
Article https://doi.org/10.1038/s41467-023-41602-1

Exploration of cell state heterogeneity using
single-cell proteomics through sensitivity-
tailored data-independent acquisition
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Single-cell resolution analysis of complex biological tissues is fundamental to
capture cell-state heterogeneity and distinct cellular signaling patterns that
remain obscured with population-based techniques. The limited amount of
material encapsulated in a single cell however, raises significant technical
challenges to molecular profiling. Due to extensive optimization efforts,
single-cell proteomics by Mass Spectrometry (scp-MS) has emerged as a
powerful tool to facilitate proteome profiling fromultra-low amounts of input,
although further development is needed to realize its full potential. To this
end, we carry out comprehensive analysis of orbitrap-based data-independent
acquisition (DIA) for limited material proteomics. Notably, we find a funda-
mental difference between optimal DIA methods for high- and low-load sam-
ples. We further improve our low-input DIA method by relying on high-
resolution MS1 quantification, thus enhancing sensitivity by more efficiently
utilizing available mass analyzer time. With our ultra-low input tailored DIA
method,we are able to accommodate long injection times and high resolution,
while keeping the scan cycle time low enough to ensure robust quantification.
Finally, we demonstrate the capability of our approach by profiling mouse
embryonic stem cell culture conditions, showcasing heterogeneity in global
proteomes and highlighting distinct differences in key metabolic enzyme
expression in distinct cell subclusters.

Analytical techniques with single-cell resolution are becoming indis-
pensable tools to study complex biological systems. Although invalu-
able, the aggregated view obtained by bulk cell population
experiments is not sufficient to achieve fundamental understanding of
human development and disease. The means to interrogate the first
two aspects of the central dogma of biology (DNA-RNA-Protein) are
well established and have been widely adopted, but the study of pro-
teomes by liquid chromatography coupled mass spectrometry

(LC–MS) at single-cell resolution is just entering the biological appli-
cation phase1. It is estimated that a single mammalian cell contains
50–450pg of protein2, posing significant challenges to protein iden-
tification and quantification. However, these challenges are to a large
extent being mitigated by advances in different aspects of LC–MS-
based proteomics3–13.

Pioneering studies could quantify hundreds of proteins from a
single cell9,13. These reports marked an important milestone for mass-
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spectrometry based single-cell proteomics (scp-MS), however analysis
required long chromatographic gradients, complicating practical
implementation of large-scale scp-MS investigations. Data-dependent
acquisition (DDA) based methods have dominated the field thus far,
led by the development of SCoPE-MS approach4,10,11,14. The method
utilizes isobaric TMT labeling to multiplex single cells and combines
themwith a carrier channel containing 100–200 cells, allowing parallel
analysis of up to 16 cells in a single run with the latest TMTPro 18-plex
reagent set. This tremendously improved the throughput and pro-
teome coverage of scp-MS, but in-depth explorations of the biases
introduced by the carrier channel in terms of protein quantification
have clarified the benefits and limitations of this method7,10,15,16. Latest
label-free quantification (LFQ) -based approaches have significantly
improved the proteome coverage (1000–2000 proteins) and surpass
DDA multiplexing based workflows, although the low throughput
remains a significant challenge12,17. A dual-column LC configuration has
been proposed as a potential solution, but is yet to be demonstrated
on actual single-cell input18. Data-independent acquisition (DIA)19,20

based approaches have also been used to tackle single-cell proteomes
and currently provide the deepest proteome coverage3,6,21. Further-
more, the introduction of plexDIA increased the throughput by
allowing single-cell multiplexing, similarly to SCoPE-MS, demonstrat-
ing great potential for increased throughput in DIA-based
approaches6.

Due to the ultra-low amount of peptides derived from a single-
cell, long injection times (ITs) are required to ensure sufficient ions are
collected for identification and quantification7,11,12,15,22. This limits the
capacity of DDA based methods to comprehensively sequence all the
peptides present in the sample, putting great demands on analysis
efficiency in terms of effectively using available mass analyzer time7,23.
In contrast, DIA does not suffer from such limitations as multiple
peptides are co-isolated and analyzed, potentially acquiring both the
MS1 andMS2 spectra of all the precursor ions present in the samples24.
However, identification and quantification can be hindered by spectra
convolution and low signal intensity. Improvements in chromato-
graphic separation have the potential to benefit all types of scp-MS
workflows, by providing higher resolution (sharper peaks boosting
peptide ion flux), better separation capacity andmore stable retention
times run-to-run. Accordingly, narrow-bore columns and perfectly
ordered micropillar-array-based nano-HPLC cartridges (μPAC) have
been manufactured and have shown promising results for ultra-low
(<1 ng) input proteomics17,25–27. μPAC columns have shown great pro-
mise for low-input (<10 ng) proteomics, with high separation power
and exceptionally robust peptide retention times25,26. Impressively, the
improvements brought about by the μPAC columns allowed quantifi-
cation of proteins from only 50 pg of input27.

DIA holds great promise for scp-MS and low-input proteomics,
however optimal method designs with regards to input load have not
been comprehensively investigated. In this study, we carry out survey
experiments to determine to which extent optimal DIA method
designs are dependent on the sample input load. We build further on
our findings by utilizing a high-resolution MS1 (HRMS1)-based DIA
approach, to generate a new low-input DIA method design, which we
combine with the newly developed μPAC Neo Low Load analytical
column. We showcase that with a combination of advanced data
acquisition and latest-generation chromatography, we can obtain
proteome coverage from low-input (10 ng) samples that is reminiscent
of standard (100 ng) samples. A strong focus throughout thisworkwas
on keeping sample throughput high, and therefore we opted to assess
short gradients only, as implemented either on an Ultimate3000 with
flow rate-ramping, or an EvoSep One chromatography system for the
initial DIA scheme evaluations. To align our workflows with other
publishedmethods3,12,28, we carried out analysis of HEK293 and display
that our method could capture canonical cell cycle driven variation.
We epitomize our study by proteome profiling of mouse embryonic

stem cells (mESC) that are cultured across ground-state and
differentiation-permissive culture conditions and highlight proteome
expression profiles in distinct cell subclusters with a focus on key
metabolic enzymes.

