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High-resolution single-photon imaging with
physics-informed deep learning

Liheng Bian1,2,5 , Haoze Song1,5, Lintao Peng1, Xuyang Chang 1, Xi Yang3,
Roarke Horstmeyer3, Lin Ye4, Chunli Zhu1, Tong Qin1, Dezhi Zheng 1,2 &
Jun Zhang1

High-resolution single-photon imaging remains a big challenge due to the
complex hardware manufacturing craft and noise disturbances. Here, we
introduce deep learning into SPAD, enabling super-resolution single-photon
imaging with enhancement of bit depth and imaging quality. We first studied
the complex photon flowmodel of SPADelectronics to accurately characterize
multiple physical noise sources, and collected a real SPAD image dataset
(64 × 32 pixels, 90 scenes, 10 different bit depths, 3 different illumination flux,
2790 images in total) to calibrate noise model parameters. With this physical
noisemodel, we synthesized a large-scale realistic single-photon imagedataset
(image pairs of 5 different resolutions with maximum megapixels,
17250 scenes, 10 different bit depths, 3 different illumination flux, 2.6 million
images in total) for subsequent network training. To tackle the severe super-
resolution challenge of SPAD inputs with low bit depth, low resolution, and
heavy noise, we further built a deep transformer network with a content-
adaptive self-attention mechanism and gated fusion modules, which can dig
global contextual features to remove multi-source noise and extract full-
frequency details. We applied the technique in a series of experiments
including microfluidic inspection, Fourier ptychography, and high-speed
imaging. The experiments validate the technique’s state-of-the-art super-
resolution SPAD imaging performance.

Single-photon avalanche diode (SPAD) array has received wide atten-
tion due to its excellent single-photon sensitivity1–4. Such a single-
photon imaging sensor has been widely applied in various fields such
as fluorescence lifetime imaging5, fluorescence fluctuation
spectroscopy6, time-off-light imaging7–9, quantumcommunication and
computing10,11, and so on12,13. Compared with EMCCD and sCMOS
cameras that also maintain high detection sensitivity, SPAD arrays
acquire photon-level light signals at a low-noise level, and perform
direct photon-digital conversion that can effectively eliminate readout
noise and enhance readout speed14.

While early SPAD arrays were limited in imaging resolution due to
low fill factors, which depend on a large guard ring of each pixel to
prevent premature edge breakdown during electron avalanche15,
recent advance has exhibited higher fill factors approaching 100%16.
Nevertheless, comparedwith thewell-establishedmanufacture craft of
CMOS using which Kitamura et al. have reported a 33 megapixel
standard CMOS imaging sensor (7680 × 4320 pixels) in 201217, the
array size of SPAD in academic literature was only 400× 400 in 201918

and 1024× 1000 in 202015. Moreover, the commercial SPAD products
available in the market maintain only thousand pixels19, and costmore
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than twenty thousand euros. In this regard, the average pixel cost of
SPAD is 8 orders ofmagnitude higher than that of a commercial CMOS.
To improve SPAD imaging resolution, Sun et al. reported an optically
coded super-resolution technique20 with a high-SNR input with 5.2ms
integration time, which is several orders higher than practical single-
photon imaging applications with sub-nanosecond exposure time7–9.
The underlying limitation originates from the employed single-source
Poisson noisemodel21,22, which deviates from complex real SPAD noise
containing a variety of different-model sources such as crosstalk, dark
count rate, and so on1 (as shown in Fig. 1a). Mora-Martín et al. pre-
sented a technique that utilizes synthetic SPAD depth sequences to
train a 3D convolutional neural network (CNN) for denoising and
upscaling (4×)23. However, the technique also falls into the single-
source based Poisson and Gaussian noise statistics that lead to
degraded imaging quality without considering such multiple noise
sources (as validated in the following experiments shown in Fig. 2b).

In the era of deep learning, another obstacle preventing super-
resolution SPAD imaging is the lack of datasets containing image pairs
of low-resolution single-photon acquisitions and high-resolution
ground truth. Although one can accumulate multiple subframes to
generate noise-free images, its pixel resolution is still low and far from
meeting the Nyquist sampling requirement. One way to acquire high-
resolution images is placing another CMOS or CCD camera to take
images of the same target, which however introduces additional
laboursome registration workload24. Besides the extremely low reso-
lution and complex noise model, the single-photon image enhance-
ment task faces amore severe challenge due to its low bit depth that is
different from the conventional image enhancement tasks onCMOSor
CCD acquired images25–28. In such a case, the local features employed
by either the conventional optimization techniques29,30 or the con-
volutional neural network techniques26,28 are limited to predicting
neighboring SPAD pixels that may vary drastically (as seen below).
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Fig. 1 | Illustration of the reported large-scale single-photon imaging techni-
que. a The multi-source physical noise model of Single-photon avalanche diode
(SPAD) arrays, which consists of shot noise from photon incidence, fixed-pattern
noise from SPAD array’s photon absorption, dark count rate, afterpulsing and
crosstalk noise from blind electron avalanche, and deadtime noise from the
quenching circuit.b The visualization of two collected SPAD image datasets, one of
which contains acquired single-photon images (64 × 32 pixels, 90 scenes) under 10
different bit depth and 3 different illumination fluxes. This dataset was applied to
calibrate noise model parameters. The other dataset was digitally synthesized that

contains 2.6 million images of 17,250 scenes (image pairs of 5 different resolutions
withmaximummegapixels, 10different bitdepth, 3 different illuminationflux). The
large-scale synthetic data was applied to train neural networks for single-photon
enhancement. c The exemplar super-resolution SPAD imaging results including a
plaster statue and a United States Air Force (USAF) resolution target. The direct
acquired SPAD images (64 × 32 pixels, 6 bits) were input into the enhancing neural
network, which produces high-fidelity super-resolution images (256 × 128 pixels)
with fine details and smooth background.
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In this work, to tackle the great challenge of high-fidelity super-
resolution SPAD imaging with low bit depth, low resolution and heavy
noise in photon-limited scenarios, we first established a real-world
physical noise model of SPAD arrays. As shown in Fig. 1a, the real
physical noise sources consist of shot noise from photon incidence,
fixed-pattern noise from SPAD array’s photon absorption, dark count
rate, afterpulsing and crosstalk noise from blind electron avalanche,
and deadtime noise from the quenching circuit. To calibrate the
parameters of such a complex multi-source noise model, we collected
a real-shot SPAD image dataset containing 2790 images in total, each
with 64 × 32 pixels. Among these images, there are 90 scenes, each
with 10 different bit depths and 3 different illumination fluxes for
studying different application conditions, as shown in Fig. 1b. With the
calibrated physical noise model under different illumination and
acquisition settings, we further employed off-the-shelf public high-
resolution images (collected from the PASCAL VOC200731 and

VOC201232 datasets) to digitally synthesize a large-scale realistic single-
photon image dataset containing 2.6 million image pairs.

