
Article https://doi.org/10.1038/s41467-023-41642-7

Proteomics of CKD progression in the
chronic renal insufficiency cohort

Ruth F. Dubin 1,19 , Rajat Deo2,19, Yue Ren3, Jianqiao Wang4, Zihe Zheng 3,
Haochang Shou 3, Alan S. Go5, Afshin Parsa6, James P. Lash7,
Mahboob Rahman8, Chi-yuan Hsu5,9, Matthew R. Weir10, Jing Chen11,
Amanda Anderson11, Morgan E. Grams 12,13,14, Aditya Surapaneni12,13,14,
Josef Coresh 12,13, Hongzhe Li3, Paul L. Kimmel15, Ramachandran S. Vasan16,
Harold Feldman3, Mark R. Segal17, Peter Ganz 18, CRIC Study Investigators* &
CKD Biomarkers Consortium*

Progression of chronic kidney disease (CKD) portends myriad complications,
including kidney failure. In this study, we analyze associations of 4638 plasma
proteins among 3235 participants of the Chronic Renal Insufficiency Cohort
Study with the primary outcome of 50% decline in estimated glomerular fil-
tration rate or kidney failure over 10 years. We validate key findings in the
Atherosclerosis Risk in the Communities study. We identify 100 circulating
proteins that are associated with the primary outcome after multivariable
adjustment, using a Bonferroni statistical threshold of significance. Individual
protein associations and biological pathway analyses highlight the roles of
bone morphogenetic proteins, ephrin signaling, and prothrombin activation.
A 65-protein risk model for the primary outcome has excellent discrimination
(C-statistic[95%CI] 0.862 [0.835, 0.889]), and 14/65 proteins are druggable
targets. Potentially causal associations for five proteins, to our knowledge not
previously reported, are supported by Mendelian randomization: EGFL9, LRP-
11, MXRA7, IL-1 sRII and ILT-2. Modifiable protein risk markers can guide
therapeutic drug development aimed at slowing CKD progression.

Chronic kidney disease (CKD) affects 15% of the U.S. population1.
Progression of CKD is associated with a high risk of medical compli-
cations including cardiovascular disease2, bone and metabolic
disease3,4, and frailty4. Patients who progress to kidney failure need to
consider initiation of dialysis or a kidney transplant. The cost of care
for patients with advanced CKD adds a significant burden to the
healthcare system5. Anticipating how rapidly a person with CKD will
progress to kidney failure and discovering biomarkers of CKD pro-
gression and potential therapeutic targets for slowing CKD progres-
sion remain high priorities6.

Proteins regulate biological processes and integrate the effects of
genes with those of the environment, age, comorbidities, behaviors,

and drugs7–9. Multiprotein models predict the risk of developing dis-
eases and their clinical outcomes as well or better than traditional
clinical models7–9. The 4-variable Kidney Failure Risk Equation
(KFRE)4,10, the most commonly used tool for predicting CKD progres-
sion to kidney failure, consists of estimated glomerular filtration rate
(eGFR), age, sex, and albuminuria.WhereasKFRE is highlypredictiveof
progression to kidney failure with a c-statistic of ~0.88 at 5 years10,
among its components only albuminuria is readily modifiable with
treatment. Personalized prognostic equations for CKD progression
that consist of modifiable biological factors could be used to monitor
responses to medical treatments. For example, a prognostic equation
for cardiovascular risk that consisted ofmodifiable protein risk factors
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accurately predicted which patients remained at high risk for poor
outcomes and might benefit from more specialized therapies11.

Niewczas and colleagues examined 194 circulating inflammatory
proteins in a total of 525 participants with type 1 and type 2 diabetes
and identified a kidney risk inflammatory signature (KRIS), consisting
of 17 proteins enriched for the tumor necrosis factor receptor super-
family members, that was associated with a 10-year risk of kidney
failure12.More recently, the same groupof investigatorsmeasured 1129
plasma proteins in a total of 358 participants with type 1 and type 2
diabetes and identified 3 proteins associated with a lower risk that are
potentially protective against the progression of CKD to kidney
failure13.

In this study, we have utilized SomaScan V.4.0 (SomaLogic,
Boulder, CO), a large-scale aptamer proteomic platform thatmeasures
nearly 5000 distinct plasma proteins simultaneously, to conduct the
largest proteomic analysis of CKD progression to date. Our derivation
cohort consisted of 3235 participants of the Chronic Renal Insuffi-
ciency Cohort (CRIC). By design, CRIC includes nearly equal numbers
of participants with and without diabetes14. The validation cohort
consisted of 578 participants with CKD (eGFR<60ml/min/1.73m2)
from the Atherosclerosis Risk in Communities Study (ARIC). Our goals
were (1) to discover numerous plasma proteins that are markers or
mediators of CKD progression; (2) to identify biological pathways
leading to CKD progression; (3) to elucidate whether protein markers
of CKD progression differ by diabetic status or other clinical factors;
and (4) to build a multiprotein prognostic model for CKD progression
that is highly predictive and includes factors potentially more mod-
ifiable than those in the KFRE. A summary of the study design is illu-
strated in Fig. 1.

Results
CRIC cohort and renal outcomes
Detailed baseline characteristics are found in Supplementary Data 1. In
brief, among the 3235 CRIC participants included in the analysis of the
primary outcome, 10-year kidney failure/50% eGFR decline, mean
(±SD) age was 59 (±11) years, eGFR was 43 (±17) ml/min/1.73m2, 45%
were women, and by design, nearly 50% had a history of diabetes.
There were a total of 1139 (35%) events, including 998 (31%) kidney

failure events, overmedian (IQR)6.0 (2.6–10.0) years. Participantswho
reached the primary outcome were older, more likely to be male,
black, diabetic, and have a lower baseline eGFR, higher albuminuria,
and history of CVD. For the secondary outcome of 4-year eGFR slope,
themedian (IQR) eGFR slopewas−1.01 (−2.18, 0.27)ml/min/1.73m2 per
year; 316 (9.74%) had eGFR slope ≤ −3 (ml/min/1.73m2)/year.