Results
Increasing low-input sample proteome coverage by wide DIA
isolation windows
Increasing the isolation window size during DIA-based acquisition
should in theory hamper peptide identification due to more extensive
precursor co-isolation resulting in increasingly chimeric spectra.While
this effect is pronounced for high-load (>10 ng) samples, we hypo-
thesized that co-isolation constraints are not as prevalent when
handling low-load samples (<10 ng). To test this, we carried out a series
of experiments where we injected different amounts of Hela digest
(100, 10, 5, and 1 ng) and acquired theMS spectra with DIAmethods of
varying isolation window sizes and resolutions combined with varying
ion ITs, while maintaining approximately the same scan-cycle time
(Fig. 1a, Supplementary Data 1). As expected, 100 ng of input material
resulted in the highest number of protein identifications. Doubling the
isolationwindowwidth from 10 to 20m/z, and doubling the resolution
slightly increased the proteome coverage, however further widening
beyond 20m/zhad anopposite effect (Fig. 1b). In contrast, when lower
amounts of peptide were injected, 40m/z isolation window gave the
best results for 10 and 5 ng. Decreasing the peptide load to 1 ng further
moved this optimal value to 80m/z (Fig. 1b), suggesting that the chi-
meric spectra effects due to co-isolation at such loads are outweighed
by increased resolution and IT that enhance the sensitivity. The chosen
scan-cycle was coordinated with the chromatographic method to
ensure that enough data points per elution peak were acquired to
maintain robust sampling29. Varying the active gradient length can
affect the peptide elution peak width and the chosen scan-cycle time
should be aligned with this timeframe30. With our chosen parameters,
all the methods had a median of 6 or more points-per-peak ensuring
comparable quantitative potential (Fig. 1c). Interestingly, although the
scan cycle time was kept constant, increasing the resolution, isolation
window size, and ITs, led to more data points-per-peak (Fig. 1c).
Accordingly, protein quantification precision also improved as more
data points were collected, which was especially marked at the lowest-
level 1 ng injections (Supplementary Fig. 1A). The additional points are
detected potentially due to longer ITs which allows quantification of
the elution profile tails that fall below the background intensity at
shorter ITs.Together, thesefindings indicate thatdetrimental chimeric
spectra effects can be overcome in low-input samples by sufficiently
increasing the resolution/ITs, facilitated through wider DIA isolation
windows.

HRMS1-DIA in combination with wide isolation windows
enhanced quantified proteome depth
Since DIA acquires bothMS1- andMS2-level spectra, quantification can
be carried out on either level, with the latter commonly being attrib-
uted to be more accurate in the literature, as it can overcome co-
elution biases31,32. Due to this, MS2-based quantification is generally
preferred in DIA experiments and is the default output by most pop-
ular search engines, such as Spectronaut and DIA-NN31,33. A method
that breaks away from this convention has also beenproposed, termed
high-resolution-MS1 (HRMS1) DIA34–36. While in standard DIA, the
MS1 scan is followedbyMS2 scans that sequentiallymeasure thewhole
m/z range of interest, HRMS1 slices the total m/z range into smaller
segments, interjecting MS1 scans in between (Supplementary Fig. 2A).
This modification drastically decreases the amount of MS2 data points
acquired for each precursor, eliminating the ability to perform robust
quantification on the fragment level. Quantificationbecomes primarily
focused on the MS1 information, while the MS2 is used only for iden-
tification. Accordingly, the available cycle time can now be more
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optimally used for a segmentedpart of the overallm/z range, affording
longer ITs and higher resolution (Supplementary Fig. 2A). We com-
pared standard DIA versus HRMS1 to determine if we can further
increase our proteome coverage with this method. By modifying the
DIA acquisition method according to HRMS1, we could increase our
resolution (and corresponding ITs) from 30 to 60K and decrease our
isolation window size from 15 to 8m/z, while maintaining identical
scan cycle-times. Not only did HRMS1 significantly outperform stan-
dard DIA in terms of identification (Fig. 2a), it also collected more
points-per-peak (Fig. 2b) which translated into higher quantitative
precision (Fig. 2c). The extra identifications by HRMS1 primarily arose
from low-abundant proteins (Supplementary Fig. 2B).We also adopted
this modification to linear ion trap (LIT) based DIA37–39 and observed
similar overall performance gains (Supplementary Fig. 3A–C),
although it did not surpass OT-based HRMS1-DIA.

We performed a similar isolation window survey experiment as
above to see if we could synergize the HRMS1 method with wide iso-
lation windows. In line with our initial observations, widening the
isolationwindow to accommodate for longer ITs and higher resolution
scans on 1 ng injections resulted in increased numbers of quantified
proteins (Fig. 2d). The protein count peaked at 40m/z isolation width
and decreased once 100m/z was reached. We term our tailored low-

input methodWISH-DIA (Wide Isolation windowHigh-resolutionMS1-
DIA), to encapsulate the combination of wide isolation windows and
use of HRMS1 quantification.

Although WISH-DIA showed great promise, the question of
quantitative bias remained due to MS1-based quantification. To eval-
uate this aspect, we utilized a SILAC approach and mixed peptides
derived from Hela cells cultured in light or heavy media in different
ratios and analyzed the data with the best performing methods
(Fig. 2e). While keeping the total sample load to only 1 ng to carefully
mimic a low sample-load setting, we directly compared protein
abundance (L/H) ratios derived from DIA fragment level or HRMS1
precursor-level (Fig. 2f). Both showed a ratio distribution that was in
linewith the expected values. Therewas a clear drop in accuracy as the
ratio of heavy and light peptides was increasing, potentially, due to the
decreasing proportion of light peptides in the samples making them
harder to quantify. MS1 yielded sharper peaks compared to MS2,
indicating higher quantitative accuracy, albeit a minor, but clear bias
could be observed when 1:1 and 1:2 mixtures were compared on MS1
level quantification, which was not present when MS2 was used (Sup-
plementary Fig. 3D). Interestingly, when higher ratio mixtures were
compared, there appeared a minor, but clear discrepancy in MS2-level
quantification, while MS1 ratio distribution remained centered around

Resolution

120K 15K 10mz 40 1.536s

120K 120K 100mz 4 1.280s

120K 30K 20mz 20 1.536s

120K 60K 40mz 10 1.536s

120K 120K 80mz 5 1.536s
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Fig. 1 | Optimal DIAwindow isolation size is dependent on the amount of input
material. a Table summarizing the different DIA acquisition methods used.
b Barplot of peptide and protein quantification numbers with DIA methods that
have varying isolationwindow size and resolution.Numbers above thebars indicate
the mean identified protein group number c Histograms of points-per-peak (PPP)

quantified for peptides. Only one replicate out of three is shown. Gray dashed line
marks the median PPP, the number of which is listed at the top of each to the
histogram. The Evosep 40SPD whisper method was used for all experiments.
Source data are provided as a Source Data file.
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1.36 +/- 0.04 1.37 +/- 0.19 1.92 +/- 0.18 1.81 +/- 0.18 2.18 +/- 0.03 

