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Causal inference from cross-sectional earth
system data with geographical convergent
cross mapping

Bingbo Gao1,2,10, Jianyu Yang1,2,10, Ziyue Chen 3 , George Sugihara4,
Manchun Li5, Alfred Stein6, Mei-Po Kwan 7,8 & Jinfeng Wang 9

Causal inference in complex systems has been largely promoted by the pro-
posal of some advanced temporal causation models. However, temporal
models have serious limitations when time series data are not available or
present insignificant variations, which causes a common challenge for earth
system science. Meanwhile, there are few spatial causation models for fully
exploring the rich spatial cross-sectional data in Earth systems. The general-
ized embedding theorem proves that observations can be combined together
to construct the state space of the dynamic system, and if two variables are
from the same dynamic system, they are causally linked. Inspired by this, here
we show a Geographical Convergent CrossMapping (GCCM)model for spatial
causal inference with spatial cross-sectional data-based cross-mapping pre-
diction in reconstructed state space. Three typical cases, where clearly existing
causations cannot be measured through temporal models, demonstrate that
GCCM could detect weak-moderate causations when the correlation is not
significant. When the coupling between two variables is significant and strong,
GCCM is advantageous in identifying the primary causation direction and
better revealing the bidirectional asymmetric causation, overcoming the
mirroring effect.

A sufficient and precise understanding of causal associations between
the target variable and influencing variables is an important compo-
nent for effectively utilizing natural resources and achieving sustain-
able development. Natural and social experiments are reliable
approaches for proving the existence of causation between the cause
and effect variable. However, in Earth system sciences, it is usually not
feasible to conduct experiments to explore the causal associations
between the target and influencing variables at large spatiotemporal

scales1,2. In this case, investigation on observational data has become a
commonly acceptable alternative to infer reliable causal associations.
Traditional statistics is a mainstream approach to analyze observa-
tional data, yet it denied a hypothesis of causation until the 1980s3,4. In
the past decade, causal inference has become a topic of interest in
many disciplines and a diversity of approaches has been proposed,
implemented and adapted for better attributing major social, ecolo-
gical, and economic issues1,5–8.
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Structural causal modeling, which originated from Wright9 and
was developed by Pearl10,11, and the potential outcome frameworks,
which originated from Neyman and Fisher and was developed by
Rubin12,13, are the two main frameworks to identify the existence of
causal relationships and estimate causal effects (the strength of the
causal relationship). The former emphasizes the combination of
causal graphs and statistical tools, while the latter attempts to imi-
tate the randomized controlled trials (RCT) by adjusting the vari-
ables. Causal network learning algorithms developed from the
structural causal modeling framework, such as PCMCI1,2, can auto-
matically build the causal networks and estimate casual effects. The
potential outcome framework was proposed to embed the instru-
mental variables to eliminate the confounders14 and has been widely
used in social and economic science4,15. These two frameworks are
mainly for stochastic processes. But for earth system sciences, many
systems (e.g., climate system or ecosystems) contain deterministic
or dynamical interactions, which are not captured well by the
assumptions of these frameworks and thus challenge their applic-
ability. For those nonlinear complex systems, causal inference
models based on the theory of state space reconstruction were
developed. Amongst these models16, Convergent Cross-mapping
(CCM) has been well accepted andmassively employed in a diversity
of disciplines17, including epidemic diseases18, socio-economic
issues19, and atmospheric pollution20. According to Takens’
embedding theory21, CCM employs time series data to reconstruct
the attractor, based on which the causation can be identified and
measured through the cross-mapping prediction. In addition, other
models which extract causation following a similar principle were
also developed, such as cross-mapping smoothness (CMS)22. and
partial cross-mapping (PCM)23.

However, these models can solely work with time series data, and
cannot be applied to spatial cross-sectional data (the characteristics,
principles and disadvantages of mainstream causation models are
briefly introduced in Supplemental Section 1 and Supplementary
Table 1). Spatial cross-sectional data, which often includes rich spatial
information but has little information on temporal changes, is more
easily available than time series data in Earth System Science. Spatial
cross-sectional data records spatial processes and their interactions,
and spatial order (or variation) are important indicators for under-
standing causal associations, which may be ignored by temporal
models due to insufficient length of time series or insufficient variation
across time series. Our previous research suggested that major tem-
poral causation models, including CCM and Granger Causality, failed
to extract NPP (Net Primary Productivity) -temperature (precipitation),
a clear existing causation6. This was mainly attributed to the slight
inter-annual variations of temperature (precipitation). Meanwhile,
NPP-climate association was effectively identified by spatial models,
thanks to notable spatial variations of temperature and precipitation.
Existing models, such as “spatial difference in difference” and “spatial
regression discontinuity”, may in some cases measure the average
causal effect of binary treatment under strong assumptions22,23. They
are based on the stable unit treatment value assumption (SUTVA) (or
ignorability), which assumes that (1) the potential outcomes of dif-
ferent spatial units do not interfere with each other, and (2) all treat-
ment levels are included so that the outcome should remain
unchanged if the same treatment is assigned. However, due to spatial
heterogeneity and spatial spillover7, which means that potential out-
comes of one spatial unit can influence its spatial neighbors, these
assumptions are easily violated in Earth System Sciences. Another
major challenge lies in the identification of the direction of causal
associations, which is largely disturbed by the contemporaneous
dependence between spatial variables, known as the mirroring
effect24,25. Therefore, it remains unclear whether, and more impor-
tantly, how reliable causal associations can be inferred from spatial
cross-sectional data.