Driven by the single-photon image dataset, we designed a gated
fusion transformer network for single-photon super-resolution
enhancement. The transformer framework33,34 has recently attracted
increasing attention and produced an impressive performance on
multiple vision tasks34–36. As presented below, the reported network
mainly consists of three modules, including the shallow feature
extraction module, the deep feature fusion module and the image
reconstruction module. The framework can gradually extract multi-
level frequency features of input images and perform adaptive
weighted fusion to reconstruct high-quality images. The gated fusion
transformer network was trained using the above large-scale single-
photon image dataset and tested on various SPAD images. We built
four experiment setups to acquire various macroscopic and micro-
scopic images, two of which acquired target images for dataset

a

d

b

Lens Lens

Laser Lens

Output

Input

c
Output

Input

SPAD 
Arrays

Setup #1

Setup #2

Enhancement experiment on real-acquired single-photon images using setup #1

Enhancement experiment on real-acquired single-photon images using setup #2

SPAD 
Arrays

ND 
Filter

Target #1 Target #2 Target #3 Target #4 Target #5 Target #6Target #1 Target #2 Target #3 Target #4 Target #5 Target #6

Microtarget #1 PCB board 

Input pepper Gaussia Mixture Ours Real

17.61

0.42

17.48

0.42 0.44

18.07

23.16
0.77

PSNR
SSIM

Input Output Input OutputInput Output

Microtarget #2 PCB board Microtarget #3 USAF target 

100μm100μm 100μm 100μm 100μm 100μm

a

d

b

Lens Lens

Laser Lens

Output

Input

c
Output

Input

SPAD 
Arrays

Setup #1

Setup #2

Enhancement experiment on real-acquired single-photon images using setup #1

Enhancement experiment on real-acquired single-photon images using setup #2

SPAD 
Arrays

ND 
Filter

Target #1 Target #2 Target #3 Target #4 Target #5 Target #6

Microtarget #1 PCB board 

Input pepper Gaussia Mixture Ours Real

17.61

0.42

17.48

0.42 0.44

18.07

23.16
0.77

PSNR
SSIM

Input Output Input OutputInput Output

Microtarget #2 PCB board Microtarget #3 USAF target 

100μm100μm 100μm 100μm 100μm 100μm

Fig. 2 | Experiment results of large-scale single-photon imaging. a The optical
setup to acquire single-photon images of various targets. b The comparison of
enhanced single-photon imaging results using different noise models. We used
different noise models to train the same neural network, and input acquired data
into the different trainedmodels for enhancement. The ground-truth real image for
reference was accumulated using 60,000 binary single-photon images. c The
enhanced single-photon images of different macro targets (including a plaster

model, a cat toy and different printed shapes) using the reported technique (with
6-bit inputs).d The single-photonmicroscopy setup and corresponding enhancing
results using the reported technique. The setup was built by mounting the SPAD
camera on an off-the-shelf microscope, to acquire single-photon images of
microscopic samples in 6 bits. The enhanced single-photon results of a printed
circuit board and a UASF resolution target are presented on the right side.
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collection and direct enhancement validation, and another two were
applied for microfluidic inspection and Fourier ptychograpic imaging.
A series of experiments validate the technique’s state-of-the-art super-
resolution single-photon imaging performance.

Results
Collected dataset for noise model evaluation
We first built an optical setup to acquire SPAD images of various tar-
gets, as shown in Fig. 2a. The setup was built on an optical table in a
darkroom, which consists of a 488nm laser (Coherent Sapphire SF
488-100), a neutral density filter, a set of lenses and a SPAD array
camera (MPD-SPC3). The target is illuminated by the laser, and the
reflected light is focused to the SPAD array. Using the setup, we first
collected a real-acquired SPAD image dataset containing 90 targets
with 9 classes (element, geometry, sculpture, rock, plant, animal, car,
food, and lab tool), as illustrated in Fig. 1b. For each target, we set the
laser power being 10mW, 20mW, and 40mW, respectively. Under
each illumination, the integration time of single-photon detection is
0:02μs, and we acquired 1024 images for each target to synthesize
multiple bit depths ranging from 1 to 10. As such, the frame time is
20μs. The captured images are at the resolution of 32 × 64 pixels.
These images were applied to calibrate the multi-source noise model
parameters in Eq. (1). More parameter details are referred in Supple-
mentary Note 1.

To validate the fidelity of the reported multi-source noise model,
we used the synthesized images of different noise models to train
different neural networks under the same transformer framework
(without super resolution yet), and compared their enhanced results
with the reference ground-truth (GT) image composed of 60,000
SPAD subframes. As shown in Fig. 2b, the enhanced images using the
reported multi-source model maintain the highest fidelity and fine
details compared to ground truth, while the other models produce
various aberrations with remaining noise that is hard to remove.
Besides, we note that the GT image exhibits a smooth background and
fine target details, which alleviates the concern of coherent speckle
noise coming from laser illumination. The quantitative comparison
using the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) as metrics are presented on the right side of Fig. 2b, which
indicates that our technique produces more than 5 dB higher PSNR
and 0.3 higher SSIM than the other models. Such superiority validates
that the reported multi-source physical noise model and calibration

strategy enable an accurate description of SPAD’s photon flow. The
details of collected imaging datasets are referred in the Supplemen-
tary Note 2.

