein binding, and cell sig-
naling Conserved Domain functional terms; blue) and other functions (gray). The
numbers in each bar indicate the number of unique FOs with the noted functional
term, and asterisks indicate statistically significant over-representation based on p-
value estimates from 100,000-fold one-sided resampling with replacement using
identically-sized protein sets (*p <0.05; **p <0.01; ***p <0.001). All source data are
provided as a Source Data File.
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or unenriched in most charge-related features. In contrast, puncta(+)
Group 2 FOs are highly enriched in disorder content, ABT valence (a
measure of the number of charged tracts), and positively charged
residues and onlyweakly enriched in the features seen inGroups 1 and
3. Almost 90% of the Group 1-3 puncta(+) FOs are localized in the

nucleus, suggesting a role for interactions with nucleic acids, in addi-
tion to multivalent interactions between proteins mediated by the
physicochemical feature enrichments discussed above, in condensate
formation. The features of the Groups 1–3 FOs are generally reminis-
cent of those discussed for components of the transcriptional

±
±

±

±

Fig. 8 | Physicochemical features for predicted puncta(+) FOs. a Results of
predicted condensation behavior using the FO-Puncta ML model for all FOs in
FOdb-II excluding the Expressed and Verification FOs (2999 FOs, in total; termed
the Untested FOs). b Results of comparing the values of 12 physicochemical fea-
tures (as performed for the Training FOs) for each predicted puncta(+) FO in the
Untested FO set to the average feature values of Groups 1–4 of the puncta(+)
Training FOs. The Untested FOs were matched to the feature groups with which
they had the greatest and most significant (p ≤ 0.05) pairwise positive correlation
and data is presented as a clustered heatmap. 1184 FOs (59%) did not match any of

the four feature groups and were placed in a separate group (Unmatched FOs,
orange). See Supplementary Dataset 5 for additional information on the physico-
chemical features used in these analyses. c The average Pearson correlation coef-
ficients for the feature group matches displayed in (A). Data is reported as RPearson

mean ± standard error. d–g Matrices comparing pairwise amino acid sequence
identities between the matched groups (Training FOs versus Untested FOs in
Groups 1–4). The average percent identity standard error is given at the top of each
matrix. All source data are provided as a Source Data File.
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machinery28,46,47, although the predominance of charges features, seen
in some FOs, was more recently pointed out amongst certain tran-
scriptional regulators29. It is interesting that features that quantify
different properties of acidic and basic tracts (ABT density, valence
and balance), developed in studies of nucleolar proteins33, are
amongst the 12 that are most deterministic of puncta(+) or puncta(-)
behavior by FOs.

In contrast to FOs in Groups 1–3, those in Group 4 displayed
indistinct feature enrichments, which further were indistinguishable
from those of puncta(-) FO Group 2’. These findings may indicate that
the 12 most discriminatory physicochemical features included in our
analyses do not capture the properties associated with their

condensate formation behavior. However, expanding our analyses to
25 features and examination of how they contribute to condensation
formation predictions by the FO-Puncta ML model revealed differ-
ences between the Group 4 puncta(+) and Group 2’ puncta(-) FOs
(Supplementary Fig. 11A). Unbiased 2D hierarchical clustering on the
basis of SHAP contribution values revealed that differences in the
values of up to six features (left feature columns, Supplementary
Fig. 11A) naturally led to segregation into the puncta(+) and puncta(-)
groups (Group 4 and Group 2′, respectively). While it is difficult to
discern differences between these two groups on the basis of physi-
cochemical feature values (Supplementary Fig. 11B), the FO-Puncta ML
model was able to identify such differences and correctly recapitulate
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FO condensation behavior. Interestingly, the SHAP contribution values
that most highly discriminate between Groups 4 and 2′ report on
charge-related physicochemical features (Supplementary Fig. 11A).
These results illustrate the utility of our FO-Puncta ML model and its
use of physicochemical features in analysis of the condensation
behavior of FOs.

Our analyses of conserved domains within the experimentally
tested FOs provide insight into their possible oncogenic mechanisms.
Puncta(+) FOs localized in the nucleus (Fig. 7a, c) are highly enriched in
functional terms related to regulation of gene expression. Further,
these terms are not enriched amongst puncta(-) FOs, very few ofwhich
are localized in the nucleus (Fig. 7a–c). Several condensate-forming
FOs studied previously have similar functional domains and are known
to promote oncogenesis by driving aberrant gene expression48. We
speculate that this functional mechanism is common to many of the
nuclear, puncta(+) FOs we identified in our studies, although definitive
testing awaits future investigations.

Regulation of expression of certain genes involves formation of
so-called super-enhancers,which involve the compactionof distalDNA
regulatory elements and transcriptional regulatory proteins, within
condensates that additionally recruit RNA polymerase II46. The emer-
gent properties of phase separated condensates, including compac-
tion of biopolymers such as DNA and concentration of multiple
protein factors within them, are well-matched with mechanistic
aspects of transcriptional regulation and may underlie why many
nuclear FOs harboring domains associated with gene regulation form
condensates. In contrast, the majority of FOs with functional terms
related to regulation of cell signaling did not form condensates in our
studies (Fig. 7). However, there are notable examples of condensate-
forming FOs that aberrantly regulate cell signaling (reviewed in
ref. 48), and we did observe cytoplasmic condensate formation by
someFOs enriched in cell signaling-related terms (Fig. 7). However, the
enrichment of these functional terms was greatest for FOs that
exhibited diffuse localization in the cytoplasm or both the cytoplasm
and nucleus (Fig. 7e, f). This apparent functional dichotomy for
puncta(+) and puncta(-) FOs was recapitulated through analysis of
2999 additional FOs using physicochemical features and the FO-
Puncta ML model (Fig. 9c), with FOs predicted to form condensates
most frequently matching the features of Groups 1-3 FOs, which we
propose encodes aberrant regulation of gene expression function in
the nucleus. In contrast, FOs predicted to not form condensates most
frequently matched the features of Groups 1′−3′ FOs, which we align
with aberrant regulation of cell signaling function in the cytoplasm.
These observations, overall, reinforce the long-held idea that FOs fall
into one of two general functional classes, those that drive oncogen-
esis by regulating transcription and others that promote oncogenesis
by regulating cell signaling. However, the key insight from our studies
is the alignment of condensate formationwith the former class andnot
the latter. These results suggest that the emergent properties of

condensates are not generally required for regulation of cell signaling
by FOs, but it is also possible that structures with emergent properties
do in fact form and are too small to be detected using the confocal
fluorescence microscopy methods employed in our studies.

