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Efficient combinatorial optimization by
quantum-inspired parallel annealing in
analogue memristor crossbar

Mingrui Jiang 1, Keyi Shan1, Chengping He1 & Can Li 1

Combinatorial optimization problems are prevalent in various fields, but
obtaining exact solutions remains challenging due to the combinatorial
explosion with increasing problem size. Special-purpose hardware such as
Ising machines, particularly memristor-based analog Ising machines, have
emerged as promising solutions. However, existing simulate-annealing-based
implementations have not fully exploited the inherent parallelism and analog
storage/processing features ofmemristor crossbar arrays. This work proposes
a quantum-inspired parallel annealingmethod that enables full parallelism and
improves solution quality, resulting in significant speed and energy improve-
ment when implemented in analog memristor crossbars. We experimentally
solved tasks, including unweighted and weighted Max-Cut and traveling
salesman problem, using our integrated memristor chip. The quantum-
inspired parallel annealing method implemented in memristor-based hard-
ware has demonstrated significant improvements in time- and energy-
efficiency compared to previously reported simulated annealing and Ising
machine implemented on other technologies. This is because our approach
effectively exploits the natural parallelism, analog conductance states, and all-
to-all connection provided by memristor technology, promising its potential
for solving complex optimization problems with greater efficiency.

Combinatorial optimization problems (COPs) are ubiquitous in social
life and industry, with diverse applications spanning computer sci-
ence, engineering, chemistry, logistics, economics, and beyond1–3.
Unfortunately, exact solutions are notoriously challenging to obtain
due to the combinatorial explosion that occurs as problem size
increases. Consequently, special-purpose hardware such as Ising
machines are increasingly sought after to efficiently solve COPs by
mapping them to the Ising model, a statistical model that describes a
physical systemcomprising spins that interactwith one another,which
tends to evolve into the lowest system energy4,5. Although classical
computers can emulate the process, their efficiency is significantly
limited due to their digital and serial nature and the property of
separated memory and processing units. To overcome these limita-
tions, researchers have explored various analog technologies

including superconducting qubits6,7, coherent lights8–10, CMOS
oscillators11,12, nano oscillators13–15, and memristors-based analog Ising
machines16–18. Among these, memristor-based machines offer parti-
cular promise with their speed and energy efficiency, natural all-to-all
connections, and compatibility with electronic computing
ecosystems.

Nonetheless, existing memristor-based demonstrations have not
fully exploited the massive parallelism and analog storage/processing
features ofmemristor crossbar arrays. Previous worksmainly relied on
simulated annealing and its variants to obtain the optimal solution and
thus were limited to the serial updating nature of simulated
annealing16–23. Consequently, in these implementations, thememristor
crossbar performed only one vector-vector dot-product operation at a
time, rather than a vector-matrix multiplication, resulting in a huge
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waste of the natural parallelism provided by the memristor crossbar
array. Adiabatic annealing as another annealing method with solid
theoretical background which has successfully implemented in quan-
tum systems, recently has demonstrated effectiveness with classical
memristor-based platforms24, shedding light on possible parallel
updates. However, in this pioneer work, simulated annealing is still
required in the solving process in addition to adiabatic annealing and
thus does not get rid of its serial updating limitation24. Moreover, most
previous works only demonstrated binarizedmemristor conductance,
instead of analog values to represent arbitrary coupling strength in
representing the problem, limiting the complexity of the problem that
it can solve25.

In this work, we demonstrated quantum-inspired parallel anneal-
ing (QPA) implemented in analogmemristor crossbar can improve the
solution quality and enable full parallelism, leading to significant speed
and energy improvements. To minimize the system energy while
compatible with the QPA, we developed a constrained gradient-
descent method that was inspired from the training process of binary
neural networks (BiNNs). Various tasks including 64-node unweighted,
weighted Max-Cut and nine-city traveling salesman problem (TSP)
were experimentally solved with the novel QPA scheme on our inte-
grated memristor chip. By fully leveraging the advantages brought by
thenew technology, including natural parallelism, analog conductance
states, and all-to-all connection, our memristor-based QPA demon-
strated significant performance improvement. Our approach yielded a
2.3× speed benefits compared to the fastest reported results from
memristor-based Hopfield networks (mem-HNN), 3.1× increase in
energy efficiency over themost energy-efficient phase-transition nano-
oscillators (PTNO) based continuous-time dynamic system reported in
the literature, and orders of magnitude advantages than other tech-
nologies, including oscillator, digital, coherent light, and quantum
systems.

Results
Quantum-inspired parallel annealing (QPA)
COPs can be reformulated as Ising models. To solve the problem is to
find the ground state of a certain energy function known as Ising
Hamiltonian, expressed as

HIsing = �
X
i<j

Jijσiσj �
X
i

hiσi = � 1
2
σT Jσ � hTσ ð1Þ

where σ = σ1,σ2, . . . , σi,. . . , σN

� �
is the spin configuration vector that

encodes the problem’s solution, with each component σi being a
binary value {−1, 1} representing the two states of spin-up and spin-
down. J is a square and symmetric coupling matrix of size N ×N, with
each element representing the ferromagnetic or antiferromagnetic
connections between two spins. h is a local-field term introduced for
generality.