1.81 +/- 0.08 1.95 +/-0.13 2.22 +/- 0.09 2.33 +/- 0.15 2.83 +/- 0.12 

Fig. 2 | WISH-DIA enables deeper proteome profiling from low-input.
a Quantified number of peptides and proteins with standard DIA and HRMS1-DIA
with 1 ng injection with 20PSD Evosep whisper method. Number above the bar
indicated the mean identified peptide and protein group number. b Acquired MS1
and MS2 points-per-peak. Standard DIA (OT-DIA) is shown in the top and HRMS1-
DIA (OT-HRMS1) in the bottom. Gray dashed line indicates a 3 point-per-peak cut
off (only for visualization purposes). c CV distribution histograms of quantitative
precision of standard and HRMS1-DIA. Respectively, MS2 and MS1-based

quantificationwasused forCVcomparison.d, eBarplots of quantified peptides and
proteins inwidewindowHRMS1-DIA acquisition surveywith40SPDEvosepwhisper
methodwith 1 ng injection. fHeavy and light protein abundance ratio density plots.
1 ng total input material was kept constant and the amount of light and heavy
peptides were varied to achieve the required ratios. HRMS1 MS1-based quantifica-
tion is shown in the top, and DIA MS2-based quantification in the negative side of
the plot. Gray dashed linemarks the zero valueswhere themeasured and expected
fold-change matches perfectly. Source data are provided as a Source Data file.
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the expected value (Supplementary Fig. 3D). Higher MS1 accuracy for
the larger ratios was also observed comparing MS1 and MS2 protein
ratios from the standard DIA method (Supplementary Fig. 3E). To
provide a more quantitative accuracy comparison we evaluated the
quantification error distribution widths (Fig. 2f). We could note that
MS1 quantification leads to narrower distribution compared to MS2,
for such low-input samples. Taken together, we conclude that WISH-
DIA enhances proteome depth from low-input samples while main-
taining robust quantitative accuracy.

Micropillar-array-based nano-HPLC cartridges/columns for low-
input proteomics
Next, we substituted the packed C18-beads column with a next-
generation μPAC Neo Low-Load column to further augment our low-
input workflow efforts (Supplementary Fig. 4A) and explore the gen-
eral applicability of a WISH-DIA scheme across different chromato-
graphy platforms. This 50 cm column has a reduced cylindrical pillar
diameter of 2.5 µm, an interpillar distance of 1.25 µm, a total column
volume of 1.5 µL, and is non-porous, thereby increasing its chromato-
graphic performance at much reduced loading capacities. We
designed methods that utilized flow-ramping up to 500nl/min to
minimize the overhead time needed for peptide break-through and
analytical column regeneration (Supplementary Fig. 4B). We gener-
ated three single-column and two pre-column configuration methods
and tested chromatographic performance of the column by running
tryptic digestswith ourdevelopedWISH-DIAmethods (Supplementary
Fig. 4C). Examining the peak width of the single-column configuration,
we saw that the full-width at half maximum (FWHM) of the peptide
precursors peaks is approximately 6.6 second, which broadened to
8.58 seconds for the longest method in line with total gradient time
(Supplementary Fig. 4D). Addition of a pre-column in-line resulted in
increased peak-widths >9 s, however extending the gradient only
resulted in a marginal increase in peak width (Supplementary Fig. 4D).
Retention times were very robust and centered across runs, with most
precursor elution apex deviations being limited to 2.5 seconds and
(Supplementary Fig. 4E). To put the performance into perspective, we
compared RT stability with our initially used column and observed a
significant reduces RT fluctuations (Supplementary Fig. 4F), under-
lining the solid chromatographic performance of the μPAC Neo Low
Load column. We proceeded to further benchmark the analytical col-
umn in terms of proteome coverage for variable amounts of input
material.

Utilizing the synergy between μPAC Neo Low Load and wide
isolation window HRMS1-DIA for low-input proteomics
To date, the vast majority of low or ultra-low level input (≤250 pg)
studies have focused on DDA based acquisition. It is now possible to
routinely quantify >1000 protein groups from such amounts12,26,28,40,41.
However, this tends to require long LC–MS instrument run-times
(>1 h), unless a double-barrel approach is used18. First, to try and
maximize sample throughput, we evaluated the performance of 45, 26
and 20minute methods (32, 55 and 72 samples per day (SPD) respec-
tively) and injected different amounts of digested peptide in a single-
column configuration (Supplementary Fig. 5A). Commercially avail-
able Pierce Hela digest was used (Part #88328), to ensure that our
reported performance numbers can be easily evaluated by others. To
fully realize the potential of the μPAC Neo Low Load column, we uti-
lized WISH-DIA to quantify proteomes from low-input material
(≤10 ng). Optimal methods were identified for each gradient length by
carrying out similar isolation window experiments as previously
described (Figs. 1–2, Supplementary Data 2) and the best performing
methods for all configurations and inputs are summarized in Supple-
mentary Fig. 5A. From 10 ng we quantified from 3000 to 4700 protein
groups depending on the method used (Fig. 3a). Decreasing the
amount of input material resulted in fewer protein identifications,

albeit up to ~4000 and ~3000 protein groups could still be quantified
from 5 and 1 ng respectively. At ultra-low-input level of 250pg, we
quantified 2089 protein groups on average at 32SPD and 1461 at 72
SPD. Overall, our workflow quantifies PG numbers comparable to
previously published work, however at 2–3 times greater
throughput17,18,27,42.

To process biologically relevant samples where standard solid-
phase extraction43 cannot be used, a pre-column can be used to ensure
robustness on the chromatographic system, and prevent clogging by
non-protein contaminants present in the samples. This is especially
relevant in single-cell proteomics1 where indeed prior sample clean-up
is not possible. With a tailor-made μPAC pre-column setup, consisting
of non-porous 5µm pillars based on C8, we developed 32- and 52-min
methods that could quantify similar peptide and protein group num-
bers as a single-column setup (Supplementary Fig. 5B). Due to the
larger sample loop used (20ul vs. 1ul in the single-column setup), the
pre-column configuration adds 7min overhead time to each method,
decreasing throughput to 40 and 24 SPD (Supplementary Fig. 4C).
With the pre-column configuration, we achieved reminiscent pro-
teome coverage compared to the single-column set-up, where we
could quantify >2000 protein groups from ultra-low input (Supple-
mentary Fig. 4B). Thiswas slightly unexpected as the pre-column leads
to peak broadening (Supplementary Fig. 4D). As the ultimate goal of
our work was to be able to analyze single-cell proteomes, both with
high proteome depth and quantitative accuracy, and at reasonable
throughput, we next evaluated the performance of WISH-DIA on
actual single cells. HEK293 cells were prepared in 384-well Eppendorf
low-bind plates with previously described protocols (See “Methods”)
and transferred to a 96-well plate for injection. Since single-cell sam-
ples have been shown to require high ITs7,11,12,15,22, to accommodate this
we further increased the IT and resolution of our WISH-DIA method
from 120k (246ms IT) to 240k (502ms IT), while doubling the isolation
window size (68m/z) to maintain the same scan cycle time and
increasing the resulting proteome coverage (Supplementary Fig. 5C).
We processed 10 single cells with our two established 29min and
52min pre-columnmethods and could quantify 717 and 1008 proteins
by directDIA (Fig. 3c). However, as also recently shown by others28,
transferring single-cell samples leads to severe signal losses. To test
the extent of this effect in our experimental setup, we switched to
direct injection of single-cell peptides from their original 384-well
plate. Accordingly, direct injection boosted our average identifications
by ~60% for the shorter and ~30% for the longer method (Fig. 3c),
bringing our quantified protein numbers to 1151 and 1318 when sear-
ched with directDIA, which is highly comparable to coverage obtained
with low-input specialized instruments (Supplementary Fig. 5E).
Quantification robustness was ensured by keeping the cycle time suf-
ficiently short to collect a minimum of 5 data points per precursor
elution profile (Fig. 3d), while MS2 data points were only collected for
identification (Fig. 3e).