ARIC validation cohort for the primary renal outcome
The validation cohort was comprised of 578 ARIC participants with
eGFR <60ml/min/1.73m2 at ARIC Visit 3, all of whose samples were
assayed with the same version of SomaScan. These ARIC participants
had a mean age of 64 years, a lower prevalence of diabetes (32%), and
higher mean eGFR (48ml/min/1.73m2). There were 85 (15%) events for
the primary renal outcome, kidney failure or a 50% decline in eGFR,
including 80 kidney failure events (Supplementary Data 2).

Associations of individual proteins with the primary outcome in
CRIC and ARIC
Associations of individual proteins with the primary outcome (≥50%
eGFRdecline or kidney failurewithin 10 years) are visualized in Fig. 2 as
Volcano plots, shown unadjusted (Fig. 2A), adjusted for eGFR (Fig. 2B)
and fully adjusted (Fig. 2C). Among the 4638 proteins investigated, in
fully adjusted analyses, 330 proteins (7.1% of all proteins measured)
were associated with primary renal outcome at FDR significance
(q < 0.05). We identified numerous proteins associated with a higher
risk of the primaryoutcome.Whereasonly 1 of the previously reported
17 KRIS proteins had fully adjusted log2 HR > 2, 14 additional proteins
with fully adjusted HRs between 2 and 5 were identified in this study
(Fig. 2C). The top 20 proteins with the largest HR per log2, listed with
their biological functions and current drugs that target them, are
shown in Table 1. We identified numerous proteins associated with
lower risk (HR < 1), referred to in the literature as potentially protec-
tive, which are shown in Fig. 2 and Supplementary Data 6. Protein
associations are shown as HR perMAD unit in the Supplementary Data
(Supplementary Data 3–6, 9–12).

Higher-risk markers in CRIC and ARIC were enriched with mem-
bers of the ephrin family (5 of 20 top proteins) and bone morphoge-
netic proteins (BMPs) (4 of 20 top proteins). Through a search of the

ARIC: Valida�on Cohort
• N=578 par�cipants with CKD
• External valida�on of prognos�c 

proteins
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risk models
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Deriva�on/valida�on of a 
65-protein risk model for 
10-year CKD progression. 14 
of 65 are druggable targets.
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Fig. 1 | Summary of study design and results. The study design, including deri-
vation and validation for risk models and individual proteins, and selection of
proteins for pathway and Mendelian randomization, are illustrated above. Our

results include novel risk models for CKD progression as well as biological insights
into potential causal mediators of kidney disease.
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Druggable Target Database15, 8 of these 20 proteins are currently
druggable targets (Table 1). The three proteins with the lowest HRs
that passed the criteria for validation in ARIC are Cartilage inter-
mediate layer protein 2 (CILP2), C1GALT1-specific chaperone 1, and
albumin. Potential roles for these proteins in the biology of CKD pro-
gression are delineated in “Discussion”.

Pathway analysis of proteins associated with CKD progression
in CRIC
We performed an overrepresentation analysis with the IPA tool to
define the canonical pathways linked to the primary outcome. There
were 1516 proteins that were associated with the primary outcome of
CKD progression at an FDR of 5%, after adjustment for eGFR, and we
compared this subset of proteins to the 4638 background proteins
measured by SomaScan. The top ten canonical pathways are listed in
Table 2. Ephrin signaling was again prominent, represented as the
Ephrin A pathway. There was also significant enrichment for proteins
that link inflammation and metabolic processes (LXR/RXR activation),
matrix metalloprotease inhibition, hepatic fibrosis, and intrinsic pro-
thrombin activation pathway. In “Discussion”, we focus on potential
roles for ephrin signaling, BMPs and prothrombin activation pathways
in worsening kidney disease.

Mendelian randomization
Using CRIC genotype data, we identified one ormore pQTLs for 23 of
76 of our selected protein risk factors. Within the eGFR database, we
found significant MR associations for four proteins (listed with SNP
and P value): protein delta homolog 2/EGFL9 (rs2125739, 1.9 × 10−6),
low-density lipoprotein receptor-related protein 11/LRP-11
(rs9689036, 1.56 × 10−4), Interleukin-1 receptor type 2/IL-1 sRII
(rs2310170, 1.3 × 10−3), and alpha-1 microglobulin (rs10982054,
1.7 × 10−3). Within the CKDi25 GWAS, one variant was significant: EGF-
containing fibulin-like extracellular matrix protein 1 (aka fibulin 3
FBLN3) (rs6755214, 1.3 × 10−3). None of the variants we tested hadMR
associations in the Rapid3 database. Using the deCODE database, 54
of 76 proteins were linked to cis pQTLs. Significant MR associations
were confirmed for LRP-11 in the eGFR GWAS, and for FBLN3 in the
CKDi25 GWAS. In addition, significant MR associations were found
for matrix metalloproteinase 7/MMP-7 (Rapid3 GWAS: 7 SNPs com-
prised instrumental variable (IV), P = 7.0 × 10−4), leukocyte
immunoglobulin-like receptor subfamily Bmember 1/ILT-2 (Rapid3: 5
SNPs comprised IV, P = 1.6 × 10−6) and matrix remodeling associated
7/MXRA7 (Rapid3: 2 SNPs comprised IV, P = 1.2 × 10−5) (Fig. 3). MR
associations with nominal P < 0.05 were observed for several pro-
teins including two BMP antagonists, follistatin-related protein 3
(FSTL3) and twisted gastrulation protein homolog 1 (TWSG1), as well
as CILP2, a protein associated with a lower risk of CKD progression
that inhibits fibrosis, all of which replicated in ARIC. Two proteins
that passed MR with significance after adjustment for multiple test-
ing are druggable targets: IL-1 sRII and MMP-7 (Druggable Target
Database)15 (Supplementary Data 7).

