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Benchmarking universal quantum gates via
channel spectrum

Yanwu Gu 1,2 , Wei-Feng Zhuang1, Xudan Chai1,2 & Dong E. Liu 1,2,3,4

Noise remains themajor obstacle to scalable quantum computation. Quantum
benchmarking provides key information on noise properties and is an
important step for developingmore advanced quantum processors. However,
current benchmarking methods are either limited to a specific subset of
quantum gates or cannot directly describe the performance of the individual
target gate. To overcome these limitations, we propose channel spectrum
benchmarking (CSB), amethod to infer the noise properties of the target gate,
including process fidelity, stochastic fidelity, and some unitary parameters,
from the eigenvalues of its noisy channel. Our CSB method is insensitive to
state-preparation and measurement errors, and importantly, can benchmark
universal gates and is scalable to many-qubit systems. Unlike standard ran-
domized schemes, CSB can provide direct noise information for both target
native gates and circuit fragments, allowing benchmarking and calibration of
global entangling gates and frequently used modules in quantum algorithms
like Trotterized Hamiltonian evolution operator in quantum simulation.

The performance of today’s quantum computers is severely affected
by noise and the limited number of qubits1. Quantum error correction
and fault-tolerant schemes may someday unlock the full potential of
quantum computation2–7, but more precise gate operations must be
developed beforehand. It is crucial and necessary to obtain informa-
tion on the gate noise characteristics and their performance bench-
marks in order to calibrate and optimize these gate operations8–10.
Nonetheless, there is a trade-off between the noise information
obtained and the resource overhead for their testing experiments11.
Process tomography12,13 is a typical technique for reconstructing the
matrix representation of a quantum process, with which the full
information of noise is at hand. However, process tomography has
exponentially increasing experimental costs and suffers from state-
preparation andmeasurement (SPAM) errors. Although its variant, the
gate-set tomography14–17, can handle SPAM errors, the experimental
costs cannot be reduced unless assuming noise models with some
properties such as low rank18.

In reality, for probing noise strength or noise types of a gate,
the full reconstruction of the noisy process is not necessary19,20. For
instance, the average gate fidelity, which measures the average

performance of the implemented noisy gates, can be efficiently
obtained by randomized benchmarking (RB)21–27. The RB protocol is
insensitive to SPAM errors, and its variants8,28–30 can be applied to
benchmark devices with larger system sizes. It is important to note
that protocols like RB do not directly measure the fidelity of indi-
vidual quantum gates but rather the average fidelity of some ran-
dom circuit fragments31–33. To determine the fidelity of a specific
target gate (in this paper, we use the phrase “target gate” for any
target unitary including a circuit fragment, and later use the phrase
“native gate” for a single operational quantum gate), additional
strategies, such as an interleaved scheme34 or altering the sampling
distribution of random circuits28,30, must be incorporated into the
modified RB protocol, which can induce more experimental cost
and is prone to a large systematic uncertainty35. Additionally, to
simplify the functional form ofmeasured signals in RBmethods, it is
often necessary to use group twirling, which limits the types of
gates that can be benchmarked. As a consequence, the RB protocols
based on randomClifford circuits can only be applied to benchmark
the Clifford gates; however, the important non-Clifford gates have
to rely on more complicated random circuit sets in which their
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native gates belong to other groups instead of Clifford group, e.g.,
dihedral groups36,37.

In this work, we introduce channel spectrum benchmarking
(CSB), a scalable protocol to estimate the individualnoise properties of
a universal quantum process from the noisy eigenvalues of its corre-
sponding quantum channel. In CSB protocol, the noisy eigenvalues are
first obtained from control-free phase estimation circuits38–42, which
are robust to SPAMerrors; and thenweestablish a connectionbetween
the noisy eigenvalues and the diagonal entries of the matrix of pure
noise process. From these diagonal entries, we can estimate some
noise properties, for example, process fidelity, stochastic fidelity (a
quantity similar to unitarity43,44), and some important unitary para-
meters of native gates. We demonstrate the performance of our pro-
tocol with certain typical simulated experiments, i.e., 1-qubit Pauli
rotation gates, 2-qubit fermionic-simulation (Fsim) gates, 3-qubit cir-
cuit fragment implementingToffoli gate, and 10-qubit circuit fragment
implementing an Ising evolution operator. The numerical results show
that our CSB protocol can accurately estimate the noise properties.

To give a clearer picture of the performance of our CSB to mea-
sure average gate fidelity, in Table 1, we compare our CSB protocol
with other leading benchmarking protocols under three aspects: (1)
what gates they can benchmark; (2) what type of fidelity they actually
measure; and (3) under what conditions they can be scalable to many-
qubit systems.

In addition to measuring average gate fidelity, our CSB can also
measure the coherence of noise of the target gate. Because the
amplitudes of channel eigenvalues are not affected by coherent noise,
we candefine aquantity called stochasticfidelity tomodel the strength
of stochastic noise only, which is similar to the unitarity43. Although
unitarity can be measured by purity RB43 or speckle purity
benchmarking8, both protocols are not scalable. In purity RB, purity
measurement has to be performed via measuring all the Pauli opera-
tors, which is, however, increasing exponentially with the number of
qubits. In speckle purity benchmarking, an exponential number of
measurements are required to fully characterize the probability dis-
tribution for a given random circuit. The stochastic fidelity in our CSB
is, however, scalable because we only need to measure a constant
number of noisy eigenvalues of the target gate, which is independent
of the system dimension. Moreover, from the phases of noisy eigen-
values, we can measure the actual values of some unitary parameters
of the target gate, which gives more specific unitary noise information
such that the associated errors can be readily compensated in the
experiment. This is a systematic generalization of previous works, for
example, robust phase estimation38 for single-qubit gates and Floquet
calibration for Fsim gates41,45,46.

