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High-dimensional topographic organization
of visual features in the primate
temporal lobe

Mengna Yao1,2,4, Bincheng Wen1,2,3,4, Mingpo Yang1,4, Jiebin Guo 1,4,
Haozhou Jiang1, Chao Feng1, Yilei Cao1, Huiguang He 2,3 & Le Chang 1,2

The inferotemporal cortex supports our supreme object recognition ability.
Numerous studies have been conducted to elucidate the functional organi-
zation of this brain area, but there are still important questions that remain
unanswered, including how this organization differs between humans and
non-human primates. Here, we use deep neural networks trained on object
categorization to construct a 25-dimensional space of visual features, and
systematically measure the spatial organization of feature preference in both
male monkey brains and human brains using fMRI. These feature maps allow
us to predict the selectivity of a previously unknown region in monkey brains,
which is corroborated by additional fMRI and electrophysiology experiments.
These maps also enable quantitative analyses of the topographic organization
of the temporal lobe, demonstrating the existence of a pair of orthogonal
gradients that differ in spatial scale and revealing significant differences in the
functional organization of high-level visual areas betweenmonkey and human
brains.

One of the most fundamental questions in neural science is how our
brain divides into multiple functional regions. Over the past decades,
the organization of one brain area known as inferotemporal cortex
(ITC) has attracted lots of attention1–3. Located at the top of the ventral
visual pathway, this brain region transforms low-level visual features
encoded in early visual areas into the concept of objects4 and provides
downstream association areas with necessary ingredients for high-
level cognition involving objects, such as object memory5 and object-
related decision making6. The close relationship between the neural
representation of ITC and the abstract concept of objects, as well as
the ease of studying its coding scheme through visual stimulation,
havemade it an ideal site to examine the functional organization of the
brain. A series of studies carried out in primate brains have revealed
multiple ITC subregions specialized for specific object categories or
features7–21. For example, subregions specialized for face processing

have been identified in both human and monkey brains7,13,22,23. It has
been suggested that these subregions are organized along coarse
gradients of visual features such as animacy and object size1,15,18,24–26.
The large-scale organization of the temporal lobe has also been char-
acterized using data-driven approaches by showing natural stimuli,
such as movies, to the subjects27–29. These studies suggest the exis-
tence of a large-scale visual feature map in the human brain that is
consistent across individuals. More recently, theoretical studies have
shown that applying simple spatial constraints to the backbones of
neural networks can lead to topographicorganizations similar to those
observed in the experiments, such as face-selective regions30–34.
Despite all these achievements, some important questions remain
unanswered, for example: 1) The brain regions identified with specia-
lized functions cover only about half of the monkey ITC18, and it’s
unclear what the rest does; 2) Most studies have been conducted in a
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single species, either human or a non-human primate species, and a
detailed comparison of the ITC’s topographic organization between
human and monkey brains is still needed. To answer these questions,
we need tomapout the visual selectivity across the ITC in both species
and perform quantitative analyses on the obtained maps.

We set out to tackle these challenges by constructing a high-
dimensional object space and compute the selectivity of each brain
location within this object space. Inspired by recent advances at the
intersection of artificial intelligence and neuroscience18,35–37, a 25D
object space was constructed using responses of units in a deep
neural network to a large database of natural images, and functional
MRI experiments were conducted in both monkeys and humans to
map out the feature preference of the visual temporal lobe. The
resulting preference maps helped us determine the functions of
previously uncharted territories and reveal differences in the func-
tional organization of high-level visual areas between monkey and
human brains.

Results
Constructing a high-dimensional space of visual features for
fMRI experiments
We aimed to characterize the functional map of the visual temporal
lobe using a rich set of visual features. As demonstrated in previous
studies, responses of ITC neurons could be accurately predicted by
linear combinations of unit activities in convolutional neural
networks35,36. Therefore, we built the object space by passing 200k
natural images from ImageNet, an online database, through AlexNet38,
a neural network for object recognition previously shown to be a good
model of ITC neurons36, and performing independent component
analysis (ICA) on responses of units in layer fc7of this network (Fig. 1a).
25 independent components (ICs) were extracted. By comparing the
“signal” values of different IC dimensions for the 200k images, we
found that these dimensions were largely independent of each other
(Pearson correlation = 0, mutual information < 0.05 for all IC pairs).
Representative images with the smallest and the largest angles
between their 25D IC coordinates and each IC axis were selected for
further experiments (Fig. 1b, c). These two groups of images were
termed “positive” and “negative” images of the corresponding IC,
respectively. Visual inspection of those images revealed a rich set of
features: For some ICs, images were grouped according to object
categories (e.g., dogs in the negative images of IC1 and buildings in the
positive images of IC25, Fig. 1b, c), while for others, objects with similar
shapes and appearances, not necessarily belonging to the same cate-
gory, weregrouped together (e.g., roundobjects in thepositive images
of IC5 and stripes in the negative images of IC19, Fig. 1c). Fifty images
were selected for each group, resulting in a total of 2500 images ( = 50
images×2 groups×25 ICs). Among all these images, there was only one
image that appeared more than once, which is much lower than the
chance level ( = 14.9 images, estimated by 10000 rounds of randomly
selecting 25 groups of 100 images from the 200 k images).

In our application of ICA, the data was pre-whitened using prin-
cipal component analysis (PCA) and reduced to the same number of
components as intended by ICA, whichwere then rotated tomaximize
non-Gaussianity39. As a result, the 25 ICs explained the same amount of
variance as the top 25 PCs (78% of the total variance). We did a com-
putational simulation to determine which dimensionality reduction
technique should be employed and found that the estimatedpreferred
features of AlexNet units are more robust to random image selections
for ICA than PCA (Fig. S1a–c). The decision to use 25 dimensions was
inspired by a previous paper showing that 25 linear components of
deep-layer unit activations in a convolutional neural network could
accurately predict the responses of IT neurons35. A recent study also
demonstrated that the top 25 PCs, but not higher PCs, of AlexNet
activations could be decoded by IT responses18 (their Extended Data
Fig. 11C). Moreover, we found that the 25 ICs of AlexNet fc7 not only

accounted for a large percentage of the total variance in fc7 activations
but also explained that of layer fc6 quite well (Fig. S1d–f). As will be
described in detail later in the paper,manywell-studied visual features,
such as curvature and animacy, can be reconstructed by linearly
combining the 25 IC axes (see Fig. S4b, c for representative images of
the combined axes). To quantify how well these selected images
represent the corresponding ICs, the difference between the average
IC coordinates of the two groups of representative images was com-
puted.We found that each IC’s differential featurewasvery close to the
true IC axis and was insensitive to the specific images being selec-
ted (Fig. 1d).

To map out the neural selectivity to these 25 features in the pri-
mate brain, we performed functionalMRI experiments on three awake
macaque monkeys and four human subjects while they fixated on the
images. Within each scan, positive and negative representative images
of a single ICwere presented in alternating blocks. An identical control
block of 50 natural images randomly selected from ImageNet, pre-
ceded and succeeded by gray-screen blocks, was presented in the
middle of each scan (Fig. 1e). Taking advantage of the periodic nature
of the stimulus, Fourier analysis was used to extract the sign and
magnitude of each voxel in response to the alternation of positive and
negative blocks of each IC (Fig. S2a, b), which was later normalized by
the response to the control block to facilitate direct comparison across
ICs. Only voxels with significantly stronger responses to the control
blocks than the gray-screen blocks were selected for further analyses
(p < 0.001, paired t-test, two-tailed, not corrected for multiple com-
parisons, see Methods). We performed the normalization using the
control block because the entire experiment was conducted over
multiple sessions, and the signal strength inevitably varied between
sessions. Since we used an identical set of images in the control block,
the response to this block could serve as a reference to control for the
differential effects of intersession variation on different ICs.

Consistent neural representation across hemispheres,
individuals and species
The normalized response to each IC was then projected onto the flat
map of the temporal lobe, where ITC is located, resulting in 25 maps
for each hemisphere of each individual. For monkey brains, the
boundary between V4 and IT, identified by retinotopic mappings
(Fig. 1f), was used to separate the temporal lobe from the occipital
lobe17. For human brains, where retinotopic areas are more numerous
and complex40,41, anatomical markers (posterior transverse collateral
sulcus and the anterior part of lateral occipital sulcus) were used to
delineate the temporal lobe.Wedid not restrict ourselves to ITC alone,
because we observed ordered and continuous feature selectivity over
the entire temporal lobe. To further enhance the signal quality and
facilitate quantitative analyses on the flat map, we resampled the
projections with 2mm×2mm squares, by averaging the results of all
vertices within each square (Fig. 2a). In these maps, values close to 1
indicate stronger responses to positive images than to negative ima-
ges, and values close to −1 indicate the opposite. Other square sizes
and resampling approaches were also tested, and similar results were
obtained for analyses described later in the paper (Fig. S2c–k). A
similarity matrix was then computed by correlating the maps of all
pairs of ICs (Fig. 2b). As in the classical representational similarity
analysis, this matrix captures the way how visual information is
represented. By computing the correlations between the similarity
matrices, we found that visual features were represented similarly
across hemispheres, individuals, and even species (Fig. 2c–f). Fur-
thermore, we found that without the normalization of the control
block, the consistency between subjects became lower (Fig. S2l–m),
suggesting that this normalization step removed noise from the data.

It should be noted that the consistency between representational
similarities is expected from the stable tuning of high-level visual areas
as demonstrated in previous studies18,23,42, and the purpose of this
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analysis is to illustrate thereliabilityofourprocedure. It’salso important
to note that our feature maps include not only the ITC, but also the
dorsal partof the temporal lobe,which ismainly involved in processing
visual motion and auditory information. Further analyses suggest that
the estimated preferred features of the dorsal areas are reliable and
distinct from those of the ITC (Fig. S3).

Explaining the feature preference map using interpretable
visual features
To comprehensively examine the feature selectivity of different tem-
poral lobe regions, 25 feature maps were merged into one single 25D
featuremap, with feature preference at each location represented by a
25D vector (termed the “preferred feature” of that location, Fig. 3a).
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Each 25D preferred feature is an axis in the 25D “object” space (usually
a combination of multiple IC dimensions, see Fig. S4h–k) that can be
used to characterize the neural tuning at the corresponding location18.
In order to understand which aspects of visual information are repre-
sented by these axes, we compared them with a collection of inter-
pretable visual features, including those investigated in previous
studies. The term “visual feature” is used to refer to a label or an index
of an image that reflects some property of that image. In total, 21
features were examined, including: low-level features, such as energy
at specific spatial frequencies and color;mid-level shape features, such
as curvature; high-level semantic features, such as animacy. To directly
compare these “visual features” with the “neural features” (the 25D
preferred feature measured experimentally), we projected them into
the 25D IC space (Fig. 3b). Typically, this projection was done by first
averaging the corresponding values of the visual feature across images
within “positive” and “negative” blocks of different ICs, and then
computing the difference between the average feature values of two
blocks for each IC and normalizing the 25D vector to unit length (for
details, see Methods: The construction of interpretable features and
comparison with neural data; see also Fig. S4 for visualizations of the
projected 25D features; For the relationships between the 21 features,
see Fig. S4d) and compared to the neural features measured experi-
mentally (Fig. 3b). The squared cosine angles (SCA) between neural
and visual features were used to quantify how well each interpretable
visual feature explained the neural data. This allowed us to quantita-
tively link our feature maps to already known features and potentially
identify novel features represented in the temporal lobe. Note that the
squared cosine angles between any neural feature and a set of com-
plete orthogonal features add up to 1 (Fig. 3c, inset). We use the terms
“low-”, “mid-” and “high-level” only to help the reader intuitively
understand what the features are—addressing the level of neural
representation requires different stimulus sets and experimental
designs43,44. Examining the squared cosine angles, we can see that
some of the 21 features explain the responses much better than other
features (Fig. 3c).

