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Epitranscriptomic subtyping, visualization,
and denoising by global motif visualization

Jianheng Liu 1,2,4 , Tao Huang3,4, Jing Yao1,4, Tianxuan Zhao1, Yusen Zhang1 &
Rui Zhang 1

Advances in sequencing technologies have empowered epitranscriptomic
profiling at the single-base resolution. Putative RNA modification sites identi-
fied from a single high-throughput experiment may contain one type of
modification deposited by differentwriters or different types ofmodifications,
along with false positive results because of the challenge of distinguishing
signals from noise. However, current tools are insufficient for subtyping,
visualization, and denoising these signals. Here, we present iMVP, which is an
interactive framework for epitranscriptomic analysis with a nonlinear dimen-
sion reduction technique and density-based partition. As exemplified by the
analysis ofmRNAm5C andModTect variant data, we show that iMVP allows the
identification of previously unknown RNAmodificationmotifs and writers and
the discovery of false positives that are undetectable by traditional methods.
Using putative m6A/m6Am sites called from 8 profiling approaches, we illus-
trate that iMVP enables comprehensive comparison of different approaches
and advances our understanding of thedifference andpattern of truepositives
and artifacts in these methods. Finally, we demonstrate the ability of iMVP to
analyze an extremely large human A-to-I editing dataset that was previously
unmanageable. Our work provides a general framework for the visualization
and interpretation of epitranscriptomic data.

The recent discovery of various RNA modifications in the tran-
scriptome has given rise to the fast-growing field of epitran-
scriptomics. Individual RNA modification sites have been found to
regulate nearly all aspects of RNA metabolism and are involved in a
wide range of biological processes1,2. Accordingly, RNA modification
writers are spatiotemporally controlled, and their misregulation leads
to a number of pathologies. For example, the writers of m6A and A-to-I
editing are misregulated in multiple types of cancers and have been
identified as promising therapeutic targets of cancers3–5, with related
cancer treatments in pre-clinic or pre-investigational new drug (IND)
stages. Catalytic inhibitor of METTL3 STM2457 leads to impaired
engraftment and prolonged survival in variousmousemodels of AML5.

ADAR1p150 inhibitor Rebecsinib prevents malignant A-to-I editing-
mediated leukemia stem cell self-renewal in completed pre-IND
studies6.

Methods for transcriptome-wide RNA modification detection at
the single-base resolution are undergoing rapid development. The
common strategies are to convert RNAmodification signals into next-
generation sequencing-detectable signals, such as mutation and
truncation (e.g.7–11). Putative RNA modification sites called by these
strategies from a single high-throughput experiment contain one type
of modification deposited by different writers (e.g., m5C called from
RNA BS-seq approach or pseudouridine called from CMC-related
methods12–14) or different types of modifications (e.g., A-to-I editing
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and m1A called from RNA-seq11,15 or m6A and m6Am called from m6A
antibody-dependentmethods16).Meanwhile, various levels of noise are
present in such putative RNA modification sites because most meth-
ods have limited accuracy and specificity17. Despite the importance of
the precise classification of modification types and their correspond-
ing writers, the currently developed tools are insufficient to address
this issue.

Most types of RNA modifications occur within a specific
sequence and/or structural context18–23. Thus, we may assign the
writers of each authentic modification site even without experi-
mental validation, as long as prior knowledge of writer target motifs
is provided. Typically, we process the putativemodification sites and
flanking sequences by using motif finders24, which utilize probability
statistics, graph theory, deep learning, or other approaches, to
obtain a set of enriched motifs, and then determine the writers of
some modification sites based on their motifs. However, such a
process is unable to estimate the levels of noise within the dataset.
Moreover, current motif finders are slow or fail to manage inputs
with over 10,000 records, such as RNAmodification sites called from
RNA-seq data or Nanopore direct RNA-seq data25,26. We realize that
the goal of analyzing RNA modifications and noise based on
sequence features is, in some ways, similar to the high-resolution
dissection of tissue compositions using single-cell RNA-seq tech-
nologies. Hence, we may take inspiration from the strategies used to
analyze the large numbers of parameters generated in single-cell
studies for RNA modification analysis.

Here we developed a framework termed interactive epitran-
scriptomic Motif Visualization and Subtype Partition (iMVP) for epi-
transcriptomic subtyping, visualization, and denoising, with
demonstrations of its utility on various kinds of high-throughput
experiments.

Results
Establishment of iMVP
Our strategy is basedon twoprinciples. (1)Most RNAmodifications are
deposited within a specific sequence context, which is determined by
the biophysical interactions between writers and their substrates. This
is presumably also true for most artifacts introduced by the enzymic
and chemical processes in modification detection. (2) The input
sequences only account for a tiny subset of the k-mer space. Accord-
ingly, our iMVP framework consists of five steps for the analysis and
visualization of the topological distribution of RNA modifications, as
follows (Fig. 1a): (1) the k-mer patterns of the modification sites were
extracted and encoded into a computer-readable format-here, we one-
hot encoded the 21-mer sequences surrounding themodification sites;
(2) a dimension reduction algorithmwas used to project the extracted
patterns onto a 2-D plane, where the similarities of the sequences were
therefore approximated by the Euclidean distances in the projections;
(3) an unsupervised clustering algorithm was applied to group the
enriched patterns in the projections; (4) clusters were extracted
automatically or manually based on the contours via our interactive
interface with the help of visualization; and (5) further analyses of the
clusters, including (but not limited to) drawing the logos with
WebLogo27 or discovering motifs by canonical methods (e.g. MEME28),
were performed.

We startedwith dimension reduction tools that are widely used in
single-cell analyses because their properties and performances have
been well evaluated29,30, especially t-distributed Stochastic Neighbor-
hood Embedding (t-SNE)31 and Uniform Manifold Approximation and
Projection (UMAP)30. To benchmark the candidate algorithms, we
selected m5C profiling data in fly embryos, which consisted of
experimentally validated NSUN2-dependent (Type I, 90.9%) sites and
NSUN6-dependent (Type II, 9.1%) sites with clear motif preferences
(Supplementary Data 1)21. As expected, in all tested algorithms, RNA
modification sites with a stringent sequence requirement, i.e., Type II

siteswith a strong5’-CUCCA-3’motif21, were highly condensed (Fig. 1b);
in contrast, siteswith a less stringent sequence requirement, i.e., Type I
sites19,32, were projected into a broad area with a continuous density
distribution (Fig. 1b). To quantitatively evaluate the candidate algo-
rithms, we developed two metrics, the outgroup-ingroup score and
boundary score (see ”Methods” section), to measure their con-
densability and discernibility, respectively. We found that t-SNE, Open
t-SNE33, and UMAP had better condensabilities (i.e., higher outgroup-
ingroup scores) than PCA, Isomap34, and DensMAP35, generating pro-
jectionsmuch closer to their corresponding centroids. Comparedwith
t-SNE and Open t-SNE, UMAP had a better discernibility (i.e., a lower
boundary score), making the boundaries of Type I and Type II sites
much clearer (Fig. 1b and Supplementary Fig. 1a). These findings were
also true for more complicated m5C data from nocodazole (Noc)
treated HeLa cells, in which at least 4 motifs, including two minor
motifs, are present (Supplementary Fig. 1b).We also tested UMAPwith
different sequence encoding methods, such as PCA preprocessing (a
regular step in single-cell analysis36) and numeric labeling. No other
methods with better performance than that of the one-hot encoding
method were found (Supplementary Fig. 1c). Additionally, we tested
UMAP and t-SNE on different initialization methods with a simulation
dataset containing 109,850 sequences (Supplementary Note 1). We
found that mostmotifs can be correctly clustered by UMAP and t-SNE,
no matter which method is used (Supplementary Fig. 1d). Last, we
tested UMAP with different random seeds or metric functions (Sup-
plementary Fig. 1e, f), and it demonstrated consistent robustness
across different parameter settings in general. Since UMAP and t-SNE
exhibited comparable performance, we opted for UMAP for the sub-
sequent analyses.