The CSB protocol can be employed immediately to calibrate
quantumgates by using themeasured figures ofmerit as a cost function
in the calibration optimization problem8–10. Our method can provide
more specific information, including process infidelity, stochastic infi-
delity, and certain key unitary parameters of the target gate under
calibration. Additionally, our method can be used to calibrate universal
gates, including not only 1 or 2-qubit native gates but also many-qubit
native gates such asMølmer-Sørensen gates47,48 used in ion trap systems.
It may also be interesting to use our method to calibrate certain circuit
fragments that are commonly used in quantum algorithms, such as the
Trotterized Hamiltonian evolution operator in quantum
simulation45,49–54. We believe our protocol will pave an important way for
the development of cleaner and large-scale quantum devices.

Results
Gate fidelity and noisy channel spectrum
We first provide some preliminaries about quantum channels, the
fidelity of implemented noisy gates, and the relationship between the
fidelity of a gate and the channel spectrumof its noisy implementation.

Consider a quantum gate U acting on a d-dimensional space with
eigenvalues eiλa and eigenstates ϕa

�� �
such that U ϕa

�� �
= eiλa ϕa

�� �
.

Because of noise, the actual implementation of the gate should be
denoted as a quantum channel eU = EU, or say completely-positive and
trace-preserving (CPTP)map12, where U is the corresponding quantum
channel of the ideal gate U and E is a pure noise process. Quantum
channels are usually denoted by a set of Kraus operators, for example,
UðρÞ=UρUy and EðρÞ=PkEkρE

y
k where ρ is an arbitrary operator.

Quantum channels can also be represented by a matrix on the basis of
d2 dimensional operator space, for example, Pauli operators. We will
use the two representations interchangeably and the same symbols for
both the abstract quantum channels and their matrix representations.

One can use some fidelity measures to assess the performance of
the implemented noisy gate eU, such asprocess fidelity (also referred to
as entanglement fidelity), which is defined as

FðU, eUÞ= tr I � Uð αj i αh jÞ I � eUð αj i αh jÞ
n o

ð1Þ

where αj i= 1ffiffiffi
d

p
Pd

i = 1 ij i � ij i is the maximally entangled state. The pro-
cess fidelity is closely related to another ubiquitous measure, the
average gate fidelity55

FaveðU, eUÞ=
Z

dψ tr Uð ψ�� � ψ
� ��Þ eUð ψ�� � ψ

� ��Þn o

=
dF + 1
d + 1

:

ð2Þ

Table 1 | Comparison with other leading benchmarking protocols

Gates Fidelity Conditions for scalability

CSB Universal Target gate • Eigen-decomposition of target gate is possible
• Initial state preparation is efficient

Clifford RB22,23 Clifford Ave. among Clifford gates Not scalable due to compilation issue28

Mirror RB30,97 Universal Ave. among rand. cycles Only applicable to gate sets with Clifford gates, arbitrary 1-qubit gates, and
2-qubit controlled Pauli rotations

CB29 Um = I Target + twirling gates The target gate is Clifford

XEB8 Universal Ave. among rand. cycles Circuits can be classically simulated

Wecompare our CSB protocol with other benchmarking protocols under three aspects: (1) what gates they can benchmark; (2) what type of fidelity they actuallymeasure; (3) under what conditions
they can be scalable to many-qubit systems. Usually, our CSBmeasures the fidelity of the target gate except in the case of benchmarking native gateswith some type of strong unitary noise, where
CSB measures the average fidelity of the compositions of the target gate and twirling gates (for performing randomized compiling68,69), see Supplementary Note 3. Our CSB is scalable as long as
eigen-decomposition of the target is possible and the number of single and two-qubit gates in the circuits preparing initial states scales at most polynomials with the number of qubits. Clifford RB
uses randomClifford circuits to simplify noise and thus only applies to Clifford gates. The fidelity they actually measure is the average of fidelities among randomClifford gates. Mirror RB is initially
used to benchmark random cycles generated by Clifford gates and has recently extended to some non-Clifford gates97. For cycle benchmarking (CB), the gate or cycleU that can be benchmarked
must satisfyUm = Iwherem is an integer. CB uses Pauli twirling to simplify noise and thusmeasures the fidelity of the composition of the target and twirling gates. It needs to compute the output Pauli
operators of ideal circuits,which is possible onlywhen the target gate is Clifford for large systems. XEB uses randomuniversal circuits to simplify noise, so itmeasures the averageoffidelities among
some random circuit cycles. It requires the classical simulation of circuits to obtain the ideal probabilities of sampled bit strings, which limits its scalability.
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It has been proven that the process fidelity only depends on the
trace of the pure noise E55, that is

FðU, eUÞ= tr UyeUn o
d2 =

tr Ef g
d2 : ð3Þ

Current benchmarkingmethods, for example, RB and its variants,
measure the information of tr Ef g on a basis composed of Pauli
operators. In these protocols, Clifford twirling or Pauli twirling are
used to simplify thenoisematrix E, that is, only diagonal entries of E on
the Pauli basis are kept, such that the relevant figure of merit can be
extracted easily from measured signals. The twirling operations need
to be performed by running some random circuits. This causes RB-
type methods to only apply to benchmark some subsets of quantum
gates (e.g., Clifford gates forCliffordRB) andonlymeasure the average
fidelity of a set of gates, including both the target gate and the
twirling gates.

Instead of focusing on the Pauli operator basis, one can note that
the ideal channel U also induces a natural operator basis composed of
its eigen-operators ϕa

�� �
ϕb

� �� (corresponding eigenvalues are eiðλa�λbÞ).
If we can measure the diagonal entries of noise E in this basis, we can
also estimate the gate fidelity. This can be seen from the relationship
between the eigenvalues of noisy gate eU and those of ideal gate U56,
that is

gabe
iλab ≈ eiðλa�λbÞ tr ð ϕa

�� �
ϕb

� ��ÞyEð ϕa

�� �
ϕb

� ��Þn o
ð4Þ

wheregab and λab is the amplitude andphaseof aneigenvalue of eU with
eigen-operator Mab, that is eUðMabÞ= gabe

iλabMab. For the spectrum of
quantum channels, there are some useful properties57: (1) the
eigenvalues lie in the unit disc of complex plain, i.e., 0 ≤ gab ≤ 1 (2)
the eigenvalues and eigen-operators always come in conjugate pairs,
i.e., for every eigenvalue gabe

iλab we have eUðMy
abÞ= gabe

�iλabMy
ab.