Impact of diabetic status for 20 previously reported risk factors
We visualized HRs of all proteins we found to be significantly asso-
ciated with the primary outcome in a scatterplot, comparing partici-
pants with vs. without DM.HRswere similar in direction and effect size
for DM vs. non-DM for the primary outcome (rho =0.68) and the kid-
ney failure outcome alone (rho =0.68) (Supplementary Information
Fig. 1). In addition,weexamined 17 KRISproteins reportedbyNiewczas
et al. to predict the progression of CKD to kidney failure in cohorts of
patients with diabetes as well as three proteins associated with lower
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risk12,13. After full adjustment, six of these 20 proteins replicated in
CRIC at P <0.0025 (0.05/20) for the outcome of kidney failure among
participants with DM. Three of these five KRIS proteins that replicated
were members of the tumor necrosis factor receptor superfamily—
members 1A, 1B (measuredwith twoaptamers) and 19.Oneof the three
lower-risk proteins, angiopoietin-1, replicated in the CRIC participants
with DM. There was a significant interaction of DM with Interleukin-18
receptor 1 and angiopoietin-1: HR per log2 [95% CI] for Interleukin-18
receptor 1 in DM 1.35 [1.08, 1.69] vs non-DM 0.77 [0.57, 1.1], P for
interaction 0.008; HR [95% CI] for angiopoietin-1 in DM 0.78 [0.69,
0.87] vs non-DM 1.07 [0.90, 1.3], P for interaction <0.001 (Supple-
mentary Data 8).

Association of individual proteins with short-term kidney func-
tion decline
Twenty individual proteins associatedwith the highest and 20with the
lowest risk of 4-year eGFR decline are listed in Supplementary Data 9
and 10, respectively. Among those predicting a faster decline, 15/20
were also among the top 20 protein risk factors for the primary out-
come, and 15/20 had associations with eGFR decline that remained
significant after full adjustment at FDR <0.05. These risk factors for
eGFR decline included ephrin receptors and tumor necrosis factor
receptor 1A. Less well-known risk factors included brorin and ery-
thropoietin receptors, both of which were successfully validated in
ARIC for the primary outcome. Among proteins predicting a slower
decline, 15/20 were listed among protein factors with the lowest
hazard ratio for the primary outcome. Three of these proteins
remained significant by FDR q value after full adjustment: mitochon-
drial superoxide dismutase, fibroblast growth factor 9, and follistatin-
related protein 5. For further description of specific proteins, see
“Discussion”.

Risk prediction models for primary and secondary outcomes
in CRIC
In the 80% training set of CRIC participants, we derived a 65-protein
model for the primary outcome (≥ 50% eGFR decline or kidney failure
within 10 years) using elastic net regression. The β-coefficients,
adjusted HRs, and relevant drug for each protein included in the risk
model are listed in Supplementary Data 11. In the 20% CRIC testing set,
the model yielded a C-statistic of 0.862 (95% CI: 0.835, 0.888), with
similar discrimination to the refit KFRE. Similarly, we derived a 20-
protein model for the secondary outcome (4-year eGFR slope) in the
80% training set. The β-coefficients, adjusted HRs, and available drug
for eachprotein included in the riskmodel are listed in Supplementary
Data 12. In the 20% testing set, the C-statistic (95% CI) for the 20-
proteinmodelwas0.728 (0.708, 0.748), similar to the refit KFRE (0.744
(0.725, 0.763)). Hybrid clinical-protein models for both primary and
secondary outcomes showed incremental, statistically significant
improvement in discrimination over the refit KFRE. (Fig. 4) Calibration
was excellent for both protein risk models (10-year model: model-

Fig. 3 |Mendelian randomizationof proteins associatedwith CKDprogression.
Eight proteins were linked to pQTLs that had significant Mendelian randomization
associations after correction for multiple tests in at least one GWAS for cross-
sectional kidney function (eGFR) or for CKD progression (Rapid3 or CKDi25). HR
(95% CI) per log2 of protein are shown, for the outcome of ESRD or 50% decline in
eGFR, in CRIC, with adjustment for eGFR. pQTLs were identified in CRIC and in

deCODE (deCODE marked with *). The three GWAS used are eGFR (red), Rapid3
(blue), andCKDi25 (green).Mendelian randomization associations are shown as red
points (% difference in eGFR), or blue and green points that represent odds ratio. If
an associationmet significance after multiple testing, P value is in bold. All P values
are two-sided.

Table 2 | Canonical pathways among 1516 proteins associated
with CKD progression

IPA canonical pathway P value Ratio

Intrinsic prothrombin activation pathway 0.000019 0.68 (23/34)

Neuroprotective role of THOP1 in Alzhei-
mer’s disease

0.0093 0.46 (31/67)

Hepatic fibrosis/hepatic stellate cell
activation

0.0095 0.43 (49/115)

LXR/RXR activation 0.012 0.44 (37/84)

Axonal guidance signaling 0.016 0.39 (91/236)

SPINK1 pancreatic cancer pathway 0.018 0.49 (20/41)

Regulation of the epithelial mesenchymal
transition in the development pathway

0.023 0.55 (12/22)

Ephrin A signaling 0.024 0.52 (14/27)

Extrinsic prothrombin activation pathway 0.027 0.62 (8/13)

Inhibition of matrix metalloproteases 0.029 0.52 (13/25)

IPA Ingenuity Pathway Analysis, THOP1 Thimet Oligopeptidase 1, LXR/RXR Liver X Receptor-
Retinoid X Receptor, SPINK1 serine peptidase inhibitor Kazal type 1.
For each pathway, the ratio indicates the number of proteins significantly associated with the
primary outcome at FDR <0.05 after adjustment for eGFR, divided by the number of proteins in
that pathway measured in our study. Raw, one-sided P values are calculated using Fisher’s
exact test.
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based calibration P >0.1 for all except Q1, with only eight events;
dichotomous slope calibration P ≥0.05 for all except Q1) (Supple-
mentary Fig. 2) Both protein models show a broad dynamic range of
prediction, with the ratio of quintile 5/quintile 1 of predicted as well as
observed risk being 20 for the primary outcome and 10 for the binary
eGFR slope outcome. Through a search of the Druggable Target
Database15, 14 of the 65 proteins included in the risk model for the
primary outcome, and 3 of 20 in themodel for the secondary outcome
are currently druggable targets (Supplementary Data 11 and 12).