We next sought a suitable unsupervised clustering algorithm
based on the UMAP output. Among the tested algorithms, we found
that both density-based algorithms (e.g., HDBSCAN37, DBSCAN38, and
OPTICS39) and graph-based algorithms (e.g., Spectral clustering40,
Louvain41, and Leiden42) were able to recognize distinct clusters from
UMAP projections (Fig. 1d and Supplementary Fig. 2a). Among these
methods, HDBSCAN, Leiden, and Louvain demonstrated acceptable
computational cost (Fig. 1e) and exhibited superior performance in
clustering, as indicated by precision, recall, and Adjusted Rand Index
(ARI) metrics (Fig. 1f, Supplementary Fig. 2b, and Supplementary
Note 1). While Louvain and Leiden achieved higher ARI scores in fly
dataset (Supplementary Fig. 2b), HDBSCAN outperformed them when
handling noisy datasets that contain randomly generated sequences
(Supplementary Fig. 2c-e). Moreover. Louvain and Leiden were found
to be less flexible with only one adjustable parameter and tended to
generate interleaved small clusters (Supplementary Note 2 and Sup-
plementary Fig. 2f). In contrast, HDBSCAN enables both standard
clustering and “soft clustering” (complete assignment), whichmakes it
more flexible in different scenarios.

Since themajority of reported RNAmodificationmotifs are within
a range of 15 nucleotides (nt)1, we chose to analyze 21-nt sequences in
our computations. Furthermore, we conducted tests using k-mers of
varying lengths and observed that iMVP demonstrated robustness in
handling k-mers ranging from 11 to 51 nt (Supplementary Fig. 3). In
combination with UMAP and HDBSCAN, iMVP can process >8,000 21-
mer sequences within 3min. For ease of use, we also developed an
interactive interface for iMVP (Supplementary Movie 1), which allows
us to combine the automatic partitioning results with manually
selected clusters. Both the cookbooks for iMVP and the interactive
interface are available on GitHub (https://github.com/SYSU-
zhanglab/iMVP).

Comparison of iMVP with traditional tools
To compare the performance of iMVP with other traditional tools in
motif search, we analyzed two simulation datasets that comprised
100,000 and 200 sequences with 12 and 5 heterogeneous motifs,
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respectively (Supplementary Note 1). Our initial comparison was
between iMVP and MEME. In the larger dataset, iMVP demonstrated
superior ability to identify less abundant motifs compared to MEME,
whereas both methods performed similarly in the smaller dataset
(Supplementary Fig. 4–6 and Supplementary Note 3).

Next, to ensure a fair comparison between iMVP and traditional
tools (including MEME, STREME, and HOMER), we extensively

optimized the parameters of the traditional tools for the larger dataset,
resulting in the generation of 200 parameter sets (see ”Methods”
section). We evaluated the performance of different methods by ana-
lyzing their computational time and accuracy in motif searching.
Overall, our findings revealed that iMVP surpassed existing tools in
terms of both computational time and precision (Supplemen-
tary Fig. 7).

a

b

2. Dimension reduction
(UMAP, t-SNE, PCA, ...)

3. Clustering
(HDBSCAN, Leiden, ...)

4. Extracting clusters 
automatically or manually

1. Formating inputs
(one-hot encoded k-mers )

[[[1, 0, 0, 0, 0], 
 [0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1],
...], ...]

AUCGNCAUACA
GUAUGCGAUAG
UUGGCCGAUAC
AUAACCAAUGC

...

>>>

d

c

eK-Means GMM BIRCH

AHC (complete) Spectral clustering

Louvain Leiden OPTICS

DBSCAN HDBSCAN HDBSCAN (soft clustering)

AHC (ward)

I

I

I

I I

I I

I

I

IIII

II

II II

II

II IIII

II II II

UMAP-1

U
M

AP
-2

f Type I Type II

0.00 0.25 0.50 0.75 1.00
Recall

K-Means
GMM

BIRCH
AHC (complete)

AHC (ward)
Spectral Clustering

Louvain
Leiden

OPTICS
DBSCAN

HDBSCAN
HDBSCAN

(soft clustering)

0.00 0.25 0.50 0.75 1.00
Precision

K-Means
GMM

BIRCH
AHC (complete)

AHC (ward)
Spectral Clustering

Louvain
Leiden

OPTICS
DBSCAN

HDBSCAN
HDBSCAN

(soft clustering)

ARI=0.136 ARI=0.004 ARI=0.094

ARI=0.15 ARI=0.212 ARI=0.902

ARI=0.92 ARI=0.92 ARI=0.858

ARI=0.875 ARI=0.852 ARI=0.882

Dimension-1

D
im

en
si

on
-2

PCA
oi=0.485; bs=0.042

Isomap
oi=0.349; bs=0.037

t-SNE
oi=0.782; bs=0.04

Open t-SNE
oi=0.706; bs=0.029

UMAP
oi=0.649; bs=0.023

DensMAP
oi=0.595; bs=0.04

0 20 40 60
Time (sec)

PCA
Isomap

t-SNE
Open t-SNE

UMAP
DensMAP

0 500 1000 1500 2000
Peak Memory (MB)

PCA
Isomap

t-SNE
Open t-SNE

UMAP
DensMAP

0 5
Time (sec)

K-Means
GMM

AHC (complete)
AHC (ward)

BIRCH
Spectral Clustering

Louvain
Leiden

OPTICS
DBSCAN

HDBSCAN
HDBSCAN

(soft clustering) 0 1000 2000
Peak Memory (MB)

Article https://doi.org/10.1038/s41467-023-41653-4

Nature Communications |         (2023) 14:5944 3



Relaxation of position-dependency of iMVP to broaden its
applications
In addition to the scenario in which positions with modification-
induced signals matched the coordinates of RNA modification sites
themselves, signals generated due to themodified bases canbe shifted
to adjacent positions. For example, such an issue is common in signals
from Nanopore direct RNA-seq, which shows promise for dis-
criminating and identifying different RNAmodifications in native RNA.
Several methods based on base-calling errors, altered current inten-
sities, or trace profiles of Nanopore direct RNA-seq data have been
developed to identify signatures that represent RNA modifications
(e.g43–46.). With these methods, modification caused errors and dis-
turbances have been found to occur from the −3 to +3 positions rela-
tive to the modification sites43,46. Because of the position-aware nature
of iMVP, we proposed a phase-matching strategy to solve such a
“phase mismatching” issue, thus broadening the applications of iMVP.