To identify the set of most explanatory features, we designed a
feature selection procedure by adding one feature at a time to
optimize the total explained proportion of neural responses at each
step (see Methods: feature selection). We used a half-split approach
to determine the optimal number of features: the 25D feature of one
location estimated using half the data was fitted by linearly com-
bining the selected features, and the feature of the other half was
then compared to the fit (Fig. 3d). We found that seven features
performed the best (Fig. 3f, black line and arrow; see Methods: fea-
ture selection). The seven features are (red arrows in Fig. 3c): 1) mean
magnitude of spatial frequency between 1.45 cyc/degree and 2.91
cyc/degree (named “high spatial frequency” or “high sf”); 2) exis-
tence of animals in the picture (named “animacy”); 3) existence of
humans in the picture (named “human”); 4) a stubby-spiky axis
estimated by projecting object images with stubby or spiky shape
(named “stubby-spiky”); 5) mean magnitude of spatial frequency

between 0.18 cyc/degree and 0.36 cyc/degree (named “low spatial
frequency”); 6) curvilinear/rectilinear shape; 7) PC1 of AlexNet fc6
(roughly stubby/spiky shape, see Fig. S4c and Bao et al.18). Interest-
ingly, we found these seven features explained only ~56% of the
neural responses after being normalized by the noise ceiling, sug-
gesting that some unknown features are encoded by the primate
temporal lobe. Next, we extracted additional features from the
neural data, by first orthogonalizing the neural features with respect
to the top seven features, and then performing principal component
(PCA) analysis on the orthogonalized features. Whenever PCA was
employed in the following text, the dimensionality of the original
data was always that of the object space ( = 25), so each PC repre-
sented an axis in the 25D space. Adding two PCs to the seven features
performed the best in explaining the neural features, achieving 82.5%
of the noise ceiling (purple line and arrow). These two features were
termed residual features 1 and 2. The number of most explanatory
features used to orthogonalize the neural features does not strongly
affect the directions of the two residual features (Fig. S5b).

We then compared these nine features with two types of baseline
models (Fig. 3e): 1) PCs of AlexNet responses; 2) WordNet labels of the
representative images. ImageNet is organized according to the
WordNet hierarchy, so each image in the database is associated with
multiple labels, e.g., a dog couldbe labeled as a “hunting dog”, which is
subordinate to higher-order labels such as “domestic animals”.
Twenty-one labels were screened based on the number of repre-
sentative images related to each label (no less than 100 and no more
than 2000 out of all 2500 images are required). Squared cosine angles
between these labels and neural features were considerably lower than
those for the 21 interpretable features (Fig. S5c; cf. Fig. 3c). The most
explanatory features were selected out of the 21 labels using the same
procedure described above. Overall, the two types of baseline models
performed much worse than the selected interpretable features when
the number of features were matched (compare blue and orange lines
to the black and purple lines in Fig. 3f).

Next, we examined the spatial distribution of the 9 features on the
flat map (Fig. 4a and Fig. S5d). Feature 1, the “high spatial frequency”
feature, largely avoided the superior temporal sulcus (STS, its fundus
was indicated with dotted lines in Fig. 4a), showing strong similarity to
neural features in the ventral ITC and the superior temporal lobe;
Feature 2, the “animacy” feature, was very prominent along 2-3 stripes
around and orthogonal to the fundus of STS. Other features exhibited
diverse spatial patterns. For example, Feature 6 was positively corre-
lated with the anterior temporal lobe (curvilinear region), and nega-
tively correlatedwith the ventral ITC (rectilinear region); Feature 8, the
residual feature 1, was negatively correlated with the STS region,
except from the “animacy” stripes identified in Feature 2’s map. The
spatial relationship between functionally defined subregions can be
better appreciated by assigning different colors to regions with dif-
ferent preferences (Fig. 4b), with red indicating “high spatial fre-
quency”, blue indicating “animacy”, and green indicating residual
feature 1. These three features were selected due to their strong

Fig. 1 | The construction of 25D object space and stimuli for fMRI experiments.
a 200 k natural images from ImageNet, an online database, were passed through
AlexNet, a neural network for object recognition. Independent component analysis
was performed on the responses of units in the penultimate layer (fc7). 25 inde-
pendent components (ICs) were extracted to build an object space. b For each IC,
the angles between 25D vectorsof 200k images and the IC axiswerecomputed, and
50 images with the smallest and the largest angles were selected to represent the
positive and negative ends of that IC, respectively. Representative images for IC1
are shown on the right. c Representative images for more ICs. d The difference
between the average 25D vectors of the positive and negative representative ima-
ges was computed for each IC. Besides the 50 most extreme images (image set 1),
images with the 50th to the 100th smallest and largest angles were selected as a
separate image set (image set 2). The cosine angles between thedifferential vectors

estimated using two image sets and those between the differential vectors and the
original IC axes are shown in the upper and lower panels, respectively. e A typical
stimulus sequence for the fMRI experiment. In each block, 48 images were ran-
domly selected from the 50 representative images and presented in random order.
The dashed lines indicate the blocks used in the following analyses. f Boundaries of
the temporal lobe and retinotopic visual areas were identified using retinotopic
mapping. The visual stimuli are shown above the inflated surfaces of one monkey.
Two different perspectives of the inflated surfaces are shown. The color scale bar
indicates the common logarithmof the probability of error. STS, superior temporal
sulcus.gThe flatmap of the left temporal lobeof the samemonkey (purple patches
in f). Note that due to copyright restrictions, the original ImageNet images in (b, c)
are replaced with natural images from Pixabay (https://pixabay.com/).
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explanatory power for neural features (see annotations in Fig. 4a). We
saw alternating blue and green stripes around STS, surrounded by red
regions for an individual monkey (Fig. 4b). While previous studies
highlighted feature gradients orthogonal to the fundus of STS, roughly
along the dorsal-ventral axis2,18,45, our results suggest the existence of a
periodic gradient of feature preference parallel to the STS fundus.

Here, we used the term “gradient” to indicate the gradual change in the
similarity between the 25D preferred features and a given dimension
across the cortical surface (Fig. S7m).

To assess the consistency of the results between animals, three
monkeys’ brains were registered to a common template of macaque
brains (see Methods). We found the spatial organization of feature
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preferences was largely consistent across individuals (Fig. S4l–m).
When projected onto the three features mentioned above, the
population-averaged map displayed largely the same pattern as the
individualmonkey (Fig. 4d). We found a roughly similar pattern in the
spatial distribution of feature preference in the human brain:

alternating blue and green regions are neighbored by red areas on the
ventral side (Fig. 4c, e; see Fig. S6 for the location of the flat map on
the inflated surface). However, the topographic organization seems
to be less structured in the human brain (compare 4b with 4c, 4d
with 4e).

Fig. 2 | Consistent neural representation of 25 IC axes across hemispheres,
individuals and species. a 25 feature maps of the left temporal lobe for one
monkey (M1), plotted on the cortical flat map. Results of all vertices within a
2mm×2mmsquarewereaveraged. Eachmapshows the preferenceof all locations
in the temporal lobe for the positive representative images of one IC axis over the
negative ones, with the largest absolute value normalized to 1. In thesemaps, values
close to 1 indicate stronger responses to positive images than to negative images,
and values close to -1 indicate the opposite. b Population similarity matrices in two
hemispheres. The correlation coefficients between pairs of feature maps were
computed as a 25 by 25 matrix. c Correlation coefficients for one hemisphere were

compared to those for the other. d Population similarity matrix of a second mon-
key. e Correlation coefficients for monkey 1 were compared to those formonkey 2.
f Consistency of similarity matrices, measured by Pearson correlation, between
hemispheres (3monkeys and 4 humans), individuals (3monkey pairs and 6 human
pairs), and species (3 × 4 monkey-human pairs). For interhemispheric consistency,
open and solid dots indicate male and female subjects, respectively. For inter-
subject consistency, open and solid dots indicate within-gender and between-
gender comparisons, respectively. Gray dots indicate upper bounds of 5% con-
fidence interval basedon 1000 times of randomshuffling. Source data are provided
as a Source Data file.
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keys. d–f Feature selection. A set of most explanatory features were selected by
adding one feature at a time to optimize the total explained proportion of neural
responses at each step (see Methods). d The procedure for quantifying the expla-
natory power of a set of features (seeMethods). f1 and f2 indicate the 25D preferred
features estimated using two halves of the data; e1 and e2 indicate the selected
features. e Two baseline models. 1) Principal components of the responses of

AlexNet units in four layers (fc6 and fc7, before and after ReLU) to 200k ImageNet
images used to construct the 25D object space. 2) WordNet labels. Each selected
label was required to contain no less than 100 and no more than 2000 out of all
2500 representative images (see Fig. S5c). f Goodness-of-fit, normalized by the
noise ceiling (see Methods), is plotted against the number of features for multiple
models. Themodel in (c) is denoted by the black line, with the arrow indicating the
optimal feature number ( = 7). Additional features were derived by first orthogo-
nalizing the neural features with respect to the selected seven features, and then
performing PCA on the orthogonalized features. Incorporating these orthogonal
features continued to increase the goodness-of-fit (purple line), until 9 features
were selected (purple arrow). Orange lines indicate PCs of AlexNet units, with
different symbols representing different layers. The blue line indicates the Word-
Net labels, which underwent the same feature selection process as themodel in (c).
Source data are provided as a Source Data file.
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It’s worth noting that our findings do not imply that the primate
temporal lobe is composedof only three regions, eachofwhichprefers
one of the three features. We didn’t plot other features in the maps of
Fig. 4b, d because they didn’t showupwhen the same threshold for the
three strongest features was applied (Fig. S5f, h). However, consistent
patterns could be observed when a lower threshold was used ( = 1/3 of

the original threshold, Fig. S5g, i). Moreover, when we performed a
Gaussian Mixture model on our preference map for clustering, 10-20
clusters were found for each monkey based on Bayesian information
criterion (Fig. 5). In addition, visualization of these clusters by their
representative images intuitively matched the expectations for face
patches13 and scene areas16 (contours in Fig. S5j).
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shown on top of the scale bar. Negative representative images for residual feature 1
are shown in the inset. Note that the original ImageNet images are replaced with
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cosine angle between its neural feature and three features of interest is larger than
0.50 (in the case of residual feature 1, cosine angle < −0.50 was required sincemost
squareswere negatively related to this feature). This thresholdwas chosen because

the overlapping squares of the three regions amount to 10% of all squares. The
same criterion applies to (c–e). Note that gray squares also belong to the feature
map—they are not colored because their similarities with the three features are not
strong enough. Squared cosine angles between features of each colored region and
the 9 selected features are shown on the right. Box plots show the median (line),
quartiles (boxes), range (whiskers), and outliers (circles). From top to bottom:
n = 193, 399, and 345 brain locations from onemonkey, respectively. c Same as (b),
but for a human subject. The threshold for cosine angle is 0.28. d Same as (b), but
for the average result of three monkeys projected onto the monkey template. The
threshold for cosine angle is 0.58. From top to bottom: n = 271, 293, and 271 brain
locations, respectively. e Same as (d), but for the average result of four human
subjects projected onto thehuman template. The threshold for cosine angle is0.41.
Scale bars: 1 cm. Source data are provided as a Source Data file.
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Testing new predictions based on the 25D preference map
Next, can we make predictions based on the feature preference map
that were not known in previous studies and test them with further
experiments? One recent paper found that monkey ITC consists of
four networks, coding four quadrants of a 2-dimensional object
space18. These two dimensions were PCs extracted from layer fc6 of
AlexNet, roughly corresponding to “stubby shape vs. spiky shape” and
“animate vs. inanimate” axes, therefore the four networks were
named spiky-animate(SPA), stubby-animate(STA), spiky-inanimate(-
SPI) and stubby-inanimate(STI) respectively, with SPA and STA cor-
responding to body and face patches in past literatures13,14. We
performed a similar experiment to localize the four networks in two
monkeys. Overlaid on the map of the “animacy” feature (cf. Fig. 4a),
we found that the two networks representing animate objects, SPA
and STA, overlapped nicely with the “animacy” stripes around STS,
consistentwith the fact that they are concernedwith animals (Fig. 6a).
The two networks representing inanimate objects, SPI and STI, were
located more ventrally than the animate regions (Fig. 6a), consistent
with the direction of a coarse animate-inanimate gradient in the pri-
mate temporal lobe3,18. It is easy to see that the aforementioned four
networks are unable to account for the gaps between the “animacy”
stripes in the vicinity of STS (i.e., green stripes in Fig. 4b, d). We found
the 1st principal component of feature maps of all three monkeys
showed a consistent pattern, with positive scores around STS
(Fig. S7a), so we named the region with positive PC1 scores the “peri-
STS region”. The preferred feature for these gaps within the peri-STS
region, termed “inanimate stripes”, could be estimated using the 25D
feature map. This new feature axis explained 26% of neural responses
in the full feature map, and was most closely related with the 1st
residual feature (or feature 8) among the 9 features selected in Fig. 3
(Fig. S5e).