The discovery of condensate formation by almost 58% of the FOs
we tested represents a potential therapeutic vulnerability. Most FOs
are comprised of both folded domains and IDRs, which together
mediate condensate formation and aberrant biological functions.
While small molecules have been shown to interact with specific
regions within IDRs and modulate function49–51, IDR-targeted small
molecule drugs have not yet reached the clinic. In contrast, folded
domains within condensate-forming FOs are potentially accessible for
therapeutic targeting. For example, BCR-ABL, which possesses the
constitutively active ABL tyrosine kinase domain and is a driver of
chronic myelogenous leukemia52, tested positive for condensate for-
mation in our studies, suggesting that clinically effective kinase inhi-
bitors such as imatinib52 might function within condensates.
Interestingly, BCR-ABL was previously shown to localize within stress
granules; inhibition of kinase activity with imatinib released the FO
from these granules53. Many of the experimentally tested FOs
(Expressed and Verification FOs) contain kinase domains (29 FOs, in
total), with eight shown to form condensates. Therefore, it is relevant
to consider the accessibility of small molecules to the interior of
condensates when seeking to target puncta(+), kinase domain-
containing FOs. This issue has been addressed experimentally, with
some FDA-approved drugs shown to preferentially partition into cer-
tain biomolecular condensates reconstituted in vitro54,55. A strategy for
the future may be to develop small molecules to target puncta(+),
kinase domain-containing FOs by optimizing both condensate parti-
tioning and kinase inhibition. Many other puncta(+) FOs formed con-
densates in the nucleus and contain domains involved in regulation of
gene expression (Fig. 7a), including many DNA-binding domains
(Supplementary Dataset 8). Many of these FOs also contain IDRs,
creating chimeric transcription factors that drive aberrant gene
expression48. However, transcription factors have generally been
considered undruggable56, although some have expressed optimism
about the potential of proteolysis-targeting chimeric (PROTAC)
molecules to target them57. An alternative strategy for puncta(+) FOs
that are aberrant transcription factors is to target critical interaction
partners that have targetable folded domains. An example is the
interaction of NUP98 FOs with the Menin-MLL1 complex, which is a
molecular dependency in FO-driven pediatric AML58. The compound
VTP50469 inhibits the Menin-MLL1 interaction, displacing these pro-
teins from chromatin sites also occupied by NUP98 FOs, reversing the
leukemogenic gene expression program58. This compound acted
similarly in MLL FO-driven leukemias, which also depend on interac-
tions with Menin59. Both the NUP9848 and MLL FOs (reported herein)
form nuclear condensates but the activity of VTP50469 has not been
considered through this lens; perhaps consideration of condensate

Fig. 9 | The FO condensate landscape. a Cytoscape network analysis of all FO
parents (nodes) from the Training and Verification FO sets. Edges indicate a fusion
event. Solid green edges reflect puncta(+) and dotted red edges puncta(-) cellular
condensation behavior, respectively. b Analysis of the condensation behavior of all
FO parents from (A) that are involved in ≥ 3 fusion events in our Training and
Verification FO sets (degree value ≥ 3). The percent of puncta(+) FOs in which the
parent is involved is plotted on the y-axis and the degree value of the parent is on
the x-axis. Circles represent FO parents with the same puncta(+) percentage and
degree values, and the size of the circle reflects the number of FO parents
encompassed by that circle. Numbers following parent names indicate the total
patient count for FOs associated with that parent. The parent names are color-
coded to indicate the predominant functional associations of the FOs inwhich each
parent is found as analyzed through theConservedDomainDatabase (CDD). Purple
indicates a predominant association with regulation of gene expression, blue
indicates regulation of cell signaling, and gray indicates all other functions. See

Supplementary Dataset 7 for all terms. c Analysis of the condensation behavior of
all Untested FO parents that are involved in ≥ 3 fusions (degree value ≥ 3). The
percentage of puncta(+) FOs in which a parent is involved is plotted on the y-axis
and the degree value of the parent is on the x-axis. Circles represent clusters of FO
parents with the same puncta(+) percentage and degree values, and the size of a
circle reflects the number of FO parents encompassed by that circle. The gradient
coloring of circles reflects the dominance of the functional classification of the FOs
in which the parents comprising each circle are involved, with 50% indicating that
the two functional classes are equally represented. Functional assignment is based
on matching FOs to Groups 1–4 of puncta(+) or Group 1′−3′ of puncta(-) FOs.
Orange circles indicate that FOs did not match any of the Groups 1–4. Circles
containing a single parent are labeled with the parent’s name. Cancer type abbre-
viations are defined in Supplementary Dataset 3. All source data are provided as a
Source Data File.
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partitioning may guide the development of improved analogs of this
compound in the future. In conclusion, because a significant propor-
tion of cancer-driving FOs form condensates in either the nucleus or
cytoplasm, or in both compartments, consideration of the influence of
the condensate physicochemical environment on small molecule
partitioning and interactions may promote drug development against
them in the future.

We wish to alert readers to certain considerations while inter-
preting the results of this study. Firstly, we tested FOs for condensate
formation by overexpressing them exclusively in HeLa cells, not in cell
types relevant to the diverse cancers associated with the studied FOs.
However, we and others previously showed that the pediatric AML-
associated NUP98 FOs form very similar nuclear condensates in a non-
AML-relevant cell line (HEK293T) and in mouse hematopoietic stem
and progenitor cells (HSPCs)6,8, and that condensate formation was
associated with the induction of leukemogenic phenotypes in HSPCs.
We reason that our observation of condensate formation by >100 FOs
inHeLa cells reflects the true behavior of theseproteins driven by their
intrinsic, sequence-based physicochemical features, and our results
represent a valuable resource for guiding in-depth studies of links
between condensate formation and FO-driven oncogenesis in cancer-
relevant cell types. Secondly,whilewe identified statistically significant
relationships between the physicochemical features of FOs and their
condensate formation behavior, sub-cellular localization and biologi-
cal function, these relationships are based on studies of a limited
number of FOs (166 Expressed and 29 Verification FOs). We used the
FO-PunctaMLmodel andphysicochemical featurematching topredict
the condensate formation behavior, sub-cellular localization, and
biological functionof ~3000additionalUntested FOs; suchpredictions
arenecessarily subject to somedegreeof uncertainty.Nonetheless, the
general trends regarding the association of regulation of gene
expression function with puncta(+) condensation behavior and reg-
ulation of cell signaling function with puncta(-) behavior are likely to
be generally valid and warrant experimental testing in the future.
Another limitation to this work is the infeasibility of directly assessing
the functional consequences of condensate formation by the 96
puncta(+) FOs. Importantly, links between condensate formation and
function have been established for a number of FOs, some of which
were tested in our studies6–8,10–12,16–19,60. Also, 34 of our puncta(+) FOs
have previously been shown to promote oncogenic cellular pheno-
types. Further, we identified conserved domains with definitive func-
tional annotations in the amino acid sequences of a large portion of
both puncta(+) and puncta(-) FOs (166 Expressed and 29 Verification
FOs; Fig. 7), enabling us to propose their biological functions. These
hypotheses are a rich resource for us and others to pursuemechanistic
studies into relationships between condensate formation, or not, and
oncogenesis driven by FOs in the future.