In physical quantum systems, the annealing process to solve such a
model is accomplished by adiabatic evolution26–28. It starts with a simple
HamiltonianHinitial, ofwhich the ground state canbe easily found (e.g., a
transverse field Hamiltonian Hinitial = �P

i
σx
i )

26,27,29 and gradually shifts

to the Ising Hamiltonian HIsing = �Pi<j Jijσ
z
i σ

z
j , expressed as

Hsystem tð Þ=A tð ÞHinitial +B tð ÞHIsing ð2Þ

With A(t) gradually changes from 1 to 0 and B(t) gradually changes
from 0 to 1. Ideally, a physical system can always retain the minimum-
energy state and thus the system can eventually evolve to the ground
state of the Ising Hamiltonian and solve the corresponding COP.

However, in this quantum version of adiabatic annealing, the spin
is represented by a Pauli matrix rather than a discrete value, which is
not suitable for our current classical analog memristor crossbar to

emulate. Therefore, we adjusted it for easier implementation in our
analog memristor crossbar and proposed a new classical version of
adiabatic annealing, in which the spin σi is represented by a discrete
value, either 1 or −1. In order to conduct annealing, an analog variable
xi is introduced to represent the intermediate spin states and can be
deemed as a classical “superposition” of the spin. The real spin con-
figuration of σi is taken as the sign of xi. Similarly with the quantum
version, we implemented a time-dependent system Hamiltonian:

Hsystem tð Þ= λ tð ÞHinitial +HIsing ð3Þ

where, λðtÞ is a time-dependent coefficient, which starts with a
sufficiently large value and gradually decreases to 0 during the solving
process. Hinitial is the initial Hamiltonian and can be arbitrary function
the ground state (globalminimum)ofwhichcanbe easily found. In this
work, we chose Hinitial =

1
2

P
ix

2
i , one of the simplest convex functions

(different choice of Hinitial and their comparisons can be found in Fig.
S1). In the solving process, the system is first dominated by Hinitial and
will gradually shift to HIsing, thus leading to the ground state of HIsing.
However, unlike real physical systems that naturally tend to evolve
towards the lowest energy state during adiabatic evolution, our
adiabatic Hamiltonian shift requires the development of an algorithm
to enable manual updating of spins and thus lower the energy.

To address this challenge, we applied gradient descent, a popular
optimization technique used in artificial neural network training30, to
help the system dynamically evolve into lower system Hamiltonian
during adiabatic shift. However, vanilla gradient descent cannot be
applied in this casedue to the discrete nature of the spin configuration.
Each update can only flip the sign of the spin configuration, leading to
divergence. To overcome this limitation and inspired by the training of
binary neural networks (BiNN), we turned to the straight through
estimator (STE) algorithm, amodified version of gradient descent that
shows great success in the field of neural networks31–33. The key idea
behind STE is to introducea full-precision “latent”weight as a proxy for
the binaryweight, which is binarized in the forward and backwardpath
to calculate the gradient value. This gradient value is thendirectly used
as an estimator to update the full-precision “latent” weight. Interest-
ingly, the analog intermediate spin variable xi that we introduced
earlier to represent the classical “superposition” of the spin states
shares similar properties with the “latent”weight and can thus serve as
a proxy for the spin.

To implement the STE algorithm in our Ising machine, we first
projected the analog spin variable x onto the binary domain using a
sign function to obtain the real spin configuration σ. The real spin
configuration was then used to calculate the gradient of the system
Hamiltonian. Specifically, the gradient is given by

gradient =∇Hsystem =∇HIsing + λ tð Þ∇HInitial = � Jσ � h+ λ tð Þx ð4Þ

We then used this gradient to update the analog spin proxy x as

x t + 1ð Þ=x tð Þ � η � gradient ð5Þ

where η is the step size. To improve the performance of the algorithm,
we have implemented two commonly used techniques from stochastic
gradient descent in neural network training: clipping andmomentum,
which arewidely used in stochastic gradient descent in neural network
training. More techniques from modern neural networks can poten-
tially be applied to further improve performance in the future. For
more details about the algorithm that we have implemented, please
refer to the Methods section and more discussion and comparison of
the updating techniques can be seen in Fig. S2. Notably, the gradient-
based updating was simultaneously applied with the adiabatic
Hamiltonian shift to dynamically find the ground state of the current
system Hamiltonian and eventually evolve to the ground state of the
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Ising Hamiltonian. During the solving process, the Ising couplings
between each pair of spins were stored in the memristor crossbar as
analog conductance values in an all-to-all manner, which can be used
in situ for calculating the gradient of the Ising Hamiltonian in a single
step. Therefore, all outputs from the memristor crossbar can be
utilized for updating the spins, thus preserving its parallel and analog
nature. The key property of our QPA implemented in the analog
memristor crossbar and its differencewith previous simulated thermal
annealing were summarized in Fig. 1.