Quantification quality of additional proteins gained by high-
load library use
Some studies have chosen to utilize enhanced search strategies by
including higher load libraries (e.g. 10 ng), which can drastically boost
the number of quantified proteins. So far, either diluted bulk cell
population digests or samples containing multiple cells have been
used for this purpose3,28,44,45. However, the exact impact of using such
high-load (HL) ID transfer approaches remains unclear, especially in
terms of quantification accuracy and consequently, biological infor-
mation captured by the additional proteome coverage. A gas-phase-
fractionated library (GPF)46,47 is another approach that can be used to
gain identifications, which is generated by dividing our m/z range of
interest into 6 segments of 100m/z and analyzing samples while
acquiring spectra for only that segment (See “Methods”). Due to the
decreased m/z range for each individual run, we could therefore
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further increase our ITs (1014ms) and decrease the isolation window
width, allowing the identification of peptides that have very low
abundance and are difficult to quantify in our global WISH-DIA runs.

To assess the protein quantification quality of both approaches,
we mixed light and heavy peptides in three different ratios while
maintaining a constant 10 ng injection load. We then diluted our
sample to 1 ng injections that were used as actual runs and GPF library
creation, and the 10 ng were used to acquire HL libraries. To gauge the
quantification accuracy we plotted the light and heavy ratio distribu-
tions for the identified proteins obtained with directDIA or LibraryDIA
with a high-load or GPF library (Fig. 4a). The use of a HL library
approximately doubled the coverage, while GPF led to ~50% addi-
tionally identified proteins. The enhanced proteome depth was
accompanied by substantial widening of the ratio distribution, indi-
cating loss of accuracy in the dataset as a whole (Fig. 4a). To gain a
better understanding of how the increased proteome coverage was
affecting theoverall quantitative accuracyof thedata,weextracted the
proteins that could be identified with directDIA or only with the
implementation of a HL or GPF library and re-plotted the ratio

distributions (Fig. 4b). The additionally quantified proteins of thoseHL
or GPF searches compared to directDIA alonehad a strikingly wider
distribution, indicating significantly increased deviation from the true
values on those additionally identified peptides and proteins. (Sup-
plementary Fig. 6). As low-abundant proteins are expected to naturally
have poorer quantification relative to high abundant ones, we inves-
tigated this in greater detail. Application of libraries tremendously
improved the identification of proteins in the lowest end of the
abundance range (Fig. 4c), but the gained proteins did extend beyond
this range. TheHL clearly aided the identification of a larger number of
proteins found in the lowest end of the abundance range compared to
GPF, indicating its higher capacity to extend proteome coverage.
Interestingly, the light and heavy peptide ratios were more dispersed
throughout the abundance range for both libraries, suggesting that the
quantification quality of those gained proteins is potentially rather
poor (Fig. 4d). These findings point towards possible challenges with
the accuracy of proteins gained via libraries from low-input samples
and indicate that extra scrutiny is warranted when biologically inter-
preting these additional identifications.

Fig. 3 | Deep proteome coverage of low-input samples by advances inmultiple
aspects of mass spectrometry. a, b Barplots of quantified proteins and peptides
width different method lengths and peptide loads with the single-column μPAC
Neo Low Load set-up. c Cells directly injected from a 384-well plate (Direct) or
transferred to a 96-well beforehand (Transferred) with two gradient lengths,

240k resolutionmethodwith thepre-columnconfiguration.d, eHistogramsofdata
points per peak on MS1 and MS2 level with the gradient lengths. Gray dashed line
indicates a 3 point-per-peak cut off (only for visualization purposes). All reported
numbers are obtainedwith directDIA by searching the runs from the samemethod
in a single batch. Source data are provided as a Source Data file.
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WISH-DIA with a next-generation analytical column enables
high-quality single-cell proteome profiling
As a proof of concept, we generated a small dataset of 100 HEK293
cells using WISH-DIA in combination with the μPAC Neo Low Load
column. We analyzed 62 cells with a 40SPD method and 40 cells with
24SPD.Onaverage, bothmethodsquantified ~1670proteingroupsper
cell (Fig. 5a). Although protein quantification was almost identical, the
longer method could detect more peptides (Fig. 5a). As an alternative
to high-load libraries, we instead opted to generate a gas-phase-
fractionated library (GPF46,47), by dividing our m/z range of interested
into 6 segments of 100m/z and running single-cell samples while

acquiring spectra for only one segment at a time (See “Methods”).
Due to the decreased m/z range for each individual run, we could
therefore further increase our ITs (1014ms) and decrease the
isolation window width, allowing the identification of peptides that
have very low abundance and are difficult to quantify in our global
WISH-DIA runs. By applying such a GPF approach to our single-cell
runs, we were able to boost our quantified proteins by ~20% (Fig. 5a).
As expected, the quantification of these additionally identified pro-
teins was noisier, and primarily spanned the lower range of the abun-
dance distribution (Fig. 5b). All the runs showed a relatively low level of
missing values on the protein level, with the vast majority of cells

Fig. 4 | Assessing the quality of protein quantification gained by high-load and
gas-phase fractionated library based DIA. a Density plots showing the log2
transformed light and heavy protein abundance ratios. Proteins quantified with
directDIA shown in top and high-load (HL) library in the middle and gas-phase
fractionated (GPF) in the bottom. Dashed lines denote expected ratios and num-
bers indicate the total number of identified proteins in each mix. MS1-based
quantification is used throughout. b Similar to A, but showing the distribution of

proteins identified with directDIA and gained with either HL or GPF libraries only
(the directDIA found proteins are removed from these datasets). c Histogram
showing protein distribution across the log2 transformed abundance range. Only
the 1:1 (L:H) mix data is shown. d Hexbin plot showing the distribution of light and
heavy (L:H) log2 transformed protein ratios for proteins found with directDIA and
gained by the HL and GPF libraries. Source data are provided as a Source Data file.
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exhibiting <20%missing values with directDIA (Fig. 5c). However, GPF
library application increased data sparsity to 30–40%. Arguably, this is
an improvement for single-cell proteomics, as most studies to date
have reported a high degree of missing values ~50%. In our case, with
HEK293 being a rather homogeneous cell line, we expect that most of
the variation in our data can be explained by differences in cell cycle
stages. To further assess this, we integrated both the 40SPD and 24
SPD datasets by standardizing the abundances and clustered the cells
with both linear (PCA) and non-linear (UMAP) methods to gauge this
biological variation (Fig. 5d). The first principal component (PC1)
captured a large degree or variation present in our dataset. To deter-
mine if PC1 was correlated with the cell cycle, we tracked the stan-
dardized abundance of the MKI67 protein, which has highest levels