To demonstrate this strategy, we analyzed the RNAmodification
sites called by xPore based on the differential Gaussian distribution
of Nanopore signal parameters between wild type and METTL3
knockout HEK293T cells26 (Fig. 2a). In this dataset, RNA modification
signals tended to locate in the −1 to +1 positions adjacent to the
modified bases (three phases)26 (Supplementary Fig. 8a). To perform
phase matching, we first applied iMVP to the unprocessed xPore
variant data and grouped the sites into 9 clusters (Supplementary
Data 2). Clusters #1 to #3, which accounted for 47.9% of the sites
(3,446 sites), were within RRACH (R = A/G, H = A/C/U) motifs in dif-
ferent phases (Fig. 2b). To match the phases of m6A motifs, we
recentered the sequences of cluster #1 to cluster #3 onto an “A” if
possible (Fig. 2c). Other small clusters were centered by non-A bases
(Supplementary Fig. 8b–e) and were less likely to be m6A signals;
thus, theywere not included in the analysis. After phasematching, we
defined 95% (3,175) of sites as authentic m6A sites within RRACH
motifs (Fig. 2d). The remaining 5% of sites were within the CARmotif
(Fig. 2d). Despite theCARmotif resembles previously reportedm6Am
motif (BCA (B = C/G/U)47,48 or BBCABW49, as METTL3 is exclusively
associated with m6A modification, these sites are likely to be false
positives. Consistently, when examining the locations of CAR sites
relative to transcription start site (TSS), no enrichment around TSS
was observed (Supplementary Fig. 8f).

To evaluate the reliability of putative modification sites defined
using iMVP, we applied a different method, i.e., m6A-seq approach, to
identify m6A/m6Am in the same cell line (see ”Methods” section). A
winscore-basedmethod50wasused to quantify them6A/m6Ampeaks in
our m6A-seq dataset. Winscore quantifies the enrichment of modified
reads within a 50-nt window relative to gene expression and modified
reads across the entire gene. As a positive control, we usedm6A/m6Am
sites identified by m6ACE-seq (Supplementary Fig. 9)51. We found that
m6A clusters in both xPore and m6ACE-seq datasets had significantly
higher winscores than the background winscores, indicative of
authentic m6A sites (Fig. 2e). However, m6Am-like clusters in m6ACE-

seq dataset but not xPore dataset had significantly higher winscores
(Fig. 2e). This result is consistent with the role ofMETTL3 in regulating
only m6A sites and suggests that the previously reported xPore sites
with CAR motifs were likely false positives. Our analysis highlights a
phase-matching strategy to expand the applications of iMVP.

To further relax the position-dependency of iMVP to broaden its
applications, we introduced a sliding window strategy. This strategy
consists of three steps: (1) generating sliding windows on input
sequences; (2) performing iMVP on all the windows to extract clusters;
and (3) conducting motif alignment and comparison on the extracted
clusters to identify the patterns. To test this strategy, we utilized a
simulation dataset comprising 500 PDX1 motifs randomly distributed
in a 50-bp sequence, along with 500 random noise sequences. We first
generated 20-bp windows with a 1-bp step, resulting in a total of
30,000 windows. Then we applied iMVP to these 30,000 windows
(Supplementary Fig. 10a, b) and extracted enriched patterns (clusters
#1 to #11) (Supplementary Fig. 10c). Among these patterns, 10 exhib-
ited distinct PDX1 motifs. These motifs may be further aligned with
Tomtom to generate a consensus motif (Supplementary Fig. 10d). By
following all three steps, we identified between 48 to 483 sequences
containing PDX1 motifs. The false discovery rate (FDR) ranged from
7.7% to 45.5%, depending on the specific thresholds applied (Supple-
mentary Fig. 10e–g).

iMVP assists in the discovery of previously unknownmRNAm5C
writers and known writer divergence across species
For the well-studied RNA modifications, such as m6A, m5C and pseu-
douridine, it is known that multiple writers have evolved to target
unique subsets of the modification sites based on the differential
protein-RNA biophysical interactions. The map of a specific RNA
modification type is built upon this principle, and in turn, we can infer
the writers of this map by visualizing the sequence features of all
modification sites of this map. Foreseeing the needs in novel writer
mining, we employed iMVP to investigate the most comprehensive
m5C profiles from various samples in humans, mice, frogs, zebrafish,
and flies19,32, where newwritersmaybe hidden. Intriguingly, in addition
to two clusters that represent knownType I and Type II sites, twomore
clusters appeared in early developmental stage samples (Fig. 3a, Sup-
plementary Fig. 11, and Supplementary Data 3) and 48-hour Noc-trea-
ted HeLa cells (Fig. 3b and Supplementary Data 4), which are known to
be enriched with mRNA m5C32. The first cluster (termed Type III sites)
was found in both early developmental stages in vertebrates (Fig. 3a
and Supplementary Fig. 11) and Noc-treated HeLa cells (Fig. 3b). This
cluster contained a 5′-GUNGCCANNUG-3′ motif in a less structured
sequence and accounted for 0.67% to 2.8% of the sites. The second
cluster (termed Type IV sites) was only found in Noc-treatedHeLa cells
(Fig. 3a, b and Supplementary Fig. 11). This cluster contained a 5′-
UUCGANGU-3′ motif and accounted for 11.04% of the sites. Notably,
these 4 types of m5C sites cannot always be detected by MEME and
HOMER (Supplementary Fig. 12).

Fig. 1 | The establishment of iMVP. a The schema for iMVP. The algorithms
selected in our analysis are labeled in red. b Testing dimension reduction algo-
rithms with fly embryom5C dataset. Type I and Type II sites are labeled in blue and
red, respectively. PCA, Principal ComponentAnalysis; LLE, Local LinearEmbedding;
t-SNE, t-distributed Stochastic Neighbor Embedding; UMAP, Uniform Manifold
Approximation and Projection; DensMAP, Density-Preserving UMAP. Random
states were set to 42. Parallel levels were set to 4 if possible. Algorithm specific
parameters were listed in Supplementary Data 7. Metrics: oi outgroup-ingroup
score, higher is better, bs boundary score, lower is better. c The peak memory
usage and runtime of the algorithms used in b. The bar plot displays the mean and
95%confidence interval, while the precise values of the data points are visualized as
dots. n = 3 biologically independent experiments. The time consumed by JIT (Just-
In-Time) compiling process in UMAPwas not included. This process typically takes

~200 seconds. d Testing clustering algorithms based on the results of UMAP.
Simple partitioning algorithms: K-Means and Gaussian Mixture Model (GMM);
Hierarchical clustering: Agglomerative hierarchical clustering and BRICH; Graph-
based: Spectral clustering, Louvain, and Leiden; Density-based: OPTICS, DBSCAN,
andHDBSCAN.Randomstateswere set to42. Parallel levelswere set to 4 if possible.
Algorithm specific parameters were listed in Supplementary Data 7. e The peak
memory usage and runtime of the algorithms used in d. The bar plot displays the
mean and 95% confidence interval, while the precise values of the data points are
visualized as dots. n = 3 biologically independent experiments. For Louvain and
Leiden, the time (but not memory usage) of the construction of Nearest Neighbor
Matrix with UMAP was also included. f The Precision and Recall rate of the clus-
tering algorithms in d. Precision and Recall were computed based on our experi-
mentally validated site information of the dataset.
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The sequence contexts of Type III and IV sites resembled the
C2278 (Fig. 3c) and C2870 (Fig. 3d) sites in yeast 25 S rRNAmethylated
by Rcm1 (NSUN5) and Nop252, suggesting that these two proteins may
be new mRNAm5C writers. To validate this inference, we knocked out
NSUN5 (Supplementary Fig. 13a) and knocked down Nop2 via siRNA in
HeLa cells (Supplementary Fig. 13b). As a control, NSUN2 and NSUN6
were knocked out separately. As expected, loss or decreased levels of
m5C methylation in each cluster was observed in the corresponding