DemonstratingQPA inmemristor crossbar forMax-Cutproblem
To demonstrate the solving ability of our proposed QPA in memristor
crossbar, we chose Max-Cut as the benchmark problem. Max-Cut is a
classical and widely studied NP-hard combinatorial optimization pro-
blem, that is commonly used to benchmark Ising machines5,34. The
choice is due to its directmap-ability to the Isingmodel and significant
practical applications, which include integrated circuit routing, com-
puter vision and data clustering, etc. The Max-Cut problem involves
dividing all vertices V of a given a graph GðV ,EÞ into two sets in a way
that cuts themaximumnumber of edges connecting nodes in different

sets. A detailed explanation of how we mapped this problem to Ising
model can be found in the Methods section. In our implementation,
the Ising couplings were stored in the memristor crossbar as analog
conductance values, which were programmed with an iterative write-
and-verify approach. The memristor crossbar was then used for com-
puting gradient by performing matrix multiplication in the analog
domain, while the part of spin updating was performed in the digital
domain (Fig. 2a). All experiments were conducted on our integrated
memristor chip, which consists of multiple 64 × 64 one-transistor one-
memristor (1T1M) arrays with necessary peripheral circuits including
drivers, multiplexers (MUXs), transimpedance amplifiers (TIAs) and
analog-to-digital converters (ADCs) (Fig. 2b). In this demonstration, a
personal computer (PC) was used for controlling the chip and updat-
ing the spins (Fig. 2a). More details about experiment set-up and
electrical characteristics of our memristor device can be found in Figs.
S3 and S4.

We started with a 50%-density (50% of edges are connected)
unweighted 64-node Max-Cut problem to ensure a fair comparison
with recently reported results16. The Ising coupling matrix mapped
from the problem is shown in Fig. 2c. As only negative Ising coupling
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Fig. 1 | Keyproperties ofquantum-inspiredparallel annealing and itsdifference
with simulated thermal annealing. Simulated thermal annealing, also known as
simulated annealing, has a serial updating nature and differs from our quantum-
inspired parallel annealing in terms of annealing strategy, updating scheme, and
hardware implementation methods. For the annealing strategy, simulated anneal-
ing utilizes decreasing noises to get out of the local minimum. Our quantum-
inspired parallel annealing is based on the adiabatic shift of the Hamiltonian
landscape. For the updating scheme, simulated annealing only supports updating a

single spin at each iteration. Our quantum-inspired parallel annealing introduces
classical “superposition” as the intermediate spin state. At each iteration, all clas-
sical “superpositions” are updated simultaneously by using the gradient calculated
by binary spins. For the hardware implementation methods, simulated annealing
only utilizes one column of the memristor crossbar array at each update. Our
quantum-inspired parallel annealing utilizes the entire array and thus fully unlea-
shes the natural parallelism of memristor crossbar.
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is needed in Max-Cut problems and conductance value can only be
positive, minus Ising coupling (−J) was converted into conductance
values ranging from 0 to 150 µS. After configuring the conductance
values into the hardware, we experimentally read out the resulting
conductance matrix, which is shown in Fig. 2d. The agreement
between the mapped and experimentally read-out matrices
demonstrated the good performance of our device and hardware
platform. Once programmed, we experimentally solved the pro-
blem using the QPA described earlier without changing the mem-
ristor conductance values. In the solving process, the memristor
crossbar was used for calculating the gradient, which is basically the
vector-matrix multiplication operation, in a single step. While the
spin updating including the addition of the gradient of initial
Hamiltonian and the updating of classical “superposition” x was
performed by the controlling PC in the digital domain at the current
demonstration stage and can be further moved to the chip with

customized digital circuits in the futural design. A detailed flow
chart can be found in Fig. S5.

After that, the performance of QPA was compared with that of a
naïve discrete-time Hopfield neural network (DHNN) and simulated
annealing (denoted as SA for short) with different annealing time (total
iterations) in Fig. 2e, f. DHNN is a local search algorithm, which serially
update the spins towards lower energy states35. The SA implementa-
tion here involved adding noises with decreasing amplitude to DHNN,
equivalent to the decreasing “temperature” in classical SA imple-
mentation and is commonly used in memristor-based
implementations16,17,22,36. The noise level in SA (the standard deviation
of the Gaussian distributed noises) changed linearly from 2 to 0
throughout the iterations. Similarly, for our proposed QPA, λ changed
linearly from 10 to 0, with a fixed step size η = 0.01 used for the gra-
dient descent part (further discussion about the choice of λ and step
size η can be seen in Fig. S6 and Fig. S7, respectively). The results
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Fig. 2 | Experimental demonstration of QPA in memristor crossbar array.
a Schematic of experiment set-up. A general-purpose computer controls the
integrated memristor chip, which stores the Ising coupling matrix values and
computes the gradient in the analog domain, and implements the part of spin
updating in the digital domain. b Optical image of the integrated memristor chip,
which consists of multiple 64 × 64 one-transistor-one-memristor (1T1M) arrays
with necessary peripheral circuits including drivers, multiplexers (MUXs), tran-
simpedance amplifiers (TIAs) and analog-to-digital converters (ADCs) c Ising
coupling matrix of a target 64-node 50%-density Max-Cut problem, and
d experimental read-out conductance value after programming the Ising coupling
onto thememristor crossbar array. “0”s are programmed to target 0 µS,while “−1”s
target 150 µS. e, f Performance comparison of QPA, SA, and DHNN in terms of
e success probability and f average solution gap (solution gap = optimalmaximum