The relationship Eq. (4) is derived from the first-order perturba-
tion theory under the assumption that noisy gate eU is diagonalizable56

(also see Supplementary Note 1). Thus a diagonal entry of E in the basis
composed of ϕa

�� �
ϕb

� �� can be obtained

Eab,ab ≈ gabe
iλab e�iðλa�λbÞ : ð5Þ

As long as we can measure the noisy eigenvalues gabe
iλab of eU and

identify their corresponding ideal eigenvalues eiðλa�λbÞ, we obtain the
diagonal entries of Eab,ab by Eq. (5). If we can uniformly at random
sample some noisy eigenvalues gabe

iλab or equivalently Eab,ab, then we
can use the average of these samples to obtain an estimate of process
fidelity F = tr Ef g=d2. Because all the diagonal entries have amplitude
smaller than 1, we can prove that the number of samples needed is
independent of system dimension from Hoeffding’s inequality58, see
“Methods”.

Besides the process fidelity, the noisy eigenvalues can also be
used to infer the noise strength of stochastic noise only. Since the
amplitudes of eigenvalues are only affected by stochastic noise and
not changed under unitary noise, we can use those amplitudes to
define a quantity referred to as stochastic fidelity

Fsto =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d2

X
ab

g2
ab

s
: ð6Þ

to assess the impact of stochastic noise only.
We can alsoestimate the actual values of someunitary parameters

of a native gate (i.e., unitary errors) from the phases λab of noisy
eigenvalues. This is achieved by identifying the relationship between
these unitary parameters and some eigenvalues of the gate, which is
similar to the robust phase estimation38 and Floquet calibration41,45,46.
We emphasize that, compared to the stochastic errors, the unitary

errors may cause more subtle and complicated problems in quantum
error correction and fault-tolerant quantum computation59–63. As a
result, differentiating between stochastic and unitary errors can assist
us in recognizing their respective impacts and in addition, can help to
calibrate and tailor the error types.

The CSB protocol
We now present a practical procedure, which we refer to as CSB, to
measure the individual fidelity of a universal process U, which can be
either a native gate or a circuit fragment.

The estimate of fidelity of the gateU requires a uniform sample of
diagonal entries of E, which is identical to a uniform sample of noisy
eigenvalues gabe

iλab . The noisy eigenvalues can be estimated by the
circuits of control-free phase estimation depicted in Fig. 1. In these
circuits, we first prepare state ρ, then repeatedly apply the target gate
U for L times, and finally measure the expectation value of an operator
O. We denote the noisy version of ρ andO as eρ and eO. The noisy eigen-
operatorsMabof eU canbeused as a basis (not necessarilyorthonormal)
to expand the initial state eρ, that is

eρ = X
ab

tr Gy
ab
eρn o

Mab ð7Þ

where Gab is the corresponding left eigen-operator of Mab and they
satisfy tr Gy

abMa0b0
n o

= δab,a0b0 . Under the first order perturbation, the
noisy eigen-operators Mab,Gab are equal to their corresponding
unperturbed eigen-operators M0

ab,G
0
ab, i.e., the ideal eigen-operators

of U, see Supplementary Note 1. For ideal eigen-operators with non-
degenerate eigenvalue, we have M0

ab =G
0
ab = ϕa

�� �
ϕb

� ��; for ideal eigen-
operators with degenerate eigenvalue, the M0

ab,G
0
ab are superposition

of eigen-operators ϕa

�� �
ϕb

� �� in the corresponding degenerate sub-
space. Then we can show that the expectation value of O at length L
under noise is

eOD E
L
= tr eO eULðeρÞn o
=
X
ab

tr eOMab

n o
tr Gy

ab
eρn o

ðgabe
iλab ÞL

ð8Þ

This is a damping oscillating function. From the time series data
heOiL at different depth L, wecan extract thenoisyeigenvalues via signal
processing methods, such as matrix pencil method64–66. The imperfect
initial state eρ andmeasurement operator eO only affect the coefficients
of signals rather than the noisy eigenvalues. Thus, the estimate of noisy
eigenvalues is insensitive to the SPAMerrors as long asSPAMerrors are
not very large such that the signals incorporating the desired eigen-
values are completely suppressed.

By selecting an appropriate initial state ρ and measurement
operatorO, we can control the number of eigenvalues presented in the
resulting signals. The presence of too many different eigenvalues in
the signals can pose some difficulties. These include (1) the require-
ment for a large amount of data or, equivalently, a larger depth L
(which is limited by the damping rate gab), and the difficulties in
extracting the eigenvalues from the limited measured signals, (2) the
difficulties to identify the corresponding ideal eigenvalue for a given
noisy counterpart, (3) the difficulties to maintain a uniform sample of
the diagonal entries of E. To address these issues, we prepare the initial
state and measurement operator as follows:

ψ
�� �= ca ϕa

�� �
+ cb ϕb

�� �
ρ =O= ψ

�� � ψ
� �� ð9Þ

which is a superposition of two eigenvectors only. For this type of
initial state and measurement operator, there are only several non-
trivial damping oscillating modes, i.e., with a large coefficients
tr eOMab

n o
tr Gy

ab
eρn o

in the measured signals eOD E
L
. These non-trivial
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modes are from the eigen-operators f ϕa

�� �
ϕb

� ��, ϕb

�� �
ϕa

� ��,
ϕa

�� �
ϕa

� ��, ϕb

�� �
ϕb

� ��g shown in the selected initial state and measure-
ment operator.

Thus, as illustrated in Fig. 1, we propose the procedures of
CSB below.
1. Uniformly at random sample K pairs of eigenstates f ϕa

�� �
, ϕb

�� �g of
target unitary operator U.

