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Deep learning-enabled realistic virtual
histology with ultraviolet photoacoustic
remote sensing microscopy

Matthew T. Martell 1,4, Nathaniel J. M. Haven 1,4, Brendyn D. Cikaluk1,
Brendon S. Restall1, Ewan A. McAlister1, Rohan Mittal2, Benjamin A. Adam 2,
Nadia Giannakopoulos 2, Lashan Peiris3, Sveta Silverman2, Jean Deschenes2,
Xingyu Li1 & Roger J. Zemp 1

The goal of oncologic surgeries is complete tumor resection, yet positive
margins are frequently found postoperatively using gold standard H&E-
stained histology methods. Frozen section analysis is sometimes performed
for rapid intraoperative margin evaluation, albeit with known inaccuracies.
Here, we introduce a label-free histological imaging method based on an
ultraviolet photoacoustic remote sensing and scattering microscope, com-
bined with unsupervised deep learning using a cycle-consistent generative
adversarial network for realistic virtual staining. Unstained tissues are scanned
at rates of up to 7 mins/cm2, at resolution equivalent to 400x digital histo-
pathology. Quantitative validation suggests strong concordance with con-
ventional histology in benign and malignant prostate and breast tissues. In
diagnostic utility studies we demonstrate a mean sensitivity and specificity of
0.96 and 0.91 in breast specimens, and respectively 0.87 and 0.94 in prostate
specimens. We also find virtual stain quality is preferred (P = 0.03) compared
to frozen section analysis in a blinded survey of pathologists.

Surgical resection is the primary treatment for many solid tumors. In
oncologic surgeries, surgeons attempt to excisemalignant tissue along
with a surrounding clear margin, while sparing as much healthy tissue
as possible. Themargins of a resected specimen are then evaluated for
involvement of malignant cells, ensuring that the primary cancer has
been completely removed. The status of surgical margins is therefore
considered one of the strongest indicators of operative success, and
long-term patient prognosis. Unfortunately, gross visual and tactile
inspection of specimens offers limited sensitivity for delineating
boundaries between healthy and malignant tissues, allowing micro-
scopic pathology to go undetected. Positive margins are still found
under postoperative analysis in up to 40% of cases1 depending on the
type of tumor, often necessitating follow-up re-excision surgery, and

adjuvant chemotherapy, radiation, or endocrine therapies. The pro-
blem of positive margins not only causes additional physical and
emotional trauma for patients and leads to increased morbidity, but
also results in delays, excess expenses, and consumption of limited
resources within the healthcare system2. The development of
improved microscopic imaging methods for intraoperative margin
status assessment could significantly enhance patient care and con-
tribute to a more cost-efficient healthcare economy.

The current gold standard for margin assessment involves
pathologist inspection of hematoxylin and eosin (H&E) stained thin
sections of tissues under brightfield microscopy. This allows identifi-
cation of atypical cytologic features including an increased nucleus-to-
cytoplasmratio, variations in the size and shapeof cells andnuclei, and
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increased or abnormal mitosis, in addition to various architectural
patterns which differentiate benign and malignant tissues. However,
preparation of 4–5μm thin formalin-fixed paraffin-embedded (FFPE)
tissue sections compatible with brightfield light microscopy involves
many time-consuming and labor-intensive steps (Fig. 1a), typically
resulting in minimum turnaround times of nearly 24 h. FFPE H&E his-
topathology is therefore unsuitable for providing intraoperative
feedback.

Conventional alternatives to FFPE H&E histopathology exist to
offer rapid assessment of margin status while the patient remains in
the surgical suite, though they suffer from limitations in technical
quality and diagnostic accuracy in someapplications3–7. Frozen section
analysis (FSA) can generate slides available for brightfield microscopy
in approximately 20mins, which is considerably faster than FFPE per-
manent sectioning. However, drawbacks include errors due to limited
sampling of the tissue, a high dependence on operator skill, and the

destructive nature of the tissue preparation process, which may leave
insufficient tissue for downstream histology, molecular assays, or
genetic analysis to provide a definitive diagnosis. Frozen sections are
frequently subject to significant freezing artifacts, which can lead to
diagnostic inaccuracies6. Moreover, lipid-rich tissues such as breast do
not freeze well and are difficult to cut into thin sections. FSA is con-
sequently not performed routinely in resection surgeries for the
majority of tumor types. Touch imprint cytology is another fast
alternative to FFPE sectioning, though it also suffers from known
performance limitations8.

Recent efforts have developed methods capable of virtual histo-
logical imaging. These methods aim to bypass much of the conven-
tional tissue processing to rapidly generate realistic H&E-like virtual
imagery that can be directly interpreted by pathologists, making
diagnostic feedback available earlier in the standard histopathology
workflow (Fig. 1a). In this study, we introduce a rapid, high-resolution

Fig. 1 | Comparison of proposed UV-PARS virtual histology and gold standard
histology workflows. a Conventional surgery-to-histopathology workflow (top)
comparing frozen sections to FFPE tissue methodologies, in contrast to our deep
learning-enabled label-free histology approach (bottom) that is capable of
bypassing tissue preparation and/or staining steps to rapidly obtain virtual

histology. b A simplified system diagram of our combined UV-PARS and UV scat-
tering microscopy system capable of providing simultaneous absorption and
scattering contrast, respectively. M mirror, L lens, BS beamsplitter, HBS harmonic
beamsplitter, RO reflective objective, PD photodiode. c Visualization of the PARS
mechanism.
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virtual histology method which achieves histological realism in
unstained tissues with demonstrated advantages over FSA in a blinded
pathologist study, and exhibits strong quantitative similarity and
diagnostic concordance with true H&E-stained brightfield histology in
both breast and prostate tissues.

In brief, our virtual histology approach uses ultraviolet photo-
acoustic remote sensing (UV-PARS) microscopy to achieve
hematoxylin-like contrast to visualize cell nuclei, and ultraviolet scat-
tering microscopy to provide eosin-like contrast for imaging cyto-
plasm and the extracellularmatrix (Fig. 1b). PARS is a non-contact laser
scanning photoacoustic imaging modality which detects intensity
modulations in a back-scattered interrogation beam induced by opti-
cal absorption of a nanosecond-pulsed excitation beam9–11 as shown in
Fig. 1c. UV-PARS was first demonstrated by Haven et al.12 for cell nuclei
imaging and further improved in subsequent reports13,14. Integration of
near-infrared (NIR) scattering microscopy further enabled simulta-
neous acquisition of complementary virtual eosin contrast co-
registered with the UV-PARS images15–17, simplifying the complexity
of previous dual-contrast approaches18,19. The NIR scattering was later
upgraded to 266 nm pulsed UV scattering along with a pulse peak
sample-and-hold detection circuit to achieve improved resolution in
the virtual eosin data20 utilizing the existing excitation laser source. In
this work we utilize a high-resolution 0.5 numerical aperture (NA)
objective with rapid voice coil scanning capable of imaging at speeds
of up to 7 mins/cm2 with 390 nm lateral resolution21, and axial optical
sectioning of 1.6μm similar to thin histology sections22. Compared to
existing virtual histology techniques, where key specifications are
outlined in Supplementary Table 1, ourmicroscopy approachoffers an
advantageous combination of scan speed, resolution, histological
realism with positive nuclear contrast, and label-free imaging
capabilities.