Sensitivity analyses
The 65-protein model for the primary outcome showed similar dis-
crimination in subgroups of diabetes status, race, and eGFR (P for
interaction >0.1 for all) (Supplementary Fig. 3). We examined whether
discrimination varied by the length of follow-up. Time-dependent
AUCs for the 65-protein model and other risk models for follow-up
periods ranging between 1 and 15 years show higher AUCs in the short
term. (Supplementary Fig. 4). The hybrid model incrementally sur-
passed the KFRE at 5 years and 15 years: 5-year hybrid 0.90 (0.87, 0.93)
vs KFRE 0.89 (0.86, 0.91) (P = 0.01); 15-year hybrid 0.87 (0.84, 0.89) vs
KFRE 0.85 (0.82, 0.88) (P =0.0005). We additionally explored creating
distinctmultiprotein riskmodels for different timehorizons and found
higher c-statistics for shorter time horizons for both KFRE and protein
models (Supplementary Data 13).

We also evaluated the effect of calculating eGFR using a
creatinine-based race-free equation on the performance of the risk
models. Discrimination of the protein model, as well as for KFRE and
hybrid models, for the primary outcome, was unchanged: protein
model C-statistic (SE) 0.862 (0.014) in our initial analysis, 0.860 (0.014)
using race-free equation. Discrimination of the protein model (and
other models) for eGFR slope was slightly lower using the race-free
eGFR: C-statistic (SE) 0.728 (0.010) in our initial analysis, 0.684 (0.010)
using the race-free equation. (Supplementary Data 14) In additional
sensitivity analyses, we evaluated whether KFRE with coefficients refit
to our cohort performed better for the primary outcome than the
original KFRE equation. In the 20% testing set, C-statistics were similar

between the original KFRE10 (0.844 (95%CI: 0.817, 0.872)), and the refit
KFRE (0.855 (95%CI: 0.828, 0.882)). For the outcome of 10-year kidney
failure alone (without the endpoint of 50% decline in eGFR), the
C-statistics (95% CI) were also similar: original KFRE 0.892 (95% CI:
0.870, 0.915); refit KFRE 0.894 (95% CI: 0.872, 0.916).

Validation of the 65-protein model in ARIC
The validation cohort was comprised of 578 ARIC participants with
eGFR<60ml/min/1.73m2 at ARIC Visit 3. The C-statistic (95% CI) for
the 65-protein model in ARIC validation was 0.840 (0.785–0.896).
The calibration of the 65-protein model in ARIC was fair (GND
chi2 = 9.2, P = 0.06) overall. Calibration was good in the highest two
quintiles of risk but may have suffered from few events in the lowest
three quintiles of predicted risk, potentially leading to discrepant
predicted vs observed estimates (each of these 3 quintiles having <8
events). Calibration was good in the 4th and 5th quintiles of pre-
dicted risk, each having 12 and 57 outcome events, respectively
(Supplementary Data 2).

Discussion
In this study of proteomics of CKD progression, we quantified 4638
unique plasma proteins in 3249 participants of CRIC and validated our
findings in 578 participants from ARIC with CKD, comprising a total of
nearly 18 million individual protein measurements. We identified over
500 proteins associated with CKD progression after adjustment for
eGFR and 100 proteins after extensive covariate adjustment at the
Bonferroni-corrected statistical significance threshold. Individual
protein and canonical pathway analyses highlight potential roles of
ephrin signaling, BMP antagonists, and prothrombin activation. We
identified 8 plasma proteins with potentially causal significant asso-
ciations by MR; 5 of these have not been previously identified by MR,
and 3 are currently druggable targets. Applying machine learning, we
developed proteomic risk models for long- and short-term CKD pro-
gression with a similar excellent predictive utility to the refit KFRE
clinical model but, in contrast to the refit KFRE, the protein models
consist of modifiable risk factors11.

Fig. 4 | Risk models for primary and secondary outcomes. For the primary
outcome, C-statistics and concordance are calculated in the CRIC testing set,
N = 577 participants with 186 events. For eGFR slope, N = 571 participants, P values
calculated by two-sided concordance testing. Points represent C-statistic for

primary outcome, and concordance for the secondary outcome. The whiskers
stand for standard error. KFRE Kidney Failure Risk Equation, ACR albumin-to-
creatine ratio, eGFR estimated glomerular filtration rate.
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Four of the top twenty proteins identified in CRIC, validated in
ARIC, and associated with a higher risk of CKD progression are
antagonists of BMPs, also known as growth differentiation factors
(GDFs) (Table 1). BMPs were originally discovered as constituents of
bone extract that cause ectopic bone formation when implanted in
rats16.More than30BMPs forma subgroupof the transforming growth
factor- β (TGF-β) superfamily, with diverse skeletal and extraskeletal
functions17. BMP antagonists include Gremlin, sclerostin, follistatin,
noggin, and brorin, and there is evidence that these antagonists play a
role in modulating the extracellular matrix (ECM)18. There has been
interest in BMP antagonists for treating renal disease: for example,
Gremlin, an antagonist of BMP2 and 4, may be protective of diabetic
nephropathy in experimental models19. TWSG1, a protein risk factor
also found to be an independent risk factor for CKD progression20,
with a nominally significant MR association in CKDi25 in our study, is
an antagonist of BMP 7, which is produced in the kidney and is pro-
tective against renal fibrosis and other types of renal injury in experi-
mentalmodels21. FSTL3 is another BMPantagonist previously shown to
predict CKD progression20, which we found to have a nominal
(P < 0.05) association byMR in CKDi25 GWAS. FSTL3, a 30 kDa protein,
is an antagonist of BMP2 and 4 (both of which promote bone forma-
tion and other processes), GDF8 (a growth factor for skeletal muscle),
and GDF11 (a factor negatively associated with age-related left ven-
tricular hypertrophy)22–24. FSTL3 is renally cleared, and its hepatic
production may be increased in renal disease25. Thus, there is plausi-
bility to our findings that members of the BMP family are involved in
CKD progression.

Five of the top20proteins identified inCRIC and validated inARIC
associated with a higher risk of CKD progression are members of the
Ephrin family (Table 1) and Ephrin signaling was among the top
canonical pathways identified in our study (Table 2). Ephrin receptors
interact with vascular endothelial growth factor to control
angiogenesis26, and CKD is characterized bymicrovascular disease and
capillary rarefaction within the kidney. Ephrin type-B receptor 4 sti-
mulates angiogenesis after kidney injury to enhance recovery27.
Ephrin-B2 knockout mice are protected from renal fibrosis in a renal
ischemia model, suggesting that ephrin-B2 facilitates renal fibrosis28.