cut − obtained cut) across different total iterations. One iteration represents one
attempt to update the spins. The blue dashed line shows the simulation result of
QPA, which shows strong agreement with experiment data. Each data point is
calculated based on 100 different trials from random initial states. g The rela-
tionshipbetween success probability and problemdensity for different techniques
including our QPA, SA, CIM, and D-Wave. The shaded area in the plot shows
interquartile range (25–75%). For each problem density, 20 randomly generated
problem instances are solved. 1000 trials are conducted for each problem instance
to calculate the success probability. For QPA and SA, the annealing time is 1000
iterations, which takes 1000 µs if assuming each iteration takes 1 µs. For CIM andD-
Wave, the annealing time is also 1000 µs. The results for CIM and D-Wave are
replotted from ref. 34. The average solution gapplot forQPA and SA can be seen in
Fig. S8.
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demonstrate that the DHNN without annealing has negligible chance
of success because of the local search nature, while our proposed
method clear gave a better solution in terms of both the success
probability of reaching the maximum cut value (ground state) and
average cut value with the same total iterations than SA. This is owing
to the parallelism of the proposed method, which enabled the system
to process and preserve more information in a single iteration. Fur-
thermore, the speed of annealing was affected by the change in the
total iteration number in this experiment, as the noise level in SA and
the coefficient of initial Hamiltonian λ in our QPA changed linearly
throughout the iterations. The success probability of SA would even-
tually reach 100% with sufficient number of iterations, because it has
been established that the convergence of SA is guaranteed if the
“temperature” changes sufficiently slow37. The same is true for adia-
batic annealing in quantum systems,where the transfer from the initial
Hamiltonian to the Ising Hamiltonian should be sufficient slow (that is
obeying the adiabatic evolution rule) to guarantee the system to stay in
the ground state26,38. This alsomight be true for our classical version of
adiabatic annealing according to the experiment result that success
probability continues to grow with the increasing of total iteration
number. We expect theoretical proof to follow in the future.

We further investigated how the performance changes with dif-
ferent problem densities and compared the results with those
obtained using other techniques (Fig. 2g). Due to the lack of guaran-
teed convergence without annealing, DHNN was not compared in this
analysis. Owing to experimental hardware resource limitations, we
used our experimentally-validate memristor crossbar model39, taking
into consideration of non-ideal factors in experiments, which has
demonstrated high agreement with the experimental data (Fig. 2e, f)
for the experiments we described before. Our findings show that QPA
can achieve a higher success probability than all competitive approa-
ches including SA, the coherent Ising machine (CIM), and the D-Wave
quantum annealer34. In addition, since the memristor crossbar array is
naturally dense and thus has all-to-all connectivity, the proposed sys-
tem can easily handle problems with varying density.

All-to-all connected weighted Max-Cut solving
Onemajor distinction between ourmethod and other techniques used
in Ising machines is the use of memristor crossbar array to store
coupling strength, which offers a unique feature: each cross-point can
be programmed to an arbitrary conductance state, enabling the
representation of arbitrary coupling strength between any spins with
all-to-all connectivity. As practical problems usually require more
levels of coupling strength, this feature allows systems based on our
approach to solve such problems without any additional hardware
cost, so as to significantly improve both speed and energy efficiency.

Our previous results already certified that our system can be used
to solve highly dense Max-Cut problems. In addition to unweighted
ones, we experimentally solved an all-to-all connected weighted Max-
Cut problem to fully exploit the analog storage and processing cap-
ability of memristor crossbar array. First, a random weighted Max-Cut
problem was generated, where the weight of each edge randomly was
assigned a random 16-bit integer (from 0 to 65,535) (Fig. 3a). The
problemwas thenmapped to aproper conductance range (0 to 150 µS)
and programmed onto the memristor crossbar array (Fig. 3b). The
programming and computing accuracies are illustrated in Figs. 3c and
3d, respectively. The results were compared with SA and DHNN. Fig-
ure 3e shows the evolution of the cut value during the solving pro-
cessing, while the final solution distribution is plotted in Fig. 3f. The
evolving process of the classical “superposition” can be observed in
Fig. S10. Similar to the unweighted Max-Cut problem, our approach
obtains a significantly better solution within a certain number of
iterations.