Given the demand for causal inference from spatial cross-
sectional data in Earth System Sciences and the limitations of exist-
ing temporal and spatial causation models, here we propose a Geo-
graphical Convergent Cross Mapping (GCCM) model by adopting
dynamical systems theory and generalized embedding theory26–30.
GCCM is capable of identifying the causal associations between spatial
cross-sectional variables and estimating the corresponding causal
effects. By exploring nonlinear associations, GCCM outputs can be
more robust than linear correlation, which may easily lead to spurious
correlation, and can identify causations neglected by Linear Non-
Gaussian AcyclicModel (LiNGAM)31, a frequently used structural causal
model with enhanced assumptions. Based on three typical cases,
including clearly existing causation that cannot be measured through
temporal causation models, we demonstrate that GCCM can detect
weak-moderate causation when the correlation is not significant. On
the other hand, when the correlation between two variables is sig-
nificant and strong, GCCM is advantageous of identifying the primary
causal direction and better revealing the unidirectional asymmetric
causation, overcoming the mirroring effect. GCCM opens up a new
vision to infer causal associations from spatial cross-sectional data, by
bridging Earth data with the methodologies of complex system, and
canbe a powerful tool for revealing nonlinear complex relationships in
Earth systems.

Results
We illustrate the implementation and interpretation of GCCM with
three typical cases, demonstrating the application GCCM to different
types of spatial data and causal assoications. The first case is to infer
casual associations between the soil heavy metal and two influencing
factors (the density of industry pollutants and residence) in Illinois and
Indiana of US. The second case is to verify the casual associations
between county-level population density and environmental factors in
China. The third case consider the farmland NPP-temperature (pre-
cipitation) associations in China, which are clear existing causations
but fail to be identified by mainstream temporal causation models8.
Correlation analysis, which is the most frequently used method for
understanding causal associations from spatial cross-sectional data15

and LiNGAM32 from the structural causal modeling framework, which
is commonly used to identify thedirectionof causations, are employed
for the comparative analysis.

Causal inference with GCCM
Causal associations are important components of inner mechanism,
which can be recognized by observing and analyzing the phenomena
theypresent1,33,34. The spatial distribution is an important phenomenon
to extract causal associations in supplement to temporal changes6. The
corresponding spatial cross-sectional data record the spatial processes
and their interactions, and the spatial difference (order) provides a
valuable reference for understanding causal associations. There have
been some famous examples of inferring causation from the spatial
perspective. For instance, Charles Darwin developed the theory of
evolution by noticing the spatial difference of animals among Gala-
pagos Islands35, while Vasili Vasilievich Dokuchaev proposed the soil
formation theory (Pedogenesis) according to the spatial difference of
soil along the latitude32. Those successes are the fruit of human wis-
doms applied to spatial cross-sectional data, but only with formalized
mathematical methods, can the inferring framework become easily
understandable and transferable for researchers from various dis-
ciplines, or for artificial intelligence (AI) to infer causal associations
from big data.

The ubiquitous complex nonlinear associations make it chal-
lenging to infer causation in Earth Systems. Fortunately, theories for
dynamic system provide useful tools to reveal the nonlinear and
intertwined relationships17. Since Lorenz proposed a strategy to
address the nonlinear complex problems in the state (phase)
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space36, many prediction and causation detection methods have
been developed based on Takens’ theory for time-series data21.
Takens’ theory proves that, for a dynamic system ϕ, if its trajectory
converges to an attractor manifold M, which are consisted by a
bounded and invariant set of states, then the mapping between
ϕ and M can be built and time series observations of ϕ can be used
to construct M.

Earth systems are dynamic and spatial cross-sectional data can be
treated as a snapshot of the dynamical system. In contrast to time
series data,which are observations from a fixed spatial unit at different
times, spatial cross-sectional data are observations from different
spatial units at the same time. Both of them record different states of
the dynamical system, only from different perspectives. The general-
ized embedding theorem, which is a theory on the mapping between
differentiable manifoldM and Euclidean space ℝ37, can be adopted to
construct the state space with spatial cross-sectional data. Whitney
proved that M can be mapped into ℝ by observation functions, and
points inℝ canbe used to constructM37. According to the theorem, for
a compact d-dimensional manifold M and a set of observation func-
tions h1,h2, . . . :,hL

� �
, the map ψϕ,hðxÞ= h1 xð Þ,h2 xð Þ, . . . :,hL xð Þ� �

is an
embedding of M with L = 2d + 1. Here embedding means a one-to-one
map resolving all singularities of the originalmanifold. The elementshi

can be lags of observations from single time series observations, lags
of observations from multiple time series, or multiple observation
functions. Thefirst twoconstructions are only special cases of the third
one. By taking the measured values at one specific unit and its neigh-
bors (named as spatial lags in spatial statistics) as a set of observation
functions, ψϕ,hðx,sÞ= hs xð Þ,hsð1Þ xð Þ, . . . :,hsðL�1Þ xð Þ

D E
is a embedding,

where s is the focal unit currently under investigation and sðiÞ is its ith
order of spatial lags (as shown in Fig. 1), hs xð Þ, and hsðiÞ xð Þ, are their
observation functions respectively. Hereinafter, we will use ψðx,sÞ to
present ψϕ,hðx,sÞ for short. In time series data, the lag k means a shift
from the observation at focal period t to past observation at t-kτ.
Similarly, in spatial data, the lagmeans a shift to spatial neighbors from
the focal spatial unit. For raster data as illustrated in Fig. 1a, the first-
order lags are adjacent units in eight directions in yellow color, whose
first-order lags (removing those units already included) in turn con-
stitute the second-order lags of the focal units. Similarly, for polygon
data in Fig. 1b, the first-order lags are adjacent units sharing common
edges or vertexes with the focal unit, and the lags of next order are
the first-order lags of those adjacent units (excluding those already
included). As the spatial lags in each order contain more than

one spatial units, the observation function can be set as the mean
of the spatial units or other summary functions considering the spatial
direction, to assure theone-to-onemappingof theoriginalmanifoldM.