Virtual histology methods based on fluorescent staining include
light-sheet microscopy23,24, microscopy with ultraviolet surface exci-
tation (MUSE)25, nonlinear microscopy26,27, and confocal fluorescence
microscopy28. Though uptake of dyes such as acridine orange, pro-
flavine, DAPI, propidium iodide, Hoechst, and rhodamine typically
adds only up to a fewminutes to the sample processing workflow, the
use of exogenous dyes or fluorescent labels can be subject to staining
variability affecting interpretation29. Compared to label-free approa-
ches, the reliance on fluorescent dyes for initial virtual H&E histology
may also interfere with subsequent special stains, immunohis-
tochemistry, or fluorescence in situ hybridization of the same tissue
section. Additionally, the toxicity and lack of FDA approval for certain
agents may restrict their application to only fixed tissues, precluding
future in vivo extensions. Volumetric imaging techniques such as light-
sheet microscopy may also require optical clearing agents. While
camera-based widefield imaging techniques such as MUSE and light-
sheet microscopy offer remarkable imaging speed, the resulting
resolution trade-off may be unacceptable to pathologists in some
cases compared to the confocal sectioning of a laser-scanning micro-
scopy approach. MUSE particularly benefits from a simplified, cost-
effective implementation for slide-free imaging, though it relies on
tissue-dependent UV penetration depth discrimination which may
result in simultaneous detection of multiple cell layers, potentially
obfuscating diagnostic interpretations as noted in several reports30,31.

Label-free virtual histology methods based on autofluorescence
emission include simultaneous label-free autofluorescence-multi-
harmonic (SLAM) microscopy32, swept confocally-aligned planar exci-
tation light-sheet microscopy (MediSCAPE)24, computational high-
throughput autofluroescence microscopy by pattern illumination
(CHAMP)33, and conventional transillumination autofluorescence
microscopy34. Other mechanisms providing label-free contrast analo-
gous to H&E staining include stimulated Raman scattering (SRS) based
on CH2 and CH3 shifts35,36, multispectral deep-UV microscopy37, and
deep learning-aided reflectance confocal microscopy (RCM)38. While

optical coherence tomography (OCT) is a rapid label-free cross-sec-
tional imaging technology with demonstrated clinical value, most
implementations lack sub-cellular lateral resolution and molecular
specificity to important cytologic details including nuclei, limiting
utility for virtual histology39.

Ultraviolet photoacoustic microscopy (UV-PAM)40–46 provides a
label-free approach for generating positive nuclei contrast through
absorption-induced thermoelastic expansion. Cytoplasmic contrast
can also be obtained via additional cytochrome-targeted excitation
wavelengths47, or by detecting photoacoustic signals originating from
relatively weaker absorption in the cytoplasm, using deep learning-
assisted inference46. These methods however suffer frommismatched
nuclear and cytoplasmic resolutions, and weak cytoplasmic signal-to-
noise ratios, respectively. This may lead to morphological differences
in the resulting virtual stain. Additionally, the requirement for acoustic
coupling or immersion can limit scan speeds, and restrict reflection-
mode imaging to lower NA focusing with lateral and axial resolutions
sacrificed. In contrast, our lateral and axial resolutions of 390nm and
1.6μm, respectively, are finer than related UV-PAM methods. For
instance, Cao et al.48 report a 40μmacoustic axial resolution and 9μm
optical depth-of-focus,with 960 nm lateral resolution. A 330nm lateral
resolution imaging has been achieved in transmission-mode41, though
this is not suitable for thick tissue imaging. Acoustic coupling addi-
tionally precludes the use of a coverslip for tissue flattening, necessi-
tating slower contour scanning of the tissue surface for imaging thick
specimens.

To render virtual histology in a realistic stain style comparable to
gold standard H&E-stained brightfield microscopy, powerful deep
learning methods have emerged33,34,38,39,46,49,50, offering unparalleled
performance compared to alternatives such as lookup table-based
pseudo-coloring or physics-based stain blending models51. In this
work, we leverage the dual-contrast input image data from our UV-
PARS microscope, with hematoxylin-like positive nuclei contrast and
high-resolution eosin-like scattering contrast, combined with a cycle-
consistent generative adversarial network (CycleGAN)52 to generate
maximally-realistic virtual H&E histology. This will be important for
stain normalization to reduce variability, and for applying existing
computer-aided diagnosis algorithms developed for digital pathology
to our virtual histology images, which would otherwise be incompa-
tible. For image style transfer, a generative adversarial network (GAN)
uses the concept of adversarial training, where a generator network
constructs plausible new candidate images, and is trained in zero-sum
competition with a discriminator network attempting to differentiate
synthetic generator output images from presented examples of real
image data53. With optimized training, the goal is to learn the under-
lying distribution of the target image domain. For virtual histology,
conditional GAN54 approaches like the pix2pix model55,56 require
supervised training with paired input data featuring matching tissue
morphology, with precise co-registration necessary for optimal per-
formance. In contrast, the CycleGAN algorithm concurrently trains
both a forward and inverse model, exploiting invertibility to learn a
distribution matching style transformation from the input modality to
brightfield H&E-stained histology using unpaired training data sets
(Fig. 2a). Cycle-consistency constraints further regularize the unsu-
pervised training approach, ensuring that transforming an image to
the opposing domain then reconstructing in the original domain
achieves an image that is minimally different from the initial input in
the L1 sense. The detailed architectures of the deep convolutional
neural networks used in this study are outlined in Fig. 2b.

The CycleGAN approach is important in our context because it is
often challenging or impossible to obtain virtual histology images with
a closely-matching paired true H&E counterpart. This is particularly
true for thick tissues and multi-layer imaging, where the fixing,
embedding, sectioning, and staining processes will introduce mor-
phological differences which would significantly degrade the
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performance of a supervised learning approach. Additionally, the
CycleGAN is suitable for stain style matching to existing digital his-
tology databases, and affords training of new style transfer models for
numerous special stain types beyond H&E using the same virtual his-
tologydata set, without the complications of de-staining. Thismay also
facilitate simplified integration into existing clinical workflows, as the
virtual H&E stain style can be easily targeted to match individual
pathologist preferences or standardized institutional protocols.

In this report, we present a deep learning-enabled, high-resolu-
tion, and label-free approach capable of producingmaximally-realistic
virtual histology with rapid acquisition times as low as 7 mins/cm2. We
test our approach on FFPE breast and prostate tissues from human
subjects and in freshly-resected thick murine liver and kidney tissues.
Quantitativemetrics are used to validate similarity between our virtual
histology approach and the gold standard. Additionally, based on
pathologist-rated stain quality metrics, our virtual histology images

were found to offer superior nuclear detail and were preferred overall
compared to FSA. Furthermore, initial diagnostic concordance studies
in both breast and prostate tissues suggest strong diagnostic utility to
pathologists. Results show that our approach has the potential to scan
large en-face thick tissues within intraoperative time frames.

Results
Virtual staining of human breast and prostate tissue specimens
We tested our virtual histology approach on both sectioned and
unstained human lumpectomy and radical prostatectomy specimens.
UV-PARS andUV scattering data, unseen in the initial training set, were
input into their respective trained CycleGAN networks and compared
to true H&E brightfield microscopy images for validation. Figure 3a
shows a deep learning-enabled virtual histology image of breast tissue.
UV scattering and UV-PARS data channels for the area in the dashed
box inset in (a) are shown in (b) and (d), respectively. Comparing the

Fig. 2 | CycleGAN principle and deep neural network architectures.
a Unsupervised training is performed with unpaired input data sets including vir-
tual images X and true brightfield H&E-stained images Y. Forward and reverse
generator transformations GH&E and GUV are trained concurrently with corre-
sponding discriminatorsDH&E andDUV, which progressively improve their ability to

classify generated synthetic images from true input examples. Imagesused for each
cycle consistency and adversarial loss function are indicated. b Detailed archi-
tectures of the constituent deep convolutional neural networks used in the
CycleGAN model. K convolution kernel size, S convolution stride.