duringG2 andmitotic cell phases. Therewas a clear trend as theMKI67
levels increased along the PC1 (Fig. 5d). Similarly, in the UMAP analysis
two clusters of cells were obtained and MKI67 levels increased along
the second manifold dimension (Fig. 5d). No clustering based on run
order was observed, however PC2 seemed to capture method related
variation, but it should be noted the percentage of variation is rather
small (Supplementary Fig. 7A, B), underlining that our workflow can
capture biologically relevant trends in single-cell proteome profiles.

scp-MS analysis of mouse embryonic stem cells reveals mole-
cular and functional cell heterogeneity
To further evaluate the ability of WISH-DIA to capture cellular het-
erogeneity, we carried out proteome profiling of mouse embryonic

29min

GPFGPF

MKI67 MKI67

a b

dc

52min

Direct GPF

GPFDirect

GPFDirect

Fig. 5 | Single-cell proteome profiling. a Barplots of quantified peptides and
proteins from single-cell inputs with two different methods. The spectra were
searched either with directDIA approach or with a GPF-based library (GPF-DIA).
b Hexbin plots showing the log2 transformed abundance and CV distribution for
proteins quantified by directDIA and GPF. Twenty-nine minute in the top and

52min in the bottom. cHistogram of data completeness for each cell. Dashed gray
lines mark 70% complete detection. d Clustering of the integrated single-cell with
PCA (left) and UMAP (right). Color coding denotes the standardizedMKI67 protein
abundance in each cell. Source data are provided as a Source Data file.
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stem cells (mESC) across two culture conditions48–50. We cultured cells
in serum-free 2i condition (m2i) containing cytokine LIFwith inhibitors
of MEK and GSK3 pathways and in serum condition (m15) with cyto-
kine LIF. The m2i cultured mESC state is referred as ground-state
pluripotency, where cells express I pluripotency markers mimicking
mouse epiblasts48–50. The serum-containingm15 conditions consist of a
heterogeneous mix of undifferentiated and differentiating ESCs
(Fig. 6a). To improve the throughput of our workflow to ensure suffi-
cient cell numbers can be obtained in a timely manner, we adopted a
faster LC/MS method capable of processing 72 cells per day (20min
run-to-run time).Weprocessed and analyzed 599 cells, with >90% (548
cells) passing our quality control threshold (Supplementary Fig. 8A,
see “Methods”). We noticed that we obtained around ~15% lower cov-
erage for the m2i population compared to m15 (807 and 934 protein
groups respectively)(Fig. 6b), however this is in line with the differ-
ences in size of these two cell types or reflect different culturing
conditions (Supplementary Fig. 8B, D). Furthermore, the decreased
overall number of proteins appears not to be a reflection of the chosen
LC/MS method, but the nature of the chosen biological system.
HEK293 cells analyzed with the same 72 SPD method showed similar
coverage to Fig. 5 (Supplementary Fig. 5E), and therefore we attribute
the lower proteome coverage to be a reflection of the lower proteome
complexity in these primitive cell types when compared to HEK293.

Togauge the extent of cell heterogeneity presentwithin themESC
populations, we used dimensionality reduction techniques (Fig. 6c).
Both PCA and UMAP embeddings separated the m2i from m15 cells,
with a tight m2i cluster and m15 subclusters, likely highlighting plur-
ipotent and permissive states. DNA hypomethylation is a hallmark of
m2i cells, whilem15 cellshave increasedDNAmethylation attributed to
DNMT3A/B/L proteins51,52. Accordingly, we observed increased
expression of the Dnmt3a protein in the m15 population compared to
2i (Fig. 6d).mESCs favor glycolysis over oxidative phosphorylation and
bulk transcriptome analysis proposes an increased glycolytic pre-
ference of m15 cultures over 2i50,52. To investigate if there were sys-
tematic changes in these pathways we carried out gene-set enrichment
analysis (GSEA53). We could observe a clear preference for glycolysis
over OxPhos for the embryonic-like population (Fig. 6e, f) and overall
glycolysis was the most significantly enriched pathway (Supplemen-
tary Fig. 8G). Taken together,we conclude that our scp-MSapproach is
able to recapitulate known trends and could capture biological varia-
tion between the differentmedia conditions and underlying cell states.

To gain deeper insight into which proteins are differentially
expressed between the cell types we used a linear model approach to
determine the most up- or down-regulated proteins (Fig. 6g). In line
with the gene-set enrichment analysis, isocitrate dehydrogenase (Idh1)
and glutamate dehydrogenase (Glud1) were among the top most sig-
nificant proteins. These protein-level results mirror global trends
across culture conditions, and highlight the increased glycolytic pro-
pensity for m15 cells relative to m2i cells48,51,54. The enzymes that pro-
vide donormolecules essential for demethylation (Idh1 andGlud1) and
methylation (Mat2a) had contrasting expression profiles (Fig. 6h),
which is interesting considering the pivotal role thismodification plays
in maintaining the embryonic stem cell state55. Furthermore, other
enzymes involved in counteracting oxidative stress (Gsta4) and cho-
lesterol synthesis (Fdps) were differentially expressed.

Metabolic pathway regulation in embryonic stem cells
Given the differences in proteins involved in stem cell metabolism, we
analyzed the proteins that govern the metabolites across glycolysis
and oxidative phosphorylation in greater detail (Fig. 7a). By plotting
the scaled abundance distribution of the embryonic and permissive
stem cells we could clearly see that only select enzymes had altered
protein levels (Fig. 7b). The ATP-dependent 6-phosphofructokinases
(Pfkm, PfkI) and phosphoglycerate kinase 1 (Pgk1) remained stable,
while the remaining quantified enzymes were upregulated in the

embryonic-like cells, albeit with notably different expression pattern.
Based on the PCA and UMAP embedding, the m15 cells could be
clustered into three subclusters (Fig. 7c). Accordingly, in all m15 cell
clusters the Fructose-bisphosphate aldolase A (Aldoa) and alpha-
enolase (Eno1) had decreased protein levels. In contrast,
Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and Phos-
phoglycerate mutase 1 (Pgam1) had similar levels in the m15-1 sub-
cluster similar to embryonic-like cells and was lower in m15-2 (Fig. 7d).
This hints at heterogeneous glycolytic propensity of the identified
m15 subcluster, potentially reflecting the extent to which cells have
drifted from the embryonic-like state. Although the function of Eno1 in
mESC has been recently explored39, the exact role of Pgam1 has not yet
been investigated.