The prominence of the canonical pathway of prothrombin acti-
vation among proteins associated with CKD progression in our study
might be explained by interactions of thrombin with protease-
activated receptors that are found in several cell types in the
kidney29. Thrombinmay have direct effects on the kidney via protease-
activated receptor 1 (PAR1), which is activated by thrombin and found
in several different cell types. PAR1 deficiency is protective against
diabetic nephropathy in animal models30.

We also found several proteins that are associated with a lower
risk of CKD progression (Supplementary Data 4 and 6). C1GALT1-
specific chaperone 1 was associated with a lower risk of the primary
and secondary outcome of CKD progression in CRIC and passed the
criteria for validation in ARIC for the primary outcome. This protein
facilitates protein glycosylation and platelet activation. CILP2 was
associated with a lower risk of CKD progression in CRIC and ARIC and
had a nominally significant MR association (P < 0.05). CILP1 levels are
increased in the myocardium after infarction, and CILP1 is thought to
protect against fibrosis in the myocardium by inhibiting TGFβ31. CILP2
could have a similar anti-fibrotic effect in the kidney.

Our MR analysis revealed eight potentially causal mediators of
CKD progression that were significant after adjustment for multiple
tests in one or more renal GWAS. Five of these proteins, to our
knowledge, have not been shown previously to have MR associations:
EGFL9 is an antagonist of the NOTCH pathway32 which has roles in
kidney development and disease33. LRP-11 is a membrane protein
related to lipid metabolism. MXRA7 is an extracellular matrix protein.
IL-1 sRII and ILT-2 are immunologic receptors, and both are currently
druggable targets.

Given that approximately half of CRIC participants have diabetes
mellitus, our study provides an opportunity for characterizing differ-
ences in proteins that predict the progression of diabetic vs. non-
diabetic kidney disease. We validated several proteins previously
found to predict higher or lower risk of kidney failure among indivi-
duals with CKD all of whom had diabetes12,13 (Supplementary Infor-
mation Fig. 1 and Supplementary Data 8). Yet, overall, we found that
many proteins predict CKD progression similarly, irrespective of dia-
betes status, suggesting sharedmechanismsof progression of diabetic
and nondiabetic CKD. However, two proteins did have significantly
different statistical associations among patients with diabetes com-
pared to those without. Interleukin-18 receptor 1 predicted higher risk
and angiopoietin-1 predicted lower risk among patients with diabetes.
Stratification by diabetes may be an important component for the
future discovery of biomarkers of CKD progression, with the expec-
tation that while few markers may differ by diabetes status, these dif-
ferences could be important for developing therapeutics for different
etiologies of kidney disease.

The KFRE equation was developed to predict kidney failure over 5
years and has shown excellent validation in meta-analyses of interna-
tional studies10. It is accessible to clinicians, given that the four factors
of age, gender, eGFR, and albuminuria can be readily determined. A
key limitation of the KFRE is that it sheds little light on the biological
mechanisms by which CKD progresses in individual patients and
besides albuminuria, its components are not readily modifiable.
Plasma levels of proteins readily change in response to lifestyle and
pharmacological interventions. The 65-protein model derived in this
study for a 10-year 50% decline in eGFR or kidney failure matched the
KFRE for its excellent discrimination and had even better discrimina-
tion at 5 years. A separately derived protein model for kidney failure
alone at 2 years had a C-statistic of 0.95 (similar to the KFRE applied to
2 years, 0.94). Short-term protein models could be used as surrogate
outcomes in clinical trials of therapeutics. Clinicians might use the
protein model not only to identify patients at higher risk of kidney
failure, but also to monitor patients’ response to lifestyle and medi-
cation changes. Showing the patient that his or her risk score has
improved could improve compliance with medications. Hybrid
clinical-protein models showed modest statistically significant
improvement over KFRE. Notably, the addition of clinical factors
added little to thediscriminationof proteinmodels. Onemayconclude
from this that proteins encode demographic and clinical information
in addition to carrying important biological signals, a concept that we
have demonstrated previously11.

Our study has numerous strengths, but we also acknowledge
limitations. Additional clinical and experimental approaches informed
by our proteomics findings will be needed to establish conclusively
which of the protein biomarkers identified in our study are involved as
causal mediators in CKD progression, given the limits of epidemiolo-
gical association studies. The prognostic utility of themultiprotein risk
score, and its capacity to reflect effects of medications, could be vali-
dated using samples from clinical trials involving kidney endpoints.
The biological roles of specific proteins could be elucidated with ani-
malmodels.While theCRICpopulation iswell-phenotyped and affords
extensive multivariable adjustment, any unmeasured confounders
may bias the assessments of individual proteins as independent risk
markers. We measured circulating and not tissue proteins, since
plasma is more readily accessible as a diagnostic matrix than kidney
biopsy tissue. Future studies are expected to correlate proteomic
information from plasma and kidney biopsies. Lastly, the present
Mendelian randomization analyses may be augmented by utilizing a
more comprehensive GWAS for renal function that includes a meta-
analysis of CKD Genetics Consortium and UK Biobank34.

In conclusion, we present the largest proteomic study of partici-
pants with CKD to date with a total of nearly 18 million individual
protein measurements, in a well-phenotyped population of >3000
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participants. Our analyses reveal multiple individual protein risk fac-
tors for CKD progression that have not been previously described, and
we show that individual proteins and a 65-protein risk model for 10-
year CKD progression replicate well in ARIC. Druggable targets within
our protein risk models and significant MR findings may provide the
impetus for developing therapeutics. Biological pathways and indivi-
dual proteins that we have identified, including BMP antagonists,
ephrin signaling, and prothrombin activation warrant further study.