Article https://doi.org/10.1038/s41467-023-41574-2

Nature Communications |         (2023) 14:5967 4



virtual histology inset in (c) to a true H&E-stained brightfield image in
(e), the stromal structure and nuclear details are concordant, with the
structure of a benign blood vessel being clearly identifiable by
pathologists. Figure 3f shows a deep learning-enabled virtual histology
image of prostate tissue. UV scattering and UV-PARS data channels for
the area in the dashed box inset in (f) are shown in (g) and (i),
respectively. Comparing the virtual histology inset in (h) to a trueH&E-
stained brightfield image in (j), we can again see that the stromal and
nuclear details are concordant, with prostatic carcinoma clearly iden-
tifiable by pathologists. Virtual staining in both breast and prostate
examples closely match the characteristic H&E coloration and also
accurately emulate the translucent quality of brightfield microscopy,
resulting in realistic images comparable to those which pathologists
are accustomed and extensively-trained to interpret. Some differences
between virtual and true histology imagesmaybe attributed to sample
degradation following imaging as a result of tissue section dehydra-
tion/rehydration cycles and coverslipmounting, followed by coverslip
removal and H&E staining for conventional H&E-stained brightfield
image comparison.

Figure 4c shows a large area unstained prostate deep learning-
enabled virtual histology image with corresponding true H&E-stained
brightfield histology image. These images are representative of images
provided to pathologists for histological feature annotation and
malignancy assessment. Figure 4a, b also show the UV-PARS and UV

scattering channel data that were used as input to the trained Cycle-
GAN network. Using our imaging approach we are able to acquire
virtual histology at rates as fast as 7 mins/cm2, without sacrificing sub-
cellular resolution. The image quality and the histological features of
interest resolved in our images of unstained tissues were sufficient to
identify regions of concern for malignancy, or favor a benign inter-
pretation. Red arrows in 4c correspond to pathologist annotation
indicating areas showing prostatic carcinoma, with blue arrows
showing benign glandular features.

Pathologist annotation of our virtual images showcased the range
of readily identifiable features which are important for diagnosis.
Figure 5 displays a selected variety of these features appreciated in both
benign and malignant prostate and breast tissues, with corresponding
true H&E-stained brightfield comparisons. In these representative
examples, pathologists were able to clearly identify in prostate tissues:
(a) prostatic carcinoma, (b) perineural invasion, (c) benign stroma, (d)
benign glands, and (e) benign blood vessels. Additionally, pathologists
were able to clearly identify in breast tissues: (f) invasive ductal carci-
noma, (g) fibroadipose tissue, (h) benign acini, (i) benign terminal duct
lobular units, and (j) benign inflammation. Importantly, pathologists
were able to discriminate benign and malignant cytologic features and
evaluate tissue architecture in both tissue types.

In addition, pathologists were able to assess Gleason scores for
different virtual prostate tissue examples, with validation provided by

Fig. 3 | Deep learning-enabled realistic virtual histology. a Image of unstained
breast tissue. f Image of unstained prostate tissue. Scale bars: 200 μm. b UV scat-
tering channel data. d UV-PARS channel data, (c) virtual histology image, and (e)
corresponding trueH&E-stained brightfield histology image for dashed box inset in

(a). Scale bar: 50μm. g UV scattering channel data, (i) UV-PARS channel data, (h)
virtual histology image, and (j) corresponding true H&E-stained brightfield histol-
ogy image for dashed box inset in (f). Scale bar: 50μm.
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matching assessments of the true H&E-stained brightfield counter-
parts. Figure 6 shows cropped examples of pathologist annotated
samples with different assigned Gleason scores. Figure 6a shows a
virtual histology image with corresponding Gleason score of 3+3,
displaying regions of prostatic carcinoma (red arrows), and benign
stroma (green arrow). Figure 6b shows a virtual histology image with
assessed Gleason score of 3+4, displaying benign glandular features
(blue arrow) and benign stroma (green arrow), as well as prostatic
carcinoma (red arrows), with the presence of cribriform glands. Fig-
ure 6c shows a virtual histology image with corresponding Gleason
score of 4+3, displaying cribriform glands (leftmost red arrows), and
perineurual invasion (rightmost red arrow), as well as benign vascu-
lature (yellow arrows), and benign stroma (green arrow).

Virtual staining of freshly-resected thick murine tissues
In order to test the capability of this approach for imaging fresh,
unprocessed thick tissues, a resected mouse kidney was imaged to
generate a z-stack of en-face images in depth as shown in Fig. 7a.

The resected tissue was placed between a microscope slide and UV-
transparent coverslip as shown in the Fig. 7a inset, allowing us to
rapidly flatten the tissue before imaging. This demonstrates the
ability of the UV-PARS and UV scattering microscopy system to
generate optically-sectioned multi-layer images. Note that direct
morphological comparison to brightfield H&E histology is imprac-
tical given the difficulty in precisely maintaining tissue orientation
through FFPE tissue processing, which is known to introduce
changes in morphology. However, Fig. 7b shows a zoomed-in
comparison of deep learning-enabled virtual H&E stains in both
liver and kidney tissue images to comparable brightfield true H&E-
stained thin tissue sections, illustrating the realism of the virtual
stain even with images taken below the surface of thick, unsec-
tioned tissues. Multi-layer UV-PARS imaging has been validated with
co-scanned UV-PARS and confocal fluorescence microscopy15.
Results additionally appear to support the success of the transfer
learning approach in matching the virtual histological images to
their true H&E-stained counterparts.

Fig. 4 | Fast large field-of-view imaging at sub-cellular resolution. a UV-PARS
channel data. b UV scattering channel data. c Deep-learning enabled virtual his-
tology image. d Corresponding true H&E-stained brightfield histology image.

Pathologist annotations are included with red and blue arrows corresponding to
prostatic carcinoma, and benign glands, respectively. Scale bar: 200μm.

Article https://doi.org/10.1038/s41467-023-41574-2

Nature Communications |         (2023) 14:5967 6



Quantitative validation of virtual staining
To evaluate the performance of our deep learning-based virtual his-
tology method, we quantitatively compared 1921 pairs of virtually-
stained and corresponding H&E-stained images. For measuring per-
ceptual similarity, the multi-scale structural similarity index measure
(MS-SSIM) was computed for each image pair, in addition to the peak
SNR (PSNR) and Pearson correlation coefficient (PCC). Example image
pairs and associated quantitative metrics are shown in Supplementary
Fig. 2. Histograms shown in Fig. 8a–c indicate our virtual histological
staining offers similar visualizations to true brightfield H&E-stained
histology, with amedianMS-SSIM value of 0.76, amedian PSNR of 21.6
dB, and a median PCC of 0.82 for raw images at 250 nm pixel spacing
and full 390 nm optical resolution.

Additionally, we found that these metrics are improved at lower
spatial resolutions. As such, we implemented low-pass filtering
operations and re-computed the metrics at an effective 2μm optical

resolution to better compare our approach to alternative technologies
(Supplementary Table 1) offering lower resolution. For these com-
parisons, we measured median values of 0.86, 26.5 dB, and 0.92,
respectively, suggesting strong similarity of grossmorphology despite
slight contrast differences. Comparison of our quantitative metrics to
alternative technologies is summarized in Supplementary Table 2,
demonstrating favorable performance. It is important to note that
there is some unavoidable loss in similarity that is unrelated to dif-
ferences in the imaging modalities or due to sub-optimal CycleGAN
performance. Such factors may arise from residual registration errors,
degradation associated with multiple dehydration/rehydration cycles
when imaging the unstained tissues with UV-PARS, and variability in
the chemical staining process used to obtain the corresponding
ground truth H&E-stained brightfield images. Additionally, the whole
slide scans are not assured to be at an identical focus to the UV-PARS
images, further contributing to possible discrepancies.