Additionally, while we identified distinct patterns of physico-
chemical features associated with puncta(+) behavior by 96 of the 166
Expressed FOs, we have not explored how these patterns are asso-
ciated with the conformational properties of these proteins or their
propensities for multivalent interactions that underlie condensate
formation. Nor have we probed interaction partners associated with
puncta(+) FOs and their potential roles in condensate formation. FOs
previously shown to form condensates (reviewed in ref. 48) have been
shown to interact with multiple, additional proteins, but have also
been shown to have an intrinsic propensity to form condensates
through phase separation. Beyond interaction partners, we hypothe-
size that puncta(+) FOs displaying different patterns of physico-
chemical features and aminoacidenrichments (e.g., FOs inGroups 1–3;
Fig. 4a, c, d) will exhibit different conformational properties and dif-
ferent types of intra- and inter-polypeptide chain interactions that

Fig. 10 | Condensate formationby fusiononcoproteins; experimentalworkflow
and major findings. Summary schematic of the reported findings on the
FO condensate landscape. Cellular imaging (a) and 2D-hierarchical clustering
(b) of puncta(+) and puncta(-) FOs resulted in the identification of FO groups
with distinct physicochemical features. The groups further correlated with
sub-cellular localization and function. Most nuclear FOs function in the
regulation of gene expression and are found in puncta(+) Groups 1–3,
while most cytoplasmic FOs function in the regulation of cell signaling and
are found in puncta(+) Group 4 and puncta(-) Groups 1′−3′. c Application of
the FO-Puncta ML model to 2999 Untested FOs resulted in a prediction of
67% puncta(+) and 33% puncta(-) FOs. A portion of these FOs could be
matched to the established puncta(+) and puncta(-) groups (23% and 17% of
2999 FOs, respectively) based on their physicochemical feature values, pro-
viding insight into their predicted sub-cellular localization and function.
Another, larger portion could not be matched to established feature groups
(N. M.).
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promote their ability to form condensates. However, testing this
hypothesis must await future investigation. In conclusion, while there
are some limitations associated with our experimental and computa-
tional methods, we argue that our findings represent a valuable
resource thatdefines the condensate landscapeof FOs in termsof their
physicochemical features, condensate formation behavior, sub-
cellular localization, and biological functions.

Methods
The research reported in this manuscript was approved by the Insti-
tutional ReviewBoardof St. JudeChildren’s ResearchHospital (SJCRH).
Genomic data were obtained from samples collected from patients
enrolled on studies approved by the SJCRH IRB. Samples were pro-
vided deidentified and research was deemed non-human. For tissues,
the data are provided fromdeidentified samples fromhuman subjects,
they were enrolled on studies that included genomic analysis or had
provision for sample banking and genomic analysis as a secondary use
of material. Patients/representatives provided consent/assent on IRB
approved protocols consistent with the Declaration of Helsinki.

Database curation
FO amino acid sequences were created based on RNA and DNA
sequencing results obtained from the Cancer Genome Atlas (TCGA)
(RRID:SCR_003193) and RNA sequencing (RNA-seq) results from
patient samples at St. Jude Children’s Research Hospital.

To compose a set of human fusion genes across cancer types
using the TCGA database, we retrieved all fusion events from Chi-
merDB 3.0 (RRID:SCR_007596)61, which is a comprehensive database
of fusion events from analysis of next-generation sequencing data and
manual curation. ChimerDB 3.0 contains data from three sources
(ChimerKB, ChimerPub and ChimerSeq). As the ChimerSeq module
provides more systematic and unbiased information and carries many
fusion genes from analyzing deep sequencing RNA-seq data from the
TCGA project, we used the ChimerSeq module for our analyses. We
started with 46,492 fusion events, with specific break points and
cancer types specified for each cancer-associated fusion gene. After
filtering redundant entries across cancer types and samples, we
obtained 38,000 unique gene fusion events. These gene fusion events
were identified by computational analysis of transcriptome sequen-
cing data by TopHat-Fusion (RRID:SCR_011899)62 and FusionScan63. As
evidence has demonstrated that TopHat-Fusion’s prediction is most
reliable, we considered all the gene fusion events identified by TopHat-
Fusion. In total, we retrieved 8175 gene fusion events across 2947
tumor samples in 23 cancer types. To get the frequency of fusion
genes, we computed the instances of each fusion gene pair (such as
“GeneA_GeneB” as an example), involving all possible break points for
the same fusion gene pair that occur across cancer types as well as in
each cancer type. To further obtain the sequences of fusion onco-
proteins, we then filtered our list for “in-frame” fusion genes only,
where the fusion event resulted in a fusion protein product [a chimera
made of the N-terminal head protein (e.g., parent protein A) joined
with C-terminal tail protein (e.g., parent protein B)]. Based on Ensembl
75, we obtained the sequences of each component protein (either
head or tail gene) forming each fusion. Information on >4000 fusion
oncoproteins identified using TCGA are provided in Supplementary
Dataset 1, including head/tail gene names, full-length amino acid
sequence, sequence source (e.g., TCGA for these sequences), and the
number of patients identified with the FO in different cancer types
(when this information was available).