Large-scale dataset for super-resolution SPAD imaging
Despite the above collected single-photon image dataset, further
super-resolution enhancement cannot be achieved due to the lack of
high-fidelity and high-resolution ground truth pairs. To tackle such a
big challenge, we further synthesized a large-scale single-photon
image dataset using the public copyright-free Pascal voc2007 and
voc2012 images (24 bits). Specifically, the high-resolution images were
cropped to 512 × 512pixels anddownsampled todifferent scales of 2, 4,
8, and 16 in each dimension. Then, to simulate acquired SPAD images,
measurement noise of different illumination and bit depth conditions
were added to the 32 × 32 images using the above calibrated noise
parameters. In this way, there produce 17250 image pairs of low-
resolution SPAD images (32 × 32 pixels, 4 different bit depths and 4
different illumination flux) and corresponding high-resolution ground
truth. The dataset structure is demonstrated in Fig. 1b.

We trained the reported gated fusion transformer neural network
(detailed in the Methods section) on the synthesized image dataset
under different bit depths, illumination conditions, and super-
resolution scales, and tested the network and state-of-the-art enhan-
cing techniques on the test dataset including 505 synthetic noise
images. Each test image is composed of different subframes ranging
from 16 to 1024 (corresponding to the bit depth ranging from 4 to 10),
where each pixel is 1 or 0 indicating whether a photon is detected. The
competing methods are classified into two categories, including the
popular optimization-based denoising techniques (BM3D and VST)
together with subsequent bicubic interpolation (“BM3D+bicubic” and
“VST+bicubic”), and the state-of-the-art neural networks (U-net,
Memnet and SwinIR). These networks were also trained on our syn-
thesized dataset to converge for a fair comparison.

We list a quantitative comparison of peak signal-to-noise ratio
(PSNR) and structural similarity metric (SSIM) in Table 1. We can see
that the reported technique achieves the best performance for all the
different input settings. Especially, compared to the conventional
enhancing methods such as BM3D, our method produces more than
5 dB higher PSNR and more than 0.2 higher SSIM. Compared to the
competing neural networks, the reported transformer network main-
tains asmuch as 2 dB superiority on PSNR. The results further validate

Table 1 | Quantitative enhancement comparison among different enhancing methods and networks under different bit depth
(subframe), illumination flux (laser power), and super-resolution scale

Subframe Laser power/mW SR scale Metric BM3D +bicubic VST +bicubic U-net Memmnet SwinlR Ours

512 10 2 PSNR 18.50 16.38 19.87 20.34 21.26 23.02a

SSIM 0.52 0.35 0.59 0.64 0.68 0.79

4 PSNR 19.21 18.10 20.06 20.86 21.47 22.52

SSIM 0.49 0.48 0.62 0.66 0.68 0.75

40 2 PSNR 18.81 16.10 20.71 21.23 22.04 24.03

SSIM 0.59 0.36 0.62 0.69 0.71 0.83

4 PSNR 19.61 18.11 20.56 2103 21.75 23.58

SSIM 0.56 0.48 0.61 0.67 0.72 0.79

1024 10 2 PSNR 19.61 16.68 20.44 21.01 21.76 23.59

SSIM 0.58 0.36 0.63 0.67 0.72 0.82

4 PSNR 20.55 18.73 20.24 20.87 21.32 23.28

SSIM 0.56 0.48 0.61 0.67 0.72 0.79

40 2 PSNR 18.58 15.91 21.59 22.10 22.9 24.55

SSIM 0.63 0.36 0.68 0.70 0.72 0.84

4 PSNR 19.35 17.83 21.33 21.97 22.45 24.07

SSIM 0.61 0.49 0.65 0.71 0.75 0.82
aBold number indicates the highest metric in the comparison.
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the effectiveness of our technique in attenuating measurement noise
and retrieving fine details.

Further,wefixed the illuminationflux tobe 40mW, and the super-
resolution scale to be 4, and studied these method’s enhancement
performance under different bit depths ranging fromextremely-low 16
subframes to 1024 frames. The quantitative comparison results are
presented in Table 2, from which we can see that the reported tech-
nique maintains excellent robustness to different subframes. The
PSNR metric degrades less than 2 as the subframe number decreases
from 1024 to 16, in which case the conventional BM3D+bicubic tech-
nique obtains PSNR degradation higher than 7.

Enhancement on real-acquired data
We applied the trained neural network on real-acquired data for
experiment validation. The acquired images were input into the
enhancing network with the super-resolution scale being 4 (output
128 × 256 pixels). The targets include a plaster model, a cat toy and
different printed shapes. The enhanced results are presented in Fig. 2c.
We can see that the reported technique produces high-fidelity super-
resolution results, and maintains strong generalization on different
targets. Specifically for the plaster model (target #1), as shown in the
close-ups, the nose and mouth details are completely missing in the
input image, while they are clearly retrieved in the enhanced results.
The similar observation also exists for the cat toy (target #2). The
comparison results of the different shape targets reveal that the
reported technique is able to produce a smooth background while
reconstructing fine structure details. We provide more enhancement
results on real-acquired images in Supplementary Note 5. The experi-
ment settings and specifications are provided in Supplementary
Note 11 for easy reference.

To further validate the enhancing ability on microscopic
imaging, we built the second microscopy setup by mounting the
SPAD array camera (MPD-SPC3) to a commercial microscope
(Olympus BX53). The hardware integration time is still set as
0:02μs, ensuring that each frame’s maximum pixel value is 1 to
generate a 1-bit image. This allows us to synthesize input images at
different bit depths. The numerical aperture of the microscope
objective is 0.25. The micro targets include a circuit board and a
United States Air Force (USAF) resolution test target (R3L3S1N,
Thorlabs). The enhanced results are presented in Fig. 2d. For the
circuit board, we can clearly observe the resistance component
and connecting wires in the enhanced super-resolution images,

while such details are buried in heavy noise in the low-resolution
and low-bit-depth acquired images. For the resolution test target,
it is hard to even discriminate element 1 of group 3 for direct SPAD
detection. In comparison, the enhanced resolution achieves ele-
ment 6 of group 3 (Fig. 1c), with a smooth background and clear
details.