Next, we evaluated the metabolic enzymes that are downstream
of glycolysis (Fig. 7a). Again, we observed stable metabolic enzymes
such as: Aconitase (Aco2), and pyruvate dehydrogenase complex
subunits (Phda1, Phdb). However, the differential expression this
time was bidirectional, as the enzymes were high in either
embryonic-like or permissive cell populations (Fig. 7e). The Idh1 and
Glud1 enzymes showed a peculiar schism, although both enzymes
are responsible for generating alpha-ketoglutarate. Idh1, which gen-
erates themolecule fromD-isocitrate is high inm2i cells, while Glud1,
which performs the conversion from L-glutamate, is high in m15
(Fig. 7e). Idh1 has been extensively studied in the context of cancer
and differentiation as it is tightly linked to TET function, which is
essential in maintaining an stem cell state in healthy and malignant
cells55–58, underlining the biological significance of the quantified
proteins. The cytoplasmic ATP-dependent citrate synthase (Acly) is
more abundant in m2i cells, while the mitochondrial citrate synthase
(Cs) remains stable. Overall, we demonstrate hypothesis generating
potential of our WISH-DIA-based scp-MS workflow by tracking pro-
tein expression profiles for pivotal cellular processes.

Discussion
In this study, we developed a label-free single-cell proteomics work-
flow by utilizing high sensitivity-tailored DIA methods in combination
with latest chromatography and computational advances. Specifically,
we show that DIA method design should be adjusted accordingly to
sample load for optimal performance. We discovered that for low-
input samples the detrimental dynamic range and chimeric spectra
effects due to large isolation windows (>20m/z) are overcome by
increases in both resolution and injection time (Fig. 1). In contrast, the
same trend was not observed for high-load. We adopt a DIA approach
that solely relies on precursor-level quantification to further enhance
sensitivity and use our findings to establish the WISH-DIA method. In
tribrid instruments, the LIT can also be used to increase sensitivity
while keeping isolation windows narrow59. We also applied the HRMS1
modification to LIT and showed that it significantly boosted proteome
coverage for low-input samples (Supplementary Fig. 3). Finally, we
showcase that WISH-DIA can be implemented on a range of chroma-
tography platforms, consisting of both packed-bed and micropillar-
array columns, with column- and gradient-specific data acquisition
methods being required. As the latter are not compatible with EvoSep
out-of-the-box, application of these columns at the time of writing
requires alternative LC systems such as the Ultimate-3000 used in
this work.

By applying WISH-DIA with micropillar-array-based chromato-
graphy we were able to achieve high proteome depth for low-input
samples with appropriate sample throughput. We quantified ~5000
protein groups from 5–10 ng of input material, which is a highly rele-
vant load for e.g. laser capture microdissection isolated tissue
samples60–62. From ultra-low-input samples (250 pg) we manage to
quantify >2000 protein groups which is often considered single-cell
level input2,3,12,18. However, such inputs generated from bulk digest
dilutions can be a poor proxy for true single-cell digests and numbers
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Fig. 6 | Capturing biological variation in mouse embryonic stem cells.
a Illustration of the used mESCmodel system. b Histogram showing the proteome
coverage per cell, color denote the different cell types and dashed line the median
number of protein groups, which is also annotated by text. The same coloring
scheme is used for all subsequent figures. c PCA (left) andUMAP (right) embedding
of the analyzed mESC cells. d Histogram with overlaid density line, showing log
transformed expression of the Dnmt3a protein. e Curated GSEA results shown as a

barplot. f UMAP plots where the color gradient represents the normalized enrich-
ment score (NES) for each cell for either glycolysis (left) or OxPhos (right).
g Volcano plot showing top differentially expressed proteins, right side indicates
proteins high in m2i and left in m15. Dashed circles mark proteins selected for
further visualization. h Similar as f, but here the color gradient reflects the scaled
protein abundance. Specific protein indicated above the plot. Source data are
provided as a Source Data file.
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obtained with such samples should be interpreted with care. Accord-
ingly, we tested our workflow with real single-cell digests and quanti-
fied ~2000 protein groups per single-cell at a throughput of 40 cells
per daywith the use ofGPF libraries that boost the proteome coverage
by >20% (Fig. 5a). Such libraries are a robust alternative to high pH for
sampleswhere offline fractionation is prohibitive, suchas in the caseof
analyzing single cells. It should be noted that our entire workflow uses
standardized lab equipment and does not require single-cell pro-
teomics designated liquid handling systems as in other protocols5,8,63,
which should make the approach accessible for general proteomics
labs and core facilities.

To accommodate theneed for processinghigher cell numbers in a
biological context, we designed a method that can process 72 cells
per day while maintaining reminiscent proteome coverage (Supple-
mentary Fig. 5E). With this we profiled mESC cells that are either
embryonic-like or are allowed to drift into differentiation permissible
state (Fig. 7). We did not reach the proteome coverage that we saw in
HEK293, but that is expected when less protein-rich cells are analyzed.
The proteomic profiles recapitulated multiple known findings and
presented how key metabolic enzyme expression is altered between

the different cell states. Interestingly, some of the identified enzymes,
such as Idh1, Eno1 and Pgam1 are not only implicated in cell differ-
entiation, but also malignant transformation56,58,64,65. This underlines
the importance of the ability to monitor the expression of these key
enzymes with single-cell resolution, as e.g. low-abundant cancer stem
cell population might have a distinct expression profile that is
obscured by more frequent cell types, when numerous cells are ana-
lyzed in cancer1,66. Studying the enzyme expression levels alone can
provide valuable insights, however given the central role of metabo-
lites in health and disease, being able to quantify these from the same
cell should deliver unprecedented views of cellular states.

Although our label-free throughput is lower compared to DDA
TMT-multiplexing based approaches,which cananalyze up to 160 cells
per day at a throughput of ~1000 protein groups per cell4,7,10,11, the
increased proteome depth and absences of a carrier channel and TMT
quantification biases makes our LFQ workflow a solid and an easily
implementable alternative. This might be of special relevance for
patient samples where collecting sufficient cells for carrier samples
might not be feasible. While we ran our experiments on an Orbitrap
Eclipse Tribrid instrument, it is expected that WISH-DIA methods
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translate directly to other Orbitrap platforms such as Exploris series
instruments. Throughput can in principle be improved by adopting
DIA compatible multiplexing, such as e.g. plexDIA, which has already
been applied to single-cell analysis6. Other DIA compatible tags, such
as Ac-IP or TMT complement ion quantification could be also explored
to increase throughput49,50. Currently, our U3000-based workflow at
72 SPD would allow one thousand cells to be analyzed within two
weeks, which is approaching a level of maturity capable of conducting
biologically relevant interrogations of heterogeneous cell systems.