Positive and negative representative images were then selected
from the 200 k natural images in ImageNet for this new feature, with
positive images typically containing objects with fine textures (Fig. 6b,
see also Fig. S4g for preferred images synthesized for that feature). We
performed a separate fMRI experiment using the two groups of ima-
ges, and found the regions with significant bias towards positive ima-
ges fell outside of the “animacy” stripes around the STS fundus (white
outlines in Fig. 6a), consistentwith our prediction. Furthermore,within
the peri-STS region, t-contrasts between the two conditions were
positively correlated with the projections of corresponding 25D fea-
tures onto the preferred feature of the inanimate stripes, which was
used to select the images, and negatively correlated with the projec-
tions onto the “animacy” feature, consistent with predictions based on
the 25D feature map (Fig. 6c; The 1% confidence interval of Pearson

correlationwas estimated by 2000 iterations of random samplingwith
replacement from all the scans).

To further confirm our finding, we performed single-unit
recordings in one of the new regions localized by fMRI (Fig. 6d). We
found consistent neural selectivity at the population level, with overall
stronger responses to the “texture” images in the positive block
(Fig. 6e and the purple line in Fig. 6h; The top purple line in Fig. 6h
indicates the time window with significant difference between the
neurons’ t-contrasts and 0, p < 0.01, Student’s t-test, two-tailed, n = 86
cells). As a control, we recorded in a region of the same monkey that
respondedmore strongly to the negative block in the fMRI experiment
(Fig. 6f) and foundadifferent pattern there,with stronger responses to
the images in the negative block (Fig. 6g and the green line in Fig. 6h;
the top green and black lines in Fig. 6h indicate the timewindows with
significant difference between the negative region’s t-contrasts and 0
and between the two regions’ t-contrasts, respectively, p <0.01, Stu-
dent’s t-test, two-tailed, n = 56 and 86 cells in the negative and positive
regions, respectively). Furthermore, we found the preferred features
of neurons in these two regions, estimated by the same 25-IC stimulus
set used in the fMRI experiment, could be clearly distinguished from
each other along the 1st principal component of all neurons (Fig. 6i; In
this case, the firing rate for each stimulus was measured with a time
window of 50–400ms after stimulus onset), suggesting a division of
labor in processing visual features between the two areas. Finally, in
addition to the representative images, we also presented the synthe-
sized images for the same feature to the monkey (Fig. S4g), and found
that neurons in the new region (Fig. 6d) responded more strongly to
the synthesized images of the positive direction of that feature than to
those of the negative direction (Fig. 6j and the brown line in Fig. 6k).
Interestingly, the positive synthesized images elicited even stronger
responses than the positive representative images selected from
ImageNet (black line in Fig. 6k), likely because the synthesized images
are better aligned with the target feature. While we used the term
“texture” to describe the function of the inanimate stripe, we are also
aware that this ismore or less a qualitative description. Partially due to
the diversity of naturalistic textures, it is difficult to replace this
description with a simple equation. On the other hand, the 25D pre-
ferred feature is a quantitative characterization itself, from which we
know that this area performs previously unknown computations.

In sum, our results not only confirmed the existenceof a new area,
but also supported the presence of a fine gradient along the less-
explored posterior-anterior direction (see the rightmost panel of
Fig. S7a for their relative locations), which was thought to be largely
related to the hierarchical processing within ITC, e.g., building invar-
iance to viewing angles18.
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Another prediction relates to thedifference in featurepreferences
between the two primate species. When PCA was conducted on the
preferred features of all individuals pooled together, a clear difference
between two species was observed on the 2nd PC, with much higher
scores in monkeys than in human subjects (Fig. 7a). We found the 2nd
PC could be well approximated by linearly combining “animacy” fea-
ture and “high sf” feature (see Methods: Comparing feature pre-
ferences of human and monkey brains and the bottom-right corner of
Fig. 7a). When examining the animate region and the inanimate region
separately, we found the feature preference of the inanimate region
differed strongly between the two species (Fig. 7b). While the inani-
mate region of the human brain showed a preference largely opposite

to the “animacy” feature (this is an indication of its preference for
inanimate objects, since the cosine angle between the “animacy” fea-
ture and the “inanimate object” feature is −0.96), that of the monkey
brain showed little selectivity for the “animacy” feature, but instead
strongly preferred the “high sf” feature (Fig. 7b, bottom-left and bot-
tom-middle). These differences result in opposite tunings along the
dimension combining the two features between the two species
(Fig. 7b, bottom-right). Positive and negative representative images of
the combined dimension were then selected—consistent with the
meaning of the two features, positive images typically contained ani-
mals within crowded environments, while largely isolated artificial
objects were found in negative images (Fig. 7c). A separate experiment

Fig. 6 | Validating the functional selectivity of a new ITC subregion. a, b Four
functional networks reported in a previous paper18 were localized in the temporal
lobe of one monkey, shown as contour plots (STA and SPA: p < 10−4; STI and SPI:
p < 10−6; Student’s t-test, two-tailed, not corrected for multiple comparisons; the
color code is shown in the inset) overlaid on the map of the animacy feature (a).
Preferred (positive) and nonpreferred (negative) images were selected for sub-
regions within the peri-STS region left out by the four networks (b). Note that the
original ImageNet images are replaced with natural images from Pixabay (https://
pixabay.com/). A separate experiment comparing positive to negative images
revealed new subregions in the peri-STS region (white outlines in a, p <0.001).
Dashed lines indicate the STS fundus. The locations of main sulci are shown above
(LS: lateral sulcus; OTS: occipitotemporal sulcus). c In two monkeys, t-contrasts
between the two conditions were negatively correlated with projections of 25D
features onto “animacy” feature within the peri-STS region, and positively corre-
latedwith the projections onto the feature dimension used to select the images. CI:
1% confidence interval. d A coronal slice showing the location of a positive-block

preferred region in M3 targeted for electrophysiology. Scale bar indicates the
common logarithm of the probability of error. e Responses of an example neuron
to images in positive and negative blocks of the fMRI experiment (see Methods).
Shadings represent SEM. f, g Same as (d, e), but for a negative-block preferred
region. h Average time courses of t-contrasts between the two conditions, with
purple and green lines indicating positive- and negative-block preferred regions,
respectively (n = 86 and 56 cells). Shadings represent SEM. Top lines indicate sig-
nificant time windows (p <0.01, Student’s t-test, two-tailed, see text). i PCA was
performed on the 25D preferred features of all neurons recorded in two areas,
estimated using the 25-IC stimulus set. The distributions of PC1 scores are shown
above. j An example neuron’s responses to the synthesized images of the same
feature in (b) (Fig. S4g).kAverage time courses of t-contrasts betweenpositive and
negative conditions for the synthesized images (brown) and thosebetweenpositive
conditions for the synthesized and natural images (black). Same convention as (h).
n = 34 cells. Source data are provided as a Source Data file.
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using the two groups of images confirmed our prediction, with sig-
nificantly stronger bias towards the positive condition in monkeys
than humans (Fig. 7d, e).

So far, our analyses have focused on elucidating which visual
features were represented in different subregions of the temporal
lobe. We then examined the feature preference map from a different
perspective, by asking: What general principle underlies the topo-
graphic organization of visual features on the cortical surface? While
this issue has been studied in the past by characterizing the spatial
relationship between discrete subdomains, our largely continuous
high-dimensional feature map allowed us to adopt a more global
approach. We viewed the 25D feature map as the superposition of 25
feature gradients, one gradient for each IC, and searched for the
organizing principles of visual features by quantitatively analyzing
these gradients. It’s noteworthy that these 25 maps were not inde-
pendent of each other (Fig. 2b), suggesting that they probably share
similar structures. One way to discover such shared structures is
principal component analysis (PCA). In the following, we will first dis-
cuss the implication of PCA’s results on the dimensionality of the map
( ≈ the number of independent gradients), and then move on to ana-
lyze the detailed topographic organization for each PC.

Organizational principles of visual features in the primate
temporal lobe
Previously, topographic maps characterized on the two-dimensional
cortical surface were typically based on feature spaces with one or two
dimensions15,18,24,25,46. To identify the dimensionality of our feature
map, PCA was performed on the neural data (Fig. 8a). To test the
statistical significance of each PC dimension, a half-split approach was
employed (see the left panel of Fig. 8b and Methods for details). We
found the feature maps of all three animals possessed no less than

10 significant dimensions (Fig. 8b, right). The same held true for
human subjects (Fig. S7b). A simulation based on the neural data
suggests our approach hardly overestimates the dimensionality of the
feature map (Fig. S7c–f), confirming that the actual featuremap in the
primate temporal lobe is of high dimensionality in nature. We then
examined how this high-dimensional map is organized on the two-
dimensional cortical surface.