Fig. 5 | Concordant tissue features in virtual and gold standard histology.
Representative examples of benign and malignant histological features of interest
annotated by pathologists in both prostate (a–e), and breast (f–j) tissues, with

virtual histology and corresponding true H&E-stained brightfield images shown on
the left and right, respectively. Scale bars: 50 μm.
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Nuclearmorphology and spatial distributionmetricsof diagnostic
relevance were measured using the CellProfiler image analysis
software57. The symmetry of the corresponding true and virtual H&E
histograms shown as violin plots in Fig. 8 suggest a close match in the
statistical distributions of cross-sectional nuclear area, morphological
parameters including eccentricity and compactness, and the nearest
neighbor internuclear distance. Further evidence of this is shown in
histograms of the nuclear count and nuclear area differences between
brightfield H&E images and our virtual histology in Fig. 8f, i. The
majority of data is concentrated in the zerodifferencebins, andwefind
differences in nuclear cross-sectional area (<1μm2) that are small
relative to the median area (28.6 μm2). Some spread in these dis-
tributions is expected due morphological changes from the staining
process and imperfect segmentation. Summary statistics and defini-
tions of metrics used in this analysis are found in Supplementary
Table 3. Additionally, we provide 2D spatial frequency domain com-
parisons between examples of corresponding true and virtual H&E
histology images in Supplementary Fig. 3, where the virtual histology
spatial frequency spectra generally match or offer enhanced band-
width compared to the ground truth.

Evaluation of diagnostic concordance
To evaluate the diagnostic concordance of our deep learning-enabled
virtual histologymethodwith gold standardH&E-stained histology, we
provided pathologists with virtual histology images and their match-
ing trueH&E-stained counterparts for both prostate andbreast tissues,
with five and three pathologists providing feedback, respectively.
Pathologistswere asked to provide amalignant or benign diagnosis for
each image in the data set. Pathologist consensus across true H&E
histology images formed the gold standard diagnosis. Sensitivity,
specificity, positive predictive value (PPV), negative predictive value
(NPV), accuracy, and intra-observer concordance values were com-
puted as outlined in Table 1. To reduce the effect of inter-observer
variability, we report the mean value over all pathologists and addi-
tionally computed values using a consensus diagnosis for each virtual
histology image. Referring to the breast tissue study in Table 1, our
virtual histology method shows a high sensitivity of 0.96, arguably the
most important metric for intraoperative pathology since it assesses
the presence of false negatives,which are highly detrimental to patient

outcomes in margin analysis. A high specificity of 0.91 suggests
robustness of our method to false positives, which are also important
to avoid in tissue-conserving procedures. A malignancy prevalence of
0.42 in the data set suggests we should obtain similar NPV and PPV to
our calculated sensitivity and specificity, respectively, which is con-
firmed in the values obtained. Accuracy, an overall measure of diag-
nostic concordance including both false positives and false negatives,
was measured to be 0.93, indicating low diagnostic error rates. Addi-
tionally, concordance values calculated using Cohen’s kappa suggest
substantial intra-observer agreement between our virtual deep
learning-enabled histology approach and the gold standard
diagnosis58. In comparison to FSA in breast cancer cases, where a
recent study7 determined a sensitivity of 0.78, specificity of 0.98, PPV
of 0.65, NPV of 0.99, and accuracy of 0.97, our reported sensitivity and
PPVwere superior, and specificity, accuracy andNPVwere comparable
(>0.9). Some of these discrepancies may also be due to a lower
malignancy prevalence in the frozen section study, which could result
in inflating values such as the NPV. Detection performance in future
work would also be expected to improve with pathologist access to
larger areas of tissue in virtual histology images. The prostate tissue
study in Table 1 shows high specificity and sensitivity values of 0.87
and 0.94, respectively, with a corresponding PPV of 0.97, and NPV of
0.82, and high accuracy of 0.90. Concordance values calculated using
Cohen’s kappa again indicate substantial intra-observer agreement
between our virtual deep learning-enabled histology approach and the
gold standard diagnosis.

Blinded subjective survey of stain quality
To assess the subjective image quality of our approach, we compared
deep learning-enabled virtual histology images to H&E-stained frozen
sections, the current rapid intraoperative histology alternative inmany
potential use cases of our microscopy system. Representative exam-
ples of frozen section H&E-stained breast histology images are shown
in Fig. 9c. A blinded pathologist study was conducted, where three
pathologists were asked to rank image quality on metrics including
hematoxylin detail, eosin detail, and overall stain quality on a scale of 1
to 4, with scores outlined in Supplementary Table 6. Figure 9a shows a
summary of the mean scores provided by each pathologist for each of
the image quality metrics. A sample size of n = 15 was used for each
histological method. In comparing the mean scores between virtual
and frozen section H&E-stained histology, the individual pathologists
generally preferred the virtual stain approach in all but one result. It is
worth noting that mean scores for virtual histology all exceed a
threshold of 2whichwas defined on the rating scale as acceptable stain
quality, while the frozen sectionH&E-stained images failed tomeet this
standard. In addition, tomitigate the effect of inter-rater variability, an
inter-pathologist average score was computed for each individual
image and image quality metric. The resulting scores for all images in
the n = 15 samples of each type are summarized in Fig. 9b, which
suggests an overall preference for virtual histological imaging. More-
over, P values were determined using a right-tailedWilcoxon rank sum
test to compare the sample of images of each histological method
across each image quality metric, with the null hypothesis taken as an
equivalent or inferior scores for virtual staining compared to frozen
sections. Hematoxylin detail and overall stain quality tests resulted in
P values of 0.0018 and0.0321, respectively, supporting the rejectionof
the null hypothesis at the 95% confidence level. This suggests a sig-
nificant preference for virtual images with respect to these metrics.
Although the mean eosin detail score for our virtual histology was
higher than that for frozen section H&E-stained histology, the sig-
nificance of this result wasnot established at the α =0.05 level. Overall,
the study results suggest that our deep learning-enabled virtual his-
tology technique is preferred by pathologists over frozen sectionH&E-
stained histology.

Fig. 6 | Gleason scoring in prostate virtual histology. Representative deep
learning-enabled realistic virtual histology in unstained prostate tissues, with
pathologist assigned Gleason scores of (a) 3+3, (b) 3+4, and (c) 4+3. Pathologist
annotations are includedwith red, blue, green, and yellow arrows corresponding to
prostatic carcinoma, benign glands, benign stroma, and benign blood vessels,
respectively. Scale bars: 100μm.
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Discussion
Ourdeep learning-enabled virtualhistology approachofferspromising
results with multi-layered virtual histology capabilities and close con-
cordance with true H&E-stained brightfield histology. The success of
this method can be attributed substantially to achieving positive
contrast to cell nuclei using UV-PARS, and high resolution in both
contrast channels afforded by the 266 nm wavelength and laser

scanning microscopy system architecture. The input images to the
CycleGAN model already exhibit close concordance with true H&E-
stained images, but deep learning helps achieve an enhanced level of
realism which is validated using quantitative metrics and reader stu-
dies. As a future direction, providing class labels (e.g. benign vs.
malignant, Gleason scores) or attention maps to the unpaired training
data may also be explored for improving the GAN performance.

Fig. 8 | Quantitative validationof virtual histology.Metrics comparing 1921 pairs
of ground truth brightfield H&E-stained and virtually-stained images, for raw ima-
ges obtained at 390 nm resolution, and for low-pass filtered (LPF) images at an
effective 2 μm resolution. a Normalized histogram of multi-scale structural simi-
larity index measure (MS-SSIM). b Normalized histogram of peak signal-to-noise
ratio (PSNR). c Normalized histogram of the Pearson correlation coefficient (PCC).

Violinplots comparemeasureddistributions for (d) internuclear distance, (e) cross-
sectional nuclear area, (g) eccentricity, and (h) compactness. Normalized histo-
grams showdistributions ofdifferences in (f)meannuclear cross-sectional area and
(i) nuclei count. Solid lines denotemedian values. Dashed lines denote 25th and 75th

percentiles. Histogram bins are normalized as a probability density function.
Source data are provided as a Source Data file.