knockout or knockdown cells (Fig. 3e and Supplementary Fig. 13c).
Consistently, we found that sites with a Type III motif had increased
m5C levels (Supplementary Fig. 13d-e and Supplementary Data 4) when
re-analyzing previously published NSUN5 overexpression data from
LN229 cells53. Interestingly, upon the overexpression of NSUN5, a
minor Type III sub-motif, 5’-GUNNNCCAKHUG-3’ (K = A/C), was also
found (Supplementary Fig. 13f). Taken together, these findings indi-
cate thatNSUN5 andNop2 are previously unknownmRNAm5Cwriters,
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in the center of the k-mers were indicated by red arrowheads. c The global visua-
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in c. e Cumulative distributions of m6A-seq winscores of RRACH cluster and CAR
cluster from m6ACE-seq and xPore datasets (see ”Methods” section). In each sub-
plot, the windows of RRACH and CAR clusters were highlighted in red and blue,
respectively, and inputwindowswere inblack.Windowswith reads perkilobaseper
millionmapped reads (RPKM) values of ≥1 in the input were used for analysis. The P
values were determined using a two-sided Kolmogorov–Smirnov test. One sample
with one IP and one input experiment was performed to obtain winscore data.
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suggesting that our global motif analysis strategy enables new motif
and writer discovery.

Global visualization may also facilitate an intuitive comparison of
differences in motifs among different biological contexts. To deter-
mine whether iMVP can assist with such a comparison, we examined
themotif divergence of different types ofm5C sites across species with
iMVP. We first aggregated m5C sites (145,144 sites in total) from six

species to generate a combined iMVPmap.Next,weprojected the sites
of individual species onto the combined map for comparison. Inter-
estingly, despite all three types of sites being highly consistent among
all six species (Fig. 3f, g), a motif preference divergence between fly
and vertebrate Type I sites was observed, wherein fly NSUN2 had a
stronger preference for the CGRRG and CNGGAG motifs (Fig. 3g, h).
Compared with the other two sub-types of motifs found in fly,
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vertebrate NSUN2motifs exhibited a higher degree of similarity to the
CRGNR sub-motif, as indicated by lower KL divergences (Fig. 3i). To
investigate whether this difference was due to the preference of
NSUN2, we overexpressed NSUN2 from human, mouse, zebrafish, and
fly in NSUN2 knockout HeLa cells. The motifs found in this assay clo-
sely aligned with the finding in iMVP (Fig. 3j). Taken together, iMVP
assists in the identification of subtle motif preference differences
between vertebrate and fly NSUN2 proteins.

iMVP facilitates the identification of false positives in RNA BS-
seq data
One of the major challenges in epitranscriptomic studies is how to
obtain a reliablemap of RNAmodifications.Of themethods developed
for transcriptome-wide RNAmodification mapping, most have limited
accuracy and specificity, thus leading to considerable levels of false
positives. Many artifacts introduced by the enzymic and chemical
processes inmodificationdetection, aswell as errors generated during
high-throughput sequencing, preferentially occur within certain
sequence contexts. Thus, global motif visualization of the inputs may
facilitate the identification of false positives.

To determine whether this is true, we applied iMVP to the m5C
profiling data in adult human and mouse tissues. mRNA m5C sites in
mammalian adult tissues appear to be much less frequent19 and thus
tend to be enriched in false positives, making accurately identifying
real sites more challenging. Intriguingly, of the m5C profiles in human
andmouse tissues, we indeed identified 4 (#4 to #7) and 2 (#4 and #5)
minor clusters that were likely false positive, respectively (Fig. 4a, b).
Both humanandmouse clusters#4were embedded in a homopolymer
run of As that is prone to sequencing errors. The remaining human
clusters (#5 to #7) were in primate-specific repeat element Alus. The
second mouse cluster (#5) was in a GC-rich repetitive region that is
difficult to be converted with BS-treatment. An examination of the raw
mapping data revealed that these sites were clustered (Fig. 4c, d).
Basedon ourfinding that clustered sites in bisulfite sequencing tend to
be false positives fromconversion failure19, these siteswere believed to
be artifacts that escaped from our filters due to close-to-threshold
statistical parameters. These observations highlight the ability of iMVP
to pinpoint possible false positives that were unaddressed by tradi-
tional filtering steps. Notably, iMVP itself can only identified enriched
clusters, and additional experiment and/or knowledge is required to
determine whether these clusters are false positives or not.

Spiked iMVP distinguishes RNA-seq variants caused by RNA
modifications from noise
Recent studies found that RNA modifications could introduce mis-
matches during reverse transcription; thus, variants called from RNA-
seq may represent DNA mutations, RNA editing sites, or RNA
modifications15,54. Based on these findings, algorithms, such as
ModTect11, have been developed to analyze RNA-seq data to identify
putative RNAmodification sites. Due to their complexity, it is expected

that a high-level of noise is present in putative RNA modification sites
inferred from RNA-seq data. To assist in the analysis of such datasets,
we developed a modified iMVP strategy, termed spiked iMVP, and
applied it to the ModTect dataset.

In spiked iMVP, k-mers containing known modification signals
(m1A, m1acp3Ψ, m3C, m4C, and m2

2G) were spiked into the putative
RNA modification-induced variants to label the motif preferences of
known RNA modifications (Fig. 5a and Supplementary Data 5). Next,
variants with different reference bases were separately analyzed with
iMVP and clusters were visualized (Fig. 5b–e). For example, in the
A base group, we identified cluster #1, which contained 22 novel
m1A-like sites and 5 known m1A spike-in sequences (Fig. 5b). In the
U base group, we observed a GUG preference labeled by
m1acp3Ψ(cluster #2) (Fig. 5c). In the G base group, which contained
the most abundant variants called by ModTect, variants were
grouped into three major clusters (cluster #4, cluster #5, and cluster
#6) (Fig. 5e). Of the three clusters, the m2

2G spiked cluster #5 was
enriched with a 5’U signature (Fig. 5e). These high-confidence m1A
sites, and the novel sequence feature and narrowed-down list of
m1acp3Ψandm2

2G identifiedwith iMVPwill facilitate future validation
and functional studies. Note that the clusters containing known RNA
modifications only accounted for a small fraction of the maps; and
many of the remaining clusters were likely false positives (Fig. 5b, d
and Supplementary Fig. 14): somewere surrounded by Cs; somewere
within a tract of A/U dinucleotide repeats; and some were within a
strong poly(A)-tract. Such variants were likely artifacts introduced by
enzymatic and optical processes during library construction and
sequencing. In summary, Spiked iMVP adds a new layer of filter and
helps pinpoint more reliable RNA modification candidates from
datasets with substantial fractions of false positives.

iMVP advances our understanding of m6A/m6Am profiles
A number of biochemical methods were recently developed to map
transcriptome-wide m6A/m6Am at single-base resolution10,26,51,55–58. A
systematical evaluation and comparison of sites called from different
methods may shed light on our understanding of the comprehensive
methylomes and the pattern of true positives and artifacts in these
methods. However, such a comparison is missing due to the lack of
tools. To bridge this knowledge gap, we collected m6A/m6Am sites
from 7 studies with 8 different m6A/m6Am profiling methods (Fig. 6a
and Supplementary Data 2): CIMS10, CITS10, m6ACE-seq51, m6A-label-
seq55, MAZTER-seq56, m6A-REF-seq57, xPore26, andDART-seq58. Globally,
we found that only a small set of m6A andm6Am sites were overlapped
amongmethods (Supplementary Fig. 15a), although the same cell type
was used in all studies. This observation suggests that each method
may only captured a subset of the methylated sites. Furthermore, the
potential variability in false positive rates among different methods
may also contribute to the observed low overlap. Thus, approaches
based on site overlaps are not able to compare different methods and
iMVP may be qualified for this task.