As the weight value became an arbitrary value and introduces
more energy states, the problem became harder to solve and resulted

in the poorer performance of SA and DHNN than when they were used
to solve unweighted problems, with limited annealing time (Fig. 3e, f).
However, our QPA exhibited great performance: 48 out of 100 trials
with random initial states finally converge to the true ground state,
while neither SA nor DHNN finds the optimal solution even once.
Although the variation of memristor inhibited it from being perfectly
programmed to a given conductance state, our experimental result
confirmed that the current programming accuracy is enough to solve
COPs with digital-comparable success probability. Further simulation
with different conductance variations was conducted to examine the
impact of programming error of memristor crossbar array (Fig. 3g).
With a large conductance variation, the success probability of reaching
the optimal solution decreases. However, with relatively small con-
ductance variation (0 to 5 µS), the average solution quality, in terms of
both success probability (blue line) and the cut-values (red line), shows
negligible degradation, and our experimental conductance variation
(about 2.36 µS as shown in Fig. 3c) is far from the value where the
accuracy shows noticeable degradation. In addition, the conductance
variation of memristor device can potentially be further reduced with
new material stack and denoising techniques to enhance the
performance40 in future systems. For most practical applications sce-
narios where good-enough sub-optimal solution are accepted, such as
99.5% of the maximum cut value, the analog computing system
demonstrates even better tolerance to conductance variation, as
shown in almost non-degraded accuracy in Fig. 3g (blue line with
pentagonmarkers), for conductance up to 10 µS (more than four times
our experimental value). This illustrates that the heuristic approach of
Ising method is particularly suited for analog computing hardware.
Further simulation about the conductance relaxation effect of mem-
ristor device can be seen in Fig. S11, which shows that our system still
gets acceptable solutions with limited performance degradation after
a long retention time.

Furthermore, we investigated how the time-to-solution (TTS) of
different approaches scales with the problem size by simulation
(Fig. 3h). TTS is defined as the time required to guarantee a 99% suc-
cess probability of reaching the global optimal solution, typically
achieved by performingmultiple annealing runs and selecting the best
result. Therefore, the TTS can be quantitatively calculated as
TTS=Tann

lgð1�0:99Þ
lgð1�PÞ

l m
, where Tann is the annealing time needed for a

single run, and P is the success probability of a single run. The success
probability used for calculating TTS can be found in Fig. S12, while the
scaling trend of unweighted Max-Cut problem is shown in Fig. S13
along with the exploration of the scaling trend for much larger pro-
blems shown in Fig. S14. Further discussion on the hardness of the
problem can also be seen in Fig. S15. Notably, for QPA, the results
shownherewere fromsimulation considering experimentally available
computing error, while for SA, the results were obtained by defect-free
simulation, so the actual improvement over SA is larger than what we
reported here. Our results in Fig. 3g show that the time complexity of
both approaches scales exponentially with the square root of problem
size N, i.e., TTS=aeb

ffiffiffi
N

p
where a and b are constants, consistent with

previous studies34,41. Although our proposed QPA shows a similar
scaling trend to SA, the scaling factors are considerably smaller, indi-
cating a more significant scaling advantage. For example, with a pro-
blem sizeofN = 120, the TTSof the proposedmethod is 46× lower than
that of SA.Moreover, by simply extrapolating the curves, the speed-up
ratio is expected to increase with problem size.

Traveling salesman problem
In addition to its capability of solving Max-Cut problems, our
memristor-based system has the potential to be used for solving other
types of combinatorial optimization problems (COPs) due to the uni-
versality of the Ising model4. To demonstrate this, we chose traveling
salesman problem (TSP) as another classical COP benchmark task. TSP
involves finding the shortest path that visits each city once and returns
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to the starting city, and has various applications in scheduling and
routing problems. To map TSP to the Ising model, we used N � 1ð Þ2
spins,whereN represents the number of cities, and arranged them to a
N � 1ð Þ× N � 1ð Þ matrix with rows representing the cities and columns
representing the visiting order (Fig. 4a, b). Each row and column
should have exactly one spin in the spin-up state to satisfy the con-
straint that all cities must be visited once and only once. We adopted a
binary bit formula (either 0 or 1) for the spin variable, bi, with bi � σi + 1

2 ,
where σi is the spin value, which is either −1 or 1, representing spin-
down and spin-up states, respectively. The energy is conveniently
phrased using this formula, and the coupling matrix J and bias h are
modified accordingly4. The detailed process of mapping TSP to the
Ising model is presented in the methods section.

Figure 4c, d shows the ideal Ising coupling strength and experi-
mental read-out conductancematrix aftermapping the target problem
in Fig. 4a into conductance and configuring it into the memristor
hardware (More details about the target problem can be found in Fig.
S16). Then, the problemwas experimentally solvedwith the integrated

memristor chip by implementing QPA. And the Ising Hamiltonian
evolutionwas compared to DHNN and SA in Fig. 4e, similar to theMax-
Cut problem. The final solution obtained by different solvers after
1000 iterations were compared in Fig. 4f. QPA achieved amuch higher
solution quality with the same number of total iterations, generating
more valid tours and finding tours with a smaller minimum and aver-
age distance. This demonstrates the effectiveness of our approach in
solving TSP. Further scaling simulation results on solving practical
problems in TSPLIB42 can be seen in Fig. S17. Moreover, the benefits of
the analog property of our memristor device enabled a significant
reduction in the number of device cells needed to solve TSP. For
example, to solve a 10-city TSP, the array size can be reduced from
526× 200 to 81 × 81, resulting in a 16.03× deduction in hardware cost
compared to the implementation in ref. 22.