Diverse patterns were observed when the spatial distribution of
feature preference for each PC was examined (Fig. 8c, the column on
the right illustrates how each PC and the 9 interpretable features relate
to each other as axes in the 25D space): PC1 scores showed a coarse
periodic gradient orthogonal to the STS fundus; PC2 scores were
negative in the “animacy” stripes orthogonal to the STS fundus (cf.
Fig. 4a, the 2nd panel), and positive in the rest of the peri-STS region,
displaying a fine periodic gradient parallel to the STS fundus;
PC3 scores were dissimilar to either PC1 or PC2 scores. We quantified
the spatial patterns by computing spatial autocorrelations on each PC,
a method commonly used to describe the presence of systematic
spatial variation of a variable defined as a function of space (see
Methods: 2D spatial autocorrelation). We found that PC2 displayed a
much finer periodic pattern than PC1, with PC3 in the middle (Fig. 8d).
This observation was quantified by performing Fourier analysis on
autocorrelationmaps along two orthogonal orientations (Fig. 8e), with
PC1 and PC2 displaying clear orientation selectivity at low and high
frequencies (arrows in the right panel of Fig. 8e), respectively.
Repeating Fourier analysis along all different orientations, a polar plot
was generated for each PC, with angle denoting orientation and radius
denoting frequency. We found different patterns at different PCs
(Fig. 8f), but consistent patterns across animals (Fig. 8g–i). In parti-
cular, feature gradients at PC1 and PC2were largely orthogonal to each
other, dominating at low and high frequencies, respectively (Fig. 8i).
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two species and three features, including: “animacy” feature, “high sf” feature, and
sum of the two. Feature preferences of all squares were projected onto the “ani-
macy” feature, and squares with top/bottom 15% projections were defined as the
animate/inanimate region. Box plots show the median (line), quartiles (boxes),
range (whiskers), and outliers (circles); n = 498 and 2041 brain locations from 3
monkeys and4humansubjects, respectively. cPositive andnegative representative
images of the combined feature (animacy+high sf). Note that the original ImageNet
images are replaced with natural images from Pixabay (https://pixabay.com/).
dNormalized fMRI responses of the inanimate region to the two conditions for one
monkey and one human subject (see Methods). Box plots show the median (line),

quartiles (boxes), range (whiskers), and outliers (circles). The results frommultiple
scans for the two conditions were compared using a paired t-test (two-tailed,
p = 2 × 10−6, t(10) = 9.52, n = 11 scans for monkey M1, p = 2 × 10−4, t(11) = −5.59,
n = 12 scans for human subject H1). Since in this experiment we recruited human
subjects who were not characterized for the 25D feature map, the inanimate
regions were determined as the 15% squares with the largest t-contrasts between
inanimate and animate blocks of the four-object-type stimuli (Fig. 6a). The average
response time courses to two stimulus conditions are shown in the insets. Hor-
izontal bars indicate stimulus duration ( = 24 s). Vertical bars represent a 1% change
in fMRI signal. e Comparison of the preference for positive over negative repre-
sentative images between human and monkey inanimate regions. Each dot repre-
sents one individual. p = 4 × 10−4 between the two groups (Student’s t-test, two-
tailed; t(9) = 5.42, n = 3 monkeys and 8 human subjects). Open and solid red dots
indicate male and female subjects, respectively. Source data are provided as a
Source Data file.
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While we have mentioned the pair of orthogonal gradients, one
roughly along the dorsal-ventral axis and the other along the posterior-
anterior axis, earlier in the paper (e.g., see Fig. 4b, d), here we are able
to quantitatively depict their spatial characteristics. Since preference
maps for PCs are linear combinations of 25 IC maps that were mea-
sured experimentally, we further validated our results on the original

IC maps. We found the low-frequency magnitude of each IC was
positively correlated with its absolute loading for PC1, but not for PC2
(Fig. S7g, i), whereas the high-frequency magnitude showed the
opposite pattern (Fig. S7h, j).

These findings suggest the map of visual features in the temporal
lobe can be viewed as a superposition of multiple periodic feature
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gradients, varying in both spatial frequency and orientations (Fig. S8a).
This perspective offers an explanation for why some feature/category
occupies multiple subregions—these are peaks or troughs of a fine
periodic gradient (Fig. S8b), and is also compatible with the existence
of coarse gradients in the primate brain.Wedonot intend to claim that
this new perspective is more fundamental than the conventional view,
in which different features/categories occupy different subregions of
ITC, since its biological basis is not clear. However, it did allow us to
characterize the topographic organization more quantitatively than
previous studies, paving the way for more in-depth investigations into
the biological mechanisms underlying its formation.

A potential pitfall of this analysis is that the 2D autocorrelation
map was computed using the relative locations on the flat map,
which might not accurately represent the original spatial relation-
ships on the curved cortical surface in 3D. For instance, in an extreme
case, the differential preference for low/high frequency along the
two orthogonal orientations (red and blue rectangles in Fig. 8e)
might result fromdifferential distortion during surface flattening.We
therefore examined the relationship between geodesic distance, the
shortest distance between two locations on the curved cortical sur-
face, and the straight-line distance on the flat map, and found no
clear difference between those two orientations (Fig. S7k–l), ruling
out this possibility.

Comparing the organizational patterns of visual features
between monkey, human, and alternative models
Our analyses suggest the monkey temporal lobe has an intricate
organization of visual features, where the spatial scales of feature
gradients depend on their orientation. However, since this high-
dimensional feature map is embedded in the 2D cortical surface, it
seems expected that different feature dimensionswill displaydifferent
spatial patterns, and a likely solution is to represent different features
with different oriented gradients. If this is the case, the readermay ask:
are there other alternative solutions under the constraint of spatial
continuity? In this section, we will quantitatively compare primate
feature maps with several alternative models.

While conventional deep neural networks didn’t take into account
the spatial relationship between units in deep layers, several recent
studies have developed network models that incorporate such spatial
relationships and encourage nearby units to have similar response
profiles30–34. After training, response correlation between units
decreased monotonously as a function of their distance, and classical
ITC subdomains like face patches could be observed. We first imple-
mented one of these models to test whether the functional organiza-
tion observed in themonkey temporal lobe could arise naturally in the
model30. Since the previously proposed model was intended to mimic
the inferotemporal cortex, we removed the superior part of the tem-
poral lobe in our monkey feature map (shown in grayscale in Fig. 9a).
Inspired by a previous study demonstrating the importance of cortical

shape on the topographic patterns that can form within it47, we used
the shapeof themap to arrange the units indeep layers. Threenetwork
architectures were tested, using either one layer (L6 or L7) or two
layers (L6 and L7) to mimic ITC (Fig. 9f). We also used seven functions
to constrain how response similarity varies with the distance between
units, with two functional forms (reciprocal function and Laplacian of
Gaussian; shown as solid and dashed lines, respectively, in Fig. 9g) and
multiple widths. Each model was trained with three different random
seeds. Altogether, 63 network models were trained (for more details,
see Methods: Topographic neural network model). We found the
response correlation of units in “ITC” layers varied as a function of the
distance between them, in a way consistent with the spatial constraint
(Fig. 9h; in the right panel, only networkswith themaximumweighting
on the spatial loss are taken into account, seeMethods), and functional
subdomains, such as face patches, could be observed (Fig. 9i).

To systematically compare network results with monkey data, we
performed the following analyses to quantify the distinct pattern of
topographic organization in ITC. We first computed the spatial auto-
correlation for each IC map (Fig. 9b, c), then fitted the map with
sinusoidal functions at different frequencies and orientations. Good-
ness-of-fit, quantified by explained variances, were then averaged
across ICs and illustrated as a polarplot (Fig. 9d, e; only the right half of
theplot is showndue to central symmetry). Inmonkeys’data, two clear
peaks appeared at different frequencies and nearly orthogonal orien-
tations (triangles in Fig. 9e, corresponding sinusoidal functions are
shown to the right), a pattern consistent with the pair of orthogonal
gradients shown in Fig. 8 (e.g., see triangles in the last two panels of
Fig. 8g), whereas in network models, the distribution of explained
variances appeared narrower in terms of frequency, with little orien-
tation selectivity (Fig. 9k). These observations were further corrobo-
rated by computing the following indices based on the polar plots:
preferred frequency, frequency tuning width, orientation selectivity,
and orthogonality index (Fig. 9l–o; see Methods: 2D spatial auto-
correlation). The values of the latter three indices would be high if a
pair of orthogonal gradients was clearly present in the feature map—
e.g., the orthogonality indexwould be highest if explained variances at
two separate frequencies showed strong preferences for orthogonal
orientations. We found these three indices varied with the preferred
frequency across the networks, and their values were higher in three
monkeys than in all the network models with comparable preferred
frequencies (Fig. 9p, q, red and gray dots). These results suggest that
the previously proposed model could replicate some of the known
topographic organizationof ITC, such as face patches, but they are not
able to reproduce the pair of orthogonal gradients observed in
our study.

Furthermore, we constructed two other types of alternative
models and found they couldnot reproduce the pattern in themonkey
data as well: 1) self-organizing mapmodels31,34 were constructed using
25D IC coordinates as inputs (Fig. S9a–c); 2) the monkey feature map

Fig. 8 | High-dimensional topographic organization of the primate temporal
lobe. a Eigenvalues forprincipal components (PCs) ofmonkey featuremaps.b Left:
Procedures for half-split analyses (see Methods). Right: Solid lines indicate the
average correlations of 500 iterations of half-splitting; dashed lines indicate the
lower bounds of 1% confidence interval. c Projections of the 25D feature map onto
the top three PCs (left), the top PCs’ positive and negative representative images
(middle; note that the original ImageNet images are replaced with natural images
from https://pixabay.com/), and cosine angles between the top three PCs and the 9
features in Figs. 3, 4 (right).d Spatial autocorrelations of the top six PCs forM1’s left
hemisphere. e Autocorrelations within two orthogonal rectangles (left) were pro-
jected onto their long edges (middle). Fourier analyses were then performed on the
projections (right). fBy rotating the rectangles, themagnitude of Fourier transform
was extracted for every angle and frequency, resulting in a polar plot for each PC.
g Results for the left hemispheres of two other monkeys and the average of three
monkeys for PC1 and PC2 ofM1’s featuremap, the same two dimensions as in (c–f).

Triangles in the population-averaged graphs indicate preferred orientations for
PC1’s low frequency and PC2’s high frequency. h Average results for the right
hemispheres of three monkeys. The plots are flipped right to left to match the left
hemisphere plots. i Magnitudes in the polar plots for PC1 (blue line) and PC2 (red
line) are plotted against polar angles. For symmetry reasons, only angles in the
range [−90°, 90°] were considered. Results for low and high frequencies are shown
separately in the middle and on the right (low frequency=average of 1 and 2 cycs/
6.6 cm, high frequency = average of 4 and 5 cycs/6.6 cm; see left). The two ortho-
gonal orientations in panel e (arrows) roughly matched the tuning peak for PC1 at
low frequency and that for PC2 at high frequency. Shadings represent SEM (n = 6
hemispheres). Insets: Peak magnitudes for PC1 and PC2 were compared (paired t-
test, two-tailed, p =0.001 and t(5) = 6.63 for low frequency, p = 9 × 10−4 and
t(5) = −7.03 for high frequency, n = 6 hemispheres). Source data are provided as a
Source Data file.
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was shuffled to match one of the aforementioned constraining func-
tions (Fig. S9d–f). Our findings suggest that the intricate spatial orga-
nization observed in the monkey brain is not an inevitable result of
embedding a high dimensional map into the 2D cortical surface under
the constraint of spatial continuity. Note that since we couldn’t test all
possible models, it is likely that the pattern in the monkey data could
emerge under some other constraints, but we think identifying such
constraints is beyond the scope of the current paper.

We also examined the human temporal lobe using the same set of
indices, which were compared to neural network models with units
arranged according to the shape of the human feature map
(Fig. S9g–i). Interestingly, we found that human data were largely
indistinguishable from the models (Fig. 9r). By directly comparing
human and monkey data, we confirmed the intricate spatial

organization of visual features observed in the primate temporal lobe,
embodied in a pair of orthogonal gradients with different spatial
scales, was more evident in monkeys than in humans (Fig. 9s and
Fig. S9j–l). We think this difference is likely due to our need to
recognize various types of artificial objects, such as tools and
letters10,12, which leads to the reconfiguration and distortion of the
originally ordered topographic organization in the brains of our
ancestors during evolution.

Discussion
Over the past decades, the functional organization of high-level visual
areas in the primate brain has been intensively investigated. Past stu-
dies have identified several networks specialized for processing a
particular type of object or feature7–21, revealed the large-scale
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organization of high-level visual areas27–29, and proposed general
principles underlying such organization1,15,18,24–26. However, several
important questions remain unanswered (see Introduction). In this
paper, we constructed a high-dimensional space of visual features
using a deep network previously shown to be a good model of high-
level visual neurons, and systematically characterized the functional
featuremap in bothmonkey andhumanbrains.Wemade the following
major discoveries: 1) a new functional subdomain encoding a pre-
viously unknown feature was identified in the monkey temporal lobe
(Figs. 3, 4, 6); 2) the monkey feature map consisted of a pair of
orthogonal gradients with different spatial scales, which were sig-
nificantly less salient in the human brain (Figs. 8, 9; Table 1); 3) the
human brain shows a stronger preference for inanimate objects than
the monkey brain (Fig. 7; Table 1).