Fig. 3 | The discovery of novelmRNAm5C writers and knownwriter divergence
across specieswith iMVP. a,bTheglobal visualization of them5C sites identified in
human oocytes (a) and Noc-treated HeLa cells (b). Different clusters were shown in
different colors. The motifs and the metaprofiles of the secondary structure for
each cluster were shown. The colors of the metaprofiles followed those in the
UMAP projections. c, d The C2278 and C2870 m5C sites on yeast 25 S rRNA
methylated by Rcm1 (NSUN5) and Nop2, respectively. The inferred recognition
motifs of NSUN5 and Nop2 were highlighted in red. The structure views were
adopted fromCannone et al.69. e Themethylation level changes of the four types of
m5C sites in wild type and NSUN family member KO/KD HeLa cells treated with
Nocodazole. n = 1 for each type of cells. Sites covered by at least 20 reads in all
samples and with methylation level ≥0.1 in wild-type cells were analyzed. The P-
value was calculated using a one-sided student’s t-test. Boxplots: 25th to 75th

percentiles (boxes), medians (horizonal lines), and 1.5 times of the interquartile
range (whiskers). f The global visualization of 145,144 aggregatedm5C sites from all
the species analyzed. Three distinct clusters and corresponding m5C types were
shown. g Them5C site distributions of each species in f. h Subtyping the twomajor
clusters in flies. Type I sites in flies were divided into three sub-types: left, CGRRG
(R=A/G); middle, CRGNR; right, CNGGAG. Among these motifs, fly NSUN2 pre-
ferred CGRRG and CNGGAG, while vertebrate NSUN2 had no preference. i Pairwise
comparison of Type I motifs (+1 to +5 positions) in different species. Metrics:
Average KL divergence of the motifs. Lower values indicate a higher degree of
similarity between twomotifs. j Pairwise comparisonof Type Imotifs found inHeLa
cells and thosemethylated by exogenously expressed NSUN2 fromhuman,mouse,
zebrafish, and fly in NSUN2 knockout HeLa cells. n = 1 for each type of cells. OE,
over-expression.
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We next performed iMVP on the aggregated 74,179m6A/m6Am
sites. Seven clusters were identified based on the patterns of density
(Fig. 6b and Supplementary Fig. 15b). Clusters #1 to #4 were in cano-
nical RRACHmotifs, where cluster #1 had a strong 5′ A preference, and
cluster #4 had no 5’ preference. Cluster #5 was a CAB motif, similar to
previously reported m6Am motifs. Clusters #6 and #7 were in an A/G-
rich context. In line with previous observations, the m6Am-like sites
identified in Cluster #5 had the strongest enrichment around TSS; in
contrast, the m6A sites in Cluster #1 to Cluster #4 had significantly
weaker enrichments (Supplementary Fig. 15c). With global visualiza-
tion, the extent of sequence preference in different methods was
identified (Fig. 6c, d). Overall, CITS, m6ACE-seq, m6A-label-seq, and
xPorehad abroad rangeof k-mer types,whileCIMS,MAZTER-seq,m6A-
REF-seq, and DART-seq were biased towards certain types of k-mers.
More specifically, CITS and m6ACE-seq, the two immunoprecipitation-
basedmethods, had a similar k-mer distribution, despite CITS having a
stronger enrichment in cluster #1(AAACA). m6A-label-seq, which is

based on metabolic incorporation, had a unique enrichment in cluster
#6. Although both MAZTER-seq and m6A-REF-seq utilized the MazF
endoribonuclease strategy, sites identified by MAZTER-seq were more
enriched in cluster #1. DART-seq, which is based on the hitchhiking of
APOBEC C-to-U editing, had a strong bias in cluster #4 (NNACU).

Since antibody-based methods represent an indirect way to infer
m6A positions, antibody-independent approaches have become the
recent focus of method development. Because the sensitivities of
different methods vary and are dependent on the local sequence fea-
tures of the modified bases, we evaluated the reliability of m6A-
antibody-independent approaches by comparing the winscores of
individual clusters with the background winscores usingm6A-seq peak
data (see ”Methods” section). As a positive control, we used clusters
identified by the m6A-antibody-dependent m6ACE-seq. DART-seq had
the lowest m6A-peak enrichment among all methods (Fig. 6e), sug-
gesting thatmany false positive signalsmay be introduced by APOBEC
background editing. Compared with MAZTER-seq, signals from m6A-
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Cluster #4: low complexity regions Cluster #5: AluY

chr10: 104228323 (+) Human muscle

Cluster #6: AluSz

chr7: 99622428 (+) Human muscle

Cluster #7: AluSp

chr7: 44715919 (+) Human muscle

Fig. 4 | The use of iMVP to identify noise in BS-seq data. a Cluster #1 (Type I),
cluster #2 (Type II) and cluster #3 (Type III) are canonical humanm5C sites. Cluster
#4 is artifacts from low-complexity regions. Clusters #5 to #7 are potential false
positives fromAlu repeats. 2,284 sites from human tissueswere analyzed. bCluster
#1 (Type I), cluster #2 (Type II) and cluster #3 (Type III) are canonical mouse m5C

sites, while cluster #4 and cluster #5 are potential false positives. 2,498 sites from
mouse tissueswere analyzed. c IGVbrowser viewof selected human sites in clusters
#4 to #7. Samples: humanheart, GSM3462633; humanmuscle, GSM3462639.d IGV
browser view of selected mouse sites in clusters #4 and #5. Samples: mouse lung,
GSM3462647; mouse testis, GSM2461443.
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REF-seq had lower m6A-peak enrichment (Fig. 6e), suggesting that the
addition of FTO treatment might introduce noise. Overall, m6A-label-
seq and MAZTER-seq had the highest m6A-peak enrichment for nearly
all clusters, suggesting that they are currently the most reliable
methods. These results provide valuable insights for the selection of
m6A-antibody-independent approaches for m6A and m6Am profiles at
single-base resolution.

iMVP enables global motif discovery in an extremely large
dataset
In canonical motif discovery tools, the input size is typically <10,000
sequences due to the high computational complexity of handling large
datasets. Both UMAP and HDBSCAN are designed for large datasets,

and they are currently implemented in the NVIDIA RAPIDS library,
which allows us to scale up and speed up iMVP analysis with GPU
acceleration (Supplementary Fig. 16a, b). Thus, our frameworkmay be
capable of handling extremely large numbers of RNA modification
sites that were previously unmanageable, such as millions of A-to-I
RNA variants in the human genome.

To challenge iMVP, we analyzed the human A-to-I RNA editing list
from REDIportal25, which contains 15.6 million sites (5 million different
21-mers) (Fig. 7a). After dimension reduction, we reannotated the site
list with UMAP coordinates to recover the densities. Globally, we
observed distinct patterns of A-to-I RNA editing sites in Alu, repetitive
non-Alu, and nonrepetitive regions (Supplementary Fig. 16c–e).
Repetitive non-Alu and nonrepetitive sites were more centralized in
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k-mer patterns, although repetitive non-Alu sites had a broader range
of k-mer distribution compared with nonrepetitive sites. In contrast,
Alu sites gathered into small clusters far away from the centroid of the
projections.