Methods
Participants
The CRIC study protocols adhered to ethics regulations of each insti-
tution where participants were enrolled, requiring approval from the
following committees: University of Pennsylvania Institutional Review
Board, Federalwide Assurance # 00004028; Johns Hopkins Institu-
tional Review Board NA_00044034/CIR00004697; The University of
Maryland, Baltimore Institutional Review Board; University Hospitals
Cleveland Medical Center Institutional Review Board; MetroHealth
Institutional Review Board; Cleveland Clinic Foundation Institutional
Review Board IRB #5969; University of Michigan Medical School
Institutional Review Board; Wayne State University Institutional
Review Board; University of Illinois at Chicago Institutional Review
Board; Tulane Human Research Protection Office, Institutional Review
Boards, Biomedical Social Behavioral, IRB#140987; Kaiser Permanente
Northern California Institutional Review Board. The Atherosclerosis
Risk in Communities (ARIC) Study adhered to ethics regulations from
andwas approvedby a single Institutional ReviewBoard (sIRB) at Johns
Hopkins School of Medicine (FWA00005752; IRB00311861) and Insti-
tutional Review Boards (IRB) at all participating institutions: University
of North Carolina at Chapel Hill, Johns Hopkins University School of
Public Health, University of Minnesota, Wake Forest University Health
Sciences, University of Mississippi Medical Center, Baylor College of
Medicine, University of Texas Houston Health Science Center, and
Brigham and Women’s Hospital. Study participants provided written
informed consent at all study visits.

The CRIC study was designed to investigate risk factors for pro-
gression of CKD, incident cardiovascular disease, and overall mortality
inpersonswithCKD14. Between2003and2008, theCRIC study enrolled
a total of 3939 ethnically diverse men and women at 7 clinical centers,
ages 21–74 years, with eGFR 20–70ml/min/1.73m2 by the simplified
Modification of Diet in Renal Disease equation14. Eligibility criteria and
baseline characteristics of the CRIC cohort have been published14,35. The
CRIC study was approved by the Institutional Review Boards of the
participating centers, and the research was conducted in accordance
with the principles of the Declaration of Helsinki. All study participants
provided written informed consent. At enrollment, information on
participant sex/gender was collected by self-report; there were no sex/
gender-based inclusion or exclusion criteria. For the present analysis,
plasma samples from 3419 CRIC participants from the year 1 visit,
considered our study’s baseline, were assayed with SomaScan V4.0.
Each sample was assayed once with SomaScan. We excluded 53 parti-
cipants with prevalent kidney failure. Due to the interference of lupus
antibodies with aptamers (communication from SomaLogic), we also
excluded 12 participants with systemic lupus erythematosus. After
105 samples were excluded that did not pass SomaLogic’s quality con-
trol standards, the final analytical cohort consisted of 3249 participants.
Fourteen participants were excluded who did not have a baseline
measure of eGFR, leaving 3235 individuals eligible for analyses of the
primary outcome of a 50% decline in eGFR or kidney failure over 10
years and 3243 participants eligible for analyses for the secondary
outcome of a 4-year eGFR decline.

SomaScan version 4.0
SomaScan is an assay based on modified aptamers, which are chemi-
cally modified single strands of deoxyribonucleic acid ~40 nucleotides

long, as binding reagents for target proteins7,8,36–39. Modified aptamers
bind to proteins with high affinity similar to antibodies (lower limit of
detection 10−15 moles per liter)36–38 “Pull-down” studies, in which the
aptamer-protein complexes were isolated and the identities of the
bound proteins were verified by targeted mass spectrometry and gel
electrophoresis, have been performed for 920 proteins among 1305
proteins in a previous version of the assay39. These studies showed that
>95% of aptamers correctly targeted the intended proteins (for those
proteins in concentrations sufficient to be detected by mass spectro-
metry). The samples on the SomaScan assay are run at three different
dilutions to assay each analyte within its linear range of concentra-
tions. The assay results are quantified on a hybridization microarray
and reported in RFU. SomaLogic has procedures for data calibration,
standardization and internal controls, typical of microarray
technologies.

The SomaScan V4.0 menu includes 5284 aptamers (Supplemen-
tary Data 15). We excluded 305 aptamers paired to non-human pro-
teins, 130 incompletely characterized investigational aptamers, and 19
aptamers with >50% coefficients of variation (CVs) in 129 split dupli-
cates from CRIC participants that were run simultaneously to our
large-scale proteomic study. This left 4830 aptamers and 4638 unique
proteins (some proteins are measured by 2 or more aptamers) (Sup-
plementary Data 16). The median intra-assay CVs, from plasma of
healthy individuals are reported as ≤5%12,40. We conducted our quality
control study using split duplicate plasma samples from CRIC parti-
cipants with CKD stages 3A, 3B, and 4.Median split duplicate CVs were
≤5% and did not vary by the stage of CKD or by diabetes status41.

Study outcomes
The primary outcome was time to the first of two clinical outcomes,
i.e., ≥50% eGFR decline or incident kidney failure (defined as the
need for renal replacement therapy), within a 10-year time horizon.
To capture short-term CKD progression, we analyzed the 4-year
eGFR slope as a secondary outcome, generated using a linear mixed
effect model with a random intercept and a random slope. The eGFR
slope was formulated as a continuous variable, and alternatively as a
dichotomized endpoint of eGFR decline ≥ versus < 3mL/min/1.73m2

per year. The slopewas censored at kidney failure. For the derivation
of risk models, we wished to optimize the accuracy of eGFR mea-
sures specifically among CRIC participants, and for this reason GFR
was estimated using the 5-variable CRIC equation including serum
creatinine, serum cystatin, age, gender, and race, given this equation
has been extensively validated among CRIC participants as the clo-
sest estimate of GFR measured by iothalamate clearance42. In sensi-
tivity analyses, we estimated GFR using the 2021 CKD EPI creatinine
that is based on age, sex, and creatinine and omits race as a
variable43,44.