With the rapid advances of machine learning, convolutional
neural networks (CNNs) have been shown to be powerful tools for
understanding the primate visual system35,36. Although the features we
used are extracted from deep neural networks (DNN) but not from
neural responses, the recent evidence that DNN features accurately
predict the responses of visual neurons36,37,48 and our decision to use a
large number of features at the same time allowed us to 1) obtain a
reasonably good approximation of the true neural tuning; 2) reveal the
topographic organization of the primate temporal lobe in detail. By
analyzing the neural tuning using features derived from AlexNet, what
we have done is like projecting the true neural tuning into a subspace
spanned by AlexNet features (Fig. S1g). Although AlexNet has been
shown to be an excellent model of high-level visual areas18,36,49, there is
still likely to be a significant fractionof neural responses that cannot be
explained by these features. Future work is needed to explore addi-
tional features to approach the true tuning functions. In addition to the
features of static 2D images, visual information not represented in the

ImageNet images, such as binocular disparity and temporal dynamic
information, should also be considered.

While previous studies have identified several color selective
regions in ITC, we didn’t see a strong tuning to color in our dataset.We
think it’s likely due to the difference in the stimulus sets used. Previous
studies have typically compared color images to grayscale versions of
the same images, such as gratings, to localize color areas50,51. Com-
pared to the conventional color localizer, our stimulus set consisted
mostly of natural images, which are much richer in the object shape
and category (as these images were collected for the purpose of test-
ing object categorization ability), but may not cover a similar range of
color variations (as color is intentionally manipulated in the conven-
tional localizer), favoring tuning to non-color dimensions in our
experiment.

Functional subdomains in ITChavebeen shown to consist of three
parts18, consistent with the periodic pattern along the posterior-
anterior axis in some dimensions of our feature map (such as IC1 in
Fig. 2a). However, this pattern was not observed for other dimensions
(such as IC17). We think this is due to the richness of the stimulus set
we used, e.g., IC17 contains isolated objects in the positive block and
crowded scenes in the negative block (Fig. S1h), which is not typical for
conventional functional localizers.

Our design of sampling the negative and positive ends of each IC
dimension was based on the assumption that IT neurons linearly
encode axes of high-dimensional spaces spanned by DNN features18,36.
In the future,multiple locations along a single axis could be sampled to
reveal the full tuning along that axis, which would better reveal the
feature gradients for individual dimensions.

One central quest of neuroscience is to understand how our brain
divides into multiple functionally specialized subregions. Due to the
convenience of generating and presenting visual stimuli, topographic

Fig. 9 | Comparison of featuremaps between primates and alternativemodels.
a Cosine angles between average features of three monkeys and the animacy fea-
ture, plotted on the left temporal lobe of the monkey template. b, c IC1’s feature
map (b) and autocorrelation (c). d, e Each IC’s autocorrelation map was fitted with
sinusoids of different frequencies andorientations. Explained variances, shownas a
polar plot (d), were averaged across ICs (e). f Network architectures (see text).
g Seven functions were used to constrain how response correlation between units
vary with cortical distance. h Left, Relationship between response correlation and
cortical distance for units in two trained networks (bin = 1.5mm; n = 222828,
607829, 936397, 1220800, 1508523, 1632486, 1835337, 1938684, 2099738,
2109536, 2080679, 2052299, 2002141, 1932663, 1830959, 1676084, 1564828,
1389092, 1201783, 1040034, 841442, and 659991 unit pairs in each bin for network
6; n = 49004, 156206, 231122, 309040, 374379, 427758, 449747, 503386, 506777,
527946, 509935, 520644, 487729, 494298, 444406, 437258, 377210, 359787,
303565, 253240, 212334, and 166229 unit pairs for network 36). Dots: mean; error
bars: SD. Curved lines represent corresponding constraining functions. Right,
Distribution of the correlation between response correlations and values of the

constraining function of cortical distances. i Face- and object-selective units in two
networks. j Featuremaps of two networks for IC1 (seeMethods). k Same as (e), but
for two networks. l Following (e) and (k), maximum explained variance across
orientations is plotted against frequency for the monkey map and two networks.
m Explained variance is plotted against orientation for a specific frequency.
nOrientation selectivity (seeMethods) is plotted against frequency. oDefinition of
orthogonality index (see Methods). p Frequency tuning width, orientation selec-
tivity, and orthogonality index are plotted against preferred frequency for net-
works and monkeys. Red and gray dots represent monkeys and networks. q Same
as (p), but for the average map of the same network trained three times or three
monkeys. r Sameas (p), but for humansubjects and corresponding networks. Open
and solid red dots indicate males and females, respectively. s Comparing monkeys
and human subjects using four indices in (l–o). Each dot represents one hemi-
sphere. Open and solid red dots indicate males and females. Student’s t-test (two-
tailed) was performed for each index: p =0.012, 0.001, 0.001, and 10−4; t(12) = 2.96,
4.18, 4.37, and 5.82; n = 6 and 8 hemipheres for monkey and human subjects,
respectively. Source data are provided as a Source Data file.

Table 1 | Cross-species comparison

Species Monkey Human
Property

Feature selectivity Similarity:
Animate regions show strong preferences for animals
Difference:
Inanimate regions showweak preferences for inanimate objects and
strong preferences for energy at high spatial frequency

Similarity:
Animate regions show strong preferences for animals
Difference:
Inanimate regions show strong preferences for inanimate objects
and weak preference for energy at high spatial frequency

Topographic
organization

Similarity:
High-dimensional featuremap; alternating “animacy” and “residual”
feature preferred regions are neighbored by “high sf” preferred
region
Difference:
A pair of orthogonal gradients with different spatial scales is clearly
present

Similarity:
High-dimensional feature map; alternating “animacy” and “residual”
feature preferred regions are neighbored by “high sf” preferred
region
Difference:
No clear evidence for orthogonal gradients
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organizations of low-level visual features, such as the orientation of
moving bars, have been intensively studied in early visual areas52. The
large-scale organization of high-level visual areas have also been char-
acterized in several earlier studies1,15,18,24–29. In our work, quantitative
analyses have been conducted on the global organization of the high-
dimensional feature map of the primate temporal lobe, allowing for
accurate comparisons across different species or systems. In Fig. 8, the
autocorrelation analysis was performedon the projectionmaps derived
from PCA. Previous studies have suggested that PCA may favor the
presence of periodic patterns in individual components53, but note that
similar results can be obtained by directly analyzing original feature
maps without performing PCA (Fig. S7g–j; Fig. 9). To intuitively
understand the difference between monkey brains and alternative
models,we compared their featuremaps at several steps of the analyses
(Fig. S10). We found that for the network models, each gradient is
periodic but not clearly oriented, with grid-like autocorrelations; dif-
ferent gradients occupy roughly the same spatial scale but are not
aligned in orientation. These observations are inconsistent with the pair
of orthogonal gradients at different spatial scales in the monkey map.

While several previous studies compared high-level visual areas in
humans and monkeys23,42,54–58, most of them focused on one or a few
semantically defined functional subregions, such as face patches. By
examining the largely continuous feature map of the visual temporal
lobe, we identified two previously unknown differences between the
two species (Table 1; see also Fig. S11 for more comparisons): 1) the
human brain shows a stronger preference for inanimate objects than
the monkey brain (Fig. 7b–e); 2) the topographic organization of the
monkey brain ismore regular than the humanbrain (Fig. 9s, Fig. S9j–l).
These two differences are likely due to our need to recognize various
types of artificial objects and symbols10,12, which might expand the
cortical areas responsible for inanimate objects and distort the ori-
ginally ordered topographic organization in the monkey brain during
evolution.

Methods
Experimental model and subject details
Three adult rhesus macaques (Macaca mulatta, all males, 4–6 years
old, weighing 5–8 kg) were used in this study. All experimental pro-
cedures were approved by the Biomedical Research Ethics Committee
of the Institute of Neuroscience, Chinese Academy of Sciences, and
were in accordancewith the National Institutes of Health Guide for the
Care and Use of Laboratory Animals.

Eighteen healthy human subjects participated in the psycho-
physical (four males and five females, aged between 23 and 26 years)
and fMRI experiments (five males and four females, aged between 23
and 38 years). All experimental protocols were approved by the
Biomedical Research Ethics Committee of the Institute of Neu-
roscience, Chinese Academy of Sciences. All subjects had given
written consent to the procedure in accordance with institutional
guidelines and the Declaration of Helsinki. Subjects were compen-
sated for their participation in the experiment: 1 Chinese yuan/min-
ute for the psychophysical experiment and 2 Chinese yuan/minute
for the fMRI experiment. Sex/gender was not considered in the study
design and, as a result, the number of subjects is insufficient for sex/
gender-related analyses. Sex of participants was determined based
on self-report.

Visual stimuli
Selection of representative images for 25D feature space.Webuilt a
25D object space by passing 200 k natural images from ImageNet, an
online database, through AlexNet38, a neural network for object
recognition whose deep-layer units were shown to nicely explain the
responses of ITC neurons36, and performing independent component
analysis (ICA) on the responses of units in layer fc739. The 200 k images
span 1000 object classes, with 200 images randomly selected from

each class. We used unit activations before ReLU because a larger
portion of the response variance could be explained by the same
number of dimensions, e.g., 25 independent components (ICs) could
account for 78.1% of the total variance in fc7 responses before ReLU
but only 49.5% after ReLU. For each IC, 50 representative images out of
the 200k images with the smallest and largest angles between their
25D IC coordinates and the IC axis were selected (0° ≤ angle between
vectors≤ 180°), with the two groups of images termed “positive” and
“negative” representative images of the corresponding IC, respectively
(Fig. 1; note that due to copyright restrictions, the original ImageNet
images in all figures are replaced with natural images from Pixabay:
https://pixabay.com/). Each scan consisted of “positive” and “negative”
image blocks from a single IC, presented in alternation. Besides the
representative images for ICs, 50 images were randomly selected as a
set of control images and were presented in all fMRI sessions to serve
as a baseline. For a typical block sequence of the fMRI experiment, see
Fig. 1e. Each imagehad a size of 11° × 11° visual angles andwasdisplayed
for 500ms. Unless otherwise stated, each fMRI scan consisted of
seventeen 24-s blocks and lasted 408 s. In each block, 48 images were
randomly selected from the 50 representative images andpresented in
randomorder. Each scanconsisted of 8blocks of positive images and6
blocks of negative images. The same number of positive and negative
blocks were used in the analysis ( = 6 blocks), as indicated by the
dashed lines in the current Fig. 1e. Three monkeys (all males) and four
human subjects (three males and one female) were scanned for this
stimulus set. For each IC, 12.9 and 7.7 scans were collected on average
for each monkey and human subject, respectively (17.7, 9.2, and
11.6 scans per IC for individualmonkeys; 8.8, 8.4, 8.0, and 5.5 scans per
IC for individual human subjects).

Localizer for face and scene selective areas. The localizer for face
patches contained five types of blocks, consisting of faces, hands,
technological objects, vegetables/fruits and bodies. Face blocks were
presented in alternation with non-face blocks. The face block was
repeated four times and eachof thenon-faceblockswas shownonce. A
block of gray-screen preceded each stimulus block and was added at
the end of each scan. Each scan lasted 408 s.

The localizer for scene areas included two types of blocks: scene
block and object block. The scene block contained images of indoor
and outdoor scenes, while the object block contained images of faces,
bodies, technological objects, vegetables, and fruits. Two types of
blocks were presented in alternation. Each scan lasted 408 s.