Experiment on microfluidic inspection
Microfluidic technique manipulates and processes small amounts of
fluids using mini channels of micrometer width37. Inspection of
microfluidic chips is important to monitor fluid flow. We built a
microfluidic inspection setup using SPAD, as shown in Fig. 3a. A
custom-made microfluidic device was constructed using two syringe
pumps (BT01100, Longer Pump Limited Company) and a microfluidic
chip (Wenhao Microfluidic Technology Limited Company). The chip
and pumpswere connected bypolytetrafluoroethene (PTFE) tubewith
an inner diameter of 0.6mm and outer diameter of 1.6mm. The aqu-
eous lemon yellow solution (2mg/mL, Meryer Chemical Reagent
Company) was used as the disperse phase, and the liquid paraffin
(Macklin Chemical Reagent Company) was used as the continuous
phase. The former was pumped into the middle channel of the chip,
and the latter flowed into the chip from the side channels. After these
two kinds of liquid met in the middle channel, the lemon yellow
solution was sheared by the continuous phase and formed micro-
droplets in the channel. The flow rate of the continuous and dispersed
phase was 1mL/h and 0.1mL/h, respectively. The micro-droplets
formed by lemon yellow solution were driven forward by the flow of
the paraffin.

The micro-droplet formation process was recorded using the
SPAD camera, as presented in the upper row in Fig. 3b. The images
were accumulated using 1024 binary single-photon images, corre-
sponding to 10-bit depth. However, due to the extremely low resolu-
tion and heavy noise, it is hard to reveal the fluid flow process or even
the micro channel structure from the acquired single-photon images.
The channel boundaries are barely visible in the measurements. The
closeups at the left bottom of each image can barely render themicro-
droplet structure but only a clutter of pixels. In comparison, by
applying the reported enhancement technique on the acquired single-
photon images, the enhanced images displayed in the bottom row in
Fig. 3b can reveal much more details of the micro-droplets and micro
channels. The width evolutionary process of microdroplets can be
conveniently calculated from the super-resolution images, which is

Table 2 | Network evaluation on different bit depth, with the illuminationfluxfixed to be 40mWand the super-resolution scale
fixed to be 4

Subframes index BM3D +bicubic VST +bicubic U-net Memmnet Swinir Ours

16 PSNR 11.85 12.82 19.94 20.23 20.48 22.36a

SSIM 0.18 0.42 0.56 0.61 0.64 0.71

32 PSNR 13.74 14.88 19.89 20.49 20.78 22.84

SSIM 0.31 0.46 0.58 0.63 0.66 0.73

64 PSNR 15.60 16.64 20.03 20.52 20.91 23.21

SSIM 0.30 0.48 0.59 0.65 0.69 0.73

128 PSNR 17.01 17.58 20.15 20.63 21.37 23.43

SSIM 0.42 0.5 0.6 0.64 0.71 0.76

256 PSNR 17.89 17.70 20.49 20.89 21.67 23.49

SSIM 0.47 0.51 0.62 0.66 0.7 0.77

512 PSNR 19.61 18.11 20.56 21.03 21.75 23.58

SSIM 0.56 0.48 0.62 0.67 0.72 0.79

1024 PSNR 19.35 17.83 21.33 21.97 22.45 24.07

SSIM 0.61 0.49 0.65 0.71 0.75 0.82
aBold number indicates the highest metric in the comparison.
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impossible for the low-resolution single-photon images where the
pixel size is as large as 30μm.

Using themicrofluidic inspection setup, we can clearly study fluid
flow and micro-droplet change process from frame sequence. As
shown in the four frames in Fig. 3b, with the gradual increase of the
continuous phase shear force in the microfluidic channel, the dis-
persed phase fluid gradually becomes thinner until it fractures. The
phenomenon originates from that in a microfluidic chip with a flow-
convergence structure, two immiscible liquids coaxially enter different
microchannels of the chip. Among them, the continuous phase liquid
flows in from the microchannels on both sides of the dispersed phase
liquid, and produces an interflow extrusion effect on the dispersed
phase liquid. At the junction of the channels, the dispersed phase is
sheared by the continuous phase and extends into a “finger-like” or
“nozzle-like” shape. Afterward, under the action of the liquidflow field,
the dispersed phase is squeezed or sheared, breaking into uniform
droplets. More microfluidic inspection experiment results are pro-
vided as Supplementary Note 6.

Experiment on Fourier ptychographic microscopy
Fourier ptychographic microscopy (FPM) is a synthetic coherent
imaging technique, providing high-throughput amplitude and
quantitative phase images38,39. It works by acquiringmultiple images
under different angles of illumination, and inputting these images
into phase retrieval algorithms for simultaneous amplitude and
phase reconstruction. In our recent work40, we have successfully
implemented FPMwith SPAD array, realizing coherent imaging with
higher resolution and larger dynamic range with single-photon
inputs. The experiment setup is presented in Fig. 4a, where a 0.1 NA
Olympus plan achromatic objective with a 600mm focal length
tube lens was applied for imaging, providing ×18.5 magnification for
Nyquist sampling. An Adafruit P4 Light Emitting Diode (LED) array
was placed 84mm from the sample to provide different angles of
illumination, among which we used 9 × 9 632 nm LEDs. The illumi-
nation NA was 0.18.

The exemplar acquired images of an onion cell sample, a blood
cell sample (simulated data), a USAF resolution test target and a plant
sample (real-acquired data) are presented in the left column of Fig. 4b,
c, respectively. The acquired images were all taken under vertical

illumination, with the bit depth being 9 (accumulated by 512 binary
single-photon images). We first applied the standard FPM recon-
struction algorithm40 to stitch the acquired SPAD images of different
illumination angles together, and the FPM reconstruction results are
shown in themiddle column.We can see that although FPM effectively
enhances imaging resolution, there still exists obvious noise and
aberration in the reconstruction that is introduced by heavy SPAD
noise. Then, we applied the reported technique on the FPM recon-
struction, and the enhanced results are presented in the last columns.
We can see that in the improved results, the background is smoothed,
while the super-resolution details are further enhanced. The experi-
ment further validates the superior enhancing ability of the reported
technique on different imaging modalities.