We then separately applied iMVP to the three types of A-to-I
editing sites to achieve a high-resolution view. We found a consistent
“galaxy-like” sparse view of Alu sites, a “mitosis-like” two-centroid k-

mer distribution in repetitive non-Alu sites, and an “oocyte-like” pat-
tern in nonrepetitive sites with a single centroid (Fig. 7b). To examine
the clusters containing large numbers of data points in-depth, we
applied an approximate clustering strategy based on a density histo-
gram that mimicked the density sketching step in HDBSCAN (Sup-
plementary Fig. 17a). With this strategy, we extracted 143, 52, and 22
large clusters from the projections. (Fig. 7c–e, Supplementary
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Fig. 17b–d, and Supplementary Fig. 18 and19). Interestingly, we found
that the two centroids of repetitive non-Alu sites were located in
poly(U)-tract and poly(A)-tract, respectively (Fig. 7d), which were
mainly from LINE and LTR repeats (Fig. 7f). As homopolymer regions
are prone to high sequencing error rates, we further validated these
two groups of sites using ADAR1 knockout HEK293 cells59. We found
that both sets of sites haddecreased editing levels (Fig. 7g), confirming
that these sites were authentic. For nonrepetitive sites, the centroid
cluster was constituted by the canonical Position −1 G-depletion motif
(Fig. 7e). Taken together, these analyses indicate that iMVP can handle
extremely large datasets and expand our understanding of the
sequence features of A-to-I RNA editing sites.

Discussion
To reveal the biological meanings of RNA modifications, it is vital to
identify authentic modification sites and correlate each of them to the
corresponding writers. However, tools for addressing this issue are
lacking. To solve this problem, we developed an exploratory data
analysis workflow, iMVP, to subtype and visualize the compositions of
putative RNAmodification sites.With the help of dimension reduction
and density-based clustering, we converted the motif discovery
workflow, which traditionally occurs in a black box, into a transparent
visualization issue. We systematically and quantitatively benchmarked
various decomposition and cluster algorithms and selected the best
combination for use in our framework development. Moreover, we
developed an easy to use interactive version of our tool, which sup-
ports both automatic subtype clustering and intuitive subtype parti-
tioning. Notably, although iMVP is not primarily designed for the
search of gappedmotifs, it is still possible to identify suchmotifs if the
input dataset contains a sufficient number of sequences with gapped
patterns. This is exemplified by the identification of two subtypes of
Type III motifs that were found to be gapped motifs (Supplementary
Fig. 13e, f). We demonstrated that iMVP analysis expands our under-
standing of the motifs and writers of RNAmodifications and pinpoints
noise that was previously difficult to identify. With the aid of GPU
acceleration, iMVP is able to handle millions of sites that were pre-
viously unmanageable.

It is worthy to mention that the combination of UMAP and
HDBSCAN is one of the solutions for iMVP. For decomposition, t-SNE
also has excellent performance. For clustering, Leiden and Louvain
may outperform HDBSCAN when the background is not noisy. More-
over, although 2-D spaces are used in both decomposition and clus-
tering in this study, for some complicated datasets, it is possible to
project the k-mer patterns onto a 3 or higher dimension space for
further clustering.

It should be noted that iMVP has some limitations. First, iMVP is
not suitable for application to datasets containing too few sites or sites
without sequence preferences. Second, iMVP is a position-sensitive
strategy, and even with a phase-matching strategy, the current version
may have poor performance when dealing with datasets with high
numbers of phases. Future improvements, such as the use of para-
metricUMAP60 for dimension reduction,may improve its performance

on suchdatasets andbroaden theusageof iMVP (e.g., global analysis in
iCLIP datasets of RNA binding proteins). Third, in the clustering step,
the cluster outputmay varywith different parameters, especiallywhen
extracting clusters from the condensed density tree. Although this
issue may be partially solved by introducing a hyperparameter opti-
mization strategy with DBCV scores61, prior knowledge is still required
for the selection of the proper parameters.

Given the recent rapid progress in the use of Nanopore direct
RNA-seq to discover RNAmodifications, it is expected that more tools
will be developed to compare native and unmodified RNAs and iden-
tify differential sites, i.e., putative modification sites deposited by
various writers. Hundreds of thousands to millions of sites may be
found in a single Nanopore run. As we have shown that iMVP can
handle the extremely large number of A-to-G variant sites, we expect
iMVP to greatly aid in the visualization and interpretation of the
Nanopore direct RNA-seq data in future studies.

Taken together, we anticipate that iMVP will be a valuable tool
that can be rapidly adopted by the epitranscriptomics community and
facilitate epitranscriptomic research in the future.

Methods
Cell culture
HeLa cells were purchased from Cell Bank, Type Culture Collection,
Chinese Academy of Sciences (CBTCCCAS). HeLa cells have been
identity verified using short tandem repeat (STR) analysis by
CBTCCCAS. Cells were maintained in DMEM (Gibco, 11965118) sup-
plemented with 10% FBS (CLARK, FB15015). Cells have been checked
formycoplasma contamination by CBTCCCAS and are routinely tested
for mycoplasma by PCR detection of conditioned medium.

For Nocodazole treatment, wild type or knockout HeLa cells were
first seeded and grown to 50% confluency. For Nop2 knockdown cells,
cells were treated with siRNA for 48hours before nocodazole treat-
ment. Otherwise, cells were treated with 0.1μg/ml nocodazole (Sigma,
M1404) for 48hours and then collected for further experiments.

CRISPR/Cas9-induced mutagenesis
NSUN5 (gRNA, GTATGAGTTGTTGTTGGGAA) knockout cells were
generated via CRISPR/Cas9-induced mutagenesis19. In brief, a gRNA
sequence was designed using CRISPR-ERA (http://CRISPR-ERA.
stanford.edu). The sgRNA template oligonucleotide was synthesized
and cloned into lentiCRISPR v.2 plasmid (Addgene no. 52961). The
plasmid was transfected into the cells using Lipofectamine 3000
(Thermo, L3000015) following the manufacturer’s instructions.
Transfected cells were selected using puromycin. Western blot with
NSUN5 antibody (Proteintech, 15449-1-AP) was used to verify the loss
of NSUN5 protein. NSUN2 and NSUN6 knockout cells generated pre-
viously were used in this study19,21.

RNA interference
For NOP2 knockdown, NOP2 siRNAs (siNOP2-1, GGAGUUCUUA-
GAAGCUAAU; siNOP2-2, GAUCCAGCCGUGAAGACUATT) were
transfected using Lipofectamine RNAiMAX (Thermo, 13778150)