Localizer for four object types. Stubby/spiky animate and stubby/
spiky inanimate regions were localized using stimuli similar to those
from a previous paper18. The full stimulus set contained four types of
blocks, consisting of stubby animate (faces), spiky animate (animal
bodies), stubby inanimate, and spiky inanimate objects. In each scan,
the four blocks were each presented twice, interleaved with blocks of
gray-screen. Each scan lasted 408 s.

Meridianmapping. Themeridianmapping experiment contained two
types of blocks: horizontal and vertical meridians. The stimuli were
wedges of a black-and-white checkerboard (flickering at 1 Hz) radiating
out from the fixation spot along the vertical and horizontal meridians,
occupying 60° and 30° visual angles respectively. Similar stimuli were
used previously to determine the vertical and horizontal meridians
that define retinotopic visual areas17. Two types of blocks were pre-
sented in alternation. Each scan lasted 408 s.

Stimuli for validation experiments. After deciding to perform further
validation experiments on a specific 25D feature (Figs. 6, 7), the same
approach as described above (Selection of representative images for
25D feature space) was followed to select the “positive” and “negative”
representative images, by sorting the angles between the 25D
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coordinates of all images and the feature of interest. “Positive” blocks
were presented in alternation with “negative” blocks. A block of gray-
screen preceded each stimulus block andwas added at the end of each
scan. Each scan lasted 408 s.

Monkey fMRI experiments
Three male rhesus macaques were trained to maintain fixation on a
small spot for juice reward. The fixation spot size was 0.2 degrees in
diameter and the fixation window was a circle with a diameter of 2.5
degrees. Monkeys were scanned in a 3 T whole-body scanner (Trio;
Siemens Healthcare, Erlangen, Germany) while passively viewing ima-
ges on a screen. Eye position was continuously monitored at 250Hz
during the scan using an MRI-compatible EyeLink eye tracker system
(EyeLink 1000 Infrared EyeTracker, SRResearch,Mississauga,Ontario,
Canada) to track pupil position and corneal reflection. Contrast agent
(Molday ION, BioPAL, Worcester, Massachusetts, USA) was injected to
improve the signal/noise ratio. Whole-brain fMRI data were collected
using a gradient-echo echo-planar imaging (EPI) sequence (TR = 2000
ms; TE = 24ms; flip angle = 80°; slices = 28; matrix = 64 × 64; field of
view = 96mm×96mm; 1.5mm× 1.5mm in plane resolution; slice
thickness = 2mm; GRAPPA factor = 2). For each session, 5–15 scans
were acquired and each scan consisted of 204 functional volumes.
Only scanswith a totalfixation time greater than80%of thewhole scan
were included for further analyses. A pair of gradient echo images
(echo time: 3.4 and 5.86ms) with the same orientation and resolution
as EPI images were acquired to generate a field map for distortion
correction of EPI images. High-resolution T1-weighted anatomical
images were acquired using a MPRAGE sequence (TR = 2300ms; TE =
2.7ms; inversion time= 1100ms; flip angle = 9°; acquisition voxel
size = 0.5mm×0.5mm×0.5mm; 224 horizontal slices). Four or five
whole-brain anatomical volumes were acquired and further averaged
for better brain segmentation.

Human fMRI experiments
Four human subjects were scanned for the main stimulus set of 25D
object space, and eight subjects participated in the validation experi-
ment (Fig. 7c–e), with three of them engaging in both experiments. All
the subjects were scanned with a standard 32-channel phased-array
head coil on a Siemens Tim Trio 3.0 T scanner (Erlangen, Germany),
while maintaining fixation on a small spot (0.2 degrees in diameter) in
the middle of the screen on which the stimuli were displayed. Eye
positionwas continuouslymonitoredat 250Hzduring the scanusingan
MRI-compatible Eyelink eye tracker system (EyeLink 1000 Infrared Eye
Tracker, SR Research, Mississauga, Ontario, Canada). Whole-brain fMRI
data were collected using a gradient-echo echo-planar imaging (EPI)
sequence (TR = 2000ms; TE = 30ms; flip angle = 90°; slices = 50;
matrix = 80×80; field of view= 240mm×240mm; 3mm×3mm in
plane resolution; slice thickness = 3mm; GRAPPA factor = 1). For each
session, 10–12 scans were acquired and each scan consisted of 204
functional volumes. A pair of gradient echo images (echo time: 8 and
10.46ms) with the same orientation and resolution as EPI images were
acquired to generate a fieldmap for distortion correction of EPI images.
High-resolution T1-weighted anatomical images were acquired using a
MPRAGE sequence (TR = 2300ms; TE = 3ms; inversion time= 1000ms;
flip angle = 9°; acquisition voxel size =0.5mm×0.5mm×0.5mm;
176 sagittal slices). Four or five whole-brain anatomical volumes were
acquired and further averaged for better brain segmentation.

Human psychophysical experiments
Nine healthy subjects (four males and five females) with normal or
corrected-to-normal vision participated in the psychophysical experi-
ments. All images used in fMRI experiments were presented to the
subjects, and they were asked to determine whether the following
types of objects were present in each image: animals, mammals,
humans, inanimate objects, and artificial objects. The five categories

were not exclusive of each other, therefore multiple labels were
allowed for each single image.

Single-unit recording
Tungsten electrodes (18–20MΩ at 1 kHz, FHC) were back-loaded into
plastic guide tubes. The guide tube length was set to reach approxi-
mately 3–5mm below the dura surface. The electrode was advanced
slowly using a manual advancer (Narishige Scientific Instrument,
Tokyo, Japan). Neural signals were amplified and extracellular action
potentials were isolated using the box method in an on-line spike
sorting system (AlphaOmega, Israel). Spikes were sampled at 40 kHz.
All spike data were re-sorted using off-line spike sorting clustering
algorithms (Spike2, version 7.20, Cambridge Electronic Design Lim-
ited, UK). We recorded data from every neuron encountered. Only
well-isolated units were considered for further analysis.

Behavioral task. Monkeys were head fixed and passively viewed the
screen in adark room.Stimuli for electrophysiologywerepresentedon
a LCD monitor (Lenovo LT1913pA). The screen size covered
30.8° × 25.5° visual angles and stimulus size spanned 11°. The fixation
spot size was 0.2° in diameter. All images were presented for 150ms
interleaved with 200ms of a gray screen in random order using cus-
tom software. Each image was presented 4–6 times to obtain reliable
firing rate statistics. Eye position was monitored using an infrared eye
tracking system (ISCAN). Juice reward was delivered every 2–4 s if
fixation was properly maintained.

Data analysis
fMRI data preprocessing and surface reconstruction. Analysis of
functional volumes was performed using the FreeSurfer Functional
Analysis Stream. Volumes were corrected for motion and undistorted
based on acquired field map. For localizer experiments and meridian
mapping, the resulting data were analyzed using a standard general
linear model. For the face contrast, the average of all face blocks was
compared to the average of all non-face blocks. For the scene contrast,
the sceneblockwascompared to thenon-sceneblocks. For the stubby-
spiky experiment, each of the four block types (stubby animate, spiky
animate, stubby inanimate, and spiky inanimate) was compared to
three other block types. For meridian mapping, horizontal-meridian
block and vertical-meridian block were compared to each other.

Surface reconstruction based on anatomical volumes was per-
formed using FreeSurfer after skull stripping using FSL’s Brain
Extraction Tool (University of Oxford). After applying these tools,
segmentation was further refined manually. For monkey experiments,
the result ofmeridianmappingwasprojectedonto the surface, and the
border between V4 and the temporal lobe was delineated. The region
of the temporal lobe with significant light responses (p < 0.001, paired
t-test, two-tailed, control block vs. gray-screen in the 25D object-space
experiment, computed using GLM, not corrected for multiple com-
parisons)was cut out andflattened. Todirectly compare the functional
organization of visual features between subjects, we further registered
each subject’s brain to a common template of the species to which it
belongs, using FreeSurfer’s mri_cvs_register function. For monkey and
human templates, we used NMT v259 and CVS atlas60, respectively.

Quantification of feature selectivity to object-space stimuli. Taking
advantage of the periodic nature of the stimulus, Fourier analysis was
used to extract the angle and magnitude of each voxel’s response to
the alternation of positive and negative blocks of each IC. Plotting
the magnitudes against the angles of all voxels revealed two clear
peaks (Fig. S2a, b). These two peaks represented opposite response
polarities, with the left peak indicating a preference for the “positive”
block and the right peak indicating a preference for the “negative”
block. The angles of 100 voxels with the largest magnitudes in the
right peak were then averaged. The difference between the average
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angle and the angle of one particular voxel was used to determine the
sign of that voxel’s response—a difference smaller than π/2 leads to a
negative response and vice versa. In order to minimize the effect of
daily variations on our results, the response of each voxel was divi-
ded by its response to the control block, computed similarly by
performing Fourier analysis on its response to the control block and
the succeeding block of gray screen. To avoid large variations caused
by small denominators, we averaged the absolute values of all sig-
nificant voxels (p < 0.001, paired t-test, two-tailed, control block vs.
gray-screen, computed using GLM, not corrected for multiple com-
parisons) within a distance of 5 voxels to the voxel in the nominator
(note that the nominator still represented the response of a single
voxel). We used Fourier analysis rather than GLM, because Fourier
analysis does not rely on the assumption of the shape of HRF
(hemodynamic response function), but we also performed GLM
analyses and found that the results were largely consistent
(Fig. S2c–k). For GLM, we used the difference between beta values of
positive and negative blocks, normalized by that of the control block,
to quantify the feature selectivity of each voxel.

After the analysis on functional volumes, the results were pro-
jected onto the flat map of the temporal lobe. To enhance the signal
quality and better visualize the feature map, we resampled the pro-
jections with 2mm×2mmsquares, by averaging the 25D responses of
all vertices within each square. The 25D vectors were then normalized
to unit length. Different square sizes and sampling approaches were
also tested, and largely similar results were obtained (Fig. S2c–k).

The construction of interpretable features and comparison with
neural data. The following features were constructed:

Spatial frequencies:
Using Matlab’s fft2 function, the two-dimensional Fourier trans-

form of each image used in the fMRI experiment was obtained. Aver-
age magnitudes within seven annuli of the power spectrum, ranging
from low to high spatial frequencies, were computed (Fig. S4a). For
each frequency band, magnitudes were further averaged across ima-
ges within “positive” and “negative” blocks of different ICs. The dif-
ference between the averagemagnitudes of two blocks was computed
for each IC, and the resulting 25Dvectorwas normalized to unit length.

Color:
For each image, the standarddeviation of R, G, andB channelswas

computed for each pixel and averaged across the whole image to
define a “colorfulness index”, which was then averaged across images
within “positive” and “negative” blocks of different ICs. The difference
between the average colorfulness indices of two blocks was computed
for each IC, and the resulting 25Dvectorwas normalized to unit length.

PCA axes of AlexNet fc6 layer:
A previous paper characterized a 2D feature map of the monkey

ITC, with the two axes corresponding to the top two principal com-
ponents of the responses of AlexNet units in layer fc6 to a stimulus set
of 1224 object images18. We performed PCA on the responses of Alex-
Net units in layer fc6 to a similar set of 1224 images, containing 24
different views of 51 3D objects. Since we could also obtain the 25D
coordinatesof the 1224 images,wewere able toproject the top twoPCs
of layer fc6 into the 25D object space using linear regression. Similar to
the previous study, images selected by the two PCs roughly reflected
the changes in object shapes from stubby to spiky objects (PC1) and
from animate to inanimate objects (PC2; see Fig. S4c, the 2nd row).