It is worth noting that the mapping method from TSP to Ising
model may face scalability issues because the required spin number
increases with the square of the number of the cities to visit. The
problem can be mitigated by advanced clustering techniques, by

a c
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Fig. 3 | Weighted Max-Cut problem with analog conductance values for Ising
coupling. a Normalized Ising coupling matrix (−J/max(−J)) of a randomly gener-
ated 64-node all-to-all connected Max-Cut problem. Each connection strength is
randomly selected from a 16-bit integer (0 to 65,535) b Experimental read-out
conductance matrix after programming the Ising coupling to the memristor
crossbar array, with themaximumcoupling strengthprogrammed targeting 150 µS.
c Distribution of programming error, with the dash line showing the Gaussian
distribution fitting with a mean of 0.29 µS and a standard deviation of 2.36 µS.
d Distribution of computing error of the analog memristor crossbar with 1000
random input vectors. The dashed line indicates a Gaussian distribution with a
mean of 0.26 µA and a standard deviation of 17.19 µA. The full output range is about
−750 to 750 µA.Thedirect scatter plot of the experimental resultwith respect to the
expected result can be found in Fig. S9. e The calculated cut-values during the
solving process with QPA, DHNN, and SA schemes. The goal is to get themaximum

possible cut value. The cut-values shown here are normalized by dividing the
obtained cut value by the optimalmaximumcut. The light color lines represent 100
different trials from random initial spin configurations, and the dark color lines
represent the average cut value. The annealing time for all three methods is 1000
iterations. f The corresponding solution cut distribution of three methods. g The
impact of conductance variations of memristors. For each data point, 20 randomly
generated problem instances are solved 1000 times with random initial spin con-
figuration. The blue lines with square, round, and pentagon markers represent the
success probability to optimalmaximum cut, 99.9% of themaximumcut and 99.5%
of the maximum cut, respectively. h Scaling trend of time-to-solution (TTS) with
problem size. For eachproblemsize, 20 randomlygeneratedproblem instances are
solved 1000 times with random initial spin configuration. The shaded area in the
plot shows interquartile range, the square marker indicates the median, and the
dashed line shows the fit of TTS=aeb

ffiffiffi
N

p
.
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breaking down a large problem to several levels of smaller
problems43,44. In this case, the solving speed and the solution quality of
small problems can be crucial to the entire large problem. Therefore,
the analog property of the device, combined with the parallel
quantum-inspired annealing of ourmemristor-based system for better
solution quality, are well suited to such techniques. Moreover, the
mixed signal processing of current implementation becomes appeal-
ing as it ismore compatible to higher level processing that is inevitable
for the mapping and clustering.

Performance benchmark and future directions
Table 1 compares the key properties and performance metrics of
various Ising machines, for solving a 100-node dense Max-Cut pro-
blem. The key properties include the representation method of spins
and couplings, connectivity and precision of couplings, updating and
annealing mechanisms, providing basic understanding of each tech-
nique. The performance metrics include annealing time, time to
solution, power dissipation, and energy efficiency. We compared
seven different techniques, including our memristor-based QPA,
memristor-based Hopfield networks (mem-HNN)16, phase-transition
nano-oscillators (PTNO) based continuous-time dynamic system14,

CMOS ring oscillator (ROSC) based Ising system11, simulated bifurca-
tion machine (SBM) running discrete simulated bifurcation (dSB) on
field programmable gate array to represent state-of-the-art digital
solver41, coherent Ising machine (CIM)8,34, D-Wave 2000Q quantum
annealer6,34. Details about the estimation breakdownofQPA are shown
in Supplementary Table S1. And detailed discussion on benchmark of
other technologies can be seen in Supplementary Note S1. We chose
100-node unweighted Max-Cut problems as the benchmark as it is
commonly used in other reports, for easier comparison. The QPA
implemented on ourmemristor-based system obtains time to solution
of 10.8 µs, which is 2.3× faster than previous state-of-the-art solvers,
and obtains energy efficiency of 4.10 × 107 solutions per second per
watt, which is 3.1× greater than previous state-of-the-art solvers. This
advantage is primarily attributed to the novel quantum-inspired
annealing scheme, which further exploits the parallel, all-to-all con-
nectivity and analog property of memristor crossbar array. It is
important to note that the 100-node Max-Cut is not the limitation of
memristor-based system, as the state-of-the-art memristor-based in-
memory computing macro has 1024 × 512 devices in a single bank45.
With a larger array, the advantage brought by synchronous updating
can also be enlarged due to the utilization of higher parallelism.