For two spatial variables X and Y on the same set of spatial units,
organized as regular grids (raster data) or irregular polygons (vector
data), their values and spatial lags can be regarded as observation
functions reading values from each spatial unit. Following the gen-
eralized embedding theorem26–30,37, their shadow manifold Mx and
My can be constructed by assembling above-defined ψðx or y,sÞ.
According to the dynamical systems theory17, if X and Y are observed
from the same dynamical system, they are governed by the same
manifold. Consequently, the one-to-one map between the recon-
structed Mx and My can be deduced because they resolve all tra-
jectories of the same original manifold without crossings. Set one
pointψðx,sÞ inMx as a focal state, its corresponding stateψðy,sÞ inMy
can be acquired according to the mutual spatial location s, as well as
its close states. For example, ψðx,s1Þ, ψðx,s2Þ, ψðx,s3Þ, and ψðx,s4Þ in
Mx can be identified as close states of ψðx,sÞ according to the dis-
tance in the state space. The corresponding states of them inMy are
ψðy,s1Þ, ψðy,s2Þ, ψðy,s3Þ, and ψðy,s4Þ respectively based on the mutual
spatial locations. Due to the mutual evolution, inMy, ψðy,s1Þ, ψðy,s2Þ,
ψðy,s3Þ are also close neighbors of ψðy,sÞ as illustrated in Fig. 2a.
Therefore, for a given x, the value of y can be predicted according to
its close neighbors identified fromMx. This type of prediction based
on nearestmutual neighbors is defined as cross-mapping prediction,
as Eq. (1).

Ŷ sjMx =
XL+ 1
i = 1

ðwsiY sijMxÞ ð1Þ

where s represents a spatial unit at which the value of Y needs to be
predicted, Ŷ s is the prediction result, L is the number of dimensions of
the embedding, si is the spatial unit used in the prediction, Ysi is the
observation value at si and simultaneously the first component of a
state inMy, noted asψðy,siÞ. In further,ψðy,siÞ is determined by its one-
to-one mapping point ψðx,siÞ, which is in turn one of the L+ 1 nearest
neighbors of the focal state ψðx,sÞ in Mx.wsi is the corresponding
weight defined in Eq. (2).

wsijMx =
weight ψ x, si

� �
,ψ ðx, sÞ� �

PL+ 1
i= 1 weight ψ x, si

� �
,ψ ðx, sÞ� � ð2Þ

Fig. 1 | Spatial lags. aThe spatial focal unit and its spatial lags indifferent orders of raster data, where thefirst-order lags are in yellow color, the second-order inorange and
the third-order lags in red. b The spatial focal unit and its spatial lags in different orders of polygon data.
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where weight(*,*) is the weight function between two states in the
shadow manifold, defined as Eq. (3).

weight ψ x, si
� �

,ψðx, sÞ� �
= exp � disðψ x, si

� �
,ψðx, sÞÞ

disðψ x, s1
� �

,ψðx, sÞÞ

 !
ð3Þ

where exp is the exponential function and disð*,*Þ represents the dis-
tance function between two states in the shadow manifold defined

in Eq. (4).

disðψ x,si
� �

,ψðx,sÞÞ= 1
L

hsi xð Þ � hs xð Þ
�� ��+ XL�1

k = 1

abs hsiðkÞ xð Þ,hsðkÞ xð Þ
h i !

ð4Þ
where *j j means the absolute value of a real number, and abs *,*½ �
represents the distance function between two vectors, as the first

Fig. 2 | Mutual neighbors for cross-mapping prediction. a Themutual neighbors
in the reconstructed manifold of reliable cross-mapping prediction. The orange
point labeled ψ y,sð Þ is the focal state to be predicted, and the four blue points
ψðy,s1Þ, ψðy,s2Þ, ψðy,s3Þ, and ψðy,s4Þ are nearest neighbors joining the prediction,
which are found by the one-to-one mapping between Mx and My. ψ x,sð Þ is corre-
sponding state of ψ y,sð Þ inMx. ψðx,s1Þ, ψðx,s2Þ, ψðx,s3Þ, and ψðx,s4Þ are the nearest

neighbors of ψ x,sð Þ searched inMx, and can be used to identify ψðy,s1Þ, ψðy,s2Þ,
ψðy,s3Þ, and ψðy,s4Þ inMywith mutual spatial locations. b The mutual neighbors of
unreliable prediction. For near neighbors of focal state ψ x,sð Þ in Mx, their corre-
sponding states inMy are not close to the ψ y,sð Þ in My. c The phase space of
unidirectional associations. Mx is a lower dimensional sub-manifold of the com-
plete system and My is a one-to-one map of M.
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element hsi xð Þ in ψ x,si
� �

corresponds to the spatial focal units, while
other elements in ψ x,si

� �
respectively correspond to a vector with

several spatial units. For example,hsð1Þ xð Þ in Fig. 1(a) has eightmembers
in yellow color, hsð1Þ xð Þ= unw,un,une,ue,use,us ,usw,us

� �
. The concrete

form of abs *,*½ � for raster data and polygon data are specified as absr
and absv in Eq. (5) and Eq. (6) respectively.

For raster data, as the number and location of neighbors in a
certain order are fixed, absr *,*½ � can be defined as the averaged abso-
lute difference of each spatial unit with the consideration of aniso-
tropy. For polygon data, since the number and direction of neighbors
in a fixed order of two spatial focal units differ frequently, absv *,*½ � is
defined as the absolute difference of spatial lags. When the anisotropy
can be neglected, Eq. (6) can also be used as the absolute value func-
tion of raster data.

absr hsiðkÞ xð Þ,hsðkÞ xð Þ
h i

=
1
D

XD
d

usiðk,dÞ xð Þ � usðk,dÞ xð Þ
��� ��� ð5Þ

absv hsiðkÞ xð Þ,hsðkÞ xð Þ
h i

=
1
D1

XD1

d

usiðk,dÞ xð Þ � 1
D2

XD2

d

usðk,dÞ xð Þ
�����

����� ð6Þ

where usiðk,dÞ xð Þ is the spatial unit of the kth-order spatial lags of si in
the direction d. D is the number of spatial units (or directions) in the
kth-order.