Fig. 6 | Comparison of eight methods of single-base resolution m6A/m6Am
profiling with iMVP. a The diagram showing the m6A profiling methods analyzed.
CIMS and CITS, based on m6A antibody crosslinking to induce mutation (CIMS) or
truncation (CITS) signatures during reverse transcription (RT); m6ACE-seq, m6A
antibody crosslinking and followed by exonuclease digestion;m6A-label-seq, based
on metabolic labeling of m6A to introduce mutation at m6A sites during RT; MAZ-
TER-seq, based on the m6A-sensitive RNA endoribonuclease recognizing ACA
motif; m6A-REF-seq, coupled the m6A-sensitive RNA endoribonuclease cleavage
with FTO treatment as a control; xPore, based on the differential signals fromm6A
modified and unmodified bases in Nanopore direct RNA-seq; DART-seq, based on
YTH-APOBEC1 fusion protein to introduce C-to-Umutation at sites adjacent tom6A

modification. b The global visualization of the aggregated 74,179 m6A candidates.
Themotifs and site numbers of the seven clusters were shown on the right. Cluster
#1-4 are the canonicalm6ARRACHmotifs and cluster #5 is the canonicalm6AmCAG
motif. c The global visualization of m6A/m6Am profiles in different methods based
on the result generated from the aggregated sites.dThe percentages of sites called
from different methods belonging to each cluster shown in c. e Validation of each
cluster derived from antibody-independent profiling methods by m6A-seq enrich-
ment scores. In each cumulative distribution plot, the cluster to be compared was
highlighted in color, input windows were in black, and other clusters were in light
gray. The P values were determined using a two-sided Kolmogorov-Smirnov test.
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following the manufacturer’s instruction. 48 hours after the
transfection, the knockdown efficiency was examined by RT-qPCR
with NOP2 primers (NOP2-F, GCACCCCAGGAACATGAG; NOP2-R,
CACCACCTTGGGGAACTG) and GAPDH (as control) primers
(GAPDH-F, TCAAGGCTGAGAACGGGAAG; GAPDH-R, GGACTCCAC
GACGTACTCAG).

mRNA BS-seq
mRNA BS-seq library construction was performed19. In brief, total RNA
was isolated with TRIzol reagent and Direct-zol RNA MiniPrep kit.
poly(A) + RNA was separated from total RNA using Oligo dT Magnetic
Beads (Vazyme, N403). 100 ng–1μg of poly(A) + RNA was converted
using the EZ RNA methylation kit (Zymo Research, R5002) with a
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modified high-stringency conversion condition (Sulfonation: 3 cycles,
(1) 70 °C, 10min; (2) 64 °C, 45min; Desulfonation: 25 °C for 30min).
The converted RNA was fragmented into 150 − 200 nt fragments in
fragmentation buffer (NEB, E6150) at 94 °C for 8min. The fragmented
RNA was then used for library construction using NEBNext Ultra II
Directional RNA Library Prep Kit. Libraries were sequenced on Hiseq
X10 (Illumina) to produce paired-end 150bp reads (Supplemen-
tary Data 6).

m6A-seq
Polyadenylated RNA, separated from total RNA using Oligo dT Mag-
netic Beads (Vazyme, N403), was fragmented in 1X NEB Next Magne-
siumRNAFragmentationBuffer at94 °C for 5min. 10 ngof fragmented
RNA was saved as input. 10μg fragmented RNA was further incubated
with 5μg rabbit anti-m6A polyclonal antibody (Synaptic Systems, cat-
alog number 202003) in IPP buffer (10mM Tris-HCl pH 7.4, 150mM
NaCl and 0.1% Igepal CA-630) overnight at 4 °C. The m6A-Ab mixture
was then immunoprecipitated by incubation with protein-G magnetic
beads at 4 °C for another 2 hours. RNAwas then eluted from the beads
with IPP buffer containing 0.5mg/ml N6-methyladenosine (Sigma-
Aldrich, M2780). VAHTS strandedmRNA-seq library prep kit (Vazyme,
NR601) was used for library construction. Libraries were sequenced on
HiSeq X (Illumina) to produce paired-end 150 bp reads (Supplemen-
tary Data 6).

Data pre-processing
A summary of the source of data is in Supplementary Data 6.

m5C analysis. All m5C sites analyzed were obtained with standard BS-
seq library preparation and analysis workflow19,32. Thesem5C sites were
in GRCh37 or GRCm38 coordinates.

xPore analysis. The processed data of HEK293T (in GRCh38 coordi-
nates) were obtained from the supplementary table of xPore26. We
retrieved the strand information of the sites based on the provided
gene ID.

m6ACE-seq data analysis. We downloaded the site list from the sup-
plementary table of Koh et al51.

ModTect analysis. The site lists of ModTect in hg19 (GRCh37) coor-
dinates were obtained from the supplementary table. Only sites with
no ambiguous strand direction were used in our analysis.We spiked 14
known modified sequences (Supplementary Data 5) into the ModTect
dataset for analysis.

m6A method comparison. We performed the m6A method compar-
ison analyses using Ensembl GRCh38 coordinates. We first down-
loaded the site list from the supplementary tables of Linder et al10.
(CITS/CIMS), Shu et al55. (m6A-label-seq), Pandey et al56. (MAZTER-seq),
Zhang et al57. (m6A-REF-seq), Meyer58 (DART-seq), and Pratanwanich
et al26. (xPore). For m6A-label-seq data, we retrieved the genomic
coordinates based on the RefSeq id and sequences. For DART-seq, we
assigned the m6A sites adjacent to the C-to-U signals. For sites in hg19

format, we used UCSC liftOver tool to convert them to Ensembl
GRCh38 format. The summarized site list is in Supplementary Data 2.

RNA editing analysis. The site list (hg38) was downloaded from
REDIportal25. We grouped the sites into Alu, repetitive non-Alu, and
nonrepetitive sites based on the annotations in the original table.

The iMVP framework
For each analysis, we provided the codes, example inputs, and exam-
ple outputs in detail in Juypter-Notebook (https://github.com/sysu-
zhanglab/iMVP). Our package (including helper functions and the
interactive interface) is available on Python Package Index (Pypi):
iMVP-utils. Documents of our analysis and the package can be found
on https://imvp.readthedocs.io/. In brief, we encoded the 10 nt flank-
ing sequences of the sites into one-hot encoded format, and then
projected the encoded sequences onto a 2-D plane with UMAP. We
used HDBSCAN to split the projections based on the density contours.
If stubborn clusters (e.g., two high-density clusters connect with a
linkage) encountered, we further split those clusters with HDBSCAN
andmerged the small clustersmanually basedon the density contours.
Density Based Cluster Validity (DBCV), which is implemented in the
HDBSCAN API, may be used to search for suitable combination of the
parameters. For Leiden, the Significance of Hierarchical Clustering
(SHC) may be used to calculate the quality of clustering62.

In particular, for phase matching, we first built the 21-mer
sequences for the −2, −1, 0, +1, +2 phases of the signals, then we per-
formedphase-matching based on the patterns of clusters. Coordinates
of phase-matched sites were re-computed to match the positions of
the “A”s. For RNA editing site analysis, we used a single RTX2080Ti
GPU for UMAP analysis. In the test run, we found a 46-fold boost in
UMAP, allowing us to project up to 5 million 21-mer sequences within
15min. However, CPU-based HDBSCAN is still the best practice
because of the shorter runtime and the more flexible memory alloca-
tion. The computation of UMAP of k-mers was finished within 1 hour,
where the majority of the time was spent on I/O and encoding process
rather than UMAP computation (less than 15min).

We set up our analysis (CPU-based) with Python 3.7, and the fol-
lowing core packages were used: Pandas (v1.3.4), Numpy (v1.20.0),
Scipy (v1.5.1), Scikit-learn (v0.23.1), biopython (v1.77), hdbscan
(v0.8.27), umap-learn (v0.5.2), openTSEN (v0.6.1), louvain (v0.7.1),
leidenalg (v0.8.8), dash (v2.2.0), dahs-bio (v0.9.0), imageio (v2.13.5),
weblogo (v3.7.0), and opencv-python (v4.5.5). For GPU-based analysis,
we used the Docker container provided by NVIDIA: RAPIDS release
22.02 in Ubuntu 18.04, Python 3.8, and CUDA 11.5. The workflow was
run on a RTX2080Ti with 11 Gb memory. The parameters and opera-
tions of each analysis were summarized in Supplementary Data 7.