Methods
Cell culture and FACS sorting
HEK cells were cultured in RPMI media containing 10% FBS and 1%
Penstrep. Upon reaching 80% confluence, cells were harvested and
washedwith ice-cold PBS to remove any remaining growthmediaprior
FACS sorting and finally resuspended in ice-cold PBS at 1e6 cells/ml.
E14mESC (ATCCCRL-1821) were cultured on plastic plates coatedwith
0.1% gelatin (Sigma #G1393) in either “M15” media containing DMEM
knockout (Gibco #10829), 15% FBS (Gibco #10270), 1xPen-Strep- Glu-
tamine (Gibco #10378), 1xMEM (Gibco #11140), 1xB-ME (Gibco #21985)
and 1000 U/ml Leukemia inhibitory factor (Merck #ESG1107) or in “2i”
containing Ndiff 227 (Takara #Y40002), 3μM CHIR99021 (Tocris
#4423), 1μM PD0325901 (Tocris #4192) and 1000 U/ml Leukemia
inhibitory factor.

Cellswere harvested the samewayas for passaging. Todistinguish
between live and dead cells the harvested cells were washed with PBS
then they were labeled with 0.1μg/mL DAPI (4′,6-diamidino-2-pheny-
lindole) (Invitrogen, Cat. No D1306) and were kept on ice until flow
cytometry measurements.

Cell sorting for HEK293 cells was done on a FACS Aria III
instrument, controlled by the DIVA software package (v.8.0.2) and
operatedwith a 100μmnozzle. FormESCC a SonyMA900 cell sorter
using a 130 µm sorting chip was used. Cells were sorted at single-cell
resolution, into a 384-well Eppendorf LoBind PCR plate (Eppendorf
AG) containing 1 μL of lysis buffer (100mM Triethylammonium
bicarbonate (TEAB) pH 8.5, 20% (v/v) 2,2,2-Trifluoroethanol (TFE)).
Directly after sorting, plates were briefly spun, snap-frozen on dry ice
for 5min and then heated at 95 °C in a PCR machine (Applied Bio-
systems Veriti 384-well) for an additional 5min. Samples were then
either subjected to further sample preparation or stored at −80 °C
until further processing. All cell gating strategies are visualized in
Supplementary Fig. 9.

HeLa cells (ATCC) were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) for SILAC (Thermo Scientific, Cat#88364) that con-
tains L-Glutamine, but neither L-Arginine nor L-Lysine, and supple-
mented with 10% dialyzed fetal bovine serum (Sigma-Aldrich,
Cat#F0392) and 0.1% Penicillin/Streptomycin (Biowest, Cat#L0022).
For stable isotope labeling, light and heavy media were prepared by
adding 146mg/L L-lysine and 84mg/L L-arginine hydrochloride (light),
and 152.8mg/L L-lysine-13C6 and 87.2mg/L L-arginine-13C6 hydro-
chloride (heavy) (Cambridge Isotope Labs, Andover, MA). Cells were
cultured in 37 °C with 5% CO2 for 2 weeks (6 passages) to allow
incorporation of stable isotopes before frozen. Freshly thawed cells
were cultured in SILAC medium for two passages before harvest.

Sample preparation of single cells for mass spectrometry
Single-cell protein lysates were digested with 2 ng of Trypsin (Sigma
cat. Nr. T6567) supplied in 1μL of digestion buffer (100mM TEAB pH
8.5, 1:5000 (v/v) benzonase (Sigma cat. Nr. E1014)). The digestion was
carried out overnight at 37 °C, and subsequently acidified by the
addition of 1μL 1% (v/v) trifluoroacetic acid (TFA). The resulting pep-
tides were either directly submitted to mass-spectrometry analysis or
stored at −80 °C until further processing. All liquid dispensing was
done using an I-DOT One instrument (Dispendix).

Liquid chromatography configuration
The Evosep one liquid chromatography system was used for DIA iso-
lation window survey (Fig. 1) and HRMS1-DIA (Fig. 2) experiments. The
standard 31min or 58min pre-defined Whisper gradients were used,
where peptide elution is carried out with 100 nl/min flow rate. A
15 cm × 75 μm ID column (PepSep) with 1.9 μmC18 beads (Dr. Maisch,
Germany) and a 10 μm ID silica electrospray emitter (PepSep) was
used.Mobile phases A and Bwere 0.1% formic acid inwater and 0.1% in
Acetonitrile. The μPAC Neo limited samples column connected to the
Ultimate 3000 RSLCnano system via built-in NanoViper fittings, and
electrically grounded to the RSLCnano back-panel. For the single-
column scheme the columnwas connected according to the “Ultimate
3000 RSLCnano Standard Application Guide” (page 38) and the
autosampler injection valve, configured to perform direct injection of
1μL volume sample plugs (1μL sample loop−full loop injectionmode).
Thepre-column schemewas also assembled according to the Standard
Application Guide (page 47), a 20μL injection loop was used. The
analytical column was kept in a column oven and kept a constant
temperature of 40 °C. The gradients usedwith theμPAC are as follows.
Single-column scheme 20min method: buffer B was increased from 1
to 12% (0–6.1min), 12 to 17.5% (6.1–9min), 17.5 to 35% (9–9.5min), 35 to
99% (9.5–9.9min), kept constant for 5min (9.9 – 14.9min) and drop-
ped to 1% for 6min (14.9–20min). Single-column scheme 26min
method: buffer B was increased from 1 to 9% (0–6.1min), 9 to 17.5%
(6.1–11.5min), 17.5 to 35% (11.5–13.7min), 35 to 99% (13.7 –15.1min),
kept constant for 5min (15.1–20min) and dropped to 1% for 6min
(20–26min). Single-column scheme 45min method: buffer B was
increased from 1 to 5% (0–6.1min), 5 to 17.5% (6.1–26.5min), 17.5 to 35%
(26.5–32.7min), 35 to 99% (32.7–33.1), kept constant for 6min
(33.1–39min) and dropped to 1% for 6minutes (39–45min). Flow rate
was kept at 250nl/min from 6 to when the buffer B concentration was
dropped to 1%. 500 nL/min used for the rest of the gradient. Pre-
column scheme 29min method: buffer B was increased from 1 to 7%
(0–4.5min), 4 to 20% (4.5–15min), 20 to 40% (15–16.5min) and 40 to
97.5% (16.5–21.5min). Buffer B was then held constant for 5min
(21.5–26.5min) and dropped to 1% and help constant for 3min
(26.5–29min). Pre-column scheme 52min method: buffer B was
increased from 1 to 4% (0–4.5min), 4% to 20% (4.5–26min), 20 to 35%
(26–37min) and 40 to 97.5% (37–42min). Buffer B was then held
constant for 5min (42–47min) and dropped to 1% and help constant
for 5min (47–52min). Theflowratewas kept at 200nL/min from9min
to the points were the buffer B was dropped to 1%, 500nL/min was
used for the rest of the gradient (see Supplementary Fig. 4B). All the
used Xcalibur methods are available in a repository. Both LC systems
were coupled online to an orbitrap Eclipse Tribrid Mass Spectrometer
(ThermoFisher Scientific) via an EasySpray ion source connected to a
FAIMSPro device.

