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Biological processes are typically actuated by dynamic multi-subunit mole-

cular complexes. However, interactions between subunits, which govern the
functions of these complexes, are hard to measure directly. Here, we develop a
general approach combining cryo-EM imaging technology and statistical
modeling and apply it to study the hexameric clock protein KaiC in Cyano-
bacteria. By clustering millions of KaiC monomer images, we identify two
major conformational states of KaiC monomers. We then classify the con-
formational states of (>160,000) KaiC hexamers by the thirteen distinct spatial
arrangements of these two subunit states in the hexamer ring. We find that
distributions of the thirteen hexamer conformational patterns for two KaiC
phosphorylation mutants can be fitted quantitatively by an Ising model, which
reveals a significant cooperativity between neighboring subunits with phos-
phorylation shifting the probability of subunit conformation. Our results show

M Check for updates

that a KaiC hexamer can respond in a switch-like manner to changes in its
phosphorylation level.

Circadian clocks are endogenous biological processes that exhibit self-
sustained oscillations with an approximately 24 h period*’. These
rhythms are found across diverse organisms from prokaryotes to
eukaryotes®*. In animals, disruption of circadian clock function causes
temporal disorganization of physiology and contributes to a variety of
diseases, such as disorders of the nervous system, cancer, and cardi-
ovascular and cerebrovascular diseases™’.

Cyanobacteria are the simplest organisms known to possess a
circadian clock'®". Because the cyanobacterial oscillator can be
reconstituted in vitro using three proteins, KaiA, KaiB, and KaiC", it
presents an opportunity to uncover fundamental biophysical princi-
ples of circadian timing. This oscillator is realized by the interactions

and conformational changes among the three Kai proteins, and the
oscillation is manifest as rhythmic phosphorylation of KaiC'>".

The key enzyme in this circadian clock is KaiC. Many features of
this protein have been revealed, largely from bulk studies of activity
and high resolution structures based on averaging over many hex-
americ particles. KaiC forms a homo-hexamer complex with a
“double doughnut” shape where each KaiC monomer (subunit)
consists of two domains (N-terminal CI domain and C-terminal CII
domain), with a total of 12 nucleotides bound to each hexameric
particle®. Both the Cl domain and CIl domain have ATPase activity,
i.e., the ability to catalyze the hydrolysis of adenosine triphosphate
(ATP) 2,
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Each KaiC monomer has two observed phosphorylation sites in
the CIl domain, Ser431 (S) and Thr432 (T), whose phosphorylation and
dephosphorylation follow a cyclic order: ST> SpT~> pSpT> pST~>
ST**%, where pT and pS represent the phosphorylated T and S residue,
respectively. This phosphorylation-dephosphorylation cycle forms the
basis of the 24 h circadian rhythm. During the first twelve hours of the
cycle (day phase), KaiA stimulates phosphorylation by binding to the
KaiC C-terminal tail and remodeling the so called A-loop domain of the
KaiC protein (residue 488-497), allowing nucleotide exchange for
phosphorylation of KaiC***%, i.e., ST> SpT-> pSpT. This phosphor-
ylation process is terminated in the next twelve hours of the cycle
(night phase) when KaiB binds to phosphorylated KaiC and sequesters
KaiA, allowing KaiC to dephosphorylate®*, i.e., pSpT-> pST~ ST.

While this phosphorylation-dephosphorylation cycle describes
changes that occur to an individual KaiC monomer, for the entire KaiC
hexamer to oscillate coherently, individual KaiC monomers in a hex-
amer need to coordinate their phosphorylation-dephosphorylation
cycles. Mathematical modeling shows that the transition between high
KaiA activity and low KaiA activity must depend on the total phos-
phorylation level of the KaiC hexamer in a switch-like or ultrasensitive
fashion®**°, However, despite the importance of such a switch-like
behavior for coherent oscillation in the KaiC hexamer, its molecular
origin remains unclear. Since the phosphorylation of KaiC both stores
information about timing of the circadian clock and determines the
level of KaiA inhibition, the key questions are how phosphorylation
alters the structure of KaiC, and how this structural change gives rise to
the ultrasensitivity of KaiA activity switch.

These questions have been difficult to address. Previously repor-
ted high-resolution crystal structures with different phosphorylated
and phosphomimetic states are nearly identical*"*****?, indicating
that there are functionally important conformational states of KaiC
present in solution that are difficult to capture using crystallography. It
has also been suggested that KaiC has dynamic structural properties
that change across a phosphorylation cycle?”*** with the flexibility of
KaiC ClII ring and structure of the A-loop directly affecting the KaiC
phosphorylation activity?®*’. However, the structure of dynamical
states of KaiC and how KaiC monomers in a hexamer interact with each
other are unclear. Here, we combine cryo-EM experiments, machine
learning for data analysis, and theoretical modeling to address these
two questions.

Cryo-EM is a powerful technique to resolve the structure of bio-
logical macromolecules. So far, most cryo-EM studies have focused on
solving protein structure by averaging over a large number of pro-
jected single-particle images*®=*. Here, we develop a new application
of cryo-EM technology beyond structural analysis to understand
subunit-subunit interactions in a protein complex by analysis and
modeling the statistics of 3D structures in different conformational
states. Our approach consists of two steps: (1) Collection of a large
number of single-particle images by cryo-EM and the subsequent
analysis of the large image dataset by using RELION**¢ software to
cluster the images into a small number of conformational states; (2)
Modeling the distribution of hexameric particles in different con-
formational states by using a statistical physics model with a Hamil-
tonian that includes possible subunit-subunit interactions in the
complex. Comparison between the distribution from the cryo-EM
dataset and that from the model is used to determine the range and the
strength of the subunit-subunit interactions.