N cities (N-1)2 spins (N-1)4 couplingsa b c

d

e f

Hong Kong > Singapore > Dubai > London > New York > Sao Paulo > Johannesburg > Sydney > Tokyo > Hong Kong 

Fig. 4 | Traveling salesmanproblem.aA targetN-city traveling salesmanproblem,
with solid circles marking the location of Hong Kong, London, Johannesburg,
Tokyo, Dubai, Sao Paulo, Sydney, Singapore, Singapore, and New York, respec-
tively. The is to find a route that travels all cities once with the minimum distance.
b The visiting order represented by an N � 1ð Þ× N � 1ð Þ matrix, with rows repre-
senting the city and columns representing the order of visit. Each row and column
can have only one element set to one, representing a valid visiting order. City 1
(HongKong in this case) is always chosen as the first city to be visited. Thematrix in
the plot represents the example valid visiting order shown in (a), which is Hong
Kong>Singapore>Dubai>London >New York>Sao Paulo>Johannesburg>Sydney>-
Tokyo>Hong Kong. c Normalized Ising coupling matrix of the target problem, and
d the experimental read-out conductance value after programming the Ising

coupling to the memristor crossbar array. The maximum coupling strength is
programmed targeting 150 µS. e The evolution of the Ising Hamiltonian during the
solving process. The dark color lines represent the average cut value over 100
different trails (light-colored lines) from random initial states. 1000 total iterations
are used for all three methods. f Comparison of solution quality obtained by QPA,
SA, and DHNN. Three performance metrics are compared: number of valid tours,
minimumdistance, and average distance. The number of valid tours represents the
number of solutions that obey the constraints of each city should be visited and
visited once (the larger the better). Minimum distance refers to the shortest tra-
veling distance among 100 trials, and average distance represents the mean value
of the traveling distance of valid tours (the smaller the better).
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The mixed-signal memristor-based approaches, including our
memristor-basedQPAandmem-HNN, store and compute the coupling
term in the analog domain, while implementing spin updating in the
digital domain. In contrast, CIM updates spins in the analog domain
and calculates coupling terms in digital domain. Considering that the
utilization of quantum mechanics of current CIM demonstration
remains unclear and that it can be described accurately by classical
dynamics5,46,47, we believe that implementing the coupling term in the
analog domainmight bemore efficient at the current stage before CIM
showing quantum advantages. This is because the computing com-
plexity of spin updating is usuallyOðNÞ, with the possibility of reaching
time complexity ofOð1Þ if custom parallel digital logic is implemented.
On the other hand, the coupling calculation, which CIM implemented
in the digital domain, is a VMMoperationwith a computing complexity
of OðN2Þ, making it significantly more compute-intensive than spin
updating.

In the next phase, it is desired to further push everything to the
analog domain, for even higher performance and energy efficiency by
eliminating the expensive analog-to-digital conversions. The full-
analog approach, however, is more challenging, and requires devel-
oping techniques to compensate for parasitic resistance and capaci-
tance, and to reduce analog computing errors48. Meanwhile, current
mixed-signal design provides more flexibility, and can take advantage
of the rapid development of memristor-based AI accelerators, as they
share the same data flow49,50.

Discussion
In conclusion, we have experimentally demonstrated quantum
annealing concept can be applied to classical memristor-based analog
in-memory computing hardware, resulting in the memristor-based
Ising machine capable of solving combinatorial optimization pro-
blems. Our quantum-inspired parallel annealing approach has been
validated through various tasks, including 64-node unweighted and
weighted Max-Cut and nine-city traveling salesman problems, on our
integrated memristor platform. The results show improved efficiency
and solution quality. The simulation based on our experimentally
validated model further shows increasing advantages on scaled pro-
blems of our method compared with serial-updating simulated
annealing. This is primarily due to the utilization ofmassive parallelism
provided bymemristor crossbar. In addition, our demonstration takes
full advantage of the analog conductance states of memristor device,
which were configured to represent arbitrary coupling strength
between spins. Both experimental and simulation analyses indicate
only limited degradation in solution quality with our experimental
conductance variation. By implementing the novel quantum-inspired
algorithm that fully unleash the potential of our memristor-based
hardware, including natural parallelism, analog conductance states
and all-to-all connection, our system demonstrates 2.3× speed benefit
compared to state-of-the-art mem-HNN and 3.1× energy efficiency
compared to state-of-the-art PTNO-based system, and orders of mag-
nitude improvement than Ising machines implemented using other
technologies, including oscillator-based, pure digital, CIM and quan-
tum annealer systems.

Methods
Memristor integration
We would like to express our gratitude to the team in Hewlett
Packard Lab for providing the integrated memristor platform. The
memristor devices used in this platform were integrated on top of
foundry CMOS chips with a standard 180 nm technology node in an
in-house back-end-of-the-line process. The passivation layer of the
chip was first removed, which was followed by patterning 2 nm Cr
and 10 nm Pt as the bottom electrode. Then, the switching layer of
4–8 nm TaOx was deposited by reactive sputtering. Finally, 10 nm Ta
was sputtering deposited as the top electrode with 10 nm Pt as theTa
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protection layer. More details about the fabrication process can be
found in ref. 51.