For the St. Jude Children’s Research Hospital (SJCRH)-derived
fusion oncoprotein database entries, full-length fusion protein
sequences were generated via an extension of the frame-checking
component of the CICERO gene fusion caller64, which determines
whether the partner genes of the predicted fusions share the same
reading frame. During this procedure, RNA fusion contigs assembled

from RNA-seq reads spanning the fusion breakpoints were translated
into either three putative coding frames or six frames (using Transeq
(RRID:SCR_015647)65 from the emboss suite (v6.6.0, https://www.ebi.
ac.uk/Tools/emboss/), protein sequences were computed for each
frame, and frames matching both partner genes were identified. Each
end of the in-frame protein contig is then mapped to the full-length
protein for the corresponding N-terminal or C-terminal partner gene
and the longest peptide of the N-terminal of 5′-partner and longest
peptide of the C-terminal of the 3′-partner were chosen whenmultiple
RefSeq transcripts were present. Finally, the N-terminal and C-terminal
gene protein sequences were joined with the contig protein to form a
full-length fusion protein sequence. Referenceprotein sequenceswere
extracted from the NCBI RefSeq distribution (RRID:SCR_003496)66

using UCSC (RRID:SCR_005780) table browser. The process considers
all potential combinations of isoforms in the RefSeq database66 map-
ped to the genomic breakpoints of the fusion transcripts, so predicted
full-length products can vary depending on the isoforms. Isoform
annotations were documented so that the user may filter to select the
most appropriate transcripts if desired; for example, when UTRs were
used in the fusion protein, such as ZNF384r fusions, the inserted
peptide translated from 5′-UTR of the 3′-partner were manually
checked. Information on ~400 fusion oncoproteins identified at SJCRH
are provided in Supplementary Dataset 1, including head/tail gene
names, full-length amino acid sequence, sequence source (e.g., SJCRH
for these sequences), and thenumber of patients identifiedwith the FO
in different cancer types (when this information was available).

Validating fusion protein transcripts and their prevalence in
cancer cohorts
We screened the publicly available tumor RNA-seq data sets to deter-
mine the prevalence of the fusion oncoprotein amino acid sequences
used in this study, as described above. The adult cancer data set was
from 9461 TCGA RNA-seq sets hosted on the Cancer Genomics Cloud
(https://datacommons.cancer.gov/analytical-resource/seven-bridges-
cancer-genomics-cloud). The pediatric cancer data set includes 921
RNA-seq Datasets from the Pediatric Cancer Genome Project (PCGP)67

and 1650 RNA-seq Datasets from St. Jude Clinical Genomic data avail-
able on the St. Jude Cloud platform68,69.We also analyzed 9419 RNA-seq
Datasets fromGTEx (RRID:SCR_001618) (https://gtexportal.org/home/)
which were generated from more than 40 normal tissues as a control
(https://gtexportal.org/home/tissueSummaryPage). All GTEx data
releases follow the NIH Genomic Data Sharing (GDS) Policy.

To determine the presence of the FO sequences in our TCGA- and
St. Jude-derived FOdatabases inmassively parallel sequencingdata,we
ran Fuzzion2 (https://github.com/stjude/fuzzion2/), a high-
performance program for identifying fusions via fuzzy matching of
fusion contig sequences to unaligned read pairs. For each targeted FO
sequence, Fuzzion2 uses a pattern sequence which describes the
fusion junction along with ±500 nt of flanking sequence in the context
of the target RNA-seqDataset. For thisproject, wedeveloped amethod
to generate RNA patterns from amino acid sequences by aligning each
given full-length protein sequence with its associated refSeq protein
pair via BLAST (blastp, RRID:SCR_001010)70, then using the underlying
RNA sequences to create a pattern spanning the fusion breakpoint.
Using this method, we were able to generate patterns for ~92% of FO
sequences in the full database, and 94% of the subset of patterns
evaluated for this manuscript. In some cases, patterns could not be
automatically generated, for example when the full-length FO con-
tained a long interstitial amino acid sequence between the regions
attributable to the fused gene pair. Other processing exceptions were
related to sequence ambiguity in fusions between gene families,
internal tandem deletions (ITDs), or fusions involving genes without a
coding RefSeq record (e.g., IGH). Because Fuzzion2 is highly sensitive,
the possibility exists that it may detect false positive matches attri-
butable to known sequencing artifacts suchas barcodehopping. To set
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a rigorous threshold, we required matches to have at least 3 “strong”
matching read pairs, which are defined as having a match of at least 15
nucleotides to both sides of the junction, or to the breakpoint region.
This approach captures supporting evidence for the fusion involving
split or discordantly paired reads. The results from the cancer data sets
were compared to those of the GTEx normal tissues to remove
potential false positives with strong hits in GTEx that can arise due to
read-through events, germline polymorphisms or mapping ambi-
guities caused by paralogous genes. Cancer types and patient counts
were based on TCGA and St. Jude tumor sample bar codes to avoid
double-counting. Results from this analysis were used to exclude FOs
from FOdb-II that were identified to arise from sequencing errors or
were found in non-cancerous tissues (Supplementary Dataset 2).
Additionally, where evidence could be found in the literature, FOs
arising from reciprocal gene fusion events associated with bona fide
cancer-driving FOs were removed from FOdb-II (Supplementary
Dataset 2).

Cloning plasmids
All FOs were Escherichia coli codon-optimized and synthesized using
Integrated DNA Technologies’ gBlocks Gene Fragments. Fragments
and the destination vector (CL20) were cut with Not1 and Xba1
restriction enzymes and ligated together New England BioLabs’ Quick
Ligation Kit per the manufacturer instructions. All plasmid sequences
were confirmed by whole plasmid sequencing. Mutant FOs (Fig. 6)
were synthesized in the same manner.

Cell culture and transient transfections
HeLa cells (American Type Culture Collection, CCL-2;
RRID:CVCL_0030) were cultured in Dulbecco’s Modified Eagle Med-
ium (DMEM) with high glucose (Gibco) and supplemented with 1×
penicillin/streptomycin (Gibco), 10% fetal bovine serum (Hyclone), and
4 mM L-Glutamine (Gibco) and maintained at 37 °C in 5% CO2. Cells
were tested forMycoplasmaevery 2months using PCR (e-MycoTM plus,
LiLiF). Cells were authenticated by STR-profiling (PowerPlex Fusion at
the St. Jude Hartwell Center). Cells were transfected in a 96 well plate
with 100ng of plasmid DNA in the CL20 vector backbone8 using
FuGENE HD (Promega) per the manufacturer’s instructions. All FOs
were transfected under identical conditions (same amount of plasmid,
same protocol, same incubation period). All Training and Verification
FOs were N-terminally tagged withmonomeric EGFP (A207Kmutation
in EGFP). Cells were used for a maximum of 25 passages post thawing.