In this paper, we report our investigations of statistical char-
acteristics of the conformations of KaiC hexamer following the
approach outlined above. To remove the complication of time-varying
phosphorylation, we used two KaiC phosphorylation mutants in this
study. One mimics the dawn-like dephosphorylated state via alanine
substitution at the phosphorylation sites (KaiC-AA), the other mimics
the dusk-like fully phosphorylated state via glutamate substitution
(KaiC-EE). These mutants have been previously shown to differentially

allow KaiB binding?**®, indicating that they capture the most salient
features of KaiC at different times of day.

By analyzing a large number (millions) of cryo-EM images, we
found that the structures of the A-loop in the KaiC monomers (mil-
lions) fall into two distinct states—some subunits have an A-loop that is
largely buried in the subunit interface (buried state), and others have
an extended, flexible A-loop protruding from the KaiC particle
(exposed state). Both conformational states exist in each mutant with
the exposed state favored in the KaiC-AA mutants and the buried state
favored in the KaiC-EE mutant, which suggests that the two con-
formational states exist in a dynamic equilibrium modulated by the
phosphorylation level of KaiC.

After identifying the conformational states of individual KaiC
monomers, we investigate their spatial arrangements in all the KaiC
hexamer rings. We find that there is substantial correlation in the ring
with closer KaiC monomers (subunits) having a higher probability to
adopt the same conformation. Based on this discovery, we propose an
Ising model”° to describe statistics of the conformational states
found within each hexamer. We find that the observed frequency of
hexamers with different patterns of conformational states can be
described quantitatively by an Ising model with nearest neighbor
interactions and a mutant-specific local field.

By combining statistical analysis of a large set of cryo-EM images
and theoretical modeling, our study reveals that the A-loops within a
KaiC hexamer form an intrinsically cooperative switch due to nearest
neighbor subunit interactions, and the role of phosphorylation is to
bias the switch towards the exposed or buried state.

Results

Cryo-EM structure determination of KaiC-AA and KaiC-EE

To investigate the effects of different phosphorylation states on
structures and functional mechanisms in Kai system, two KaiC
phosphomimetic mutants were used (KaiC-AA (S431A, T432A) and
KaiC-EE (S431E, T432E)). These two mutations mimic the state of the
clock near dawn and near dusk, respectively. We used a FEI Titan
Krios G2 microscope device to collect cryo-EM data of KaiC-AA and
KaiC-EE after incubation in the presence of 1mM ATP (see
Methods).

We first focused on two structures: one in KaiC-AA (Fig. 1a) and
one in KaiC-EE (Fig. 1b), both refined to nominal resolution of 3.3 A with
relatively clear secondary structures (Fig. 1c, d, Supplementary Fig. 1).
These two cryo-EM densities (Fig. 1a, b) were superimposed together
for comparison (Supplementary Fig. 2a). We found that the KaiC-EE
density is more compact in the CIl domain. This observation is con-
sistent with previous reported Trp fluorescence results showing that
the overall shape of KaiC is more loosely packed in S/T state than in pS/
pT state**. The difference map (Supplementary Fig. 2b) calculated by
RELION**¢ indicates that this density corresponds to a pair interacting
loops, i.e., the A-loop (residue 488-497) and the 422-loop (residue
417-429). In the refined KaiC-EE atomic model, distance between G421
(belongs to the 422-loop) and S491 (belongs to the A-loop) is about
3.8 A (Supplementary Fig. 2c).

Two functional conformations for each KaiC subunit in a
hexamer

To further study the dynamic behaviors of KaiC-AA and KaiC-EE, we
focused on the CIl domain using six-fold pseudo-symmetry (see
Methods) by RELION*?¢, There are two distinct possible conforma-
tions (exposed and buried) for each KaiC subunit in a KaiC hexamer
(Fig. 2a). For the buried state, the A-loop forms a well-defined “U-
shaped” line inside the central channel; this stable conformation con-
tributes to a strong density in the electron density map. For the
exposed state, the A-loop tends to stick out of the hexamer and is very
dynamic. These flexible conformation states without strong density in
the central channel are collectively referred to as the “exposed state”.
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Fig. 1| Cryo-EM maps of KaiC-AA and KaiC-EE. a Top and side view of KaiC-AA,
with CIl and CI domains colored in dark green and green and in blue and light blue,
respectively. The 12 ATP molecules bound are colored in yellow. b Top and side

view of KaiC-EE, with CIl and CI domains colored in red and pink and in orange and

Cll

Cl

yellow, respectively. The 12 ATP molecules bound are colored in blue. ¢, d show
typical high-resolution densities of the secondary structures in the cryo-EM struc-
ture of KaiC-AA (c) and of KaiC-EE (d).
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Fig. 2 | Different conformational states of the A-loop and 422-loop area. a (Left)
The overview diagram of typical exposed and buried state in KaiC-AA and KaiC-EE.
(Right) Corresponding independent exposed and buried state in KaiC-AA and KaiC-
EE (denoted as Sgy;, Sexa, Sgur» Spuz, colored in black, royal blue, red, orange,
respectively). At the bottom are the close-up view of the A-loop shown in a stick
representation superimposed over its corresponding cryo-EM densities in a gray
mesh at 30, 50, 90, 90 level representation, respectively. b The buried state (53u1)

S428
superimposed with previously reported crystal structures in PDB data bank (with
3S1A, 3KO0A, 2GBL colored in blue, green and gray, respectively). The A-loop is
shown as cartoons without transparency. ¢ A potentially new buried state con-
formation only found in KaiC-EE data set (denoted as Sg,3, colored in dim gray),
with the A-loop and 422-loop densities shown as a gray mesh at 110 level on the
right. d Superimposed the atomic model of Sg,; and Sg,3, with side chains of M420
and 1490 are given in a close-up view and labeled.

See Methods section and SI for quantitative criteria for distinguishing
the buried and exposed states.