We also noticed that the enhancement of our technique on
experiment data (Fig. 4c) is not as superior as that on simulated data
(Fig. 4b). We consider the reason may arise from the fact that in
practical FPM experiments, besides the noise coming from the
detection part, there also exist noise and aberrations from the illumi-
nation part and optical path. Especially for the FPM imaging modality
that requires multiple acquisitions, there may be more aberrations
suchas non-uniform lightflux andLEDmisalignment39. In this regard, it
is our future work to investigate deep into these factors. One possible
solution is to incorporate the reported enhancement technique into
the iterations of FPM optimization, which may help reduce error
accumulations and improve robustness.

Experiment on high-speed scenarios
SPAD imaging holds unique advantages in capturing ultra-fast scenes
under limited illumination conditions. Our SPAD arrays can achieve a
minimum integration time of 20ns to capture 1-bit images. We
demonstrate the effectiveness of SPAD imaging for high-speed,
microsecond timing scenarios in Fig. 5.

The first demonstration involves recording a rapidly rotating
fan. In this experiment, we captured images of the spinning fan
using an experimental setup shown in Fig. 5a. The setup consists
of an objective lens, an LED light source (GCI-060401, 3W elec-
trical power), and the SPAD arrays. The integration frame time was
set to 1 microsecond. We observed that there was noticeable noise
and aberration in the raw single-photon images due to heavy SPAD

5.25 m13.5 m 10.5 m 25.0 m

a b

Frame #1

Microfluidic inspection setup 

Frame #2 Frame #3 Frame #4

SPAD 
array

Microfluidic 
Chip

Syringe
Pump

Acquired single-photon images

Enhancement using the reported technique
20μm20μm 20μm 20μm

20μm20μm 20μm 20μm

Fig. 3 |Microfluidic inspection experiment using single-photondetection. aThemicrofluidic inspection setup tomonitorfluidflow inmicrofluidic chip.bThe acquired
single-photon images at different time in 8 bits and corresponding enhancement results.
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noise, making it difficult to distinguish the rotating blade angle of
the fast fan. We applied the reported technique to enhance the
recorded SPAD images. The results showed improvement com-
pared to the initial recordings. The background appeared
smoother, and the super-resolution details were further

enhanced. We have measured the rotational speed to be
0.0107 rad/μs, which is approximately equivalent to 102,000 RPM
(revolutions per minute). This measured speed is consistent with
the manufacturer’s instructions, which state a rotating speed of
about 100,000 revolutions per minute.

0 10 20

0 10 20

Acquired single-photon images

Enhancement using the reported technique

High-speed imaging 
experiment #1

a b

0.375 0.488 0.599

0 10 20

0 10 20

High-speed imaging 
experiment #2 Acquired single-photon images

Enhancement using the reported technique

c d0.375 0.488 0.599

Fig. 5 | Single-photon imaging experimentofhigh-speed scenarios. aThe single-
photon imaging setup used to record the rotating fan. b The captured single-
photon images at microsecond time intervals, along with their corresponding

enhanced results. cThe single-photon imaging setup used to capture the arc.d The
obtained single-photon images of the arc at microsecond time intervals, and their
corresponding enhancement results.

LED 
array

Sample 
holder

Lens 
system

SPAD 
array

a bSingle-photon FPM setup

Exemplar acquired images FPM reconstruction Our enhancement

c Experiment results on real-acquired single-photon FPM data

Enhancement demonstration on synthetic single-photon FPM data

Exemplar acquired images FPM reconstruction Our enhancement

10μm10μm10μm
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Fig. 4 | Fourier ptychographic microscopy (FPM) experiment using single-
photon detection. a The proof-of-concept FPM setup using a SPAD array camera
with a Light Emitting Diode (LED) array. b, c presents the enhancement results
using synthetic data and real-acquired FPM data, respectively. The left column
shows the images (32 × 32 pixels) acquired under vertical illumination (7 bits under

3 μs exposure time), and the middle column presents the FPM reconstructed
images (each using 81 acquired images to recover 192 × 192 pixels). The right col-
umn shows further-enhanced results (384 × 384 pixels) using the reported techni-
que, with the FPM reconstruction as inputs.
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The second demonstration features an electrostatic ball, as
presented in Fig. 5c. When activated, the circuit generates a high-
frequency electric field that illuminates the thin gas inside the
sphere. A high voltage alternating current is applied to the sphere
via a central electrode. This energy ionizes the gases, producing
positively charged ions and plasma. The high voltage from the
electrode then creates an arc through the plasma to the edge of the
sphere, causing it to glow. We conducted recordings of the glowing
process at microsecond intervals to enhance the understanding of
the high-speed arc glowing process. Through observations, we
noted that the duration of the arc glowing period is approximately
4μs, which is consistent with the statement in ref. 41. We provided a
high-speed single-photon imaging demonstration video in Supple-
mentary Movie 1.

Discussion
In this work, we introduced deep learning into single-photon detec-
tion, and presented a enhancing technique for large-scale single-pho-
ton imaging. By tackling the big challenge of single-photon
enhancement with extremely low resolution, low bit depth, complex
heavynoise and lackof imagedatasets, the reported technique realizes
simultaneous single-photon denoising and super-resolution enhance-
ment (up to 4×4 times). A series of experiments on both macro and
micro setups validate the reported technique’s state-of-the-art large-
scale single-photon imaging performance. Besides, we also built two
application setups of microfluidic inspection and Fourier ptycho-
graphic microscopy to further validate the strong adaptation ability of
the reported technique for various imaging modalities.