2. For each pair of eigenstates, do step 3, i.e., running phase esti-
mation circuits.

3. In phase estimation circuits, one first prepares the initial state
ψ
�� �= ca ϕa

�� �
+ cb ϕb

�� �
, then repeatedly apply the target gateU for L

timeswhere L takes successive integers in ½0,Lmax�, finallymeasure
the probability Oh iL of obtainingO= ψ

�� � ψ
� ��. Then, we process the

measured data using the following steps:
3a. Estimate the noisy eigenvalues gabe

iλab (amplitudes and pha-
ses) from the time series data heOiL by matrix pencil method.

3b. Identify the ideal counterparts of the measured noisy
eigenvalues.

3c. Compute the diagonal entries of E by Eq. (5).
4. Compute the process fidelity by Eq. (11) and stochastic fidelity by

Eq. (12).

Step 1 ensures the estimated diagonal entries are uniform sam-
ples. We require the amplitude of two coefficients ca, cb are compar-
able and the initial state ψ

�� � can be efficiently prepared. In the
simulated experiments, we always choose ca = cb =

1ffiffi
2

p . The number of
initial states K is independent of systemdimension d and only depends
on desired precision referring to Eq. (18) in “Methods”, which is guar-
anteed byHoeffding’s inequality. So ourmethod is applicable tomulti-
qubit systems.

In the phase estimation circuits of step 3, we choose the length L
from ½0, Lmax�. The maximum length Lmax and the number of initial
states K determine the total number of benchmarking circuits
Nc =KðLmax + 1Þ. In order to collect enough statistics, we need to run
each circuit for Ns shots, and therefore, the total experimental cost is

NcNs =KðLmax + 1ÞNs. The choice of Lmax and Ns also depends only on
the desired precision and not on the system dimension. Previous
work has shown that the uncertainty of estimated eigenvalues is
inversely proportional to the length L38,41. Therefore, if higher
precision is desired, it is generally better to increase Lmax rather than
the number of shots Ns per circuit, before the signals are completely
degraded.

In step 3a, the noisy eigenvalues are estimated using the matrix
pencil (MP)method64–66.MPmethod is well-suited for our task because
MP involves a singular value decomposition (svd) of the data Hankel
matrix. This svdprocedure allowsus to keeponly the componentswith
non-trivial singular values, i.e., damping oscillating modes caused by
noisy eigenvalues of ideal eigen-operators shown in the selected initial
state. MP method can reduce some sampling errors and eliminate
unwanted eigenvalues (with small coefficients) due to SPAM errors or
noisy eigen-operators with degenerate ideal eigenvalue. In our simu-
lated experiments, when using an initial state with unequal phases
λa, λb, the number of obtained noisy eigenvalues is at most four.

In step 3b, our goal is to match the obtained noisy eigenvalues
from the MP method to their corresponding ideal counterparts such
that we can compute the diagonal entries of E by Eq. (5). For an initial
state, if the two decomposed eigenstates ϕa

�� �
, ϕb

�� �
have equal

eigenvalues, this process of step 3b is not needed because all ideal
channel eigenvalues are 1. On theother hand, if a initial state consists of
two eigenstates with unequal eigenvalues, there are three ideal chan-
nel eigenvalues feiðλa�λbÞ, e�iðλa�λbÞ, 1g for estimatednoisy eigenvalues to
matchwith. Tomatch the obtained noisy eigenvalues to the three ideal
ones, we calculate the distance between the phases of the estimated
noisy eigenvalues and the ideal eigen-phase λa − λb for the corre-
sponding eigen-operator ϕa

�� �
ϕb

� ��. The noisy eigenvalue with the
smallest distance is chosen as the noisy counterpart of the ideal
eigenvalue eiðλa�λbÞ. Similarly, the noisy counterpart of e�iðλa�λbÞ is also
determined. The remaining noisy eigenvalues are considered as the
counterparts of the ideal eigenvalue 1. This criterion assumes that the
magnitude of the actual phase error δλ = λab − (λa − λb) is small; more

|0⟩
prepare + | ⟩

Estimate noisy eigenvalues with matrix
pencil method and compute diagonal

entries by Eq. (5) .

1. Uniformly at random sample 
pairs of  eigenstates , }.

2. For each pair of eigenstates, 
do step 3.

4. Compute process fidelity and stochastic
fidelity by Eq. (11) and Eq. (12) .

|0⟩

3. For each length in [0, ], 
run benchmarking circuits.

measurement

Fig. 1 | The procedures of channel spectrum benchmarking. The benchmarking
circuits are composed of three parts: the first part Us prepares the initial state
ψ
�� � = ca ϕa

�� �
+ cb ϕb

�� �
, which is a superposition of two eigenstates of target gate U;

then the target gate U is repeated L times, where L is an integer in ½0, Lmax�; finally,
the operator O= ψ

�� � ψ
� �� is measured. The choice of coefficients ca, cb in the initial

state isflexible as long as they are comparable and admit an efficient preparation of
the initial state. Throughout this work, we choose ca = cb =

1ffiffi
2

p . For each initial state,
we estimate several noisy eigenvalues from the time series data Oh iL at different
depth L using the matrix pencil method.
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precisely, we require

jδλj≪ jλa � λbj: ð10Þ

If this criterion is not met, which is possibly due to a very large
unitary error, we may mismatch the noisy eigenvalues with the ideal
ones. Combined with the error mitigation technique for phase esti-
mation in ref. 56, where randomized compiling (RC) is introduced to
reduce the phase error (unitary error is transformed to stochastic
error, and the total noise strength is not changed), this issue can
be fixed.