Given its exposed and dynamic structure, the A-loop in the
exposed state is likely to have a stronger interaction with KaiA*. We
also compared the structure of the buried state with previously
reported crystal structures'****** and found that all structures were
almost identical in the A-loop area (Fig. 2b, Supplementary Fig. 3).
Thus, it seems reasonable that the crystal packing forces these crystal
structures into what we call the buried state. However, it is worth

noting that there is another type of buried state only observed in our
KaiC-EE data set, i.e., a potentially new buried state in which the A-loop
and 422-loop are directly connected (Fig. 2¢). This is mainly due to
movements of two residues: the Met420 side chain moves up while the
11e490 side chain moves down (Fig. 2d). This potentially new con-
formation indicates a stronger interaction between the A-loop and
422-loop that may be induced by Ser431 phosphorylation. This is
consistent with the proposal that the A-loop restrains the motion of
422-loop thereby regulating the kinase reaction®.
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Consistent with our observation of conformational changes in the
A-loops, KaiC-AA and KaiC-EE have been previously shown to bind KaiA
with different affinities that are correlated with the sensitivity of the
A-loop to proteolysis®’. Another marked difference between KaiC-AA
and KaiC-EE is their capacity to bind to KaiB***’. This interaction
requires ATP hydrolysis in the N-terminal Cl domain®, allowing KaiB to
bind to a remodeled B-loop in that domain. In the absence of KaiB, we
detect Cl only in its pre-hydrolysis state for both KaiC-AA and KaiC-EE.
This suggests that, in solution, the exposure of the B-loop is a transient
event that can then be stabilized by KaiB binding®.

Strong conformational cooperativity in KaiC hexamers

By using RELION**¢ to classify the original cryo-EM hexameric parti-
cles (1,592,573 KaiC-AA hexameric particles and 934,373 KaiC-EE hex-
americ particles), a subset of hexameric particles with balanced
orientations were selected for 3D reconstruction. The criterion for
particle selection is that the numbers of particles in different projec-
tion directions (top-view, tilt-view, side-view) need to be balanced in
order to reconstruct the three-dimensional (3D) structures
accurately®. In our experiments, the top-view particles are much more
abundant than the non-top-view (side-view and tilt view) particles,
which is commonly observed in KaiC cryo-EM studies®. The reason for
this phenomenon is not clear at present, but we suspect that it may
relate to the charge or hydrophilic/hydrophobic properties of protein
surface (for example, top view is more hydrophobic and easier
exposed to the gas-liquid interface), but this phenomenon should not
strongly correlate with the conformational states of the protein. In our
study, to balance the particle numbers in different orientations, we
kept all the non-top-view particles (78,524 for KaiC-AA and 100,803 for
KaiC-EE), and selected only a subset of top-view particles of compar-
able number as that of the non-top-view particles from the large pool
of top-view particles. As we will show later in the paper, the specific
choice of the subset of top-view particles does not change the statistics
of the KaiC fine structures.

All the KaiC monomers in these selected hexameric particles are
then refined and clustered into a number of clusters (16 used here),
each of which is represented by the averaged structure (3D volume) of
the individual hexameric particles belonging to the cluster. (See Sup-
plementary Figs. 4 and 6 for the data processing flowcharts of KaiC-AA
and KaiC-EE, respectively.) Next, each KaiC monomer cluster is clas-
sified as the buried (Bu) or exposed (Ex) conformational state based on
the overlap between its 3D volume and two structure masks that
characterize the Bu conformation (see Supplementary Figs. 5 and 7 for
details). As a result of this analysis, we can assign each monomer in all
the selected hexamers one of two states: Bu or Ex. There is a fraction of
monomers (25.7% for KaiC-AA and 18.2% for KaiC-EE) that can not be
classified as either Bu or Ex with sufficient statistical confidence. We
call their conformation Undefined (Un). These Un monomers do not
have a well-defined structure. They may represent the transitional
state(s) between the Bu state and the Ex state or they could be caused
by inaccuracy in our experiments.

We first studied the statistics of the conformational states of the
KaiC monomers. We found that the probabilities of KaiC monomers
being in the exposed or buried state depends on its phosphorylation
state. KaiC-AA is more likely to be in the exposed state, whereas KaiC-EE
is more likely to be in the buried state (see Supplementary Figs. 4 and 6
for details). Next, we investigated the statistics of the conformational
states of the 6 subunits (monomers) in a hexamer. For a KaiC hexamer,
there should be 2° = 64 possible configurations (arrangements) of the 6
monomers, each with two possible conformational states. Considering
the rotational degeneracy, these configurations can be combined
into 13 conformational patterns each with a degeneracy index
Q. (k=1,2,...,13), which corresponds to the number of configurations
that pattern-k contains: ZE’:le=64 (see Sec. S2 in Supplementary
Material for details). We put the conformational state of the monomers

back into their positions in hexamers and counted the probabilities of
these 13 conformational patterns for KaiC-AA (Fig. 3a and KaiC-EE
(Fig. 3b), respectively, for those hexamers in which all 6 monomers have
clearly defined conformational states (24,240 hexameric particles for
KaiC-AA, 116,785 hexameric particles for KaiC-EE). An interesting
observation is that, if we assume the undefined monomers randomly
occur in hexamers, the estimated numbers of clearly defined
hexamers are 140475 x (100% — 25.7%)® =~2.4 x10* for KaiC-AA and
371557 x (100% — 18.2%)° =1.1x10°> for KaiC-EE where 140475 and
371557 are the total number of particles (over all orientations) used for
KaiC-AA and KaiC-EE analysis, respectively. This estimate agrees with the
observed numbers, which lends additional support to the fact that the
undefined (Un) monomer states are simply randomly unresolved
structure and there are only two meaningful monomer conformational
states (Bu and Ex).