MS data acquisition
The mass spectrometer was operated in positive mode with the
FAIMSPro interface compensation voltage set to −45 V. Different DIA
acquisition methods were used and are outlined in the results section
or summarized in Supplementary Data 1 and 2. MS1 scans were carried
out at 120,000 (except for HEK293 dataset collection where 240K
resolution was used) resolution with an automatic gain control (AGC)
of 300% andmaximum injection time set to auto. For the DIA isolation
window survey a scan range of 500–900 was used and 400–1000 rest
of the experiments. Higher energy collisional dissociation (HCD) was
used for precursor fragmentation with a normalized collision energy
(NCE) of 33% and MS2 scan AGC target was set to 1000%. For bulk
peptide the samples were analyzed in triplicated (n = 3). For single-cell
input for method development at least 5 cells (n ≥ 5) were measured
per condition. For dataset collection n = 102 HEK293 cells and n = 599
mESC cells were analyzed.
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Data analysis
Spectronaut 16 and 17 versions were used to process raw data files.
DirectDIA analysis was run on pipeline mode using modified BGS fac-
tory settings. Specifically, the imputation strategy was set to “None”
and Quantity MS level was changed to MS1. Trypsin and Lys-C were
selected as digestion enzymes and N-terminal protein acetylation and
methionine oxidation were set as variable modifications. Carbamido-
methylation of cysteines was set as fixedmodification for experiments
that used diluted Hela peptides and removed when single-cell runs
were searched. The single-cell GPF library runs were added to direct-
DIA to supplement the single-cell dataset search. SILAC experiments
were processed in Spectronaut 16, with the Pulsar search engine set-
ting altered to accommodatemultiplexed samples. Two label channels
were enabled and fixed Arg10 and Lys8 modifications were added to
the second channel. The in-SilicoGenerateMissing channel settingwas
used with the workflow set to “label. The complete Spectronaut set-
tings can be downloaded from the MassIVE repository (see “Data
availability”).

Protein and peptide quantification tables were then exported and
analyzed in R or python (version 4.2.2) in the Visual StudioCode editor
environment (version 1.73), with additional R packages: tidyverse67,
limma68, and ggprism (https://csdaw.github.io/ggprism/). For python
the following packages were used: numpy69, pandas70, scipy71, UMAP72,
seaborn73 and scikit-learn74.

mESC data analysis
The mESC raw data files were processed with Spectronaut 17 and
protein abundance tables exported and analyzed further with python.
First the proteome coverage and overall sample intensity was eval-
uated to remove poor quality cells from the dataset (Supplementary
Fig. 8A). The proteome abundances were normalized sample-wise by
subtracting themedianof log transformed valalues anddividing by the
median absolute deviation (robust z-transformation). The same
operation was carried out protein wise, to remove any biases intro-
duced by absolute protein abundance. Principal component analysis
(PCA) was then carried out to identify global trends in the data. Cells
that had a large distance in the first principal component were con-
sidered outliers and removed from further analysis (Supplementary
Fig. 8F). The filtered data table was then exported and differential
expression analysiswas carried outwith the use of the limma statistical
package68 in R. Gene-set nrichment analysis (GSEA) was carried out
with the GSEApy75 package in python with the MsigDB Hallmarks
library.

Clustering of the mESC cells was carried out by using Gaussan-
mixture modeling (GMM) with the scikit-learn package74, where the
number of clusters was set to 4 based on the qualitative characteristic
of the PCA and UMAP (Fig. 7b). The final clustering presented in Fig. 7,
was obtained by correcting UMAP clusters with the cluster annotation
obtained from principal component values. The presented histogram
of metabolic protein abundances were generated with the use of
normalized protein values as described above. Overall, all basic ana-
lysis was carried out in python and R was predominantly used for data
visualization, except for the caseof differential expression. For analysis
code and tables see “Data availability”.

Hela tryptic digest preparation
Cells were harvested at 80% confluence and lysed in 5% sodium
dodecyl sulfate (SDS), 50mM Tris (pH 8), 75mM NaCl, and protease
inhibitors (Roche, Basel, Switzerland, Complete-mini EDTA-free). The
cell lysate was sonicated for 2 × 30 s and then was incubated for
10min on ice. Proteins were reduced and alkylated with 5mM tris(2-
carboxyethyl)phosphine (TCEP) and 10mM CAA for 20min at 45 °C.
Proteins were diluted to 1%SDS and digested with MS grade trypsin
protease and Lys-C protease (Pierce, Thermo Fisher Scientific)

overnight at an estimated 1:100 enzyme to substrate ratio quenching
with 1% trifluoroacetic acid (TFA) in isopropyl alcohol. For the
cleanup step by styrenedivinylbenzene reverse-phase sulfonate
(SDB-RPS)76, 10 μg of peptides was loaded on StageTip43 and washed
twice by adding 100μL of 1% TFA in isopropyl alcohol. Peptides were
eluted by adding 50 μL of an elution buffer (1% Ammonia, 19%
ddH2O,and 80% Acetonitrile) in a polymerase chain reaction (PCR)
tube and dried at 45 °C in a SpeedVac. Lastly, peptides were resus-
pended in buffer A and their concentration was measured by
nanodrop.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The complete MS raw data, Spectronaut search files have been
deposited to MassIVE under the following accession MSV000090792
(https://doi.org/10.25345/C5JM23M36). mESC raw data were depos-
ited into a separate repository with the following accession
MSV000092429 (https://doi.org/10.25345/C5DB7W12H). The pro-
cessed data used to generate the figures can be accessed from two
Zenodo repositories: https://doi.org/10.5281/zenodo.7433298v and
https://doi.org/10.5281/zenodo.8146605. The specific link between the
tables together with the code required to recreate the figures is stored
in a separate repository (see “Code availability”). The comparison
single-cell data was downloaded from the following PRIDE repository:
PXD024043. MsigDB Hallmarks library was accessed via the GSEApy75

package. Source data are provided with this paper.

Code availability
The code used to generate to process the tables exported from
Spectronaut analysis has been stored in the following repository:
https://github.com/Schoof-Lab/WISH-DIA. The required tables for the
code are provided in Zenodo repositories: https://doi.org/10.5281/
zenodo.7433298 and https://doi.org/10.5281/zenodo.8146605 An
archived version of the repository can be accesses here: https://
zenodo.org/badge/latestdoi/577804073.
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