Calculation of outgroup-ingroup score and boundary score
Outgroup-ingroup score was defined as the coefficient of variation
(CV) ratio between outgroupdistances and ingroup distances. Ingroup
and outgroup distances were defined as the Euclidean distances
between a data point to the centroid of a group:

D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � �xÞ2 + ðy� �yÞ2
q

, where x and y are the X-Y coordinate of a data

Fig. 7 | GPU-accelerated iMVP analysis of an extremely large A-to-I RNA editing
dataset in REDIportal. aThe schemaof the analysis. The dimension reduction was
done with UMAP API in RAPIDS. The large clusters in the projections were then
extracted by HDBSCAN or density histogram. b The density histogram of UMAP
projections of 21-mers of A-to-I editing sites in Alu, repetitive non-Alu, and non-
repetitive regions. 3,845,894, 794,349, and 441,674 different types of k-mers were
analyzed separately. Then the real number of sites was used for density calculation.
c-e Examples of the motifs of specific clusters from Alu, repetitive non-Alu, and

non-repetitive sites. f The fractions of different types of repeat elements in the
poly(U)-tract and poly(A) tract shown in d. g Boxplots showing the editing level
changes of editing sites located in the Ploy(U)-track and Ploy(A)-tract betweenwild-
type (WT) and ADAR1 knockout (KO) HEK293 cells. n = 1 for each type of cells. We
required that the sites were covered by at least 10 reads in both samples. P values
were calculatedby a two-sidedpaired samplesWilcoxon test. Boxplots: 25th to 75th
percentiles (boxes), medians (horizonal lines), and 1.5 times of the interquartile
range (whiskers).
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point, and �x and �y are the mean of all data points of a group. Then the
standard deviation of ingroup distances (SDingroup) and outgroup
distances (SDoutgroup) and the means of them (Meaningroup and
Meanoutgroup) were calculated. Outgroup-ingroup score was then

obtained via the following formula: Score =
CVoutgroup

CVingroup
=

SDoutgroup=Meanoutgroup

SDingroup=Meaningroup
.

If sites in a group aremore condensed, a lower ingroupCV is expected;
if the sites in different groups are better separated, a higher outgroup
CV is expected. Hence, algorithms with better performance will have
higher outgroup-ingroup scores.

Boundary scorewas calculated as below.We first searched for the
top 50 nearest neighbors for each data point. Next, we calculated
theproportions (P) of theneighbors thatwerenot in the samegroupof
the data point. Last, all proportions were aggregated to draw a
cumulative distribution (Supplementary Fig. 1a). Boundary score was
defined as the ratio of the sites whose P > 0.1. Hence, higher boundary
scores mean that more sites were projected to form ambiguous
boundaries. This score is complementary to the outgroup-ingroup
score to describe the discernibility of the algorithm.

Calculation of ARI
ARI was calculated by sklearn.metrics.adjusted_rand_score function.

Parameter optimization for MEME, STREME and HOMER
For MEME, we fine-tuned parameters including maxw, mods, marko-
v_order, and objfuns. Given that our simulation dataset comprised 10
motifs, each with a length exceeding 6, we established specific para-
meter values to optimize the performance of MEME. We set the mini-
mummotif width (minw) to 6 and the number ofmotifs (nmotifs) to 10.
Additionally, we explored various values for the maximummotif width
(maxw), including 8, 12, and 15.We also varied theMarkovmodel orders
(markov_order) from 0 to 3. The mod parameter encompassed zoops,
anr, and oops schemas, while the objfuns parameter encompassed the
classic, de, se, cd, nc, and ce algorithms. This exploration resulted in the
generation of 192 parameter sets for comprehensive testing.

For HOMER, to address the constraints of HOMER, which is lim-
ited to searching formotifs of a single specific length,weperformed an
analysis using a set of seven length parameters, spanning from 6 to 12.
We also set the number of motifs to 10. The mean values were used to
represent the performance of HOMER.

For STREME, we adjusted the two parameters: maxw and objfun.
Themaxwparameterwas varied across three values: 8, 12, and 15.while
the objfun parameter included two options: cd or ce. This led to 6
parameter sets being tested.

E-value calculation
E-values of the motifs were calculated by Simple Enrichment Analysis
(SEA) of MEME (v5.0.0). All E-values, p-values, and q-values of the
motifs presented in the study were shown in Supplementary Data 8.

KL divergence
KL divergences were calculated by MotifSuite63. A customized script
based on Biopython.motifs API was used to generate the PWM format
input for MotifSuite.

Motif drawing and motif finder analysis
We used Weblogo (v3.7.0) to plot the motifs of selected sequences.
MEME/ STREME (v5.3.3) and HOMER (v4.11) were used in motif
discovery.

mRNA BS-seq data analysis
mRNA m5C sites were called as we previously described19. We first
trimmed adapters, the first 10 bp of the reads, the last 6 bp of the
reads, and the low-quality bases using Cutadapt (-e 0.25 -q 25 -trim-n)64

and Trimmomatic65. Then clean reads were mapped to the in silico
converted genome by HISAT2 (-k 10,–fr,–rna-strandness FR,–no-
mixed)66 to obtain unique alignments. The remaining unmapped and
multiple mapped reads were further mapped to the in silico con-
verted transcriptome by Bowtie2 (-end-to-end,–fr,–gbar 5,–mp 5, -k
10, -R 2, -D 5)67. Alignment results were merged, and only bases with
high quality (Q ≥ 30) were used for the variant calling. Last, the sites
were called using a series of filters as previously described19. The
methylation level (mismatch frequency) is defined as the number of
reads with C divided by the number of reads with C or T.

RNA structure prediction and illustration
RNA secondary structure was predicted using RNAfold (2.4.12)68 with
default settings. The m5C sites and 50 nt flanking sequences were
extracted from the genome. The folding frequencies of each base of
the sites with their 25 nt flanking sequences were shown.

m6A-seq analysis
We first trimmed adapters using Cutadapt64 (-e 0.1 -q 20 -m 20 --trim-n).
Cleaned reads were then mapped to GRCh38 (Ensembl release 104)
genome and transcriptome by HISAT2 with default settings in strand-
specific mode66. Only unique alignments were transformed into bed-
Graph for further analysis. m6A peak analysis was performed as pre-
viously described with some modification50. In brief, each gene
was split into 50-nucleotide sliding windows and an enrichment
fold (winscore) was calculated for each window:winscore =
log 2ð MeanWinIP=MedianGeneIP

MeanWinControl=MedianGeneControlÞ. MeanWinIP and MeanWinControl are
themean coverage for each window for immunoprecipitation and input
control, respectively. MedianGeneIP and MedianGeneControl are gene
median coverages for immunoprecipitation and input control, respec-
tively. To examine the enrichments of each cluster, we compared the
cumulative distributions of the winscores of each cluster with back-
ground winscores.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon reasonable request. The sequencing data
generated in this study have been deposited in the GEO database: BS-
seq of HeLa cells with NSUN protein deficiency: GSE197650; control
HeLa cells: GSM5319029; m6A-seq data generated in this study:
GSE198955. Source data for the figures and supplementary figures are
provided as a Source Data file. Source data are provided in this paper.

Code availability
The source code is published at https://github.com/SYSU-zhanglab/
iMVP. https://doi.org/10.5281/zenodo.8286943.
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