Qualitatively, our analysis (Fig. 3a, b) shows that there is coop-
erativity in the conformational transitions of KaiC hexamer. Indeed, if
all monomers in a hexamer were independent of each other, the
probability distribution of the hexamer conformational patterns
would follow a simple binary distribution: P, = Q,p" (1 — p)°~™, where
p is the probability of a subunit in the exposed conformational state
and n; is the number of exposed state in hexamer pattern-k (see
Supplementary Fig. 11b for values of Q; and n; for k=1,2,...,13). It is
easy to see from our data that this is not the case. For example, the two
hexamer conformational patterns ‘Ex-Ex-Ex-Ex-Bu-Bu’ (k=3) and ‘Ex-
Ex-Ex-Bu-Ex-Bu’ (k = 4) have the same Q; = Q, = 6 and n; =n, =4, which
would lead to their probabilities being equal without KaiC-KaiC
cooperativity. However, our experiment results showed that P;>P,
for both KaiC-AA and KaiC-EE (ﬁ—j =1.6(AA),1.5(EE)), which clearly
indicates positive cooperativity among individual monomers that
favors the neighboring monomers to be in the same conformational
state, which may be related to the cooperativity in ATP hydrolysis*.

To quantify this cooperativity, we calculated the pairwise (sub-
unit-subunit) conformational correlation function for each dataset (EE
or AA):

Cx) = (SySnivx)n; — (7 @
where i(=1,2,...,6) is the ordered subunit index with periodic
boundary condition (S;, ¢ =S;) and n represents different hexamers in
the dataset. The state variable S, ; of subunit-i in the hexamer-n can be
“+1” or “-1”, corresponding to an exposed state or a buried state,
respectively. (S) is the average state variable over all monomers in
either Bu or Ex states, and the average (S,,;Sy,i+x),; is taken over all
hexamers (n) and all pairs of monomers (i,i + x) in a hexamer except for
those in which at least one of the monomers in the pair has an
undefined conformation (Un). As is shown in Fig. 3c, the normalized
correlation function C(x) = C(x)/C(0) is significantly larger than zero
for x 21, which clearly indicates subunit-subunit cooperativity.

To create more accurate 3D reconstructions, we have selected a
group of particles with balanced orientations for our analysis. To make
sure that particle orientation does not introduce bias in KaiC hexamer
fine structure statistics, we have studied the statistics of thirteen
hexamer conformational patterns for the top-view particles and the
non-top-view (side-view and tilt-view) particles separately. As shown in
Supplementary Fig. 8, the statistics of thirteen hexamer conforma-
tional patterns remain roughly the same for the top view particles and
the non-top-view particles, which confirm that the particle orientation
does not show significant correlation with the fine structure of the
KaiC hexamers. Furthermore, to verify that the selection of a specific
subset of top-view particles in the 3D reconstruction does not affect
the statistics of the hexamer conformational patterns, we have also
analyzed the statistics of conformational patterns by including other
randomly selected subsets of top-view hexamer particles that are not
used in the current 3D reconstruction (see Sec. S2 in Supplementary
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(a) Statistics of KaiC-AA rings

(b) Statistics of KaiC-EE rings

(c) Normalized correlation function
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Fig. 3 | Statistical results for pure KaiC-AA and KaiC-EE hexamers. Probabilities
of KaiC hexamers in different conformational patterns for KaiC-AA data set (a)
(24,240 rings) and for KaiC-EE data set (b) (116,785 rings). The patterns are grouped
and ordered according to the total number of exposed (or buried) states in the
hexamer (total “spin”). Given the large number of hexamers in each pattern (>100
particles), the relative errors are small (<10%). ¢ Normalized correlation function for
KaiC-AA and KaiC-EE hexamers, respectively. Dots are calculated from

experimental data whereas lines are the theoretical results from the lsmg model.
About 10® subunit pairs are used to compute C(x), so the error is -10~3, which is too
small to show in the figure. d Comparison between experiment and model for KaiC-
AA (left) and KaiC-EE (right), respectively. e Optimal R? varies with coupling con-
stant /. In the range of / € [0.07,0.22], R? is higher than 0.95, with the maximum
at/=0.14.

Information for details). The results indicated that including these
other randomly selected top-view particles did not change the statis-
tics (distribution) of the conformational states of the hexamers, i.e.,
the selection of particles for reconstruction purpose does not intro-
duce a systematic bias for the conformational states of the hexamers.

An Ising model quantitatively explains the experimental data
Next, we explain the observed statistics of the conformational states in
KaiC hexamers (Fig. 3a-c) by using a simple model that includes
cooperativity among monomers in a hexamer. Given the individual
conformational state of each monomer in hexamers, the all-or-none
Monod-Wyman-Changeux (MWC) model®* certainly does not fit the
experimental data. We thus adopted the more general Ising-type
model* %, which is a minimal model that considers only the most
salient features suggested by experiments: (1) the conformation of a
subunit depends on its phosphorylation level; (2) there is a positive
cooperativity between neighboring subunits in the hexamer.