Confocal microscopy Imaging
Allmicroscopy images were acquired on a 3iMarianas system (Denver,
CO) configured with a Yokogawa CSU-W spinning disk confocal
microscope utilizing a 100x Zeiss objective, 405 nm (Hoechst) and
488 nm (mEGFP) laser lines, and Slidebook (RRID:SCR_014300) 6.0
(3i). 3D images of cells were captured as z stacks with 0.2mm spacing
between planes, spanning 12.2mm in total. Live HeLa cells were
imaged at 37 °C in phenol red-free DMEM with high glucose (Gibco)
supplementedwith 1× penicillin/streptomycin, 10% fetal bovine serum,
4 mM L-Glutamine, and 25mM HEPES.

Classification of the FOs as puncta(+), puncta(-), Other, and
Nucleolar
After collecting the cell images over multiple replicates (images of at
least 50 cells were recorded for each FO, with at least two replicates of
each), the total number of transfected cells (usingmEGFP fluorescence
as readout) were counted. A cell was considered non-expressing if the
minimum mEGFP intensity of the expressing region was less than 50
raw intensity units above background. This cut-off was chosen by
comparing the minimum mEGFP intensity per pixel (mEGFP-FO
expression level) over the puncta(+) FO image Datasets. Amongst the
transfected cells, the number of cells that showed circular puncta in

the cytoplasm and/or nucleus was counted. The FOs for which puncta
were detected in at least 17% of transfected cells were classified as
“puncta(+)”, while those with less than 17% puncta-forming cells were
classified as “puncta(-)”. The threshold of 17% was chosen to give
approximately 2/3 puncta(+) FOs and 1/3 puncta(-) FOs. Puncta(+) FOs
were further classified as “nuclear”, “cytoplasmic”, or “both” (localized
to both compartments) based on the localization of their puncta, while
this classification was done on the basis of mEGFP signal localization
for the puncta(-) FOs. For those FOs which were classified as “both”,
this includes those in which a single cell displayed both nuclear and
cytoplasmic localization patterns and those in which some cells
expressing the FO displayed nuclear localization, while other cells
expressing the same FO displayed cytoplasmic localization. The FOs
for which there was significantly higher nucleolar localization (either
diffuse or punctate) compared to nuclear or cytoplasmic localization
were categorized as “nucleolar”. A final category of “other” was used
for the FOswhich showednon-diffusemEGFP signal, but the structures
formed were not reminiscent of round condensates. Rather, these
appeared as clusters or tubular structures. “Nucleolar” and “other” FOs
were excluded from analyses involving of physicochemical features.
For all imaged FOs and proteins, at least 5 representative image files
are provided in raw format on the Biostudies Database71 with the
accession number: S-BIAD863. All files consist of multiple Z stacks
ranging at least 10 μm and two channels. C0 files refer to the 405
channel (Hoechst DNA) and C1 files refer to the 488 channel
(mEGFP-FO).

Calculation of amino acid sequence-derived physicochemical
features of FOs
To understand why some FOs formed puncta and others did not, we
selected physicochemical features that were calculated for each FO
amino acid sequence (See Supplementary Dataset 2). The feature,
“UreaΔΔG” is the residue-specificwater to 1Murea-group transfer free
energy (kcalmol−1 M−1) predicting urea-dependent cooperative protein
unfolding energetics and was calculated based on the method of
Autonet al.72. The fraction of disordered amino acids was calculated
withCIDER24 based on themethodof Campen et al.73. “δ, chrg. pattern”
defines the average squared deviation from the overall charge sym-
metry amongst all charged blobs, “Max δ, chrg. pattern” is the max-
imumvalue of “δ, chrg. pattern”, “κ, chrg. pattern”describes the extent
of charged amino acidmixing in a sequence and is defined as, “δ, chrg.
pattern”/ “Max δ, chrg. pattern” (“κ, chrg. pattern” is normalized
between 0 and 1), and “PPII propensity” is a propensity scale for type II
polyproline helices; all of the latter features were calculated with
CIDER based on the work of Das and Pappu74. Low-complexity domain
(LCD) length was calculated as the number of residues within low
Shannon entropy regions, defined as having a Shannon entropy75