After calculating the diagonal entries using Eq. (5), we divide them
into two categories based on the ideal eigenvalue of the associated
basis ϕa

�� �
ϕb

� ��: one is the trivial operator subspace (dimension dts)
with λa = λb (or say the operator subspace spanned by the eigen-
operators with eigenvalue 1), the other is the non-trivial operator
subspace (dimension dns) with λa ≠ λb. We should separately compute
the average values of diagonal entries in the two subspaces and then
combine the two averages to get the estimator of the process fidelity.
Because to get a uniform sample of diagonal entries of E, we should
assign the sampling probability dts

d2 for trivial subspace and probability
dns

d2 for non-trivial subspace. However, in step 1, we assign the same
probability for the two subspaces, that is, the samplingprobability 1

2 for
each subspace. The dimension of trivial subspace dts is usually very
different from the dimension of non-trivial subspace dns, the prob-
ability of sampling an entry in the two subspace are very different. For
example, for a many-qubit gate U with non-degenerate operator
spectrum, the trivial subspace is spanned by all the eigen-operators
with the form ϕa

�� �
ϕa

� ��, whose dimension dts = d is much smaller than
dns = d2 − d. If there are some degeneracy in the spectrum of the
operator U, that is λa = λb for two different eigenstates ϕa

�� �
, ϕb

�� �
, the

trivial subspace can include the eigen-operators of the form ϕa

�� �
ϕb

� ��.
The average value in each subspace canbe used to estimate the sumof
diagonal entries in the corresponding subspace. Finally, the estimator
of the process fidelity is obtained by combining these two averages,
that is

F̂ =
dts Eab,abjλa = λb +dns Eab,abjλa≠λb

d2
ð11Þ

where Eab,ab is the average value of sampled entries. Similarly, the
estimator for stochastic fidelity is

F̂sto =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dts g

2
ab,abjλa = λb +dns g

2
ab,abjλa≠λb

d2

vuut
: ð12Þ

Our CSB has drawn inspiration from the principles of spectral
quantum tomography (SQT)66: bothmethodsmeasure the eigenvalues
of the noisy gate. We summarize the differences and the advantages of
our CSB compared to SQT as follows.
1. Our CSB is scalable, but SQT is not. First of all, spectral quantum

tomography is designed as a method to measure all the eigenva-
lues of the target gate, which is increasing exponentially with the
number of qubits. In our CSB, we only need to measure a limited
number of eigenvalues so that we can obtain the most relevant
noise information of the target gate, such as process fidelity,
stochastic fidelity, and some unitary parameters. This is the pri-
mary motivation for all the benchmarking methods instead of
doing tomography. Second, the state preparation and final mea-
surement in SQT are on a Pauli basis. Typically, Pauli operators
demonstrate a considerable overlap with numerous eigen-
operators of the target gate, a factor that results in the signal
measured from any given Pauli basis incorporating a multitude of
diverse eigenvalues. Therefore, in the context of a system with

high dimensionality, it is infeasible to extract eigenvalues from
such a measured signal. Within our CSB methodology, the initial
state is selected as a superposition confined to merely two eigen-
states of the ideal gate. This choice restricts the number of
eigenvalues non-trivially exhibited within the measured signal,
thereby facilitating the ease of extracting noisy eigenvalues from
the resultant signal.

2. Our CSB gives an accurate estimator for process fidelity using
measured noisy eigenvalues, but SQT only gives inequality
bounds. We derive a relation between diagonal entries of pure
noise channel and noisy eigenvalues of target gate, i.e., Eq. (5),
which induces our estimator for process fidelity in Eq. (11).
Moreover, we prove that this way to estimate process fidelity can
be scalable. The estimate of process fidelity and some unitary
parameters also requires the identification of the ideal counter-
parts of the measured noisy eigenvalues. This requirement is
accomplished via our careful selection of the initial states.
Nonetheless, in the context of SQT, all the noisy eigenvalues are
concurrently extracted; and therefore, SQT typically presents a
challenging task in identifying their corresponding ideal eigen-
values. Consequently, despite the incorporation of our estimator
for process fidelity, achieving an accurate estimation with SQT
remains a formidable task.

Numerical simulations with Pauli-rotation gates
We perform simulated experiments to show the performance of our
CSB protocol, including single-qubit Pauli rotation gates, two-qubit
fermionic-simulation (Fsim) gates, three-qubit Toffoli gate, and an
Ising Hamiltonian evolution operator with 10 qubits. Throughout this
work, each benchmarking circuit is repeated Ns = 104 times to collect
enough statistics. We will report infidelity (1 − fidelity) instead of fide-
lity because it’s more intuitive to understand the presented results.
The error bar of each data point is the standard deviation among the
results of ten repetitions of experiments.

Here we measure the infidelity of single-qubit rotation gates, that
is

RσðθÞ= e�iθ2σ ð13Þ

where θ is the rotational angle, and σ is a Pauli matrix describing the
direction of the rotational axis. This type of unitary operator has two
eigenvalues e�iθ2 and ei

θ
2. The dimension of the trivial eigen-operator

subspace is 2, which is the same as the dimension of the non-trivial
eigen-operator subspace. The corresponding operator (i.e.,
1
2 ð ϕa

�� �
ϕa

� ��+ ϕb

�� �
ϕb

� ��Þ) associated with the trivial part of our initial
state choice could happen to be very close to one of the noisy eigen-
operators of eU. This means that we may only obtain one noisy
eigenvalue in this subspace, potentially leading to an inaccurate
estimation of the process fidelity. To address this issue, we also
prepare another initial state, that is, one of the eigenstates of Rσ(θ) in
addition to the superposition state, and then we run phase estimation
circuits again for this initial state. Therefore, we have K = 2 here. At the
same circuit length, we sum the measured probabilities of the two
types of circuits (with the two initial states), allowing us to extract all
the noisy eigenvalues simultaneously.

Figure 2 shows the results for benchmarking RZ ðπ4Þ gate (also
known as the T gate). In this simulation, the noise model consists of a
combination of stochastic errors (including T1 and T2 errors with equal
probabilities δp) and over/under-rotation errors with angle δθ. In
Fig. 2a, we fix the unitary error (δθ = −0.01) and vary the probability of
stochastic error. In Fig. 2b, we fix the stochastic error (δp = 0.001) and
vary the angle of the unitary error. In both cases, we are able to
accurately estimate the process and stochastic fidelity of the gate. As a
byproduct, we can also estimate the angle of the unitary error by
comparing the phases of noisy eigenvalues to their corresponding
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ideal values. This scheme for unitary error estimation is a more sen-
sitive probe than infidelity measures, as shown in Fig. 2b, where the
process infidelity remains almost unchanged when δθ is varied from
10−3 to 10−2.