In the minimal model, only the nearest neighbor subunits interact
with each other, and the Hamiltonian (energy) of each configuration
(64 in total) can be expressed as:

H (?> = =) S — Buaen _Su ()]

<ij> <i>

where X () represents a sum over all nearest neighboring pairs. / is the
coupling constant—a positive value of / favors the two neighboring
subunits to be in the same conformational state; B,, (or Bg;) is the
“local field” for the KaiC-AA (or KaiC-EE) subunit—a positive (negative)
local field favors the exposed (buried) state for the subunit. Assuming
the system is at thermodynamic equilibrium, the probability of each
hexamer conformational pattern can be expressed as:

p(k)=0e P/ Ek: Qe P k=1,2,... 13, 3)

where H,, is the energy for hexamer pattern-k, and = k,%r with kj the
Boltzmann constant and T an effective temperature. The effective
thermal energy is set to be the energy unit (kg7 =1) henceforth. Fig-
ure 3d demonstrate the best fit of the experimental data to our model.
R? between the model prediction and the experimental data is 0.99
(Fig. 3d, consider both KaiC-AA and KaiC-EE together) indicating that
the experimental data can be quantitatively described by a simple Ising
model with only nearest neighbor interactions. In Fig. 3e, we plot the
dependence of R? on the coupling constant J, which clearly shows that
our data cannot be explained without cooperativity (R*=0.84 when
J=0). The best parameters for fitting both the KaiC-AA and KaiC-EE
mutant data are: /=0.14+0.07, B4, =0.19+0.04, B, = — 0.25+0.04
(error bars computed with R?>0.95, see Fig. 3e). These parameters
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indicate that there is substantial cooperativity between nearest
neighbor subunits, and different local fields caused by Alanine or
Glutamate mutation have opposite effects on the propensity of the
exposed state or buried state.

The normalized correlation function can be determined exactly in
the Ising model:

_ X _ 6-—x
exp( EAA(EE;) + exp( £AA(EE)>
P ’
1+ exp <7 EAA\EE))

where the correlation length for KaiC-AA and KaiC-EE are
respectively: 8;/}(55) = I\ jaer)/Maaer) With Nigep, =€/ cosh By +

EAA(EE) (x)=

1
(ezf sinhZBM(EE) +e ¥ >2. We found that the correlation function from

the Ising model fits the observed correlation accurately (Fig. 3c). The
best fit parameters, /=0.15,8,, =0.21,and B = — 0.22, are in quanti-
tatively agreement with those obtained from fitting the configuration
data (Fig. 3a, b, d). The correlation length is found to be short:
€44 =& =0.5<1, which confirms that the dominant subunit-subunit
interactions are those between neighboring subunits in the KaiC
hexamer.

Notice that the coupling constant/ is the same in KaiC-AA and
KaiC-EE, which means that the Ala or Glu mutation only affects the
propensity of each individual subunit, rather than subunit-subunit
cooperativity. In a previous study?®, the subunit free energy difference
between two functional states (competent and incompetent to inter-
act with KaiB) is estimated to be 1+ 0.14 for unphosphorylated (ST)
KaiC and —1+0.69 for doubly phosphorylated (pSpT) KaiC based on
modeling the observed oscillatory dynamics of the KaiC system. From
the Ising model studied here, the free energy difference between the
exposed state and the buried state for a single subunit is
AH,,=2B,,=0.38+0.08 and AHy;=2B;;= — 0.5+0.08 for the AA
(mimicking ST) and EE (mimicking pSpT) mutants, which are of the
same order of magnitude as the previous estimates and their signs and
relative values are consistent with the previous estimates. The quan-
titative difference may be due to differences between mutant (AA and
EE) and wild-type (ST and pSpT) proteins.

During the circadian oscillation, KaiC hexamers likely contain
mixtures of subunits with different phosphorylation levels. While the
pure (homohexameric) phosphosite mutants clearly show coopera-
tivity in our experiments, these mutants are extremes, in the sense that
the non-mutant system is never fully phosphorylated. Thus, we next
ask the question whether cooperativity between neighboring A-loops
still exists in mixed KaiC hexamers where the monomers have het-
erogeneous phosphorylation levels.

To test the generality of cooperative interactions between
neighboring KaiC monomers in the hexamer, we constructed a mixed
sample with both KaiC-AA and KaiC-EE monomers” and measured the
distribution of KaiC conformational states in hexamers. Briefly, KaiC
mutants (KaiC-AA, KaiC-EE, 1:1) were buffer exchanged into the run-
ning buffer with 0.5 mM ADP, and incubated at 4 °C for about 24 h to
disrupt hexamer structure. Then monomerized KaiC-AA and KaiC-EE
were mixed before re-hexamerization via the addition of ATP* (see
Methods). We collected cryo-EM data of this mixed sample with FEI
Titan Krios G2 microscope. After unsupervised 2D classification and 3D
refinement by RELION**®, we obtained the cryo-EM density map that
was refined to nominal resolution of 3.8 A (see Supplementary Fig. 9
for details). By following the same procedure for the pure samples, we
obtained the probabilities of the 13 hexamer conformational patterns
for the mixed sample, as shown in Fig. 4a. N

We first examined the normalized correlation function C,;,(x), as
shown in Fig. 4b. It’s clear that C,,;(x) is non-zero for x>1, but the
correlation is weaker than that in the pure hexamer cases. With the

same fitting procedure for the correlation function as in the pure
hexamer case, we obtained an effective coupling constant/,,;;, = 0.086,
which is about a half of that for pure hexamers. Thus, the statistically
significant correlation confirms the existence of subunit-subunit
cooperativity in mixed hexamers. However, the strength of the over-
all cooperativity in the mixed hexamer as characterized by J ;. is
weaker.