The skill of cross-mapping prediction is measured by the Pearson
correlation coefficient between the true observations and corre-
sponding predictions, defined in Eq. (7)

ρ=
CovðY ,Ŷ Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðY ÞVarðŶ Þ
q ð7Þ

where CovðÞ represents covariance and VarðÞ represents variance.
The prediction skill ρ varies by setting different sizes of libraries,

which means the quantity of observations used in reconstruction of
the shadow manifold. For raster data, since spatial units are regularly
arranged with an equal area, the window size is used to represent the
size of library. For polygon data, the number of spatial units is used to
represent the size of library due to the irregular arrangement and
unequal areas. Sugihara et al.17 suggested to use the convergence of ρ
to infer the causal associations. For GCCM, the convergence means
that ρ increases with the size of libraries and is statistically significant
when the library becomes largest17,19. By plotting a line graph of ρ
versus libraries’ size (as Figs. 3–5), the increasing trend can be deter-
mined from it. In further, the null hypothesis for the significance test of
ρ is that H0 : ρ=0, and the statistics t in Eq. (8) can be used with the
Student t distribution to get the p-value. Meanwhile, the confidence
interval of ρ can be estimated based the statistics z in Eq. (9) with the
normal distribution. In following case studies, the significance level is
set to 0.05 and the confidence interval is 95%.

t = ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
1� ρ2

s
ð8Þ

where n is the number of observations to be predicted.

z =
1
2
ln

1 + ρ
1� ρ

� 	
ð9Þ

If X and Y are from the same dynamic system, they are causally
linked and canbepredictedwith the cross-mappingmethod. To assure
the causal associations between X and Y are bidirectional or they are
both the effects of a shared cause, it is a required condition that both

ψ x,si
� �

and corresponding ψ y,si
� �

are close neighbors of ψ x,sð Þ and
ψ y,sð Þ. In this case, with the increase of libraries, the points in the local
area containing ψ x,sð Þ (or ψ y,sð Þ) become denser and the cross-
mapping prediction becomes more reliable, as demonstrated in
Fig. 2a. If the causal association is unidirectional and X is an external
cause (noted as X→Y), the original manifold contains dynamic infor-
mation of both X and Y, while Y also contains information of X and
itself. Meanwhile, X does not contain the dynamic information that
solely belongs to Y. Consequently, Mx is a lower dimensional sub-
manifold of the complete system,whileMy is a one-to-onemapofM. It
is not guaranteed that ψ y,si

� �
, corresponding to ψ x,si

� �
, is close to

ψ y,sð Þ, as illustrated in Fig. 2b. SoX can bepredicted reliablywith Y, but
not vice versa, i.e. the accuracy of the cross-mapping prediction of X
with Y converges faster and notably stronger than the inverse effect of
Ywith X, as in Figs. 3–5. If Y cross-mapping predicting X (i.e. noted as Y
xmap X) is higher, then we can interpreted as X causes Y (noted as
X→Y)17. However, if the causal influence of X is strong enough that Y
becomes subordinated to X, they become synchronized (the well-
known phenomenon of “synchronization”). Consequently, the cap-
ability of X cross-mapping predicting Y (noted as X xmap Y) is also
strong. Therefore, when the cross-mapping prediction skills are strong
in both directions, it either means that the causal associations are
bidirectional, or the effect variable is enslaved by the cause variable.
The interpretation of GCCM outputs under different scenarios are
illustrated through three following case studies.

Extracted causations between soil pollution and multiple influ-
encing factors
Soil heavy metal pollution exerts a strong influence on soil quality and
public health38–42. The contents of soil heavymetals are generally stable
for a long period43 and large-scale surveys are very expensive and time-
consuming38. Thus, the data sets of heavymetal may be updated every
10 or 20 years, making the attribution of soil pollution based on the
time series data and temporal statistical models not feasible. Mean-
while, due to thewide variety of pollution sources and complex factors
that influence their accumulation, the correlations between the causal
factors and soil pollution are always weak and insignificant. In this
study, we select four heavy metals (the soil concentrations of Cu, Cd,
Mg and Pb) to present soil pollution and two influencing factors, the
density of industrial pollutants and residential pollutants. The resi-
dential pollutants is usuallymeasured by the residential density, which
could be reflected by the intensity of nightlight44,45. Due to the lack of
data concerning residential density data, the intensity of nightlight has
been widely as the proxy variable of residence density43–45. Hereinafter
in this manuscript, we use nightlight intensity to delegate the resi-
dential density. As is well known, industry and residential wastes are
two major causes of soil pollution40,46,47. Since the ultimate challenge
for verifying causation models is the lack of observable evidence, the
clear existence of causation between the concentration ofmajor heavy
metals and industrial (or residential) density provides a valuable
reference for assessing the reliability of causation models.

The output of causal inference using GCCM is displayed as Fig. 3.
Due to limited space and similar causation outputs, here we mainly
introduce the causation between Cu and the density of industrial
pollutants and residents. As shown in Fig. 3a–c, the spatial distribution
of soil Cu concentrations, the density of industrial pollutants and
nightlight, present little similarity and shared patterns.Meanwhile, the
reconstructed manifold of soil Cu concentrations, the density of
industrial pollutants and nightlight, as shown in Fig. 3d–f, present a
similar pattern. It demonstrates that the reconstruction process of
GCCM makes some unclear spatial associations between variables
clearer in the phase space. Based on the reconstructed manifold,
GCCM reveals the unidirectional causation between industrial and
residential density and Cu concentrations. The ρ (cross-mapping pre-
diction skill) of Cu xmap industrial density, whichmeasures the causal
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effect of industrial pollution density on Cu (noted as industry→Cu), in
Fig. 3g, and Cu xmap nightlight, which measures the causal effect of
residential pollution on Cu (residence→ Cu), in Fig. 3h are 0.37
(p = 0.00) and 0.25 (p =0.00). Meanwhile, the ρ of industrial pollution
density xmap Cu (Cu→ industry) and nightlight xmap Cu (Cu→ resi-
dence) are weak and insignificant, as 0.05 (p = 0.09) and 0.00
(p = 0.43) respectively. The larger and significant ρ of Cu xmap
industrial density (industry→ Cu) and Cu xmap nightlight (residence →
Cu) suggest that industrial and residential pollution exert a strong
influence on Cu concentrations. Conversely, the lower and insignif-
icant ρ of industrial pollution density xmap Cu (Cu→ industry) and
nightlight xmap Cu (Cu→ residence) suggest that Cu concentrations
are not the cause of the density of industrial and residential pollutants.