The state-of-the-art large-scale single-photon imaging perfor-
mance of the reported technique builds on several innovations,
including the physicalmulti-source noisemodeling of SPAD arrays, the
construction of two single-photon image datasets (one for noise cali-
bration and another for network training), and the design of a deep
transformer neural network with a content-adaptive self-attention
mechanism for single-photon enhancement. The reported noise
model studied the entire photon flow process of single-photon
detection, and considered multiple noise sources that degrade
single-photon imaging quality. The noise sources include shot noise
from photon incidence, fixed-pattern noise from SPAD array’s photon
response, dark count rate, afterpulsing and crosstalk noise from blind
electron avalanche, and deadtime noise from the quenching circuit.
The first single-photon image dataset of 3600 single-photon images
was collectedwithdifferent illuminationflux andbit depth, to calibrate
the statistical parameters of the multi-source physical noise model.
Employing the calibrated noise model, the second single-photon
image dataset was synthesized, containing 1.1 million images over
17250 scenes, providing image pairs of low-resolution single-photon
ideas and corresponding high-resolution ground truth ranging from
thousand to mega pixels. This strategy saves great efforts to collect
and register paired data, and makes it possible to study latent signal
features of single-photon data. The dataset was applied to train the
transformer network for single-photon image enhancement, providing
a smooth background and fine details benefiting from its self-attention
and gated fusion mechanism.

In the workflow, the multi-source noise model parameters were
calibrated employing a set of collected images acquired using a
specific SPAD camera. Although the reported noise model is gen-
eralized and applicable to various single-photon detection
schemes, the noise parameters of different SPAD arrays may deviate
from each other, even for the same version of cameras. In this
regard, the automatic calibration of different SPAD arrays is worthy
of further study. Besides, we consider that the transfer learning
technique can be adapted to other single-photon detection hard-
ware and settings42. This would save laboursome data collection and
parameter calibration efforts for different experiments.

Furthermore, big model training has gotten a big development for
computer vision tasks43. It may be an effective method to generate
synthetic datasets based on the reported physics model to train a
big model for SPAD imaging.

Besides direct enhanced imaging, single-photon detection has
also been applied in multiple computational sensing modalities for
broader applications, such as non-line-of-sight imaging44,45 and quan-
tum key distribution46. In such schemes, we can integrate the reported
enhancing technique with the sensing framework to achieve global
optimum47,48. The technique may work as an enhancing solver in the
alternating optimization process to improve resolution and attenuate
noise and aberrations47, preventing error accumulation for global
optimization.

The photon detection efficiency of the SPAD array is varied at
different wavelengths. This property provides two hints for us to fur-
ther develop the reported technique. First, wecan further consider this
wavelength-dependent noise in ourmulti-sourcephysical noisemodel,
which can compensate for the degradation introduced by varied
photon efficiency. Second, we can employ various photon efficiency to
retrieve spectral information of incident light, opening research ave-
nues on single-photon multispectral imaging that would benefit a set
of single-photon applications49.

Besides single-photon detection sensitivity, another highlighted
ability of SPAD is its picosecond-scale time gating, indicating the time
stampofphotonarrivals. In our presentwork,wedid not consider time
gating in different applications such as 3D LiDAR imaging capabilities
for autonomous vehicles23 and fluorescence lifetime imaging in
microscopy. Prior to the availability of the reported method, addres-
sing issues with commercially available 64 × 32 resolution SPAD for
LiDAR systemswas difficult, as they struggled to perform accurate and
fast detection due to limited resolution. Using the reported approach,
we can assist LiDAR systems in obtaining higher resolution and more
precise scene information for enhanced detection. Furthermore, data
collection in complex environments, such as rainy, foggy, or hazar-
dous conditions, poses even greater challenges. Tackling these sce-
narios is vital for safety-related tasks. In this context, the reported
technique presents an alternative solution for LiDAR systems con-
fronted with these situations. In our future work, it is worth studying
time gating in our enhancement framework to improve depth-
selective resolution. Besides, considering time stamp into the multi-
source physical noise model may further help improve noise robust-
ness and enhancing ability.

Methods
Noise modeling of SPAD arrays
As shown in Fig. 1a, the noise sources of SPAD arrays include signal-
dependent shot noise fromphoton incidence,fixed-pattern noise from
SPAD array’s photon detection efficiency (PDE), dark count rate,
afterpulsing and crosstalk noise from electron avalanche, and dead-
time noise from circuit quenching.

In the incident process that photons enter the photosensitive
surfaceof SPADarrays, photon arrival is a stochastic processdue to the
quantum properties of light, known as the shot noise Nshot. During a
certain integration time of the detector, the incident photon number k
subjects to the Poisson distribution as p kð Þ= e�χχk

k! , where χ is the
expectation of incident photons in a unit time (namely the latent light
signal). Considering the unique avalanche circuit of SPAD arrays that
detects at most one photon during the integration time, we apply the
Poisson distribution with probability p(Poisson) = 1-p(k = 0), where
p kð Þ= e�χχk

k! . In this regard, the shot noise is independent of specific
detectors, and its parameters do not need to be calibrated. We con-
sidered shot noise in our synthesized large-scale single-photon image
dataset for network training.

SPAD arrays absorb incident photons and generate electric char-
ges through photoelectric conversion. In this process, each SPADpixel
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responds with a certain probability, and an avalanche occurs under a
certain probability to form a saturation current for a new photon
count. The probability that the above process occurs is termed photon
detection efficiency (PDE), which is defined as the ratio between the
number of incoming photons and the number of output current pul-
ses. Since PDE is mainly related to manufacture craft and hardware
settings, it is approximated to be a fixed probability distribution,
meaning that the fixed-pattern noise (Nfp) probability of each pixel is
assumed to be a constant once it is calibrated. In our workflow, we
employed the PDE data provided by manufacturer. In the photo-
electric conversion process, SPAD arrays would also excite electrons
due to the thermal effect even in darkness. These electrons are
amplified by the avalanche circuit to form a saturation current,
resulting in dark count rate noise. The dark count rate noise Ndcr

subjects to the Poisson distribution50, with the expectation to be
calibrated.