To understand the detailed conformational pattern statistics of
the mixed hexamers shown in Fig. 4a, we need to extend the Ising
model for describing the mixed hexamers. In particular, besides its
conformational state, a given monomer-i in a mixed hexamer is char-
acterized by its modification state (phosphorylation level) 0;: ;=0 or1
if subunit—i is KaiC-AA or KaiC-EE, respectively. As a result, each hex-
amer can have 14 possible spatial arrangements of monomer phos-
phorylation level (see Sec. S3 and Supplementary Table 2 for details),
which is labeled by [({=1,2, ...,14) with the probability of arrange-
ment-/ denoted as g,. For a given phosphorylation arrangement-/, the
Hamiltonian of different hexamer conformational pattern
k(k=1,2, ...,13) can be determined by the extended Ising model:

H, (?) = —]ZSiSj - Z[BAA(I —0;))+Bgr0;1S;, )

<ij> i

whereo; (=12, ...,6) represents the modification state of the i'th
monomer in the hexamer ring in the phosphorylation arrangement-/.
Note that the three parameters (J,B,,, B;;) are the same as those
determined by using the previous experiments with pure KaiC-AA and
KaiC-EE, which corresponds to one of the 14 modification state
arrangements. Similar to Eq. (3), the probability of each hexamer
conformational pattern p,(k) can be determined as:

pk)=0pe i/ zk:oke*’ﬂk k=12,...13, )

where H;, is the energy for hexamer pattern-k with subunit arrange-
ment-[. The overall distribution of the hexamer conformational pat-
terns is obtained by the weighted average:

Pe=Y_qpk), 6)
]

which depends on the distribution g;.

Because we do not measure the detailed pattern of how differ-
entially phosphorylated monomers are assembled into hexamers, we
start with two extreme scenarios for mixing: one is the fully-mixed
scenario, i.e., each monomer in the ring has an equal probability of
being AA or EE; another is the no-mixing scenario, i.e., only pure hex-
amers (all EE or all AA) exist. We found that neither of these extreme
scenarios agrees with the data:R? between the mixed experimental
data and model prediction is 0.68 for no-mixing scenario (Fig. 4c) and
0.79 for fully-mixed scenario (Fig. 4d), see Supplementary Fig. 13 for
the predicted distributions based on these scenarios. The relatively
low accuracy in fitting the simple Ising model with a constant coupling
constant suggested that interactions between subunits may depend on
their phosphorylation state in addition to their A-loop conformations.
We tested this hypothesis by modifying the coupling constant between
EE subunit and AA subunit to take a different value (/ — AJ) from the
coupling constant (/) between the same types of subunits Under the
fully-mixed scenario, we found that the best fit of this modified Ising
model has a small positive A/= — 0.09, which is consistent with the
decrease of the interaction strength in mixed hexamer, i.e., /,; </J.
However, the improvement in accuracy of fitting is small (R? is 0.83),
which indicates that including a different interaction strength between
AA and EE alone cannot explain the experimental data (see Sec. S3 in
Supplementary Information for details).
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Fig. 4 | Statistical results for the mixed hexamers. a Probabilities of KaiC hex-
amers in different conformational patterns for the mixed sample data set (19,858
rings). Given the large number of hexamers in each pattern (>100 particles), the
relative errors are small (<10%). b Normalized correlation function of the mixed
sample. Dots are calculated from the experimental data while the solid line is from

Probability from experiments

Probability from experiments

the fitting by the Ising model. About 10° subunit pairs are used to calculate C(x), so
the error is 1073, too small to show in the figure. The fitting parameters are:

Jmix =0.086,B,,;,, = — 0.16. Comparison between the mixed experimental data and
model results with the no-mixing scenario (c), the fully-mixed scenario (d), and g,
treated as free parameters with A=0.1,/=0.14(e).

Our next strategy is to treat g, as fitting parameters. We obtained
their values by fitting the theoretical predicted P, (from Egs. 5and 6) to
experimental observation (Py,,) subject to the constraints:
Z}ilq, =1,0<¢q,<1; and the overall approximately equal percentage
of KaiC-EE and KaiC-AA monomers over all hexamers (see Sec. S3 in
Supplementary Material for details). As shown in Fig. 4e, the model
results are in good agreement with the experiments: R*> between the
actual experimental data and model prediction data became 0.89. This
agreement with experiments depends on the KaiC cooperativity. In the
absence of the KaiC-KaiC interaction (J=0), the agreement with
experiments is poorer (R*=0.79) even when we allow g, to vary (see
Supplementary Fig. 14a for details). Furthermore, the resulting dis-
tribution g, for /= 0 is almost the same as the no-mixing extreme case
with a very small fraction of mixed hexamers (see Supplementary
Fig. 15a for details), which is clearly inconsistent with our results for
pure hexamers that show strong cooperativity. The good fit to data
with a finite cooperativity / again confirms the existence of the
monomer-monomer cooperativity, and this key result is robust when
the weight constant (M) in our optimization algorithm takes on differ-
ent values (see Supplementary Figs. 14 and 15b for details).

Discussion

In this work, we developed a general approach by combining cryo-EM
imaging technology with machine-learning based image analysis and
statistical physics-based modeling to unravel possible subunit-subunit
interaction in a protein. We applied this general approach to study

cooperativity in KaiC hexamer, which is the key protein complex in the
Cyanobacteria circadian clock.

We report two distinct functional conformational states (exposed
and buried) for each KaiC monomer that can coexist in a KaiC hex-
amer. Statistical analysis of single particle data suggests that there is a
dynamic equilibrium between the two conformational states with the
highly phosphorylated (dephosphorylated) KaiC prefers the buried
(exposed) states, respectively. Characterization of the spatial
arrangements of the exposed and buried states along with theoretical
modeling reveal that there is substantial cooperativity in the hexamer
that favors the neighboring KaiC monomers to be in the same con-
formational state. The day-night switch in Kai system is crucial in
maintaining circadian rhythms, related to a general requirement for
nonlinear response in the feedback loops that support chemical
oscillators®**%0%6_The cooperative interactions between neighbor-
ing KaiC subunits as identified in this study can make the transition
from buried state to exposed state sharper, described by a higher Hill
coefficient (see Supplementary Fig. 16 for details), and thus provide a
possible molecular mechanism for controlling the day-night switch.
The picture that emerges from our analysis is that interactions
between the C-terminal regions within the KaiC hexamer form an
intrinsically cooperative switch. The role of changing phosphorylation
is then to shift the midpoint of the switch, ultimately actuating KaiB
binding to initiate the next cycle.