Fig. 7 |Multi-layeroptical sectioning inmouse tissue virtualhistology. aZ-stack
of deep learning-enabled virtual histology images of freshly-resected thick murine
kidney tissues, with a representative zoomed-in inset shown in (b) highlighted in

the dashed box. Unpaired H&E-stained thin section brightfield images are shown
for style comparison with virtual histology results in murine kidney and liver tis-
sues. Scale bar: 25μm.
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Qualitatively, pathologists were able to readily identify important
diagnostic features in virtual histology images, and assign Gleason
scores to provided prostate samples. Additionally, diagnostic con-
cordance pilot studies demonstrated strong performance in terms of
sensitivity, specificity, PPV, NPV, accuracy, and intra-observer con-
cordance for both breast and prostate tissues.

Results indicate that our method meets key functional require-
ments for microscopy systems proposed by the American College of
Pathologists59, including resolution < 1μm, a NPV of > 0.9 for margin
assessment applications (breast tissue), and a PPV of > 0.9 for identi-
fying lesional tissue for further studies or assessing core biopsy ade-
quacy (prostate tissue). Furthermore, pathologists did not require
additional training to interpret virtual histology presented in the
familiar H&E-stained format, supporting the ease of use of this
method.

As noted in the introduction, and summarized in Supplementary
Table 1, our approach offers some advantages over other virtual his-
tology systems. Methods which require staining or optical clearing
procedures usually require an additional few minutes which can be
eliminated in our label-free approach. Our rapid 7 mins/cm2 acquisi-
tion time is significantly faster than scan times reported for SRS
microscopy35,36, recent UV-PAM imaging systems43,46,48, multispectral
deep-UV microscopy37 or previous UV-PARS work12–14,20, while main-
taining a high 390 nm resolution. Overall, our system offers a well-
positioned trade-off of scan speed and resolution, while providing
label-free contrasts that correspondwell to gold-standardH&E-stained
histology. We anticipate that higher resolution should also be possible
without comprimising scan speed, using higher NA focusing and

higher pulse repetition rate (PRR) lasers. This may enable our tech-
nology to better discriminate cytologic features.

Future embodiments will utilize parallelized scanning aiming to
provide several-fold scan speed improvements, allowing higher
throughput to move towards imaging multiple breadloafed surgical
resection specimens within intraoperative time frames. Additionally,
development of a cart-based system implementation will allow inves-
tigation of diagnostic utility in the clinical environment. Future work
will also look to include additional contrasts of diagnostic interest
beyond H&E histology. Collagen structure and NADH/FAD-linked
metabolic indicators can be resolved through the detection of existing
autofluorescence emission generated by our 266 nm excitation, and
recent work suggests that biomechanical tissue properties can also be
identified through elastography measurements from existing tem-
poral UV-PARS signals60. This rich spectrum of information can be
obtained simultaneously with a single scan of the sample.

Alternative approaches for intraoperative imaging include white-
light surgical microscopy, fluorescence-guided surgery, and other
virtual histology technologies. White-light surgical microscopy alone
generally does not provide adequate tumor discrimination61. Surgical
fluorescence imaging with dyes that are preferential to tumor tissues
have shown promise, but sensitivity and specificity is still lacking,
potentially as a result of biodistribution issues, background signal, and
insufficient spatial resolution. For example, Ottolino-Perry et al.
showedonly 55.6% PPV for tumor identification, imaging a breadloafed
lumpectomy specimen outside a demarcated tumor border where
margin determination is critical62. In clinical pilot studies, we found
sensitivity, specificity, and concordance were comparable to similar
virtual histology modalities26,35,63, and greater than that reported for
FSA as in Namdar et al.7.

Drawbacks of FSA have been well-documented. Frozen section
artifacts often show atypical microscopic details that do not directly
reflect an abnormality in the tissue and can make interpretation
difficult6. For example, ice crystals can enlarge or introduce variability
in nuclear size, and can cause hole formation mimicking the appear-
ance of intracellular vacuoles or fat. Air drying artifacts can result in
indistinct cell borders and smudged chromatin, while crush artifacts
can also obscure histological details, hindering accurate evaluation.
Moreover, shatter artifacts can occur if the cryostat temperature is not
optimal or calcifications are present, where the tissue will appear
similar to Venetian blinds. Adipose tissue in particular can be chal-
lenging to cut for FSA, often leading to tissue fragmentation and
folding, or an increase in thickness. Given the technical limitations in
quality and diagnostic utility, several studies have found false negative
rates as high as 36% for frozen sections compared to permanent FFPE
sections in certain procedures such as radical prostatectomy and
breast-conserving surgery3–5. Poor agreement between frozen sections
and permanent sections has also been noted in cancer types such as
melanoma64. Our virtual histology with preferred stain quality offers
promise as an alternative.

In summary, we developed a high-resolution, dual-contrast UV-
PARS and UV scattering microscope which is able to produce virtual
H&E-stained histology images with high quality and histological rea-
lism, aided by deep learning-enabled CycleGAN style transfer. A blin-
ded pathologist study found that the nuclear detail and overall stain
quality of our virtually-stained images were preferred over H&E-
stained frozen sections with statistical significance (α =0.05). Pre-
liminary investigation of diagnostic concordance indicated our
methodoffers high sensitivity, specificity, accuracy, and intra-observer
concordance with conventional H&E-stained brightfield histology in
both breast and prostate tissues.

Larger, well-powered clinical studies with a diversity of human
subjects and clinical presentations are needed to rigorously establish
diagnostic equivalence or non-inferiority of our virtual histology
approach compared with frozen section and permanent section

Table 1 | Blinded pathologist reader study of diagnostic
concordance

Breast tissue (n = 24 pairs)

Malignancy prevalence =0.42

Ground Truth Fleiss’ Kappa* = 1.00

P1 P2 P3 P4 P5 Mean Consensus

Sensitivity 0.90 0.90 1.00 1.00 1.00 0.96 1.00

Specificity 0.93 0.86 1.00 0.86 0.93 0.91 0.93

Positive pre-
dictive value

0.90 0.82 1.00 0.83 0.91 0.89 0.91

Negative pre-
dictive value

0.93 0.92 1.00 1.00 1.00 0.97 1.00

Accuracy 0.92 0.88 1.00 0.92 0.96 0.93 0.96

Concordance
(κ)†

0.83 0.75 1.00 0.83 0.92 0.86 –

Prostate tissue (n = 32 pairs)

Malignancy prevalence =0.63

Ground Truth Fleiss’ Kappa* = 0.81

P1 P2 P3 Mean Consensus

Sensitivity 0.80 0.95 0.85 0.87 0.85

Specificity 1.00 0.83 1.00 0.94 1.00

Positive Pre-
dictive Value

1.00 0.90 1.00 0.97 1.00

Negative Pre-
dictive Value

0.75 0.91 0.80 0.82 0.80

Accuracy 0.88 0.91 0.91 0.90 0.91

Concordance (κ)† 0.75 0.80 0.81 0.79 –

Summary statistics from diagnostic concordance studies for breast and prostate tissue where a
panel of pathologists (P) were tasked with interpreting paired virtual histology and ground truth
H&E-stained brightfield images.
†Cohen’s kappa for intra-observer concordance.
*Fleiss’ kappa measures inter-observer concordance for interpreting ground truth H&E images.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41574-2

Nature Communications |         (2023) 14:5967 10



analysis. Unless non-inferiority of virtual histology methods can be
demonstrated compared to conventional H&E-stained brightfield his-
tology, virtual histology methods may not aim to supersede the gold
standard as the primary method for definitive diagnosis, evaluating
patient prognosis, and informing major clinical decision-making
branch points such as treatment planning. However, virtual methods
may excel for intraoperative margin analysis and situations where
point-of-care analysis could be important for timely intervention or
procedural guidance. In such applications, the current alternative is
often only visual inspection or palpation, with negligible sensitivity to
microscopic pathology. Here, virtual histology could address this
unmet need for immediate microscopic analysis with improved false
negative rates compared to gross evaluation. Moreover, our virtual
histology is non-destructive unlike FSA, allowing initial interpretations
to be confirmed with the confidence of gold standard histology once
the time-intensive tissue preparation workflow can be completed.