Stubby/spiky and animate/inanimate axes:
A different approachwas employed to construct the stubby/spiky

and animate/inanimate axes. Background-free images of four object
types, including: stubby-animate (faces), spiky-animate (animal bod-
ies), stubby-inanimate, and spiky-inanimate objects18, were presented
to AlexNet and the 25Dobject-space coordinates of those images were
extracted. The difference between the average coordinates of the
opposingpairs of objects, i.e., stubby vs. spikyor animate vs. inanimate

object, was computed for each contrast, and the resulting 25D vector
was normalized to unit length.

Curvilinear-rectilinear axis:
We collected a set of images composed of multiple curvilinear or

rectilinear objects, similar to Fig. 1A of Yue et al.19. We presented the
images to AlexNet and the 25D object-space coordinates of those
images were extracted. The difference between the average coordi-
nates of curvilinear and rectilinear objects was computed, and the
resulting 25D vector was normalized to unit length.

Big-small axis:
The same set of stimuli composed of objects with big and small

real-world size as in Konkle et al.15 was presented to AlexNet, and the
25D object-space coordinates of those images were extracted. The
difference between the average coordinates of big and small objects
was computed, and the resulting 25D vector was normalized to unit
length.

Labels for animals/inanimate objects/mammals/humans/artificial
objects (psychophysics):

Using data collected by the aforementioned psychophysical
experiment (see Human psychophysical experiments), the number of
images containing thefive object categorieswas counted for “positive”
and “negative” blocks of each IC separately. The difference between
the two numbers was computed for each IC, and the resulting 25D
vector was normalized to unit length. The intuition was that, in the
ideal case, the average response of a voxel encoding the presence of a
particular object type to a block of images would be proportional to
the number of images containing that type of object.

Animate/inanimate labels (WordNet):
ImageNet is organized according to the WordNet hierarchy,

where each image is labeled with the “category” of an object in the
image. We quantified the number of images with animate/inanimate
labels in “positive” and “negative” blocks of each IC, and followed the
same procedure as for the psychophysical labels to obtain 25D feature
vectors.

Comparing neural features with interpretable features:
We used the square of the cosine angle between a neural feature

and an interpretable feature to quantify their similarity. Assuming v
*
is

a vector in an n-dimensional space spanned by a set of orthogonal
axes: x1,x2, . . . ,xn, then it’s easy to see that the squares of cosine
angles between v

*
and xis add up to 1.

Feature selection. To identify themost explanatory features, a feature
selection procedure was employed. First, the feature with the largest
squared cosine angle in Fig. 3c was selected. We then added one fea-
ture at a time to optimize the total explained proportion of neural
responses at each step. New features are required to bedissimilar from
the ones that have already been selected (cosine angle < 0.5) in order
to ensure that they are largely independent of one another. The
selected features were orthogonalized to each other using Gram-
Schmidt orthogonalization before adding up the squared cosine
angles between the visual and the neural features. To determine the
optimal number of features, we used a half-split approach: the 25D
feature of one location estimated using half the datawas fittedwith the
selected features by projecting the neural features into the subspace
spanned by these interpretable features, and then the feature of the
other half was compared to the fit (Fig. 3d). The following index was
used to quantify the goodness-of-fit (GOF):

GOF= 1� jjf2 � f 01jj
2 ð1Þ

where f2 is the 25D preferred feature estimated using the 2nd half of
the data, f 01 is the projection of the 1st half’s preferred feature (f 1)
into the subspace spanned by the selected features (e1 and e2 indi-
cate the selected features in Fig. 3d). The index was computed for
each location and then averaged across all locations. Note that this
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index will be the same as the squared cosine angle when f 1 equals to
f2. We didn’t use the squared cosine angle between f2 and f 01 directly
as GOF, because the polarity of f 01 should be important for the quality
of fitting but would be ignored by the computation of the squared
cosine angle. Half of the data used for model training was also used
for the feature selection procedure. 500 iterations of half-splitting
were performed and the results were averaged. A noise ceiling was
also estimated. The preferred feature of the 1st half of the data was
directly used to fit that of the 2nd half: GOF= 1� jjf2 � f1jj2:Based on
a computational simulation (Fig. S5a), we found that this value would
underestimate the true noise ceiling, which is the GOF achieved by
the ground truth. Therefore, a correction was made using the
estimated relationship between the two (black line in Fig. S5a).
Overall, we found seven features performed the best, accounting for
56.3% of the neural features after being normalized by the noise
ceiling. Although the exact ordering might differ, the same seven
features were identified in 97% of half splits. The actual ordering
reported in Fig. 3 is based on the full data. Besides these features, we
extracted additional feature dimensions from the neural data, by first
orthogonalizing the neural features with respect to the top seven
features, and then performing principal component analysis on the
orthogonalized features. Since our goal here is to extract dimensions
that best align with the preferred features, rather than those that
explain the differences between them, both the orthogonalized
features and their opposites (-orthogonalized features) were pooled
for PCA. Adding two principal components to the seven features
performed the best in explaining the neural features, with 82.5% of
the noise ceiling. Again, the procedure was performed in the first half
of the data and tested on the second half.

Clustering analysis using a Gaussian mixture model. We fitted 25D
feature map of each monkey with a Gaussian mixture model using
the expectation-maximization algorithm (Matlab’s fitgmdist
function). We constrained the covariance matrix for each com-
ponent to be diagonal, resulting in 50 parameters per component
(25 for the mean, 25 for the variances). We further regularized the
covariance matrix by adding a constant (10−5) to the diagonal. The
number of components ( = clusters) was predefined, and the
procedure was repeated 500 times for each number of clusters
between 2 and 30.

To find the optimal number of clusters, we evaluated the Bayesian
information criterion:

BIC= �2 log L½ �+M log½N� ð2Þ

where L is the log-likelihood of the model, N is the number of squares
and M is the number of parameters in the model, that is, M = 51C-1
where C is the number of clusters and the contributions arose from
means, variances, and mixture proportions (which have to add to 1).
For each number of clusters, BICs were averaged across 500
repetitions of clustering.

Selecting preferred images of a specific brain region. The 25D
feature selectivity of a specific brain region was first obtained using
the methods described above (Quantification of feature selectivity to
object-space stimuli). Then we assumed the response of this region
to an image is a linear combination of its 25 coordinates. We used w

*

to denote the weighting function. 25D coordinates were then aver-
aged for all images in each block and the difference between “posi-
tive” and “negative” blocks was computed for each IC. aij was used to
denote the ith coordinate of the difference for the jth IC. Then we
have:

R
*

= aij

� �
�w* ð3Þ

where R
*

is the 25D selectivity measured using fMRI.
Using linear algebra, w

*
could be determined by inverting the

matrix aij
� �

:

w
*

= aij

� ��1
� R
* ð4Þ

Thenwe used the sameapproachasdescribed above (Selection of
representative images for 25D feature space) to select representative
images for the interested brain region, by sorting the angles between
the 25D coordinates of all images and w

*
. To select the representative

images for different subregions resulting from the clustering analysis
(Fig. S5j), an additional criterionwas added: the angle between the 25D
coordinate of the selected image and the average feature of the
interested cluster needed to be the smallest of all clusters.

Imagesynthesis usingagenerativemodel. Inspired by a recent study
on image synthesis61, we combined a pre-trained generative neural
network (BigGAN-deep, see ref. 62) with AlexNet38, and used a
gradient-based optimization algorithm to synthesize images whose 25
IC coordinates matched that of a target feature (see Fig. S4e). The
input to this network consisted of the GAN latent code~z and a 1000-
way class identity, and the output was the 25-dimensional IC coordi-
nate obtained from the responses of fc7 units in AlexNet. The BigGAN
network we used was trained to produce images of the size 256 × 256.
The latent code~z was sampled from a truncated normal distribution
between [−2, 2], and the class identity was initialized as αSð~vÞ where
α =0:05, Sð�Þ is the softmax function, and~v is randomly sampled from
the truncated normal distribution between [0, 1].

The cosine angle W between the 25-dimensional IC coordinate
and the target feature can be viewed as a function of the latent code~z
and the vector~v, i.e., W = f ð~z,~vÞ. Since the gradient of f is difficult to
calculate, we estimated the gradient using the method of finite dif-
ference: For the current vector ~c0 = ð~z0,~v0Þ, a set of sample vectors
~ck, ðk = 1, � � � ,KÞ was derived by adding zero-centered Gaussian per-
turbations ~pk with scale σ to ~c0: ~ck, = ~c0 ± ~pk . The gradient of f at ~c0
can be estimated as:

∇f ~c0
� �

=
X
k

ðWk, + �Wk,�Þ ~pk=jj ~pk jj2 ð5Þ

where Wk, ± = f ð ~ck,Þ and jj � jj2 denotes the Euclidean norm. Then, we
iteratively maximized W using the Adam optimizer method63.

Analyzing the validation experiments using GLM. All the validation
experiments in Figs. 6, 7 contained two types of stimulus blocks
(“positive” and “negative” blocks), interleaved by gray-screen blocks.
T-contrasts between the two stimulus blocks were determined using a
standard GLM. In Fig. 7d, beta values of the two stimulus blocks
extracted from GLM were baseline-corrected by subtracting the gray-
screen block, and were normalized by the maximum value in the
region of interest. The normalized responses were averaged across all
squares within the region for each scan. The results from multiple
scans for the two conditions were compared using a paired t-test (two-
tailed).

Electrophysiology. Fig. 6e, g, j show peristimulus time histograms of
the responses of example neurons to different image conditions,
smoothed with a 25ms sliding window. Average time courses of
t-contrasts between the two conditionswere computedusing the same
sliding window (Fig. 6h, k).

In Fig. 6i, the responses to the 25-IC stimulus set were analyzed. In
this case, the number of spikes in a time window of 50–400ms after
stimulus onset was counted to measure a neuron’s response to each
stimulus. For each neuron, the difference between the average
responses to positive and negative representative images was
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computed for each IC, and the resulting 25D vector was normalized to
unit length.

Comparing feature preferences of human and monkey brains. To
visualize the difference between two primate species, PCA was per-
formed on the 25D preferred features of all individuals pooled toge-
ther. To balance the contributions from two species, the human data
were randomly downsampled to the size of the monkey data. The top
two PCs were highly reliable: when we repeated the downsampling
procedure 1000 times, the average absolute cosine angle between the
PC axes extracted from different repetitions was more than 0.998 for
both PCs. A clear difference between the two species was observed on
the 2nd PC, with much higher scores in monkeys than in human sub-
jects (Fig. 7a). We found the 2nd PC could be well approximated by
linearly combining the “animacy” feature and the “high sf” feature. The
average absolute cosine angle between the 2nd PC and the sum of the
two aforementioned features is 0.87.

Using half-split analyses to quantify the dimensionality of neural
representation. For each IC, all scans were randomly split into two
groups. 25D feature maps were obtained for both groups using the
same procedure described above (Quantification of feature selectivity
to object-space stimuli). PCAwas carried out on the 25D featuremapof
one group. Featuremaps of both groups were projected onto the PCs,
and the correlation between the two projections was computed
(Fig. 8b). 500 iterations of half-splitting were repeated, and dimen-
sions with more than 99% positive correlations were considered
significant.

To validate our method, we performed the following simulations:
PCA was carried out on the original featuremap ofM1. Top n PCs were
used to reconstruct the responses, and a noise term was added
(Fig. S7c). A Gaussian white-noise was spatially filtered to match the
correlation structure of the noise in real data, which was estimated by
the spatial autocorrelation of the differencebetween two featuremaps
resulting from random half-splitting as described above (Fig. S7d). We
varied the actual dimensionality of the simulation, i.e., the number of
PCs used to reconstruct the responses, and the level of noise (as a
multiplicative factor, the simulations achieved a similar level of half-
split correlations to the neural data at noise level=1 and actual
dimensionality=25), and followed the sameprocedure aswedid for the
actual data to estimate the number of significant feature dimensions
(Fig. S7e, f).