Covariate definitions
Study covariates were chosen a priori based on the literature and used
definitions published by CRIC45. Diabetes mellitus was defined by a
fasting glucose of ≥126mg/dL or the use of insulin or oral hypogly-
cemic medications. Hypertension was defined by systolic blood pres-
sure ≥140mm Hg, diastolic blood pressure ≥90mm Hg, or the use of
antihypertensive medications. Lifestyle, sociodemographic and medi-
cal history information was obtained at baseline using self-reported
questionnaires, including gender, race, ethnicity, and smoking status.
Prevalent cardiovascular disease at entry was assessed by a self-
reported history of prior myocardial infarction, coronary revascular-
ization, heart failure, stroke, or peripheral artery disease. Body mass
indexwas calculated usingmeasured height andweight and expressed
in kilograms per meter squared. At the visit with proteomics, albumi-
nuria was not directly measured. Albuminuria was calculated from
urine protein to creatinine ratio using the crude (unadjusted) equation
as published in ref. 46.
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Statistical analysis
Summary statistics for the CRIC participants’ baseline characteristics
were calculated as mean and standard deviation (SD) for symmetric
variables and median and interquartile range (IQR) for skewed vari-
ables. SomaLogic normalizes the entire protein dataset using Adaptive
Normalization by Maximum Likelihood (ANML) to remove unwanted
biases in the assay. ANML is an iterative procedure that adjusts values
for analytes that fall outside expectedmeasurements from a reference
distribution. Protein values are reported in relative fluorescent units
(RFU) after ANML normalization. We chose to standardize RFU using
median absolute deviation (MAD); this approach allows for the ranking
of predictors and is more robust than conventional methods of stan-
dardization (mean subtraction, standard deviation division) for
skewed data. We Winsorized (clipped) outliers at median ± 5 MAD.

The Cox proportional hazards regression model was used to
assess the association between individual proteins and the primary
outcome. Associations of individual proteins with continuous eGFR
slope were assessed using multivariable linear regression. In each
instance, we constructedmodels with three levels of adjustment: (i) no
adjustment, (ii) adjustment for eGFR only, or (iii) adjustment for age,
gender, race, eGFR, log[urine protein to creatinine ratio], systolic
blood pressure, diabetes, smoking status, body mass index, and car-
diovascular disease history. Evaluating each individual protein was a
preliminary step, prior to determining which proteins to replicate
externally, and then to examine with Mendelian randomization. In
order to rank individual proteins by strength of association with the
outcome,we employedMADstandardizationbecause it ismore robust
than log2 standardization for skewed predictors. We chose to select
“top hits” from among the protein associations meeting a significance
threshold of FDR <0.05, rather than Bonferroni significance, to mini-
mize type II error at the screening stage. The Benjamini–Hochberg
(BH) method was used to control the false discovery rate (FDR) at
5%47,48. We then selected protein “top hits” by effect size perMAD unit.
We present these top hits in tables using HR per log2 to illustrate effect
sizes on a scale more commonly used in epidemiology than MAD.
Presentation tables also include the P value in order to illustrate that
most of these proteins meet the Bonferroni-corrected statistical sig-
nificance level (P < 1.0 × 10−5 after adjusting for ~5000 tests).

To determine whether any associations of protein biomarkers
with CKD progression may be unique to people with diabetes, we
explored the impact of diabetes on associations of individual proteins
with the primary outcome by visualizing a scatterplot of HRs in parti-
cipants with vs. without diabetes. We also performed formal statistical
interaction testing by diabetes status for all proteins that were asso-
ciated with the primary outcome. This analysis included the 17 KRIS
proteins reported to predict kidney failure in patients with diabetes12

and three additional proteins reported by the same investigators as
potentially protective of kidney failure in patients with diabetes13.

We developed multiprotein risk models for the prediction of CKD
progression and compared their predictive performance to clinical and
hybrid clinical-protein models. We randomly split the CRIC data into
two sets: 80% of individuals comprised the training set, and the
remaining 20% the testing set. We used the training set to build pre-
dictionmodels anddetermine attendant tuningparameters. The testing
set was used solely to evaluate the models’ performance. Our frontline
technique for developing protein risk predictionmodels was elastic-net
(EN)Cox regressionwhich combines ridge (L2) andLASSO (L1) penalties
and handles each of the three (time-to-event, continuous, binary) out-
come types. Model fitting was conducted using the R package
glmnet11,12. The relative contributions of the two penalties are controlled
by a mixing parameter αwhich we set to 0.5 for balance. The shrinkage
(regularization) parameter λ which controls model complexity (the
number of included proteins) was determined by tenfold cross-
validation and the “1 standard error rule”. After the final selection of
proteins, to reduce bias in estimated regression coefficients49, we refit

the selected features for the ENmodel in aCox regressionmodel for the
CKD progression survival outcomes and a logistic regressionmodel for
the binary eGFR decline outcome, as previously published50.

We evaluated predictive performance by calculating Harrell’s
C-index47 or Receiver Operating Characteristics (ROC) Area under the
Curve (AUC) in the testing set47. For survival outcomes, we additionally
calculated time-dependent AUC for years 1 to year 15 using the testing
set data. We evaluated model calibration in the training set with cali-
bration bar plots to visualize the agreement between predicted and
observed risk in each quintile of participants defined by predicted risk.
A formal assessment of calibration made recourse to a model-based
test that can accommodate survival endpoints in addition to con-
tinuous and binary outcomes51. We further conducted stability ana-
lyses of our EN models to ensure that results were not overly
dependent on the specific training / test set partition deployed. This
involved repeating the entire EN procedure on five alternate random
partitions into training and test sets.

We compared the protein models for CKD progression to two
clinical risk models. The first model was comprised of variables from
the 4-variable Kidney Failure Risk Equation (KFRE)model (age, gender,
eGFR, urine albumin-to-creatine ratio)10. We also used a 10-variable
clinical model (referred to herein as an expanded clinical model) that
included the 4 KFRE variables, plus 6 other variables reported to
associate with CKD progression in CRIC (race, systolic blood pressure,
diabetes, smoking status, BMI, and cardiovascular disease (CVD) his-
tory). To optimize the performance of these clinical models in CRIC,
the coefficients of the variables of both clinicalmodelswere refit to the
primary and secondary outcomes. Comparisons between the various
risk models were based on C-statistics calculated in the same partici-
pant set, using significanceas a two-sided P value < 0.05, and visualized
using forest plots.

In sensitivity analyses, we examined discrimination of the 65-
protein risk model for the primary outcome in subgroups of gender,
race, diabetes or eGFR. Furthermore, in addition to the 10-year time
horizon for risk modeling, we evaluated the performance of other
proteinmodels derived for shorter or longer time horizons of 2, 5, and
15 years. We also evaluated the performance of our primary 65-protein
model protein model using a race-free creatinine-based equation to
calculate a 50% eGFR decline for the primary outcome.