Future work could also explore extending the image-to-image
translation deep learning methods using a random noise seed or
dropout-based stochasticity, to produce outputs that are increasingly
non-deterministic55. This could offer utility that is synergistic with
established brightfield histology practices, including the generation of
high-quality teaching libraries for rare diagnostic entities that often
contain only a few cases, and for generation of augmented data sets to
extend and test extant machine learning pipelines that have been
trained with real rather than synthetic morphological data.

Given the fast scan times, sub-cellular resolution, and pathologist-
validated histological realism, our approach offers considerable pro-
mise for future intraoperative applications in margin assessment,
especially as a surrogate for frozen sections.

Methods
Ethical statement
Human tissue specimens were obtained in accordance with approved
ethics [HREBA (Cancer)/HREBA.CC- 20-0145], andmurine tissues were
obtained in accordance with protocols approved by the University of
Alberta Animal Care and Use Committee [AUP00001170].

Optical imaging system
A diagram of the optical setup used for simultaneous UV-PARS and UV
scattering imaging is shown in Supplementary Fig. 1. In the second
harmonic generation subsystem, a 10-2000 kHz PRR linearly-polarized
532nm laser (SPFL-532-40, MKS) was focused through a 4 × 4 × 10mm
nonlinear cesium lithium borate (CLBO) crystal (Eksma Optics) to
generate 266 nm excitation light. Residual 532 nm light was removed
from the generated 266 nm beam via a dispersive prism (PS863,
Thorlabs) and passed into a beam dump. The 266 nm beamwidth was
then expanded using a Galilean beam expander tomatch the objective
entrance pupil. A half-waveplate (WPH10M-266, Thorlabs) was used to
rotate the polarization of the 266 nm beam to be maximally trans-
missive through a polarizing beam splitter cube (10SC16PC.22, New-
port). The transmitted beam was then passed through a quarter-wave
plate (WPQ10M-266, Thorlabs) converting linear into circular polar-
ization. The circularly-polarized UV beam was then combined with an
interrogation beam via a harmonic beam splitter (Di01-R355, Sem-
rock), and both beams were co-focused onto the sample using a 0.50
NA reflective objective (LMM-40X-UVV, Thorlabs). Back-scattered cir-
cularly-polarized pulsed UV light was then redirected via the quarter-
wave plate and polarizing beam splitter cube onto a photodiode
(PDA10A, Thorlabs). By utilizing a custom sample-and-hold peak

Fig. 9 | Blinded pathologist subjective stain quality survey. a Mean scores for
each image quality metric provided by each pathologist for breast tissue virtual
histology images of n = 15 independent specimens and n = 15 independent H&E-
stained breast tissue frozen section specimens, with swarm plots showing the
distribution of individual scores. Bars indicate mean± SEM. b Box plots summar-
izing results for each histological imaging method and image quality metric using
the inter-observer average image scores. Box center line and limits represent
median and lower/upper quartiles, respectively. Whiskers represent lower/upper

extrema, and no outliers are present. Diamondmarkers and associated errors bars
report mean ± SEM. P values were determined using a right-tailed Wilcoxon rank
sum test, without adjustments formultiple comparisons. SEM standard error of the
mean, HD hematoxylin detail, ED eosin detail, SQ overall stain quality, HS histolo-
gical stain, VS virtual stain. c Representative frozen section H&E-stained breast
tissue brightfield microscopy. Scale bar: 50 μm. Source data are provided as a
Source Data file.
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detector circuit, the photodiodemeasurement of the narrow UV pulse
can be held and adequately sampled by the digital acquisition card.
This back-scattered signal which utilizes the existing excitation wave-
length for the UV-PARS subsystem is responsible for eosin-like con-
trast. A continuous wave (CW) 1060 nm center wavelength linearly-
polarized superluminescent diode (SLD-1064-20-YY-350, Innolume)
acted as the interrogation source, utilizing a circulator (HPBCIR-1060-
H6-L-10-FA-SS, OF-Link) to redirect back-scattered light. By co-
focusing both the interrogation and excitation beams,
photoacoustic-induced reflectivity modulations can be detected using
the AC-coupled output of a 75 MHz balanced photodiode (PDB420C-
AC, Thorlabs), measuring back-scattered interrogation light intensity.
This signal was further filtered using a in-line 22 MHz low-pass (BLP-
21.4+, Mini-circuits), and 1.8 MHz high-pass filters (EF509, Thorlabs),
where the latter filter was used to remove stage motion-induced
reflectivity signals. This modulated CW interrogation back-scattered
signal provides hematoxylin-like contrast. The axial and lateral reso-
lutions of our system were measured as 1.6μm22 and 390nm14,
respectively. Fast-axis voice coil stage (X-DMQ12L-AE55D12, Zaber)
scanning was utilized in conjunction with slow-axis linear stage
(XMS50-S, Newport) and its respective controller (XPS-DRV11, New-
port) to enable rapid point-based scanning21. Z-axis translation was
provided using a z-axis translation mount (SM1ZA, Thorlabs). Goni-
ometers were utilized for both the fast (GN1, Thorlabs) and slow axis
(#66-534, Edmund Optics) to align the stage translation axis to the
sample surface.

Data acquisition and processing
A function generator (DG1022Z, Rigol) and digital delay generator
(DDG) (DG645, Stanford Research Systems) were used in combination
to synchronize the excitation laser, digital acquisition (DAQ) card
(CSE8389, Gage Applied), and peak detector reset. Channel 1 of the
function generator was used to initiate 532 nm excitation lasing at a
fixed PRRwith a 50%duty cycle squarewave, and as an external trigger
to the DDG. The peak detector65 used to sample-and-hold back-
scattered UV pulsed excitation light requires resetting between
detection events to ensure no leakage of signal. This was achieved by
providing a DDG time-delayed TTL signal, with a delay chosen outside
the expected acquisition window. Channel 2 of the DDG was used to
provide a time-delayed TTL signal to provide a reference to theDAQof
excitation events for post-acquisition image reconstruction. The DAQ
utilized a 50 MS/s sampling rate to ensure the full PARS modulation
and peak-detected UV back-scattered signals were captured. To
properly resolve the voice coil stage AquadB encoder waveforms, data
was acquired as a continuous stream rather than triggered. A custom
multi-threaded C++ program implemented using the OpenMP API was
developed for parallelized read-in of large raw data files, tracking stage
position from encoder states, and associating themaxima of temporal
data channel signals with a single spatial position to generate
absorption and scattering data points on a sinusoidal scan trajectory. A
parallelizedMATLAB script was used tomap this data onto a pixelated
Cartesian grid using natural neighbor interpolation based on a
Delaunay triangulation.

To generate input images for the CycleGAN, we first combine UV-
PARS and UV scattering data into an RGB array, where UV-PARS data
forms the red channel, UV scattering data forms the green channel,
and the blue channel is not used. The complement of this RGB image is
taken to match the brightfield background of true H&E histology and
avoid the color inversion effect, a practical barrier foundwhen training
the CycleGAN66. An example of this input can be seen in Fig. 2a. In
comparison to our previous approach of using a custom image fusion
method20 based on a reference H&E-stained brightfield microscopy
image, along with a blind stain separation algorithm67,68, this approach
preserves orthogonality of the input data channels to avoid informa-
tion loss. In practice, reasonable H&E images could be obtained by

encoding the input UV-PARS and UV scattering data on any pair of the
RGB channels for training the network, as the output color accuracy is
enforced by the learnedCycleGAN transformation. However, using the
red and green channels appeared to optimize training results. We
conjecture that this is due to color similarity to H&E stains following
the image inversion step, minimizing the domain gap relative to true
brightfield histology.