below 0.78 with a window of 12 residues used, with the cut-off of 0.78
being selected to return results similar to thoseobtainedusing the SEG
algorithm76 that is used by the Conserved Domain Database
(RRID:SCR_002077)43 webserver to identify low-complexity regions.
The features “# Pos. AAs” (the number of positively charged residues
(R/K) in a sequence), “# Neg. AAs” [the number of negatively charged
residues (D/E) in a sequence], “Isoelectric point” (the pH at which an
amino acid sequencehas no net electrostatic charge), “Fraction expnd.
AAs” [fraction of residues which are predicted to contribute to chain
expansion (E/D/R/K/P)], “Fraction pos. AAs” (fraction of residueswhich
are positively charged in a sequence), “Fraction neg. AAs” (fraction of
residues which are negatively charged in a sequence), “Fraction polar
AAs” (fraction of polar residues (Q/N/S/T/G/H) in a sequence), “Frac-
tion neutral AAs” (fraction of uncharged residues at neutral pH),
“Fraction Pro” (fraction of proline residues), “Seq. Length” (number of
amino acids in a sequence), “Mol. Weight” (total molecular weight of
the amino acid sequence), “# Neutral AAs” (number of uncharged
residues at neutral pH), “Fraction hphobic AAs” [fraction of
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hydrophobic residues (A/I/L/V/M)], and “Fraction aromatic AAs”
[(fraction of aromatic residues (F/Y/W)] were calculated using CIDER24.
The feature, “Mean hydrop. 1”, is the mean normalized hydropathy
determined using the method of Kyte and Doolittle77 and calculated
using CIDER. The feature, “Mean hydrop. 2”, is the mean (normalized
to 1) hydropathy calculated based on coarse-grained simulations on a
large data set of IDRs78. The feature, “Prion propensity 1”, is the nor-
malized log-likelihood ratio of a sequence being prion-like calculated
with PLAAC23. The features, “Net chrg. Per AA”79 is themean net charge
per residue and “Ω, chrg. Pro pattern”80 describes the patterning of
charged and proline residues and was calculated with CIDER. The
feature, “# Disorder AAs”, is the total number of residues within
identified IDRs. For this study, IDRs are defined as regions of at least 60
residues in length in which the 11-residue moving average IUPred2-
calculated (RRID:SCR_014632)81 disorder propensity was > 0.45, with
the added tolerance that regions <12 residues apart are joined into
single regions including the up-to-11 additional residues. The feature,
“# Predicted NLSs”, is the number of nuclear localization signals pre-
dicted by the algorithm, NLStradamus82. The feature, “Seq. dec., chrg.
Pattern 3”, describes charge patterning in a sequence that can be used
to estimate the scaling exponent for an arbitrary amino acid sequence
enriched in charged residues and was calculated based on themethod
of Sawle and Ghosh83. The features, “ABT valence” is the sum of the
absolute charge of all acidic and basic tracts within disordered regions
of at least 60 residues in length, “ABT density” is the ABT valence
normalizedby the number of residues,whichwere calculated basedon
the work of Somjee, Mitrea, and Kriwacki and assesses all amino acids
except for the first and last residue in IDRs as defined by IUPred233. The
“ABT balance” for a disordered region is the total number of residues
within charged tracts within a region divided by the ABT valence for
that region. The feature, “Prion propensity 2”, is the PAPAprop para-
meter calculated with the PLAAC implementation of the algorithm,
PAPA84. The feature, “Fraction charge AAs” (the fraction of charged
residues in a sequence) was calculated using CIDER based on the work
of Uversky85. The feature, “PScore”, describes aggregated propensity
for pi-pi and pi-cation interactions in a sequence and was calculated
based on the algorithm of Vernon, et al.22. The features “Hydrop. Pat-
tern 1” and “Hydrop. charge pattern 1” describe hydropathy and
hydropathy/charge patterning, respectively, and were calculated
based on the hydropathy scale and formalism of Zheng et al. 86. Simi-
larly, the features “Hydrop. pattern 2” and “Hydrop. charge pattern 2”
were calculated based on the formalism of Zheng et al.86 using the
hydropathy scale developed by Dannenhoffer-Lafage and Best78

derived from simulations to help explain the conformational states of
LLPS-prone IDPs.

Calculation of amino acid enrichment for FO sequences
Aminoacid enrichment for eachFOsequencewas calculatedusing Eq. 1,

AAEnrichment =
100×Percent compositionof sequence

Percent compositionoff oldedhumanproteome
� 100%

ð1Þ

where “Percent composition of sequence” is the percent composition
of a particular amino acid in the sequence being evaluated and “Per-
cent composition of folded human proteome” is the percent compo-
sition of a particular amino acid in a database of human protein
sequences found in the PDB sourced from Swiss-Prot
(RRID:SCR_021164) on 05-08-2022 with sequences smaller than 5
amino acids excluded.

Analysis of sequence-derived physicochemical features
First, we identified that for the 96 puncta(+) and 53 puncta(-) Expres-
sed FOs (collectively termed the Training FOs; 149 FOs, in total) values
of the features “ABT valence”, “ABT balance”, and “ABT density” were

missing for ~20% of FOs, whereas “PScore” and “PAPAprop” values
weremissing in <2%of FOs, due to the lackof identified IDRs due to the
limitation of the IDR length requirement for the calculation of these
features. Therefore, we replaced all the missing values using the non-
missing median value of these features from the puncta(+) and
puncta(-) Expressed FOs, separately. Next, to identify interdependence
of the 39 sequence-based physicochemical features for the 149
Training FOs, we computed mutual information (MI) among these
features using infotheo (version: 1.2.0) package in R (version: 4.1.0)
package. Features that displayed strong mutual dependence with
others were filtered to remove the redundant features, which resulted
in 25 features with low MI (≤ 0.5). We next performed the two-sided t-
test for these 25 features to identify those that showed significant
differences between the 96 puncta(+) and 53 puncta(-) FOs using the
rstatixpackage (version: 0.7.0) inR. Effect sizewas calculatedusing the
effsize package (version: 0.8.1) (https://zenodo.org/record/196082) in
R. In this way, we identified 12 physicochemical features whose values
were significantly different between the puncta(+) and puncta(-)
groups with p-values ≤ 0.05. The values of these 12 features were
converted to z-scores using the scale function inbaseR,with respect to
the human protein sequences in the PDB sourced from UniprotKB/
Swiss-Prot version 2022 01 (see above). We next performed hier-
archical clustering based onManhattan distance andWard’s minimum
variance method87 (“ward.D2”), as implemented in the pheatmap
package (version: 1.0.12) in R, using the z-scores for the noted 12 fea-
tures to identify groups of FOs in the puncta(+) and puncta(-) sets with
related physicochemical features. To determine the significance of the
clustered FO groups from the heatmaps of the 96 puncta(+) and 53
puncta(-) FOs, respectively, we applied the pvclust package (version
2.2-0) in R that assesses the uncertainty in hierarchical cluster analysis.
Using pvclust, Approximately Unbiased (AU) p-values were calculated
via multiscale bootstrap resampling for each cluster in hierarchical
clustering. The AU p-value (%) of a cluster is a value between 0 and
100%, which indicates the significance of cluster membership34. We
considered cluster members with AU p-values ≥ 90% to be significant.

Calculation of FO sequence identity
To obtain sequence identity (SI) values between the 166 Expressed
FOs and 29 Verification FOs, we performed Multiple Sequence
Alignment by submitting amino acid sequences of the FOs in FASTA
format to the MUSCLE (MUltiple Sequence Comparison by Log-
Expectation, RRID:SCR_011812) server (https://www.ebi.ac.uk/Tools/
msa/muscle/)65. Average sequence identity (SIav) values were com-
puted from the values in the percent identity matrix (PIM) for the 166
Expressed FOs and 29 Verification FOs. To obtain SI values between
the matching groups of the 1999 predicted puncta(+) FOs and 96
puncta(+) Expressed FOs, we used theMUSCLE server65. TheMUSCLE
server was also used to obtain SI values between the matching
groups of the 1000 predicted puncta(-) FOs and 53 puncta(-)
Expressed FOs, independently.