Recently, Jeffrey A. Swan et al.*® studied the structure of KaiC-AE
and KaiC-EA mutants, mimicking the state of the clock near noon and
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near midnight, respectively. Their results also confirm that CII has two
possible subunit conformations, whose distribution depends on the
phosphorylation in the Cll ring. In addition, change of phosphorylation
in CIlI leads to a hexameric (global) conformational change, which
finally affects KaiB affinity. Our results are consistent with their work.
Furthermore, the cooperative subunit conformational switch found
here provides a possible molecular mechanism for the switch in hex-
americ conformation that controls KaiB binding.

Our analysis of the mixed sample experiments suggests that the
mixing of monomers with different phosphorylation levels may not
be random. The enrichment factor a (the ratio of optimized g,
values whenA=0.1 (Supplementary Fig. 15b) to that under fully-
mixed scenario (Supplementary Table 2)) indicates that there is a
higher probability for two neighboring subunits to have different
phosphorylation levels (Supplementary Fig. 15c). This possible
preferential mixing phenomenon is worth further investigation
given that KaiC hexamers constantly disassemble and reassemble
during circadian oscillation through monomer shuffling?¢7,
which is thought to be involved in synchronization®®”., In addition,
we found that the effective coupling constant/,,;, in the Ising model
for the mixed KaiC case is weaker than that in the pure hexamer
case, which provide an alternative explanation for the reduced
cooperativity due to a weaker coupling between heterogeneous
KaiC monomers. Indeed, the microscopic origin of the nearest
neighbor KaiC interaction that leads to cooperativity, which is key
for coherent oscillations, is an important open question for future
studies.

In general, the combination of cryo-EM technology for collecting
a large number of single-particle images, together with machine
learning based image analysis and statistical physics based modeling
provides a powerful tool for deciphering interactions within functional
protein complexes, which is otherwise hard to probe directly.

Methods

Protein expression and purification

KaiC-AA and KaiC-EE were expressed and purified as described
previously*®. Briefly, KaiC mutants were expressed recombinantly in E.
coli with N-terminal His tags. Clarified lysate was purified using Ni
affinity chromatography (Histrap, Cytiva), fractions containing KaiC
were pooled, and the expression tags were cleaved overnight. The
resulting material was further purified using size exclusion chroma-
tography (HiPrep S300, Cytiva) and fractions corresponding to the
molecular weight of KaiC hexamers were selected.

Cryo-EM imaging and data collection

To remove the glycerol, KaiC proteins were applied to Zeba Micro Spin
Desalting Columns (7K, Thermo Fisher), exchanging the buffer to
running buffer (20 mM Tris-HCI (pH 8.0), 150 mM NacCl, 5 mM MgCI2,
0.5mM EDTA, 1mM ATP). Then KaiC-AA (or KaiC-EE) was diluted to
0.35 ug/ul with running buffer and incubated at 30 °C for 6 h to ensure
that KaiC equilibrates to a functionally relevant state. Cryo-EM grids
were prepared with FEI Vitrobot Mark IV. QUANTIFOIL grids (R2/1, 300
Mesh) were glow-discharged before a 3.5-pl drop of 0.35 ug/ul KaiC-AA
(or KaiC-EE) solution was applied to the grids in an environmentally
controlled chamber with 100% humidity and 4 °C temperature. After 1
blot force, 1s blot time, the grid was plunged into liquid ethane and
then was transferred to liquid nitrogen. The cryo-EM data was col-
lected on a FEI Titan Krios G2 microscope connected to Gatan K2
Summit direct electron detector in a super-resolution counting mode,
using SerialEM’? semi-automatically. Coma-free alignment was manu-
ally optimized and parallel illumination was verified before data col-
lection. A total exposure time of 10 s with 250 ms per frame resulted in
a 40-fram§2m0vie per exposure with an accumulated dose of ~50
electrons/A” (see Supplementary Table 1). The calibrated physical
pixel size and the super-resolution pixel size are 1.37 A and 0.685A,

respectively. Raw data were saved at the pixel size of 0.685 A. A total of
5125 movies of KaiC-AA and 3530 movies of KaiC-EE were collected.

Preparation of mixed hexamer sample

The mixed sample was made following the method of ref. 21 to obtain
KaiC-AA and KaiC-EE monomers. Protein concentrations were quanti-
fied by BCA Protein Assay Kit to prepare a 1:1 molar ratio of KaiC-AA to
KaiC-EE. KaiC-AA (KaiC-EE) was buffer exchanged twice with Zeba
Micro Spin Desalting Columns (7 K, Thermo Fisher) into a buffer where
ATP was replaced with 0.5 mM ADP, incubated at 4 °C for about 24 h to
disrupt hexamer structures. Then monomerized KaiC-AA and KaiC-EE
were mixed for re-hexamerization by buffer exchanging into reaction
buffer with 5 mM ATP*, Total KaiC concentration was quantified after
re-hexamerization by BCA Protein Assay Kit, then diluted to 0.35 ug/ul
with running buffer and incubated at 30 °C for 6 h. Cryo-EM grid pre-
parations and data collection procedures are the same as previously
described.

Cryo-EM data processing

All frames of raw movies were aligned and averaged with the
MotionCor2 program’ at a super-resolution pixel size of 0.685 A. Each
drift-corrected micrograph was used for the determination of the
micrograph CTF parameters with program Getf”*. We picked 1,592,573
hexameric particles of the KaiC-AA, 934,373 hexameric particles of the
KaiC-EE, 693,666 hexameric particles of the mixed hexamer sample
using the program EMAN2”. Reference-free 2D classification and 3D
classification were carried out with two-fold binned data with a pixel
size 0f 1.37 A in both RELION*>** and ROME®. Focused 3D classification,
which we used in the later stage of data processing, and high-
resolution refinement were mainly conducted with RELION*-°,
A substantial part of the data processing, mostly 2D and 3D classifi-
cations, were performed with clusters supported by High Performance
Computing Platform in PKU.