Due to the lack of similarity in Fig. 3(a), (b) and (c), the com-
monly employed Pearson correlation analysis fail to extract sig-
nificant correlations betweenCu concentrations and two influencing
factors, with correlation efficient as −0.08 (p = 0.43) and −0.03
(p = 0.08) for industrial pollution density and nightlight density
respectively. The linear coefficients matrix (Bpruned) outputted by
LiNGAM is a zero matrix, indicating that none causal associations
were identified between Cu concentrations and the two influence
factors. The detailed coefficients and uncertainties of GCCM, cor-
relation analysis and LiNGAM are shown in Supplemental Table S2.
The causation inference outputs of other heavy metals (Cd, Mg and
Pb) are similar to Cu and can also be found in Supplemental Table S2
and Fig. S2.

b. Industry c. Nightlight

d. Cu concentration e. Industry f. Nightlight

g. Cu-Industry h. Cu-Nightlight

a. Cu concentration

Fig. 3 | Causal inference for soil pollution. a–c are the maps of soil Cu con-
centration, the density of industrial pollutants and nightlight, d–f are the corre-
sponding manifold reconstructed by spatial lags, g is the cross-prediction outputs
between soil Cu and the density of industrial pollutant, at largest library size, ρ of
Cu xmap Industry is 0.37 (p =0.00), and ρ of Industry xmap Cu is 0.05 (p =0.09),
h is the cross-prediction outputs between soil Cu and nightlight, at largest library

size, ρ of Cu xmapNightlight is 0.25 (p =0.00), and ρ of Nightlight xmap Cu is 0.00
(p =0.43). Note: The higher Cu xmap Industry (or Nightlight) indicates a causal
effect from industry (or residence) to soil pollution. As a comparison, the Pearson
correlation efficient between Cu and industrial pollution density and nightlight
density are −0.08 (p =0.43) and −0.03 (p =0.08) respectively, and the coefficients
output by LiNGAM are all zero.
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This case study indicates thatGCCMperforms effectively to reveal
the unidirectional associations between variables with weak-moderate
coupling.

Extracted causations between population density and multiple
influencing factors
In this case, we examine the county-level population density organized
as polygon data, to evaluate the reliability of GCCM.Different from soil
pollution, we select four environmental factors closely correlated with
population density, including precipitation, temperature, elevation
and slope, as shown in Supplemental Fig. S3. These factors are all
significantly correlated with population density (Supplemental
Table S3). It is worth mentioning that similar to CCM17, the running of
GCCM also requires a non-linear relationship between variables. To
address this issue, we conduct a linearity-removal pre-processing for
these variables before the running of GCCM. The detailed methodol-
ogy for linearity-removal can be found in the Supplemental Section S3.
The causation between population density and environmental vari-
ables revealed by GCCM are displayed in Fig. 4. The ρ of population
density xmap precipitation, temperature, elevation and slope (pre-
cipitation→ population density, temperature→ population density,
elevation→ population density and slope→ population density respec-
tively) are large and significant, as 0.64 (p = 0.00), 0.63 (p = 0.00),

0.64(p =0.00) and 0.48 (p = 0.00). As a comparison, the ρ of pre-
cipitation, temperature, elevation and slope xmap population density
(population density→ precipitation, population density→ temperature,
population density→elevation and population density→ slope) are also
significant yet much smaller, as 0.27(p = 0.00), 0.31 (p =0.00), 0.36
(p = 0.00) and 0.26 (p = 0.00). It is worth mentioning that the much
smaller ρ of environmental factors xmap population density (popula-
tion density→ environmental factors) do not necessarily prove the
existence of a reverse-direction causation. As explained by Suighara
et al. 17, when there is a strong causation from X to Y (X→Y), then even if
there is no feedback causal influence from Y to X, there can also be a
smaller ρ of X xmap Y (Y→X), resulting from the subordinating effect
under the strong-association scenario. Therefore, the smaller ρ of X
xmap Y can either indicate a weaker causal influence of Y on X (feed-
back causation), or the spatial variation of Y can have a small reflection
on the spatial variation of X (reflection, not causation). The much
smaller ρ of environmental factors xmap population density (popula-
tion density→ environmental factors) did not necessarily prove the
existence of a reverse-direction causation. When there is a strong
causation from X to Y (X→Y), then even if there is no feedback causal
influence from Y to X, there can also be a smaller ρ of X xmap Y (Y→X),
resulting from the subordinating effect17. Therefore, the smaller ρ of X
xmap Y can either indicate a weaker causal influence of Y on X

Fig. 4 | Causal inference for population density. a–d are the cross-mapping
prediction outputs between population density and county-level Temperature,
Precipitation, Elevation and Slope in China, at largest library size, ρ of Population
density xmap Precipitation, Temperature, Elevation and Slope are 0.64 (p =0.00),
0.63(p =0.00), 0.64(p =0.00) and 0.48 (p =0.00);ρ of Precipitation, Temperature,
Elevation and Slope xmap Population density are 0.27(p =0.00), 0.31 (p =0.00),
0.36 (p =0.00) and 0.26 (p =0.00). Note: The higher Population density xmap

Precipitation (Temperature, Elevation, or Slope) indicates a causal effect from
precipitation (temperature, elevation, or slope) to population density(leading
casual direction). As a comparison, the Pearson correlation coefficients between
population densities and precipitation, temperature, elevation and slope are 0.06
(p =0.00), 0.15 (p =0.00), −0.18 (p =0.00) and −0.23 (p =0.00) respectively, and
the coefficients of LiNGAM between population density and precipitation, tem-
perature, elevation and slope are 0.00, 0.00, −1.08 and −364.03.
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(feedback causation), or the spatial variation of Y can have a small
reflection on the spatial variation of X (reflection, not causation). For
this research, since population density can influence the temperature
through intensivehumanactivities43, and theprecipitationby releasing
particulatematters44, which are important nuclei for rain, the small ρof
precipitation xmap population density and temperature xmap popu-
lation density can be regarded as a weaker feedback causation. On the
other hand, population density cannot directly alter county-level ele-
vation. Instead, population density can partially reflect the county-
level elevation. For instance, when noticing a city with a population
density notably lower than other cities in China, we can presume that
the elevation of this city is very likely large and located in plateau
regions. So the small ρ of elevation xmap population density can be
regarded as a weak reflection. Although GCCM itself cannot distin-
guish the feedback causation or reflection in strong coupling cases, it
can identify the leading direction of the casual associations.