In this simulation, we set Lmax = 50, except when stochastic
probability δp = 10−3, where Lmax = 100. It is worth noting that the
accuracy of the estimation can be further improved by increasing the
length of the benchmarking circuits. However, increasing Lmax directly
also increases the number of circuits used, which leads to higher costs.
Instead, we can repeat the target gateU a certainnumber of times (Nrep

times) to create a new target gate, U 0 =UNrep . Correspondingly, the
noisy eigenvaluewe estimate becomes ðgabe

iλab ÞNrep . But remember, we
need to determine the ideal eigenvalue from phase difference, thus as
a result of Eq. (10), we require

Nrepjδλj≪ ðNrepλaÞmod2π � ðNrepλbÞmod2π
�� ��: ð14Þ

Numerical simulations with Fsim gates
Here, we benchmark the two-qubit fermionic-simulation (Fsim) gates8,
i.e.,

Fsimðθ,ϕÞ=

1 0 0 0

0 cosθ �i sinθ 0

0 �i sinθ cosθ 0

0 0 0 eiϕ

2
6664

3
7775 ð15Þ

where θ is the iswap angle, and ϕ is the control phase angle. We omit
some phase parameters that can be freely adjusted by Z rotations.

For the preparation of initial states, we consider all pairs of
eigenstates (K = 6). The choiceof Lmax is 50 or 100 (for δp = 10−3). In this
simulation, the noise model includes T1, T2 noise with equal prob-
abilities δp for all single-qubit gates. For two-qubit gates, each qubit
experiences the same errors as single-qubit gates, as well as an over-
rotation unitary error with angle errors δθ and δϕ.

We benchmark a specific Fsim gates with θ= π
4 ,ϕ= π

2, as shown in
Fig. 3. In Fig. 3a, we fix the unitary error with δθ = −0.01, δϕ = −0.02,
and vary the probability of stochastic error δp. We accurately estimate
all infidelities in this case. However, the estimations of the angles of
unitary errors become less accurate when the stochastic error is too
strong, as the signal decays too quickly to accumulate enough infor-
mation to estimate the angles. In Fig. 3b, we fix the probability of
stochastic error with δp =0.001 and vary the angles of unitary error
with δθ =0.5δϕ = 10−3 ~ 10−1. Again, we accurately estimate all infide-
lities and angles of the unitary error.

Numerical simulations with the Toffoli gate
In this study, we evaluate the performance of the three-qubit Toffoli
gate, which is not a native gate but rather a circuit fragment composed
of 1-qubit and 2-qubit gates, as shown in Fig. 4c. We randomly select
K = 10 pairs of eigenstates as the initial state and set Lmax = 50. In the
simulated noisemodel, all single-qubit gates are subject to T1, T2 noise
with equal probability δp. For the two-qubit gates, each qubit experi-
ences the same type of stochastic error as the single-qubit gates, fol-
lowed by a unitary error of the Fsim type with error angles δθ = δϕ.

The Toffoli operator has a highly degenerate spectrum, which
creates two challenges for our method. First, when sampling noisy
eigen-operators, we need them to be uniformly distributed, but for

Fig. 2 | Benchmarking ofT gate. In a, we fix the unitary error (δθ= −0.01) and vary
the probability of stochastic error. In b, we fix the stochastic error (δp =0.001) and
vary the angle of the unitary error. The actual process infidelity and stochastic
infidelity are obtained by first computing the channel of the noisy gate and then

using Eqs. (3) and (6). In both cases; we accurately estimate process infidelity,
stochastic infidelity and the angle of unitary error. The accuracy of estimation can
be further improved by increasing the circuit length or shots for each circuit.
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degenerate ideal eigenvalues, the corresponding noisy eigen-
operators are superpositions of ideal ones in the degenerate sub-
space, which are determined by the details of the noise, see Supple-
mentary Section I. This makes it difficult to generate a uniform sample
of noisy eigen-operators. Second, the degenerate eigenvalue may be
split by noise into many eigenvalues in the signal, making it harder to
extract the noisy eigenvalues, and each eigenvalue may only occupy a
small portion of the signal, making them more susceptible to errors.
The impact of the highly degenerate spectrum on the estimate of gate
noise is demonstrated by the simulated results in Fig. 4a, b.

Usually, some of the degeneracy can be removed by appending a
layer of single-qubit gates to the target gate or circuit fragment. For the
Toffoli circuit, we append RZ ðπ2Þ � RZ ð2π3 Þ � RX ð4π5 Þ to the Toffoli circuit
and combine this layer with the last layer of the Toffoli circuit. The
choice of the appended layer should keep the state preparation of the
new target gate efficient. In the current example, our choice does not
change the eigenstates. For the angle parameters in the appended
gates, one can design an optimization algorithm to choose the para-
meters that maximize the distance between eigenvalues. The appen-
ded layer of gates results in a varied circuit with a similar structure to
the original Toffoli circuit (only the last layer is changed), and they
should possess similar noise properties. In the case of strong sto-
chastic error and weak unitary error (δθ = 0.01) in Fig. 4a, the bench-
marking of the varied circuit provides a very accurate estimate of the
process infidelity and the stochastic infidelity of the original Toffoli
circuit.

However, there is a significant difference between the estimated
and actual process infidelity when the unitary error is very strong, as

shown in Fig. 4b (with fixed stochastic error δp =0.001). In Supple-
mentary Note 2, we show that our method may underestimate the
process infidelity in the presence of certain strong unitary errors.

One way to address this issue is to introduce random gates into
the benchmarking circuits to convert the unitary errors to stochastic
errors67–69. In Supplementary Note 3, we describe a procedure for
transforming noise in the native gates to stochastic errors using ran-
dom gates from the symmetry group of the target U. For bench-
marking circuit fragments; we use a technique called RC68,69 to achieve
this. RC is a method that transforms the noise in the circuit into sto-
chastic Pauli errors while maintaining the circuit structure and depth.
After RC, the noise type of a circuit cycle is changed, but the process
fidelity of the cycle and the circuit structure remain unchanged. As
long as there is no repeated structure in U where unitary error can
coherently build up and increase the infidelity quadratically with the
circuit depth70 (this is a case where RC should be introduced to sup-
press the unitary noise), we expect the fidelity of the circuit U to
remain unchanged after RC. For each original circuit, we generate
Nr = 10 random circuits by RC, and each randomcircuit is run 103 times
to keep the cost unchanged. As shown in Fig. 4b, after RC, the varied
circuit can accurately estimate the process infidelity of the Toffoli
circuit under unitary noise.