External validation
We performed external validation for the primary outcome in 578
participants at visit 3 of the ARIC Study52 who had CKD (eGFR < 60ml/
min/1.73m2) when plasmawas obtained for SomaScan V4.0 proteomic
analysis. We performed validation of 20 individual proteins with the
highest and 20 proteins with the lowest HRs for the primary outcome
in CRIC after adjustment for eGFR, by performing Cox regression for
their associations with the same outcome in ARIC, with adjustment for
eGFR. The statistical criterion for validationwas a Bonferroni P value of
<(0.05/40) or <0.00125, based on correcting for 40 proteins carried
forward for validation. Discrimination and calibration of the multi-
protein model for the primary outcome from CRIC were tested in
ARIC, the calibration after adjustment for differences in baseline
hazard, but retaining coefficients developed in CRIC. Statistical ana-
lyses wereperformed using R, version 4.0.3 (RStudio, Inc., Boston,MA.
URL http://www.rstudio.com/), with the packages of glmnet (version
4.0-2), survival (version 3.2-7 pec (version 2019.11), compareC (version
1.3.1), forestplot (version 1.10), lme4 (version 1.1-26).

Pathway analysis
We performed pathway analyses to elucidate the biological pro-
cesses and regulatorymechanisms associated with CKD progression.
The set of CKD progression-associated proteins with HRs significant
at a false discovery rate (FDR) threshold of 0.05 after adjustment for
eGFR were organized into canonical pathways by the Ingenuity
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Pathway Analysis (IPA) tool as we have described previously6,9,53,54.
For those modified aptamers that had multiple Uniprot identifica-
tions associated with 1 result, only the first Uniprot identification
listed was used6,9,53. For proteinsmeasured by two ormore aptamers,
the aptamermeasurement with the largest effect size was utilized for
the analysis. The Fisher right-tailed exact test was used to calculate a
P value to determine the probability that the association of the dif-
ferently expressed proteins in the measured dataset, and the path-
way are explained by chance alone.

Mendelian randomization
To investigate the potential causality of CKD progression for a limited
set of proteins from our study, we conducted Mendelian Randomiza-
tion (MR) analysis for 76 aptamers (75 proteins) that were either dis-
covered as risk factors for CKD progression in CRIC and successfully
validated in ARIC or were included in the 65-protein risk model for the
primary outcome in CRIC. Genotyping has been performed in CRIC
using Illumina HumanOmni1-QUAD V1.055 with 7,102,205 measured or
imputed genetic variants available for pQTL analysis (861,291 variants
prior to imputation). For each protein, we performed the protein
quantitative loci (pQTL) analysis and considered cis-pQTL variants
within 1 megabase (Mb) upstream or downstream of the transcription
start site of the corresponding protein-coding gene that had a
P value < 5e-6. Furthermore, we conducted the conditional association
analysis within the candidate set with the GCTA-COJO software56 and
selected the conditional significant variants with the p-value threshold
5 × 10−6 for the subsequent MR analysis. pQTL-protein associations
were adjusted for age, gender, eGFR, BMI, and the first five genotype
principal components. For proteins with more than one single
nucleotide polymorphism (SNP) selected, weusedmulti-SNPMRusing
the inverse variance weighting method57. For proteins with just one
SNP selected as the instrumental variable, we estimated the causal
effect using the Wald ratio test58. R packages Mendelian
Randomization59 and TwoSampleMR58were used in our analyses. Since
most genome-wide association studies (GWAS) of CKD focus on Eur-
opean Ancestry (EA), we restricted our pQTL analysis for this study to
1208 CRIC participants of European Ancestry. We augmented our MR
analysis using published significant pQTLs for the SomaScan V4.0 in
the deCODE, a cohort of 35,559 Icelandic participants, for which the
methods have been previously published60. Utilizing cis pQTLs from
CRIC or deCODE,we searchedwithin three publicly availableGWAS for
kidney function to determine whether these variants were associated
with kidney function decline, designating the significance threshold as
P value = 0.05/# distinct proteins queried in the GWAS.We chose three
publicly available GWAS datasets assembled from the CKD Genetics
Consortium and the United Kingdom Biobank. The eGFR dataset
includes 567,460 participants of European descent with eGFR mea-
sures within the CKD Genetics Consortium61. Rapid3 and CKDi25
include 42 cohorts from either CKD Genetics Consortium or UK Bio-
bank with serial kidney function measures62. Rapid3 includes 34,874
cases in whom eGFR decline was ≥3ml/min/1.73m2 and 107,090 con-
trols. CKDi25 includes 19,901 cases who start at eGFR >60ml/min/
1.73m2 and decline to less than 60ml/min/1.73m2 and have ≥25%
decline in eGFR, as well as 175,244 controls62. GWAS are available at
http://ckdgen.imbi.uni-freiburg.de/.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CRIC data are available from the CRIC Study group upon request
and with a Data Use Agreement. Data requests can be made by con-
tacting the CRIC Scientific and Data Coordinating Center at cri-
projmgmt@lists.upenn.edu. Data access is controlled due to the terms

of the informed consentwhichdoes not allow for the data to beposted
publicly with open access. The CRIC Study groupwill typically respond
to requests within one week, but the timeframe for providing data will
vary depending on the timeline for completion of a Data Use Agree-
ment between Penn and the receiving institution. Among other stan-
dard terms, Data Use Agreements will stipulate that the data only be
used for a pre-specified purpose and that the data not be shared with
third parties, and that publications of the data must appropriately
recognize the source of the data. If at the time of the data request, the
data are available through a federal repository, the requestor will be
referred to the appropriate repository to submit a data request. ARIC
data are regularly posted to repositories, including dbGaP and Bio-
LINCC in addition, requests for data and verification analysis can be
sent to the ARIC data coordinating center at University of North Car-
olina (aricpub@unc.edu attention David Couper) Source data are
provided with this paper. Please see Supplementary Data Files and
Source Data, Fig. 2, for minimum datasets that delineate protein
associations described herein. Source data are provided with
this paper.

Code availability
R code for these analyses may be requested from the CRIC Scientific
and Data Coordinating Center at cri-projmgmt@lists.upenn.edu.
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