Cycle-consistent generative adversarial network
The CycleGAN implementation used for translating UV-PARS images
into realistic histological images was adopted from Zhu et al.52. As
shown in Fig. 2b, the CycleGANmodel consisted of the generators GUV

and GH&E, paired with discriminatorsDUV and DH&E. The generators are
trained to learn the translational mappings GH&E : X ! bY and
GUV : Y ! bX , where X is the domain of real UV-PARS images and Y is
the domain of true H&E-stained brightfield histology images. Here, bX
and bY denote domains of translated output images, which ideally
converge toward indistinguishable statistical distributions from the
corresponding X and Y data domains under optimized generators.
Adversarial training of each generator-discriminator pair was per-
formed using least squares loss functions Ladv

52 on the discriminator
outputs to compare candidate synthetic generator output images
against input training image data (Fig. 2b).

The cycle consistency constraint necessary for unsupervised
training on unpaired input data was enforced by cycle consistency loss
functions Lcyc

52. These functions compute the mean absolute error of
an input image x compared to its reconstruction GUV(GH&E(x)) follow-
ing a round-trip cycle of the generative networks in the forward case,
or similarly for input y with the reconstruction GH&E(GUV(y)) in the
backward case. Additionally, an identity L1 loss term provided further
regularization for matching the tint of the target domain52. The total
loss function Ltot for the CycleGAN model used the following
weighting for the individual terms:

Ltot =LadvðGUV ,DUV Þ+LadvðGH&E ,DH&E Þ+ λLcycðGUV ,GH&E Þ
+0:5λLidentðGUV ,GH&E Þ

ð1Þ

A heavy weighting hyperparameter for the cycle consistency loss,
λ = 150, was tuned by experimental validation to ensure the tissue
morphology of the input UV-PARS images is preserved under the
translation, with the output primarily transforming the style into a
realistic histological image.

The generator and discriminator network architectures of the
CycleGAN are outlined in Fig. 2b. The generator networks are based on
a ResNet architecture consisting of an encoder path for downsampling
input images to an abstract latent space representation, nine residual
blocks each with two convolutional layers for learning the transfor-
mation between image domains, and a decoder using fractionally-
strided convolutions to re-construct output images. Each convolution
used reflection padding and was followed by instance normalization
and a ReLU activation, except the output where a hyperbolic tangent
function was used to produce a [-1,1] bound. The discriminator net-
works used a 70 × 70 PatchGAN architecture. This network maps
256× 256 input images to a 30 × 30 output array, where each element
represents a classification that maps through the series of convolu-
tions to overlapping 70 × 70 receptive fields in the input image. In this
network, the first layer omitted the instance normalization, and leaky
ReLU activation with a slope of 0.2 was used in all layers except the
output. The output array was averaged to determine the classification
value for the entire input image. The discriminator parameters were
updated based on a stored buffer of 50 generated images rather than
only the latest generated example, as suggested by Zhu et al. to reduce
model oscillation52.
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Model training and inference
The training sets for UV-PARS virtual histology and true H&E-stained
brightfieldmicroscopyof breast andprostate tissueswere generatedby
cropping 256 × 256 pixel patches from whole-slide digital pathology
scans (Aperio, Leica Microsystems) using a sliding window. Scans were
obtained at 400x magnification with an effective pixel resolution of ~
247 nm. To increase diversity in the training sets, random transforma-
tions including rotations, reflections and positional jitter were applied
to each patch. The breast tissue data set contained 16,000 unique
images, and the prostate tissue data set included 20,000 unique ima-
ges, sample sizes which exceed or compare to similar
studies34,38,46,48,49,56. In each case, an 80:10:10 split was used for training,
hyperparameter validation, and final testing, respectively using a ran-
dom hold-out strategy. In constructing the data sets, we aimed for
approximately equal proportions of benign tissues, and tissues
obtained from tumor resection cases signed-out by a pathologist with a
malignant diagnosis. This was done to ensure the network was pre-
sented with representative examples of both benign and malignant
histology, mitigating potential bias in the style transfer output, and
potentially reducing the occurrence of hallucinations known to be
associatedwith over or under-represented classes in the training data69.
While themodel was trained on small high-resolution patches, the fully-
convolutional nature of the network permits style transfer of arbitrarily
large images at the inference stage, limited only by GPU memory.

For training the mouse tissue style transfer models for thick tissue
imaging, 512 × 512 pixel grids over a 125μm× 125μm field of view were
used for each image. The liver tissue training set consisted of 200 each
of UV-PARS virtual histology images and true H&E-stained brightfield
images. The kidney tissue training set contained 300 images of each
type. Given the reduced amount of training examples in these cases, a
transfer learning approach was employed. While the human breast and
prostate translationmodelswere trained fromscratch, themouse tissue
translation models used the fully-trained human breast tissue model as
a starting point. While these images differ considerably in style, they
contain similar morphological features, which we expect to aid the
progression of themodel training. Due to the fully-convolutional nature
of the networks used, the number of learnable parameters is insensitive
to the spatial dimensions of the input data. Thus, the pre-trained breast
tissue model could be updated using larger 512 × 512 mouse tissue
training patches, which empirically produced the best visual results.

In each case, the CycleGAN model was trained to convergence
using the Adam optimization algorithm with a batch size of 1, and
moment parameters of 0.5 and 0.999. Training persisted for 100
epochs at a learning rate of 0.0002,with learning rate decay to zero for
a further 100 epochs using a linear policy. Training the breast and
prostate tissue translation models from scratch required ~ 57 h using
Nvidia Tesla A100 GPU resources from Google Colab Pro+. Following
training, only the optimized GH&E generative model is needed for
subsequent style transfer of new UV-PARS images to realistic virtual
histology, requiring only up to a few seconds. For style transfer in high-
resolution, large field-of-view images exceeding GPU VRAM con-
straints, images were divided into horizontal rectangular strips with
256 overlapping pixels, then re-stitched using linear blending follow-
ing the CycleGAN transformation to produce a seamless output image.
This approach facilitated by the fully-convolutional network archi-
tecture is more efficient than splitting the image into small squares, as
it uses themaximal area for eachpatchwithinmemory constraints, and
reduces the total area of overlapping boundaries, eliminating vertical
borders entirely. These factors serve to mitigate potential image
degrading effects including stitching artifacts, residual visible seams,
and brightness differences between patches.

Tissue acquisition and preparation
Formalin-fixed, breadloafed human breast tumor lumpectomy and
radical prostatectomy tissue specimens were obtained from breast

and prostate cancer patients, after pathology cases were closed and
tissues were otherwise flagged for disposal as per approved ethics
[HREBA (Cancer)/HREBA.CC- 20-0145]. Breast tissue specimens
represented 9 female subjects ranging in age from 35 to 69. Prostate
tissue specimens included cases from 7 male patients ranging in age
from 55 to 71. Samples representative of benign breast histology were
obtained from a reduction mammoplasty procedure, where the tissue
would have otherwise been discarded. Prostate tissues were obtained
exclusively from males who have had a radical prostatectomy proce-
dure. Breast tissues were obtained exclusively from female subjects
due to the relatively lower incidence of breast cancer in the male
population. This study did not include direct human research partici-
pants, but rather involved secondary analysis of anonymized tissue
samples and pathology reports. Accordingly, informed consent was
not requiredby theHealthResearchEthicsBoardofAlberta (HREBA) in
the approved research ethics certification. Tissue specimens were
paraffin-embedded and sectioned into 4μm thin sections, which were
H&E-stained for morphological comparison where possible, following
label-free imaging. De-paraffination of tissue sections was carried out
by heat-adhering the tissues to the slides at 60 ∘C for 1 h, followed by
5min washes in two changes of xylene, two changes of 100% ethanol,
95% ethanol, and deionized water. Deparaffinated sections were then
re-hydrated prior to imaging. Murine tissues were obtained in accor-
dance with protocols approved by the University of Alberta Animal
Care and Use Committee [AUP00001170]. Fresh murine kidney and
liver specimens were immersed in a phosphate-buffered saline solu-
tion immediately after dissection from a Swiss Webster mouse
(Crl:CFW(SW), Charles River Laboratories) following isofluorane-
induced euthanasia. Freshly-resected tissues were imaged using UV-
PARS within 30min, prior to formalin fixation.