Conductance programming
An adaptive and iterative algorithm was employed in this study to
adjust the conductance state of the memristors. Before the program-
ming process, the target conductance is generated by scaling the
coupling strength to the conductance range of our memristor device
(near 0 µS to 150 µS) without any quantization. At the onset of each
programming iteration, the conductance of each memristor was
measured using a read voltage of 0.2V, and subsequently compared to
the target conductance. If the difference between the measured con-
ductance and the target conductance fell within a predetermined tol-
erance range (5 µS in this work), the algorithm would halt. However, if
the difference exceeded the tolerance range, a SET or RESET pulsewas
applied to the device to increase or decrease the conductance and
approach the desired target. Throughout the iterations, the SET and
RESET voltages, as well as the gate voltages, were adaptively increased
if the algorithm consistently pursued a specific direction of change.

Clipping and momentum
During the solving process, after each updating iteration, the analog
proxy spin x is clipped between −1 and 1, using the following equation:

clip x,� 1, 1ð Þ= max �1,min 1,xð Þð Þ ð6Þ

This clipping is a common practice in Binary Neural Network
(BiNN) training to prevent the parameter value fromgrowing infinitely,
so that a slight change in the valuewill not have any effect on the result
of binarized parameter32,52. And to further increase the convergence
speed, a momentum gradient descent is adopted53:

m t + 1ð Þ=β*m tð Þ � η � gradient ð7Þ

x t + 1ð Þ=x tð Þ+m t + 1ð Þ ð8Þ

where β to be the momentum constant, which is set to 0.99 through
this paper for simplicity. The momentumm is clipped between −1 and
+1 to be prohibited from explosion.

Mapping Max-Cut to Ising model
The Max-Cut problem aims to divide all nodes into two subsets. To
mathematically represent theproblem,weuse si = 1, if the ith node is in
one subset and si = � 1, if ith node is in the other subset. A is the
adjacency matrix with elements defined as Aij = 0, if there is no edge
between ith and jth nodes and Aij = 1, if there is an edge. Then the cut
number can be expressed as,

Cut =
1
2

X
i<j

Ai,j 1� sisj
� �

ð9Þ

As
P

i<jAi,j is a problem-defined constant, maximizing cut number
is equivalent to minimizing�Pi < jð�Ai,jÞsisj and thus the problem can
bemapped to the IsingHamiltonian by setting J =�Awithout the need
of local field term h.

Mapping TSP to Ising model
Themappingmethod implemented in this paper is improved from the
TSP encoding scheme described in ref. 4. To map an N city TSP pro-
blem, N spins are required. Each spin is represented in binary bit form
(either 0 or 1) and is denoted as bv,j , where v represents the city and j
represents the visiting order. The Ising Hamiltonian can be defined by

two parts:

HA =A
XN
v= 1

1�
XN
j = 1

bv,j

 !2

+A
XN
j = 1

1�
XN
v= 1

bv,j

 !2

ð10Þ

HB =
B
2

XN
u,v= 1

Duv

XN
j = 1

bu,jbv,j�1 +bu,jbv,j + 1

� �
ð11Þ

H =HA +HB ð12Þ

HA imposes constraints to ensure that each city is visited and is
visited only once. HB models the summation of the traveling distance
of two adjacent visited city, where Duv is the traveling distance
between u city and v city. Since each traveling distance is calculated
twice, the summation is halved. A and B are coefficients of HA and HB,
which determines the contribution of the constrains and traveling
distance to the overall Hamiltonian. To balance the validity of the
solution and the quality of the solution, B is set to 1 and A is set tomax
ðDuvÞ throughout this paper4. Moreover, city 1 is always chosen as the
first city to visit and thus reduce the required spin number to ðN � 1Þ2.
This can be understood by fixing the 2N � 1 spins to represent city 1
and visiting order 1. This has a constant effect on other spins and only
modifies the local field term h, which is added in digital domain in our
implementation, and does not change the coupling strength between
remaining ðN � 1Þ2 spins.

Problem instance generation and optimal solution
All Max-Cut problem instances used in this paper are generated by
the random module of numpy in python environments with default
random seeds. For unweighted Max-Cut problems, a predefined
number of “0”s and “1”s are given first and shuffled by numpy.r-
andom.shuffle function to ensure a specific density. For weighted
Max-Cut problems, the connection strength is assigned using the
numpy.random.randint function by randomly selecting a 16-bit
integer (ranging from 0 to 65,535). Since the running time of
exhaustive search exceeds 105s for a single problem with problem
sizeN > 50 and continues to scale exponentially with problem size54.
The optimal solution used in this paper is obtained by running SA
for enough long time, i.e., 5N log Nð Þ updating cycles (one updating
cycle means updating all spins once and corresponds to N2 itera-
tions), with 1000 trials for each problem and selecting the best
solution among them, to ensure a high confidence of reaching the
true optimal solution54.

Data availability
The data that support thefindings of this study are providedwithin the
main text and Supplementary Information. Data related to the study
can also be made available from the corresponding author upon
request. Preliminary results from this study have been reported in the
conference proceedings of the 2022 IEEE International Electron Devi-
ces Meeting (IEDM)25.

Code availability
A demonstration code of quantum-inspired parallel annealing algo-
rithm is available at the GitHub repository: https://github.com/kyshan/
QPA. Additional codes related to this study are available from the
corresponding author upon reasonable request.
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