Followed the photoelectric conversion, the electrons are
amplified by an avalanche. In the electron avalanche amplification
process, the carriers pass through the P-N junction and may be
trapped by the conductor. In such a case, the saturation current is
relayed, and the detector will count an additional detection event
with a certain probability, denoted as afterpulsing noise Nap. The
existing studies of afterpulsing noise51,52 consider its probability to
be a power function or exponential decay with time. Since we only
consider its statistical effect related to the manufacture of each
pixel unit, we simplify the model to be a fixed probability distribu-
tion map, and assume that its effect of the previous frame may only
apply to the current frame. Besides the electrical interference, the
avalanche current in one pixel may trigger the surrounding pixels
due to the photons emitted by hot carriers. This process produces
crosstalk noise Nct, which is assumed to follow a fixed probability
distribution similar to afterpulsing noise53.

To prevent self-sustaining current from damaging the circuit,
SPAD arrays implement a quenching operation that adjusts the bias of
P-N junction to the breakdown voltage after the avalanche during each
integration time. In this process, each pixel does not respond to
additional incident photons. As a result, this process brings deadtime
noise to photon count and keeps it being zero. In our experiments, we
set the integration time to be 20ns, the dead time to be 60 ns, and the
readout time to be 80ns. In this way, we can eliminate the negative
influence of asynchronous deadtime noise of eachpixel. Therefore, we
do not include deadtime noise in the following modeling and calibra-
tion phases.

To sum up, the multi-source physical noise model of SPAD arrays
is described as

N=Nshot +Nfp +Ndcr +Nap +Nct +Ndt ð1Þ

As stated above, the negative influence of Nshot, Nfp and Ndt is
tackled by either data-driven processing, employing manufacture
parameters or adjusting hardware settings. Themodel parameters that
are required to calibrate include the expectation of Ndcr, the fixed
probability pap of Nap, and the expectation of Nct.

Noise parameter calibration
We acquired 60000 single-photon images (1 bit) of dark field without
illumination. In such a case, we considered shot noise Nshot ≈0 and
fixed-pattern noise Nfp ≈0. Besides, the deadtime noise is also
assumed Ndt ≈0, because it mainly describes the response to incident
light in the quenching process. In this regard, the noise formation
model of the dark-field images can be summarized as

Idark x, y,nð Þ=Ndcr x, y,nð Þ+pap x, yð ÞIdark x, y,n� 1ð Þ
+pct x, yð ÞU Idark x, y,nð Þ� �

,
ð2Þ

where Idark x, y,nð Þ denotes the detected signal at the pixel location
x,yð Þ in the n-th frame, Ndcr x, y,nð Þ is the dark-count rate noise map
that follows Poisson distribution, pap is the fixed probability map of
afterpulsing noise, pct represents the Poisson probability of crosstalk
noise, and U Idark x, y ,nð Þ� �

denotes neighboring detected signal of
pixel x, yð Þ.

To calibrate the above multiple noise parameters, we first extract
the noise maps of afterpulsing noise pap x, yð Þ and crosstalk noise
pct x,yð Þ according to their generation mechanism. Specifically,
because the detected photon number of dark images is small, two
consecutive detection events at the same pixel location is most likely
afterpulsing noise. Under this assumption, we obtained the intensity of
afterpulsing at each pixel x,yð Þ in the n-th frame as Iap x, y,nð Þ, provided
that the signals of the previous frame and the current frame at the
same pixel are the same as 1. Similarly, we can extract the map of
crosstalk noise Ict x,y,nð Þ, considering that the neighboring pixels in the
same frame are both 1 if a crosstalk event occurs.

As stated in the technical manual provided by the SPAD manu-
facture, the typical probability of afterpulsing events is 1–2 orders of
magnitude higher than that of crosstalk events. Therefore, we prior-
itize afterpulsing events during the calibration process. When both
afterpulsing and crosstalk events are observed at a single pixel, we
classify it as an afterpulsing event rather than a crosstalk event. By
doing so, we can effectively ignore the influence of crosstalk events
while ensuring that afterpulsing events receive the necessary atten-
tion. This strategy helps alleviate the problemof redundant calibration
and enables us to obtain accurate parameter values.

Using the sub-noise maps, the fixed probability of afterpulsing
noise is calculated as

pap x,yð Þ=
P

nIap x, y,nð Þ
P

n Idark x, y,nð Þ � Iap x, y,nð Þ � Ict x, y,nð Þ
� � , ð3Þ

and the crosstalk noise probability is

pct x,yð Þ=
P

nIct x, y,nð Þ
P

n Idark x,y,nð Þ � Iap x, y,nð Þ � Ict x, y,nð Þ
� � : ð4Þ

Followed the calibration of afterpulsing noise and crosstalk noise,
the dark count rate noise is approximated as

Ndcr x,yð Þ=
P

n Idark x, y,nð Þ � Iap x, y,nð Þ � Ict x, y,nð Þ
� �

ntotal
, ð5Þ

where ntotal is the number of acquired frames for calibration. In our
implementation, we set ntotal = 60000. More details of generating an
synthetic single-photon image dataset based on the calibrated noise
model is presented in Supplementary Note 7. We further provide our
SPAD arrays’ sampling/ISP scheme and simulation strategy in
Supplementary Note 8.

Network structure
We designed a gated-fusion transformer network for single-photon
enhancement. The network is inspired by the Swin-Transformer
structure30, whose shift-window mechanism can effectively reduce
network parameters by more than one order of magnitude compared
to the conventional transformer networks34. On this basis, our network
further introduces dense connections among different Swin-
Transformer layers (STL), enabling long-distance dependency model-
ing and full-frequency information retrieval. As shown in Fig. 5a, the
network consists of three modules, including the shallow feature
extraction module, the deep feature fusion module, and the image
reconstruction module. Compared with the conventional convolu-
tional networks, the gated fusion transformer network maintains the
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following advantages: 1) The content-based interactions between
image content and attention weights can be interpreted as spatially
varying convolution, and the shift window mechanism can perform
long-distance dependency modeling. 2) The gated fusion mechanism
can deeply dig medium-frequency and high-frequency information at
different levels, enabling the prevention of losing long-term memory
as the network deepens and enhancement of fine local details.