As a comparison, the linear correlation coefficients between
population densities and precipitation, temperature, elevation, and
slope are 0.06 (p =0.00), 0.15 (p = 0.00), −0.18 (p =0.00) and −0.23
(p = 0.00) respectively. Although the linear correlations are also sig-
nificant, the coefficients of GCCM are much higher and effectively
reflect the asymmetric association between two variables. As a com-
parison, the fixed value of the correlation coefficient cannot help
understand the asymmetric direction and strength of causation
between two variables. The linear coefficients of LiNGAM between
precipitation, temperature, elevation and slope, and population den-
sity are 0.00, 0.00, −1.08, and −364.03. It demonstrates that LiNGAM,
with linear relationship and independent non-Gaussian distributed
noise assumption, fails to identify the causal associations between
population density and precipitation, and temperature. The detailed
results of three methods can be in found in Supplemental Table S3.

Extracted causations between farmlandNPP and climate factors
In addition to the above cases which illustrate the performance of
GCCM when processing raster data with weak correlations and poly-
gon data with strong correlations respectively, we also check whether
GCCM could effectively reveal the well-known NPP-Climate causation,
a case explored in our previous study6. As is widely acknowledged,
precipitation and temperature are the main driving forces of farmland
NPP48,49. However, Gao et al.6 proved that mainstream temporal cau-
sationmodels such as CCM and Granger Causality Test (GCT) failed to

infer causal associations between farmland NPP and precipitation (or
temperature) due to insignificant temporal variations of these vari-
ables from 2000 to 2015. In this case, we employ the same data sets,
including the average farmland NPP, precipitation, and temperature
across China, to infer NPP-Climate associations using GCCM. Con-
sidering the strong linear correlation between NPP and precipitation
(temperature), we conducted the same linearity-removal pre-proces-
sing (as in Supplemental Section S4) before the running of GCCM. The
causal inference outputs from GCCM are displayed in Fig. 5, and
detailed outputs of correlation analysis and LiNGAM can be found in
Supplemental Table S4.

For GCCM, the prediction skill ρ of farmland NPP xmap pre-
cipitation (precipitation→ farmland NPP) and temperature (tempera-
ture→ farmland NPP) are 0.48 (p =0.00) and 0.50 (p =0.00).
Conversely, the ρ of precipitation and temperature xmap farmland
NPP (farmland NPP→ precipitation and farmland NPP→ temperature)
are 0.00 (p =0.50) and 0.17 (p =0.00) respectively. These outputs
prove a strong casual influence of precipitation and temperature on
farmland NPP, which is consistent with the well-known facts, yet can-
not be extracted by major temporal causation models. The zero ρ of
precipitation xmap farmland NPP indicate that farmland NPP is not a
cause of precipitation. And the much-smaller ρ of temperature xmap
farmland NPP majorly result from the above-introduced enslaved
effect from the strong causal influence of temperature on farmland
NPP. In other words, farmland NPP can partially reflect temperature.

Based on the same data set, the Pearson correlation coefficient
between NPP and temperature and precipitation are 0.76 (p = 0.00)
and 0.66 (p =0.00), both significant. However, this coefficient cannot
help understand the asymmetric direction and strength of causation
between two variables and can be largely biased due to other con-
founding factors17. As a comparison, LiNGAM fail to identify the exis-
tence of causal associations between farmland NPP and precipitation
(temperature), with all coefficients as 0.00. The incapacity of LiNGAM
in extracting NPP-climate causation, is mainly caused by the fact that
its strong assumption on the linear relationship and noise distribution
is easily violated in Earth SystemScience. The detailed outputs of three
methods can be in found in Supplemental Table S4.

Case 2 and Case 3 suggest when variables are strongly and sig-
nificantly correlated, GCCM can also extract reliable causation
between them. The leading cause-effect relationship between two
variables (the notably larger ρ) can be well identified and measured

Fig. 5 | Casual inference for farmland NPP. a cross-mapping prediction between
farmland NPP and precipitation, at largest library size, ρ of NPP xmap Precipitation
is 0.48 (p =0.00), and ρ of Precipitation xmap NPP is 0.00 (p =0.50) b cross-
mapping prediction between farmlandNPP and temperature, at largest library size,
ρ of NPP xmap Temperature is 0.50 (p =0.00), and ρ of Temperature xmap NPP is
0.17 (p =0.00). Note: The higher NPP xmap Precipitation (or Temperature)

indicates a causal effect from precipitation (or temperature) to NPP (leading casual
direction). As a comparison, the Pearson correlation coefficient between NPP and
temperature and precipitation are 0.76 (p =0.00) and 0.66 (p =0.00), and the
coefficient of LiNGAM between farmland NPP and precipitation and temperature
are all zero.

Article https://doi.org/10.1038/s41467-023-41619-6

Nature Communications | (2023)14:5875 8



through GCCM based on spatial cross-sectional data. Meanwhile, the
feedback causal influence or the reflection capability from the target
variable to influencing variables can as well be extracted as a smaller ρ,
forming the unidirectional or bidirectional asymmetric associations
between two variables. Since the correlation between two variables
can be largely biased by other confounding variables17, the correlation
coefficient can be notably underestimated or overestimated, espe-
cially in highly complex ecosystems17. In this case, the ρ value gener-
ated by GCCM, which is drawn from the nonlinear associations and
thus more robust, can effectively reduce the influencing of other
variables and provide a more reliable and complete reference for
better understanding and comparing the strength of causation
between the target variable and multiple influencing variables.