Numerical simulations with Ising evolution operators
Our method is practically scalable if the following two requirements
are met:
1. The eigenvalues and eigenvectors of target unitary operatorU can

be efficiently computed.

Fig. 3 | Benchmarkingof a Fsimgatewithθ= π
4 ,ϕ= π

2. In a, we fix theunitary error
with δθ= −0.01, δϕ= −0.02, and vary the probability of stochastic error δp. In
Fig. 3b, we fix the probability of stochastic error with δp =0.001 and vary the angles
of unitary error with δθ=0.5δϕ= 10−3–10−1. We always accurately estimate the

process infidelity and the stochastic infidelity of the gate. However, the accuracy of
estimating the angles of the unitary error is compromisedwhen there is a high level
of stochastic noise, as the signal degrades quickly and there is not enough data to
accurately estimate the angles.
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2. The initial state can be efficiently prepared, i.e., the number of
1-qubit and 2-qubit gates needed for the preparation should, at
most, scale polynomials with the number of qubits.

In general, these two requirements are not always satisfied.
However, for certain types of unitary operators, such as the evolution
operator of an Ising Hamiltonian, these requirements can be met. For
an Ising Hamiltonian, the eigenvectors are known and are simply the
computational basis states. Given an eigenstate, the eigenvalue can be
efficiently computed.

The initial state of a superposition of two computational basis
states xj i= x0, � � � , xi, � � � , xN�1

�� �
, y
�� �= y0, � � � , yi, � � � , yN�1

�� �
can be

prepared as follows: first, for the qubit i, if xi = yi, the state can be
prepared by an X gate if xi = yi = 1; then, for the state of remaining
qubits with xi ≠ yi, if we only have one such qubit, a Hadamard gate H
can be applied; if there ismore than one qubit with xi ≠ yi, one can first
prepare a GHZ state on these qubits and then apply some X gates to
obtain the target state. Therefore, the preparation of such states costs

at most N 1-qubit and N 2-qubit gates. Additionally, for the evolution
operator of theHamiltonian that can beobtainedbyperforming a local
unitary transformation on an Ising Hamiltonian, i.e.,
H =

N
iUiHIsing

N
i
Uy

i , the initial states can also be obtained in a similar
way with additional two layers of single-qubit gates ⨂Ui,

N
Uy

i . Thus,
this type of evolution operator is a good example for benchmarking
many-qubit quantum systems.

In the following, we present some important classes of unitary
operators frequently used in quantum algorithms or error correction,
which are more or less related to the Ising-type of Hamiltonian and
satisfy the conditions of scalability of CSB. Thus our CSB is a valuable
tool to benchmark these unitary operators and improve their imple-
mentation performance by calibration using measured noise
information.

• Global entangling gates. Entangling gates are important building
blocks for quantumcomputation. The usual entangling gates are
acting only on 2 qubits. Recently, there has been increasing
interest in developing global entangling gates based on Ising-

Fig. 4 | Benchmarking of Toffoli circuit fragment. We fix the unitary error
(δθ=0.01) and vary the stochastic error in (a), and fix the stochastic error (δp =
0.001) and vary the unitary error in (b). The circuit implementing the Toffoli gate
is presented in (c). Due to the highly degenerate spectrum of the Toffoli gate, the
estimate of the infidelity is unreliable. However, the degeneracy can be removed by
changing the last layer of single-qubit gates. With the varied circuit, we accurately

estimate the infidelity of the Toffoli circuit under weak unitary error in (a). For
strong unitary error, we perform randomized compiling to the benchmarking
circuits, converting the unitary error into stochastic error. As a result, the varied
circuit also accurately estimates the process infidelity of the Toffoli circuit under
strong unitary error, as shown in (b).
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type interactions, which act onmultiple qubits or even thewhole
system. Many works have shown that global entangling gates
have a great advantage for circuit compiling compared to the
2-qubit entangling gates71–74. These entangling gates have been
experimentally realized in Ion trap systems75–77.

• Cycles in quantum algorithms, such as quantum simulation and
quantum optimization. Diagonal unitaries have been applied in
simulating chemical dynamics78, quantum field theories79,80, and
non-unitary evolution81. It was also shown that unitary 2-designs,
which are useful in device verification and studying complex
systems, can be approximately implemented by alternately
repeating randomunitaries diagonal in the Pauli-Z basis and that
in the Pauli-X basis82. To simulate a general Hamiltonian
H =∑kHk, one needs to use the Trotter formula to implement a
short time Δt evolution of H, which is composed of several
circuit cycles, each implementing the evolutionof a term e�iHkΔt .
For the efficient implementation of e�iHkΔt , each termHk usually
has a locality structure or tensor product structure12, which
causes the unitaries e�iHkΔt satisfy the scalability conditions of
CSB. Thus our CSB method can be practically applied to
characterize noise in each cycle of the Trotterized Hamiltonian
evolution operator. For example, in the Heisenberg model
H =

P
j Jxσ

x
j σ

x
j + 1 + Jyσ

y
j σ

y
j + 1 + Jzσ

z
j σ

z
j + 1, one can characterize the

three circuit fragments generated from Pauli-X,Y,Z terms, such
as e�i

P
j
Jxσ

x
j σ

x
j + 1Δt , separately by CSB. Similarly, in the QAOA

algorithm83, one can perform CSB separately on the cycles
generated by classical Ising interaction and that generated by
the transverse field.

• Multiply-controlled gates Cn(U) where U acts only on very few
qubits or has a tensor product structure. This class of gates is
ubiquitous in quantum error correction12, Grover’s search
algorithm84, and quantum singular transformation85,86. One
example of this class of gates is the Toffoli gate. One can
perform CSB on other Cn(U) within this gate class in a similar
manner as we did for the Toffoli gate.