Shallow feature extraction
Given a low-quality image ILQ 2 Rh*w*cin (h, w and cin are the image’s
height, width and channel number), we use the shallow feature
extractor HFE *ð Þ to explore its low-frequency features F0 2 Rh*w*c as

F0 =HFE ILQ
� �

: ð6Þ

This module is composed of convolution, batch normalization
and activation layers (specific parameters and settings arepresented in
Supplementary Note 3). The convolution layers are applied for pre-
liminary visual processing, providing a simple way to map the input
image space to a higher-dimensional feature space. Besides the fol-
lowing deep fusion operation, the output of this module is also linked
to the final image reconstruction module, so that the target’s low-
frequency information can be well preserved in final reconstruction.

Deep feature fusion
Next, we use several densely connected Swin-Transformer blocks
(DCSTB) to extract different levels of medium-frequency and high-
frequency features Fi 2 Rh*w*c i= 1,2, . . . ,nð Þ from F0, denoted as

Fi =HDCSTB F0, F1, . . . ,Fi�1

� �
, ð7Þ

where HDCSTB represents the ith DCSTB operation. Compared to the
conventional convolution blocks such as U-net, the transformer-
structure blocks realize spatial-variable convolution that helps pay
more attention to the regions of fine details and interests, as validated
in Fig. 5b. Consequently, such blocks help recover more high-
frequency information that is beneficial to enhancing imaging
resolution.

The last layer of the deep feature fusion module is the Gated
Fusion layer, which fuses the outputs of different DCSTB opera-
tions with adaptively different weights. The process can be
described as

FDF =HGATE F1, F2, . . . ,Fn
� �

=w1F1 +w2F2 + . . . +wnFn, ð8Þ

where FDF represents the multi-level deep fusion features output by
the gated fusion layer, and wn represents the weight parameters
during gated fusion for different levels of feature, which are adaptively
adjusted through backpropagation during network training. Such a
module structure is conducive to deep mining of different levels of
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medium-frequency and high-frequency information, which prevents
losing long-term memory as the network deepens and enhances local
details54, as validated in Fig. 6b.

Image reconstruction
We retrieve high-quality single-photon images by aggregating shallow
features and multi-level deep fusion features. The operation is
described as

IR =HREC F0 + FDF
� �

: ð9Þ

The shallow features F0 are mainly low-frequency image features,
while the multi-level deep fusion features FDF focus on recovering lost
medium-frequency and high-frequency features. Benefiting from the
long-term skip connections, the Gated Fusion Transformer network
can effectively transmit different-frequency information to final high-
quality reconstruction. Different from the SwinIR network55 that lacks
the densely connected gated fusion structure (as shown in Fig. 7a), the
reportednetwork helps preserve and compensate the keymediumand
high-frequency feature signals, and enriches the image’s local details
(as the intermediate feature maps validate in Fig. 7a). In addition, sub-
pixel convolution is applied in the reconstruction block to further
upsample the feature map for single-photon super resolution. More
network structure details are presented in Supplementary Note 10.

Loss function
We designed a hybrid loss function consisting of L1 � norm loss, per-
ceptual loss and SSIM loss, to train the Gated Fusion Transformer
network. The L1 � norm loss calculates the absolute distance between
two images as LossL1 IR,IG

� �
= IR � IG

�� ���� ��
L1
, where IR represents the

reconstructed image by the network, and IG denotes its ground truth.

The perceptual loss is defined as the L2 � norm distance between
featuremaps output by the pool-3 layer of a VGG19network pretrained
on ImageNet as LossPER IR,IG

� �
= φ IR

� �� φ IG
� ��� ���� ��

L2
, where the φ �ð Þ

operation extracts feature maps. The perceptual loss regulates
different-frequency similarity in the feature space. The SSIM loss is
calculated as LossSSIM = 1� SSIM IR,IG

� �
, which further regulates the

two images’ similarity in the structural domain. To sum up, the loss
function for network training is

Loss IRHQ, IHQ
� �

=αLossL1 IRHQ, IHQ
� �

+ βLossPER IRHQ, IHQ
� �

+ γLossSSIM IRHQ, IHQ
� �

:
ð10Þ

whereα, β and γ are hyperparameters balancing the three loss parts. In
our implementation, these hyperparameters were set as α =0:1,β = 10
and γ = 100 after careful network tuning. Furthermore, we have pre-
sented the results of our transfer learning approach for further
improvement in Supplementary Note 9.

Network training
We randomly selected 505 image pairs from the synthetic large-
scale single-photon image dataset as the testing set, and the
remaining 16620 image pairs were used for network training. All
the images were cropped to 32 × 32 pixels when input into the
network. We implemented the network on Ubuntu20 operating
system using the Pytorch framework, and trained 1000 epochs
until convergence using Adam optimization on NVIDIA RTX3090
with the Batch size set to 24. We set the initial learning rate as
0.0003, which was decreased by 10% for every 100 epochs. The
default weight decay was set to 0.00005, and the Adam para-
meters of β1 and β2 were set to 0.5 and 0.999, respectively. We
used RTX3090 GPU for network implementation on the Python
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and Pytorch frameworks. The average time to enhance a single
SPAD image from 32*64 to 128*256 is 0.04 s. Other details of
network training are presented in Supplementary Note 4.

Theminimumdata generated in this study have been deposited in
the Figshare database under accession code https://doi.org/10.6084/
m9.figshare.23966922.v1. The complete data are available under
restricted access for the funded project requirements, access can be
obtained by the corresponding author within one month of the rea-
sonable request to the corresponding author.

Data availability
Theminimum data generated in this study have been deposited in the
Figshare database under accession code https://doi.org/10.6084/m9.
figshare.23966922.v1. The complete data are available under restricted
access for the funded project requirements, access can be obtained by
the corresponding author within onemonth of the reasonable request
to the corresponding author.

Code availability
The demo code of the reported technique is available from https://
github.com/bianlab/single-photon.
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