Discussion
Spatial cross-sectional data is another main type of observational data
of Earth systems in parallel to time series data. It contains abundant
spatial information for revealing the asymmetric and multi-directional
interactions between awide range of ecological processes andmassive
socio-economic-environmental influencing factors. However, how to
properly infer causal associations from spatial cross-sectional data
remains highly challenging. Different from temporal causal models,
which consider time sequence (i.e. cause precedes effect) as the fun-
damental and easily understandable evidence of cause-effect pro-
cesses, it is more difficult for spatial models to properly link spatial
variations of the target and influencing factors to their potential cau-
sations. For complex ecosystems, where there are strong, multi-
direction interactions between a large number of variables, existing
spatial models cannot reveal the asymmetric bidirectional causation
between two variables. Against this background, GCCM is designed for
spatial cross-sectional data to infer causality from spatial variations.
Supported by dynamical systems theory and generalized embedding
theory, GCCM suggests that similar to the time lags in time series, we
could reconstruct the manifold through spatial lags and interpret the
causation based on the cross-mapping predictions in the phase space.
In this case, the principle of identification and measurement of cau-
sation from a spatial perspective can be clearly illustrated in the GCCM
framework. Further, GCCM can reliably detect the direction and
strength of causal associations in weak-to-moderate coupling systems,
which may be ignored by correlation models. For strongly coupled
systems, GCCMcaneffectively overcome themirroring effect and thus
identify the direction and the asymmetric strength of the leading
causation. Facing complex systems with multiple interacting factors,
similar to CCM, GCCM is advantageous in handling the non-
separability issue and the nonlinear relationships. Due to the wide-
spread associations existing between interacting elements within the
Earth system, the effect variable is unlikely to be fully separated from
the cause variables, and their relationships are often nonlinear. Since
the commonly employed correlation model can identify neither weak
nor nonlinear coupling relationships and is largely biasedwhendealing
with strong coupling relationships, GCCM can notably improve causal
inference in complex Earth systems. In addition, the associations
extracted through the nonlinear relationships are more robust than
linear correlations. This is because in practice, spurious linear con-
comitant covariations are very commonandcannotbe ruledout by the
linear correlation. As a comparison, the probability of spurious con-
comitant nonlinear covariation is much lower and the associations
detected by GCCM are more likely to be genuine couplings. Further-
more, GCCM is almost a parameter-free method, without the need to
trainmany parameters, and is applicable to both polygon (vector) data
and raster data, twomajor types of spatial cross-sectional data sources.
Therefore, it could be easily employed by scholars from multiple
backgrounds.

Despite its wide suitability and high reliability, some limitations
remain for GCCM. The underlying assumption of GCCM is that the

spatial cross-sectional variables are from dynamic systems. So it
requires that information on cause variables is printed in the effect
variable. If variables are from purely stochastic and linear systems and
information on the cause variable is independently unique to the effect
variable, GCCM becomes inapplicable. Previous studies50–53 pointed
out that causation models based on state space reconstruction were
sensitive to periodic time series and high levels of noise. The former is
not an issue for GCCM, asperiodic spatial phenomenon are very rare in
practice. On the other hand, high levels of noise in the data sources
may notably affect GCCM. To evaluate GCCM when processing data
with noise, we add different levels of noise to the heavy metal data set
(the first case) and repeatedly run the GCCM based on the synthetic
data. GCCM outputs based on the varying synthetic Cu (with added
noise) are displayed in Fig. 6, and outputs of other heavy metals are
presented in Supplemental Section 5. By increasing the added random
noise from 10% to 30%, 60%, and finally 90% of the original observed
value, the ρ of Cu xmap industry pollution density and nightlight
density (industry→Cu and residence→Cu) decrease gradually. Similar
to other causation models, the existence of random noise in original
data sources weakens the inference skill of GCCM. However, only until
the random noise reaches 90% (signal-to-noise ratio approaches 1),
GCCM fails to extract some causations between residence and Cu (and
other heavymetals), as shown in Fig. 6 and Supplemental Section 5. To
better implementGCCM, the pre-selection of data sourceswith limited
noise and the pre-removal of noise are recommended. At the same
time, somekey issues for implementing and interpretingGCCMshould
be again emphasized here. Firstly, GCCM, as well as the classic CCM, is
specially developed to infer nonlinear and intertwined casual asso-
ciations from spatial perspective. Therefore, when the target and
influencing factor are significantly correlated, a linear-removal pro-
cessing is required before the running of GCCM. Secondly, due to the
existence of enslaved association, GCCM may calculate a reverse-
direction and smaller ρ, even if no actual feedback effect exist, and
researchers should not easily explain it as so. Instead, sufficient prior-
knowledge or additional investigation is required to interpret whether
it is a feedback causation or it is just a reflection of the main-direction
causation. Thirdly, the proxy variable “nightlight”, which has been
frequently considered as a representationof “residencedensity”, in the
first case is used to test the performance of GCCM to identify a known
causal association. However, for identifying unknown causal associa-
tion, inappropriate proxy variablemay cause incorrect result, and thus
somemajor criteria54,55 for properly selectingproxy variables shouldbe
strictly followed.

A causal understanding of the spatiotemporal processes and
mechanism and Earth System, such as climate change, environmental
pollution, cultivated land degradation, healthcare, and economic
problems, is crucial for human being to face challenges of survival and
sustainable development. As experiments on Earth System at large
scales are not feasible, causal inference based on observations has
become the mainstream way to answer those needs. In recent years,
although advanced causal inference has been given increasing
emphasis globally, it is well accepted that existing models cannot fully
establish a framework, which effectively considers the massive
uncertain interactions in complex systems. Our recent research56

revealed that some advanced models, which performed effectively in
simple systems, have considerable limitations when applied to com-
plex atmospheric environments. Meanwhile, spatial variations and
temporal changes are two important perspective to infer causal asso-
ciations from observations6. When the time series observations are
absent or present insignificant changes, causal inference from spatial
perspective, for which the GCCM is specially designed, can be an
important complement to temporal method.