Overlap with proteins known to undergo phase separation
To quantify the overlap of parent proteins of FOs in FOdb (in Fig. 1E)
with those proteins known to undergo LLPS, we compiled LLPS-prone
proteins from four sources: PhaSepDB 1.088, DrLLPS 1.089, PhaSePro90,
and LLPSDB91 (all retrieved October 4, 2020). For PhaSepDB, we
removed proteins with a “Source” of “High Throughput”, keeping only
reviewed proteins. For DrLLPS, we removed proteins with an “LLPS
Type” of “Client”, keeping regulators and scaffolds. Proteins from all
sources were merged by UniProt accession, and any with evidence
from at least one source were retained. To represent the human pro-
teome, we obtained all human Swiss-Prot (reviewed) proteins from
UniProt release 2022_0392. Gene symbols for all three sets (FOdb,
known LLPS proteins, and the human proteome) were updated to the
latest HGNC (RRID:SCR_002827)93 gene symbols using unambiguous
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aliases where available, andwere then compared and plotted using the
eulerr94 R package. Fisher’s exact test was used to assess set overlap.

Identification of Conserved Domains within and assignment of
biological functions to Training and Verification FOs
We identified functional domains within the puncta(+) and puncta(-)
Training and Verification FOs by submitting their amino acid sequen-
ces in FASTA format to NCBI’s Conserved Domain Database (CDD)
search tool (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.
cgi), as a batch job using default parameters. This tool returned Con-
served Domain assignments and definitions. The functional terms
presented in Fig. 6 and Supplementary Dataset 6 were manually
extracted from Conserved Domain definitions. The definitions for
many assigned Conserved Domains were uninformative regarding
biological function; in these cases, a function was not assigned.
Resampling p-values were estimated using 100,000 resamples (with
replacement) of equally sized sets of FOs.

GO term analysis
InterProScan 5.52 (RRID:SCR_005829)95 was used to identify InterPro
86.0 (RRID:SCR_006695) domains96 in the FO sequences, using default
parameters. Manually curated Gene Ontology (GO) annotations for
these domains (InterPro2GO, dated 2021/05/2697) were also obtained
from InterPro. To address the differing level of detail in GO annotation
between different domains, direct ancestor GO slim terms were iden-
tified using the mapslim function of the GOATOOLS Python library98

(Supplementary Dataset 9). Resampling p-values were estimated using
100,000 resamples (with replacement) of equally sized sets of FOs.

Fluorescence recovery after photobleaching (FRAP)
FRAP experiments were performed on a Marianas spinning disk con-
focal microscope with SlideBook 6.0 software (3i, Denver, CO), using
100× oil immersion objective, numerical aperture 1.45. For all the FO
puncta, excluding SS18-SSX1, a single punctum was photobleached to
~50% intensity by illuminating the punctum with an appropriate laser
power with 75ms exposure. Fluorescence recovery after photo-
bleaching was measured using the Trackmate plugin for FIJI99–101. Ori-
ginal datawas exported as a stacked tiff file from the Slidebook format,
then reformatted such that each frame was a separate timepoint with
the interval set as the average time between acquisitions. A region of
interest (ROI) was set around the photobleached area encompassing
the area the punctum remained in during the entire acquisition. Puncta
were detected using the Laplacian of Gaussian (LoG) detector. For the
LoG detector, the estimated object diameter was set as the apparent
punctum size pre-photobleach and a quality threshold was set to 0.
Initial thresholding was set so only the photobleached puncta were
assigned as spots for each frame. The Intersection-over-Union (IoU)
overlap tracker was used to link spots together, with a minimum IoU
set at 0.3. Intensity values over time were exported by plotting the
intensity features of spots, then exporting to a.csv file. For the SS18-
SSX1 FO, the condensates were large enough that an ROI within a
punctum could be photobleached, rather than an entire punctum. A
0.5 μm diameter circular region of interest (ROI) was used to bleach
the center of a single punctum and photobleached to 50% intensity
using appropriate laser intensity. Csv files were imported to R version
3.6.0, which was used to make plots and calculate recovery and sta-
tistical parameters. Analysis code is available upon request.

Supervised machine learning for puncta classification
Weemployed the automaticmachine learning (AutoML) tool within the
h2o.ai37 (version: 3.36.1.1) package in R to classify the puncta (+) and
puncta (-) FOs, and predicting the probability of condensate formation
using data for the 149 Training FOs (consisting 96 puncta(+) and 53
puncta(-) FOs from the Expressed FOs). Using the 25 sequence-based
physicochemical features with low MI for the 149 Training FOs, we set

nfolds = 25 for 25-fold cross validation and generated 220 models from
AutoML using otherwise default parameters. A Gradient Boosting
Machines (GBM) model with 50 trees performed the best amongst the
220 models tested (termed the FO-Puncta ML model) based on the
metrics AUC and AUCPR for the 149 Training FOs, and 25-fold cross
validation with 149 Training FOs and 29 Verification FOs. Next, we
applied the FO-Puncta ML model to the 29 Verification FOs and deter-
mined that a threshold value for the condensate formation probability
of 0.83 gave the best performance [based on maximizing the F1 score
(Supplementary Dataset 5 and Supplementary Fig. 4E)] for classifying
the puncta(+) and puncta(-) FOs in this set. For the phase separation
predictors, catGranule39, DeePhase40 and FuzDrop41, performance was
evaluated for 178 FOs (combined Training and Verification FO sets; 149
and 29FOs, respectively). The threshold or cut-off values for eachof the
phase separation predictors were as follows: 0.75 for catGranule102, 0.5
for DeePhase40 and 0.61 for FuzDrop41. We used the packages PRROC
(version 1.3.1)103 and MLmetrics (version 1.1.1) in R to compute the per-
formance metrics for catGranule, DeePhase and FuzDrop.

SHAP analysis of the FO-Puncta predictor
SHAP (Shapley Additive exPlanations)38 is a method to explain indivi-
dual predictions, which is based on game theory optimal Shapley
values. We applied this method to determine the contributions of the
25 physicochemical features to FO-Puncta ML model predictions.
Specifically, we computed the Shapely values separately for the 149
Training FOs and 29 Verification FOs using the h2o.predcit_contribution
function in the h2o.ai package in R.