2D spatial autocorrelation. 2D spatial autocorrelations were com-
puted for the feature maps (Figs. 8, 9). Feature values belonging to all
pairs of squares with the same relative location on the flat map were
compared with each other and their correlation was computed. The
correlation coefficients at different relative locations constitute the
autocorrelation map. With f ðx,yÞ denoting the values of a feature map
at location ðx, yÞ, the autocorrelation at the relative location of ðdx,dyÞ
was estimated as:

rðdx, dyÞ= n
P

f ðx, yÞ � f ðx � dx, y� dyÞ �P f ðx, yÞ �P f ðx � dx, y� dyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

f ðx, yÞ2 � ðP f ðx, yÞÞ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

f x � dx, y� dyð Þ2� P
f x � dx, y� dyð Þ� �2q

ð6Þ

where the summation is over all n squares for which a value was esti-
mated for both f ðx, yÞ and f ðx � dx, y� dyÞ. In this way, periodic
structures of feature maps can be easily identified. One of the most
famous applications of spatial autocorrelation in neuroscience is the
identification of grid cells in the entorhinal cortex64.

To better quantify the periodic structure of the autocorrelation
map, we outlined a rectangular region (size = 66mm×22mm) with
variable orientations around the center of the map, and projected all
correlation values within the region onto the long edge. Fourier

transform was then carried out on the projections to extract the
magnitudes at different frequencies.

To directly compare the monkey feature map with topographic
neural network models (see below: Topographic neural network
model), which simulate ITC organization in a single hemisphere, only
data from the left ITC was used to compute the autocorrelationmap.
We fitted the autocorrelation map for each IC with sinusoidal func-
tions at different frequencies and orientations (Fig. 9d, left). Good-
ness-of-fit, quantified as explained variances, were then averaged
across ICs and illustrated as a polar plot (Fig. 9e). The following
indices were computed: preferred frequency, frequency tuning
width, orientation selectivity, and orthogonality index. Preferred
frequency was computed as the explained-variance weighted aver-
age of all frequencies (Fig. 9l). Frequency tuning width was defined as
the area under the frequency tuning curve in Fig. 9l, with the peak
normalized to 1. For orientation selectivity, Fourier transform was
first carried out on the orientation tuning curve at a specific fre-
quency as in Fig. 9m. F(1) and F(0) in the inset of Fig. 9m denote the
magnitude of the fundamental frequency and the DC component,
respectively, and the ratio between the two was used to define the
orientation selectivity index (OS). This procedure results in an OS for
each frequency. In the middle columns of Fig. 9p–r, the maximum
orientation selectivity of all frequencies above 3 cycs/5.8 cm (dashed
line in Fig. 9n) is plotted. The orthogonality index was defined as
follows: at each frequency of the polarmap, its orientation selectivity
and preferred orientation were represented by the magnitude and
direction of a 2D vector (Fig. 9o). Cross products between all such
vectors were computed, and the maximum vector length across all
products was used to define the orthogonality index.

Slightly different approaches were employed in the analyses of
Figs. 8, 9, because the purposes of the two analyses were not the same:
while the main purpose of Fig. 8 was to demonstrate the existence of
multiple gradients along different feature dimensions, Fig. 9 aimed to
derive a set of scalar indices for quantitative comparisons between
animal brains and alternative models. Despite their dissimilarity, the
two approaches revealed a similar pattern inmonkey temporal lobes: a
pair of largely orthogonal feature gradients with different spatial
scales.

Computing geodesic lines on the cortical surface. To obtain the
geodesic line between a pair of vertices on the cortical surface, we
modeled the surface as a graph, and then the problem of finding
geodesics was transformed into the problem of finding the shortest
paths in a graph, with the graph nodes representing vertices and the
weights of the edges representing 3D Euclidean distances between
neighboring vertices. The implementation includes the following
three steps: 1) constructing the edges of the graph; 2) finding the
connected graph components; 3) computing the shortest path. For
the first step, an edge would be added to the graph between a pair of
nodes if their 3D Euclidean distance in the anatomical volume was
less than 1mm and their 2D Euclidean distance on the flat map was
less than 1.5mm. However, this procedure resulted in a large number
of connected graph components. Next, we merged pairs of con-
nected graph components with the smallest 1% 3D Euclidean distance
between them, which was defined by the minimal distance between
all pairs of vertices separately belonging to the two components, by
adding edges between the closest pairs of vertices. The 2D flat-map
distance between two vertices connected by a new edge was also
required to be less than 1.5 mm. Then, the connected graph com-
ponents were constructed using the classical breadth-first search
algorithm. Finally, the shortest paths were solved using the Dijkstra’s
algorithm.

To identify representative geodesic lines along certain orienta-
tions on the flat map as in Fig. S7k, we first placed 2mm× 2mm
squares on the flat map along two orthogonal orientations (circles in
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Figure S7k represent the centers of the squares), then, for each square,
the vertex with the smallest 3D distance to the average coordinate of
all vertices within the square was selected to represent that square. To
simplify the procedure of finding the shortest path, we further
required the representative vertex to be part of the largest connected
graph component, which contained > 94% of all vertices. Geodesic
lines between pairs of representative vertices along the two orthogo-
nal orientationswere identifiedusing themethodsdescribed in the last
paragraph and compared with each other (Fig. S7l).

Topographic neural network model. The basic architecture of the
convolutional neural networks adopted in our workwas introduced by
Krizhevsky et al.38, containing five convolutional layers with max-
pooling nonlinearities after layers conv1, conv2, and conv5, followed
by three fully-connected layers. Batch normalization technique65 was
applied between the convolutional/fully-connected layer and the ReLU
Nonlinearity layer in layers conv3, conv4, fc6 and fc7.We implemented
the convolutional neural network model, as well as the self-organizing
map in the following section, using the open source machine learning
framework PyTorch (https://pytorch.org).

Inspired by a previous study demonstrating the importance of
cortical shape on the topographic patterns that could form within it47,
we used the shape of our feature map in monkey and human brains to
rearrange the units in the fully connected layer(s) of artificial neural
networks (see Fig. 9f and Figure S9g).

Each networkwas trained using stochastic gradient descentwith a
batch size of 768 images, a momentum of 0.9 and a weight decay of
0.0005. The learning rates were initialized respectively as 0.01 in the
batch normalization layers and 0.03 in the remaining layers, and were
decreased by a factor of 10 upon plateau of the total loss throughout
70 epochs of training.

For networkmodels in Fig. 9, the spatial correlation loss function is:

LSpatial = mean
i,j;i≠j

jCij � f ðdijÞj2 ð7Þ

where Cij is the response profile correlation between themodel units i
and j, and dij is their cortical distance in millimeters. In our imple-
mentation, the function f ðdijÞ is given by one of the following formulas
(Fig. 9g):

f ðdijÞ=
1

1 +dij=s
, s =

1
2
, 1,

3
2

for monkey; s = 1,2,3 for human ð8Þ

and

f ðdijÞ= 1� d2
ij

2s2

 !
exp � d2

ij

2s2

 !

s =2,4,6,8 for monkey; s =4,8,12,16 for human

ð9Þ

The spatial loss and the overall categorization loss (cross entropy
loss) were weighted differently, with 10/20/40 times stronger
weighting for the spatial loss than the categorization loss:

L= Lcategorization +w LSpatial

= mean
1≤b≤B

log
exp xb,y

� �
PN

n= 1 exp xb,n

� � + w mean
i,j;i≠j

jCij � f dij

� �
j
2
,w= 10,20,40:

ð10Þ
Here, x is the distribution generated by the neural network over

theN class labels, y is the target,N is the number of classes, andB is the
batch size.

In all panels of Fig. 9 that include population data, results from all
networks are presented, except from the right panel of Fig. 9h, where

only networks with the maximum weighting on the spatial loss ( = 40
times the weighting on the categorization loss) are taken into account.

In Fig. 9h, the response correlation Cij of units i and j is given by
the Pearson Correlation Coefficient:

Cij =
~Ri � μi

� �
� ~Rj � μj

� �
jj~Ri � μijj2jj~Rj � μj jj2

ð11Þ

where ~Ri ð~RjÞ is the response profile of units i jð Þ to the representative
images of the 25D object space used in fMRI experiments (cf. Selection
of representative images for 25D feature space), μi ðμjÞ is the mean of
~Ri ð~RjÞ, and � denotes the dot product.

Face and object selective units shown in Fig. 9i were defined by
computing the following face/object preference metric30:

d0 =
μf ace � μobjectffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
f ace + σ

2
object

� �
=2

r ð12Þ

where μf ace ðμobjectÞ is themean response of a unit to face images (non-
face images) used to localize face-selective regions in the temporal
lobe66, and σ2

f ace ðσ2
objectÞ is the variance of the response to face images

(non-face images). A unit was defined as face(object)-selective if
d0 ≥0:85 d0 ≤ � 0:85

� �
30.

To obtain the 25D featuremap for a networkmodel, “positive” and
“negative” representative images of the 25D object space were passed
through the network. For each unit, its responses to images in the
“positive” and “negative” groups of each IC were averaged and com-
pared, resulting in a 25Dpreferred feature. Since the unitswere spatially
arranged according to the shape of the monkey/human feature map,
their locations in relation to the 2mm×2mm squares used for fMRI
data analysis were predetermined. The results of all units belonging to
the same square were averaged and normalized to unit length. Further
analyses of the feature map were the same as for fMRI data.

Our algorithm for training the topographic neural networks is
summarized below:

Self-organizing map. Inspired by a previous work31, we built a self-
organizing map67 using the 25D IC coordinates as inputs to mimic the
topographic organization of visual features. There were 6400 units in
the output layer of SOM, arranged according to the shape of the
monkey feature map (see Fig. S9a).

Article https://doi.org/10.1038/s41467-023-41584-0

Nature Communications |         (2023) 14:5931 20

https://pytorch.org


In each step of training, the winner unit u in the output layer was
defined as the unitwhoseweight vectorwas closest to the input feature:

u = arg min
v

jj~ξ � ~wvjj2 ð13Þ

where~ξ is the input feature, and ~wv is the afferent input weight from
the input feature to the unit v. The afferent input weight ~wv was then
updated using the following formula:

~wv =
~wv + ηv

~ξ � ~wv

� �
jj ~wv + ηv

~ξ � ~wv

� �
jj
2

ð14Þ

with the learning rate ηv =ηf ðduvÞ for the unit v. Here, η is the learning
rate for the unit u, the function f ð�Þ is given either by Equations (8), (9),
or a gaussian function with a spatial scale comparable to the prior
study31—the scale parameter σ of the gaussian function was set to be
1.25mm, so that the function value was 10% of its peak at 2.7mm away
from the center,matching the experimentallymeasured cortical point-
spread function in the macaque visual cortex68.

The SOMwas iteratively trained for T = 107 steps on the validation
set of the ImageNet dataset. The afferent input weights were initialized
randomly. In every training step t, the learning rate was given by
ηt =T=ðT +2tÞ. At the end of the training, the corresponding 25-
dimensional feature map was obtained in the same manner as for the
convolutional neural networks.

Our algorithm for training the self-organizingmaps is summarized
below:

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Natural images used in the main stimulus set are available in the Ima-
geNet (https://image-net.org/download.php). Face images used in the
four-object-type stimulus set are available in the FEI database (https://
fei.edu.br/~cet/facedatabase.html). The raw data supporting the cur-
rent study are available under restricted access because of the size of
the data and the complexity of its structure; access can be obtained by
contacting Le Chang (lechang@ion.ac.cn). Source data are provided
with this paper.

Code availability
Custom codes for neural network training and related analysis have
been deposited at Zenodo and are publicly available at the time of
publication (https://doi.org/10.5281/zenodo.8053796).
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