With the accumulation of spatiotemporal observations, the big
data provide rich information to infer causations. To reveal the casual
associations of earth system from the big data, proper integration or
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comprehensive use of differentmodels is recommended to handle the
large number of variables and complex direct and indirect associa-
tions. In addition to itsmajor advantages when applied alone, GCCM is
a data-based causal inference method and has the potential to be
directly embedded into structural causal modeling methods. For now,
there are some causal network learning models (e.g. PCMCI) that can
retain the correct causal graphs by leveraging the law that the cause
precedes the effect in time2. However, for spatial cross-sectional data
where information on temporal precedence is lacking, the causal
direction cannot be identified even with such enhanced models as the
LiNGAM. Filling this, GCCM can be effectively integrated with causal
graphs for a better understanding of the complex causal relationships
among variables.Whenwe have a prior causal graph, GCCMprovides a
reference for further adjusting the pathways and better estimating the
causal strength. When prior knowledge to build a causal graph is not
available or a large number of variables have to be investigated, GCCM
can be employed to improve the causal-network learning models and
support the identification of causal directions and the removal of
spurious Markov equivalent graphs.

In general, GCCM is an important extension of classic CCM to
causal inference from a spatial perspective. CCM and GCCM can be
combined to constitute a set of solutions for non-separability systems,
as well as causation models for stochastic systems (e.g. Granger Cau-
sation test). In the future, scholars may further explore the possibility
of embedding both CCM and GCCM into structural causal modeling
methods for a comprehensive causal inference from spatiotemporal
big data, leading to advanced tools for revealing the complicated
human-environment interaction in the earth system.

Methods
Data sources
We employ three typical cases to illustrate the effects, reliability, and
interpretation of GCCM in the real world. The first is the causation
between soil pollution and industrial pollution and residential density

based on raster data. The second is the causation between population
density and a series of environmental factorsbasedon vector data. The
third is the causation between farmland NPP and climate factors. The
soil pollution data are obtained from the National Geochemical Survey
database of the U.S. covering Illinois and Indiana (https://mrdata.usgs.
gov/geochem/)57. The population density data of China are obtained
from the National Bureau of Statistics of China, and the climate and
topographical data are obtained from published data set58. The NPP
data are MOD17A3V055 (http://files.ntsg.umt.edu/data/NTSG_
Products/MOD17) masked with farmland of China, which are
obtained from the China Multi-period Land Use Land Cover Remote
Sensing Monitoring Data Set(CNLUCC)59. The dominant linear trend is
removed from the population density and farmland NPP with the
Ordinary Least Squares regression method60,61. The detailed setting
and complete result of the experiment are presented in the supple-
mentary documents.

GCCM is implemented with R language, with one implementation
for raster data and another for polygon data. All the cases are run in R
4.2.0, the stats and pcalg package are adopted to conduct the linear
correlation and LiNGAM method respectively.

Brief steps for conducting GCCM
GCCM aims to identify and measure the causation from spatial cross-
sectional data. It reconstructs the manifold in state space with spatial
observations and their spatial lags, and infer causation according to
the cross-mapping prediction in the state space. With the major prin-
ciples and parameters of GCCM already introduced in details, the
implementation of GCCM is realized in the following major steps:
1. Construct the embeddings: Firstly, set the dimension of the

embeddings as L; Then go through each spatial unit (pixel or
polygon) s andfind its spatial lags of different orders (as Fig. 1a, b),
each of which ismarked as s 1ð Þ,s 2ð Þ, . . . ,s L� 1ð Þ, and contains a set
of neighboring units; Following this, get values of X and Y at the
corresponding units and organize them as vectors,

Fig. 6 | Causal inference for synthetic Cu data with randomly added noise.
a–d are the cross-prediction results between the industrial pollution density and
synthetic Cu data with 10% to 30%, 60%, and 90% randomly noise added; e–h are

the cross-prediction results between nightlight and synthetic Cu with 10% to 30%,
60%, and 90% randomly noise added. Note: the higher ρ of Cu xmap Industry (or
Nightlight) indicates a causal effect from industry (or residence) to soil pollution.
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;
Finally, assemble those vectors together as anmatrix according to
their spatial orders.

2. Predict Y based on X: Set a sequence of library sizes (i.e. the
widows size for raster data and the number of spatial units for
polygon data); For each library size, predict Y as Eq. (1) by
searching near points in the state space and confined by the
library size; Calculate prediction skill ρ as Eq. (7), and finally get a
series of ρ of Y with different library sizes.

3. Predict X based on Y: predict X using the similar approach in the
above step and get a series of ρ of X with different library sizes.

4. Extract and interpret causations: Plot the prediction outputs from
above two step as linegraphusingρon the vertical axis and library
sizes on the lateral axis (as demonstrated in Figs. 3–6); Identify the
existence, direction and strength of bidirectional (or unidirec-
tional) causation based on the convergence, significance and
confidence interval of ρ with the largest library size. It should be
noted, which may be misunderstood, that the line of Y xmap X is
the basis to determinewhetherX is a cause of Y (noted asX→ Y)17. If
the line of Y xmap X is muchhigher with the increase of the library
size, then X causes Y (noted X → Y) is the leading direction in a
bidirectional causation, or the sole direction in a unidirectional
causation.

The dimension parameter L can be adjusted automatically to find
the largest ρ. The library sizes can be commonly set as Arithmetic
Sequence to reveal the trend of prediction skill.

Data availability
Thedata used in this study are available at https://doi.org/10.6084/m9.
figshare.21782201.

Code availability
The codes for GCCM that we developed in this study are publicly
available at https://github.com/Bingbo-Gao/GCCM.
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