There were 140,475 hexameric particles of KaiC-AA, 181,326 hex-
americ particles of KaiC-EE, 175,284 hexameric particles of the mixed
hexamer sample in the dataset chosen for the following steps of ana-
lysis. The final refinement was done using data with a pixel size of 1.37 A
that were binned by two-fold from the raw data in the super-counting
mode. Based on the in-plane shift and Euler angle of each particle from
the last iteration of refinement, we reconstructed the two half-maps of
each structure using raw single particle images at the super-resolution
mode with a pixel size of 0.685 A, which resulted in reconstructions for
the KaiC-AA, KaiC-EE, and the mixed sample with overall resolutions of
33A,3.3A and 3.8 A, respectively, measured by gold-standard FSC at
0.143-cutoff. All density maps were sharpened by applying a negative
B-factor -100 manually. Local resolution variations were further esti-
mated using ResMap”’.

Atomic model building and refinement

To build the initial atomic models of KaiC-AA and KaiC-EE, we used a
previously published KaiC structure*? and then manually improved the
main-chain and side-chain fitting in Coot” to generate the starting
coordinate files. To fit the KaiC-AA and KaiC-EE atomic models to the
corresponding reconstructed density maps, we first conducted rigid
body fitting of the segments of the model in Chimera’®, after which the
fitting of atomic models with density maps were improved manually in
Coot. Atomic models of Sy, Sra, Sputr Seuzs Seuz Were fitted in Coot”™®
manually starting from the KaiC-EE structure. Finally, atomic models
were all subjected to the real-space refinement program in Phenix®°,
see Supplementary Table 1 for validation statistics.

Structural analysis and visualization

Structural comparison was conducted in Pymol®, Chimera”, and
ChimeraX®. All figures of the structures were plotted using Pymol®,
Chimera” and ChimeraX®.,
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Six-fold pseudo-symmetry and classification results by RELION
We used 140,475 hexameric particles of KaiC-AA (Supplementary
Fig. 4), 371,557 hexameric particles of KaiC-EE (two remaining classes
were added, which also resulted in good-quality refinement with
overall resolutions of 3.8 A) (Supplementary Fig. 6), and 175,284 hex-
americ particles of the mixed sample (Supplementary Fig. 9d) to per-
form C6 pseudo-symmetry expansions in RELION>~°, That is rotating
each particle by 60°, 120°, 180°, 240°, 300° to get the symmetric
copies and expanding the particle set. In this way, the whole data set
was expanded 6 times. We used focused 3D classification (with CII
domain masked) to further classify particles into two different con-
formational states (exposed state and buried state) using RELION>*¢,
see Supplementary Figs. 5, 7, and 10 in Supplementary Material for the
criterion of these states. We also tried C2 pseudo-symmetry and C3
pseudo-symmetry with both CI and CIl domains, but didn’t find sig-
nificant amounts of particles with these lower symmetries.

Criteria for distinguishing the exposed (Ex) state and buried
(Bu) state

For each dataset (AA, EE, and mixed), we used the average 3D
volumes of those clusters with the most well-established buried
structure within the A-loop area (cluster 1-4 in Supplementary Fig. 5
for KaiC-AA; clusters 1-3, 1-7, 1-8, 1-10, 1-11 and 1-13 in Supple-
mentary Fig. 7 for KaiC-EE; clusters 1-3, 1-6, 1-15 in Supplementary
Fig. 10 for mixed KaiC) to create a black-and-white mask (digital
map) by using a density threshold (0.025 for KaiC-AA, 0.2 for KaiC-
EE, 0.1 for mixed KaiC) in RELION>*°°, We then extend the white
volume by one (or two) pixels in all directions to obtain mask1 (or
mask2). The overlap intensities (or the integral density values) of
the n-th 3D volume with maskl (or mask2) is defined as
Ig=%iDiuMy;(0rly,=>":D;yM, ), D; , is the density value of the
n-th 3D volume at the i-th pixel point and M,; (M,;) is a binary
number that is 1 inside the white volume of mask 1 (mask 2) and O in
the black volume of mask 1 (mask 2). The 3D volumes with larger
integral density values of /;, and /,, are more likely to be in the
buried (Bu) state, and those with smaller values of /;,, and /,, are
more likely to be in the extended (Ex) state. To increase the statis-
tical confidence of the classification of the two states (Ex and Bu),
we consider the 3D volumes with intermediate values of /; , and /, ,
to have an undefined (Un) conformational state. See Supplementary
Figs. 5a, 7a, and 10a for details. To check the robustness and con-
sistency of the classification of the buried (Bu) and the exposed (Ex)
state, and more importantly, to independently judge the state of
those 3D volumes at the boundaries between Un and either the Bu
or the Ex states, each 3D volume is shown (only within the region
corresponding to mask2) at high density threshold (40) and low
density threshold (20), where o is the standard deviation of the 3D
volume (density) within the hexamer region, see Supplementary
Figs. 5b, 7b, and 10b for details. These 3D volumes are inspected to
help determine their conformational states, especially at the
boundary between the Bu state and the Un state where the deter-
mination is difficult by using the overlap intensities alone.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data that support this study are available from the corresponding
authors upon request. The cryo-EM maps have been deposited in the
Electron Microscopy Data Bank (EMDB) under accession codes EMD-
32952 (KaiC-AA) and EMD-32953 (KaiC-EE). The corresponding atomic
coordinates have been deposited in the Protein Data Bank (PDB) under
accession codes 7X1Y (KaiC-AA) and 7X1Z (KaiC-EE). Source data are
provided with this paper.
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