Analysis of the 2999 untested FOs
We applied the FO-Puncta ML model to predict the condensate for-
mation behavior of 2999 Patient-derived Untested FOs. Using a the
condensate formationprobability threshold of 0.83, the FO-PunctaML
model predicted 1999 puncta(+) and 1000 puncta(-) FOs. After this
classification was performed, missing physicochemical feature values
were replaced using the non-missing median value for the same fea-
tures for the puncta(+) and puncta(-) Expressed FOs. Next, for each of
the 1999predictedpuncta(+) Untested FOs,we compared their z-score
values (with respect to the human sequences in the PDB, as discussed
above) for the 12 physicochemical features used for classification of
the Training FOs with the average z-score values for the 4 distinct
feature groups (Groups 1–4) identified for the 96 puncta(+) FOs and
computed the Pearson correlation coefficient (RPearson) value and the
asymptotic p-value using the rcorr function from Hmisc package (ver-
sion 4.7.1) in R. A predicted puncta(+) Untested FOs was matched to
one of the groups identified for 96 puncta(+) FOs (Groups 1–4) based
upon the largest positive value of the pairwiseRPearson coefficient and if
the asymptotic p-value was ≤0.05. pairwise positive RPearson value.
Further, based upon our findings that most FOs in Groups 1-3 formed
condensates in the nucleus and displayed functional terms associated
with regulation of gene expression, the predicted puncta(+) Untested
FOs thatwerematched to these feature groupswere assigned the same
properties. Similarly, the predicted puncta(+) Untested FOs that were
matched to Group 4 were assigned cytoplasmic localization and reg-
ulation of cell signaling function. A similar feature matching analysis
was performed for the predicted puncta(-) Untested FOs, with those
that matched the features of Groups 1′−3′ assigned cytoplasmic loca-
lization and regulation of cell signaling function. We also determined
pairwise SI values for the matched, predicted puncta(+) and puncta(-)
Untested FOs, and the Training FOgroups using theMUSCLE server, as
discussed above (e.g., Group 1 Training FOs versusmatched predicted
puncta(+) Untested FOs, etc.).

Network analysis of FO parent protein condensate landscape
We visualized the condensate landscape of the 178 experimentally
tested FOs (combining the 149 Training FOs and 29 Verification FOs)
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using the Analyze Network option in Cytoscape (version 3.9.1,
RRID:SCR_003032)45. After generating the FO parent network using
Cytoscape, we next identified each of the parent proteins with degree
value ≥3 (e.g., those parents observed in ≥3 different FOs), grouped
FOs associated with parents with the same degree value and then
determine the percentage of them thatwere experimentally puncta(+).
The FOcondensate landscapewasvisualized asa two-dimensional (2D)
plot of thepercentageof puncta(+) FOs associatedwith eachFOparent
with degree value ≥3 versus the degree value for each FO parent. The
2D plot was annotated with information about the biological functions
(derived from the CDD analysis) of the FOs associated with the high-
degree FO parents.

We performed a similar network analysis for the 2999 Untested
FOs usingCytoscape and identified the FOparent proteinswith degree
value ≥3 and the associated FOs. The high-degree FO parents were
grouped based on degree value and the percentage of associated FOs
predicted to be puncta(+) for each group determined based upon the
FO-Puncta ML model predictions. These results we plotted as dis-
cussed above for the Training and Verification FOs. The 2D plot was
annotated with information on predicted biological function for each
FO based upon feature group matches (see section above), and the
cancer types and patient numbers associatedwith FOs, defining the FO
condensate landscape.

SAK web server (sak.stjude.org)
The SAK web server allows the submission of one or more amino acid
sequences in Fasta format and provides the following outputs to the
user by email: graphical sequence analyses [including sequence com-
plexity, conserved domains, secondary structure and disorder pre-
dictions, pi-pi and pi-cation interaction (PScore), PLAAC prion-like
domain and net-charge-per-residue (NCPR) analyses, and amino acid
distributions within the sequence], bar plots of Z-scores for 12 physi-
cochemical features and amino acid enrichments for the full sequence
and all identified IDRs, and, finally, a condensate prediction using the
FO-Puncta ML model (“YES” for puncta(+) or “NO” for puncta(-); see
Fig. 5) and feature group, if identified [Groups 1, 2, 3 or 4 if puncta(+);
Group 1′, 2′, or 3′ if puncta(-); see Figs. 8 and S9]. The SAK server also
provides a spreadsheet (SAKreport.xlsx) that includes the full set of
parameters used and generated by the FO-PunctaMLmodel, including
physicochemical feature Z-score values and SHAP contribution values.
Theseoutputswill enable users to determinewhether an FOof interest
is likely to form condensates in cells, or not, and to analyze the
sequence-based physicochemical features associated with the pre-
dicted behavior. Also, if the test FO’s sequence-derived featuresmatch
those of a known group, the SAKreport.xlsx file will include prediction
of sub-cellular localization and function (either regulation of gene
expression or cell signaling).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All plasmids generated in this study have been deposited with
Addgene (https://www.addgene.org/). No new genomic or RNA
sequencing data were generated in the studies reported in this
manuscript. Gene fusions were identified using publicly available
genomic and tumor RNA sequencing data deposited on: St. Jude Cloud
[https://www.stjude.cloud/;68 some of the leukemia-derived gene
fusion data were previously reported in refs. 4,104,105] or The Cancer
Genome Atlas (TCGA) (RRID:SCR_003193). The data deposited on St.
JudeCloudwere generated through research thatwas approved by the
Institutional Review Board (IRB) of St. Jude Children’s Research Hos-
pital (SJCRH). Genomic and RNA sequencing data were obtained from
samples collected from patients enrolled on studies approved by the

SJCRH IRB. Patients/representatives provided consent/assent on IRB
approved protocols consistent with the Declaration of Helsinki. Sam-
pleswereprovideddeidentified and researchwas deemednon-human.
Representative microscopy images have been deposited to the Bios-
tudies Database71 with the accession number: S-BIAD863. Source data
are provided with this paper. This includes all of the data analyses
reported in this study. The raw data used in this study are available in
the Zenodo database under accession code https://doi.org/10.5281/
zenodo.7114870. Source data are provided with this paper.

Code availability
All original code has been deposited on Zenodo: (https://doi.org/10.
5281/zenodo.7114870) and is available for download from theprovided
link. Any additional information required to reanalyze the data
reported in this manuscript is available from the lead contact upon
request.
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