Here we benchmark the evolution operator of a 1-dimensional
Ising ring H =

P10
i = 1 hiZ i + Ji,i+ 1ZiZ i+ 1, where hi, Ji,i+1 are randomly cho-

sen. The circuit is shown in Fig. 5c. We sample K = 10 pairs of eigen-
states and set Lmax = 50. The noise model is the same as that in the
benchmarking of Toffoli Gate. The actual process fidelity and sto-
chastic fidelity are inferred from those of single-qubit and two-qubit
gates because our computer is not powerful enough to compute the
quantum channel of a 10-qubit circuit. Note this procedure of

estimating the fidelity of a circuit from its components is not always
reliable87.

Our method accurately estimates process infidelity under both
weak and strong unitary error (with RC), as shown in Fig. 5a, b. The
stochastic infidelity in Fig. 5b is over-estimated by our method, which
is because the unitary error in the two-qubit gates is too large for the
circuit fragment in Fig. 5c. Such large unitary error causes the prepared
initial state to have an excessive number of eigen-operators of the
noisy target gate, which in turn leads to the presence of too many
damping oscillatingmodes in themeasured signals. Consequently, it is
difficult to precisely determine damping rates from such complicated
signals. However, this strongunitaryerror canbe indicatedby the large
differences between the phases of estimated noisy eigenvalues and
those of ideal eigenvalues in our method.

Discussion
In this work, we introduced a procedure called CSB, which infers the
noise properties of a quantum gate from the eigenvalues of the noisy
channels representing the gate. In the protocol, we first choose the
initial state using a superposition of a randomly sampled pair of
eigenstates of the target gate. Then, we use control-free phase esti-
mation circuits to estimate the noisy eigenvalues in a SPAM error-
resistant manner. This choice of initial state simplifies the data pro-
cessing because the measured signals only contain a few eigenvalues,
which can be extracted using signal processing methods such as the
MP method. By comparing the noisy eigenvalues to their ideal coun-
terparts, we can estimate noise properties such as the process fidelity,
stochastic fidelity, and someunitary parameters of the target gate. Our
method can be applied to any quantum gate but performs better on
gates with a non-degenerate operator spectrum. For gates with highly
degenerate spectrums, we can append a layer of single-qubit gates to
remove the degeneracy while maintaining a similar circuit structure.
Some types of unitary error can also affect the performance, which can
be addressed using randomization techniques like RC. Our method is
scalable to many-qubit systems as long as the eigen-decomposition
can be computed and the initial state can be efficiently prepared, such
as the evolution operator of an Ising-type Hamiltonian.

The requirements for the scalability of our method could be
relaxed. In principle, we do not need to obtain the complete set of the
eigenmodes for the target gate operator, a few samples of eigenvalues
and eigenstates are sufficient. For initial state preparation, there are
existing methods for preparing arbitrary states88–91, but it would be
interesting to develop a more efficient algorithm for preparing the
particular type of initial states in our method. A variational algorithm92

Fig. 5 | Benchmarking of a 10-qubit Ising evolution operator.We fix the unitary
error (δθ =0.01) and vary the stochastic error in (a), and fix the stochastic error
(δp =0.001) and vary the unitary error in (b). The circuit implementing the Ising
evolution operator is presented in (c). The actual fidelity is not computed from the
channel of the circuit but rather inferred from the product of the fidelity of all
single-qubit and two-qubit gates. We accurately estimate the process infidelity of
the Ising evolution operator under weak unitary error (a) and strong unitary error

with RC (b). The overestimate of stochastic infidelity in (b) is because the unitary
error in two-qubit gates is too large for the circuit fragment in (c), which causes the
presence of many damping oscillating modes in the measured signals. Thus, it is
difficult to accurately determine the damping rates. However, the significant dif-
ferences between the phases of estimated noisy eigenvalues by our method and
those of ideal eigenvalues can be used as an indicator of the strong unitary error.
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may be able to efficiently prepare these states for most target gates
because we have the freedom to choose the coefficients of the
superposition states and donot need perfect preparation. Ourmethod
can be scaled up in a way similar to simultaneous RB93,94, where some
few-qubit gates are simultaneously benchmarked on different subsets
of a many-qubit system such that the effect of crosstalk95 can be
detected.

Methods
Number of diagonal entries needed
Hereweprove that the number of diagonal entries of pure noisematrix
E needed to estimate process fidelity is independent of system
dimension. This proof is based on Hoeffding’s inequality: let X1,⋯ , XK
be independent bounded randomvariableswithai ≤ Xi ≤ bi for all i∈ [K]
and denote their average X = 1

K

P
iX i, then for any ϵ >0 it holds that

P X � 1
K

X
i

EðXiÞ
�����

�����≥ ϵ
 !

≤ 2 exp
�2K2ϵ2P
iðbi � aiÞ2

 !
: ð16Þ

This inequality bounds the probability that the empirical average
X deviates from the average of expectation values of these random
variables with a distance ϵ.

Here, we use the average value of some uniformly sampled diag-
onal entries of pure noise matrix as our estimate of process fidelity.
Assume we have K samples of such diagonal entries Eab,ab, so the
expectation value of each sampled diagonal entry is
EðEab,abÞ= tr Ef g

d2 = F , and our estimate of the process fidelity is

F̂ =
1
K

X
ab

Eab,ab: ð17Þ

Thus, the needednumber of diagonal entries Eab,ab to estimate the
process fidelity within an error ϵ with the probability 1 − δ, or say
PðjF̂ � F j≤ ϵÞ= 1� δ, is

K =
logð2=δÞ

2ϵ2
, ð18Þ

which is independent of the system dimension. Here, we take a very
conservative bound of Eab,ab, i.e., 0 ≤ jEab,abj≤ 1. But, the difference
between the upper bound and lower bound of Eab,ab is usually much
smaller than 1, so the number of samples needed is much smaller than
that in Eq. (18).

Data availability
The simulated data is available upon request.

Code availability
The source code for the numerical simulations is available at GitHub
repository96.
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