Analysis of image similarity and nuclear morphology metrics
A set of n = 1921 paired image patches was used to compare our virtual
histological staining approach with conventional H&E-stained bright-
field histology. Images were initially coarsely aligned by maximizing
the normalized cross-correlation. Image co-registration was further
refinedusing anevolutionaryalgorithm for 1000 iterations tooptimize
intensity-based Mattes’ mutual information metric70 under an affine
transformationwith 64 padding pixels used to account for registration
degrees of freedom before cropping to 256× 256 pixels. Finally, non-
rigid pixel-level correctionwas applied using cubic interpolation and a
displacement field estimated by Thirion’s demons algorithm71 with 100
iterations, 3 multi-resolution pyramid levels, and an accumulated field
smoothing parameter of 2.0. Finally, a manual data cleaning step was
performed to remove anomalies such as tissue tearing, the presence of
red blood cells or dust particles, and defocusing during whole slide
scanning. TheMS-SSIM, PSNR, andPCCwerecomputed toquantify the
similarity of each image pair. PSNR was calculated for RGB images,
while the PCC was determined using the grayscale image luminance.
For theMS-SSIMcalculation, images were converted to the YCbCr color
space, then the channel-wise results were combined as
0:8SSIMY +0:1SSIMCb

+0:1SSIMCr
following the weighting convention

suggested for color images by Wang et al.72. This analysis was per-
formed for raw images at full 250 nm sampling resolution, and addi-
tionally for Gaussian filtered images simulating a reduced optical
resolution of 2 μm to characterize gross morphological similarity,
while discounting the effects of contrast and focusing differences
between the modalities.

For characterizing diagnostically-relevant metrics describing the
morphology and distribution of cell nuclei in our virtual histological
images, as compared to ground truth brightfield H&E-stained images,
an analysis pipeline was developed using the CellProfiler software. A
stain separation algorithm67,68 was used prior to CellProfiler proces-
sing, retaining only the hematoxylin stain to assist the segmentation of
nuclei. Initially, the complement of the grayscale images was taken
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such that nuclei appear brighter against a darker background. The
IdentifyPrimaryObjects function was used for detection of nuclei, with
a typical object diameter range of 15–50 pixels. Global thresholding by
Otsu’s method was used with a smoothing scale parameter of 1.35, a
correction factor of 0.8, and intensity threshold bounds of 0.1 to 1.0.
Clumped objects were distinguished and dividing lines were drawn
using the shape method57. A nuclei count was determined by the total
number of detected objects, while discarding objects outside the
specified size range or in contact with the image border, which could
limit accurate morphological measurements. The Measur-
eObjectSizeShape module was used to measure the cross-sectional
nuclear area using the set of detected objects. Measures of nuclear
shape including eccentricity and compactness were also computed,
with definitions provided in Supplementary Table 3. Finally, the Mea-
sureObjectNeighbors module was used to characterize the inter-
nuclear distance using the nearest neighbor for each nucleus object
centroid. All parameters were computed over the distribution of 1921
images of each type, with results shown in Fig. 8.

Evaluation of diagnostic concordance
To evaluate the diagnostic utility of our virtual histology images in
breast tissues, we designed a study where five pathologists were asked
toprovide amalignant or benigndiagnosis inn = 24 virtualH&E images
with matching true H&E counterparts. Results are summarized in
Supplementary Table 4. For prostate tissues, we designed a study
where three pathologists were asked to provide a malignant or benign
diagnosis in n = 32 virtual H&E images with matching true H&E coun-
terparts. Results are summarized in Supplementary Table 5. Images
selected for these studieswere obtainedby imaging randomregions of
tissue sections unseen by the CycleGAN model during training, while
ensuring data sets represented a diversity of histological features. The
field-of-view presented to pathologists for paired virtual and true H&E
histology ranged from 1 to 10.7 mm2, with a mean of 3.7 mm2. In both
studies, images were from benign and malignant tissues as validated
by blinded pathology reports. In order to establish a benchmark
diagnosis, the consensus interpretation was selected across patholo-
gists for the true H&E image set. Pathologists had good agreement in
interpreting true H&E images, as quantified by a calculated Fleiss’
kappa score of 1.00 for breast tissue and 0.81 for prostate tissue. This
supports using the consensus diagnosis in the true H&E images as a
gold standard. Furthermore, the gold standard diagnoses indicated a
malignancy prevalence of 0.42 in the breast data set and 0.63 in the
prostate data set, suggesting good representation of both malignant
and benign samples. We evaluated the diagnostic utility of our virtual
histology by calculating the sensitivity, specificity, PPV, NPV, and
accuracy for interpretations by each pathologist. Additionally we
determined the concordance of pathologist interpretations of true
histology with their own interpretations of corresponding virtual his-
tology using Cohen’s kappa as a measure of intra-observer variability.
To mitigate inter-observer variability, we report means of these values
over all pathologists, and additionally computed these statistics using
a consensus diagnosis for each virtual histology image. Results are
shown in Table 1.

Blinded comparison of virtual histology and frozen section stain
quality
A set of n = 15 frozen section H&E-stained brightfield microscopy
images of human lumpectomy specimens obtained from a tissue bank
(OriGene), and n = 15 CycleGAN UV-PARS virtually-stained images of
human breast specimens obtained from benign tissues and tumor
lumpectomyprocedureswere compiled to forma randomizedblinded
set of breast histology images. These images were then presented to
three pathologists who were asked to rank each image based on
hematoxylin detail (HD), eosin detail (ED), and overall stain quality
(SQ) on a 1–4 evaluation scale, similar to the study reported by

Rivenson et al.34. The numerical scale defined scores as follows: 1,
unacceptable; 2, acceptable; 3, very good quality; and 4, perfect stain.
The results of this blinded evaluation of virtual and frozenH&E-stained
breast tissue images are tabulated in Supplementary Table 6. To
evaluate prospective statistical significance of the hypothesis that
virtual images produced image quality that was preferred over frozen
sections by pathologists, a right-tailed Wilcoxon rank sum test was
performed, which is generally considered as the nonparametric ver-
sion of a two-sample t test. This test is appropriate for comparing
independent samples that may not be normally-distributed, allowing
the significance of test statistic differences in populations to be eval-
uated where the distributions have approximately equal variances.
This assumption appears to be reasonable in our study when sample
variances are used as an estimate of population variances. A test was
performed for each stain quality metric, using the exact version of the
test statistic computation. Moreover, tested image scores were taken
as a mean over pathologist ratings, which in part reduces the effect of
inter-observer variability, and avoids the problem of computing P
values where ties exist in the exact Wilcoxon rank sum test. The
experimental design involved only three planned comparisons,
therefore no corrections for multiple comparisons were used.

Statistics & reproducibility
All images depict single scans of single samples to demonstrate proof
of concept, though all data sets are representative ofmultiple repeated
experiments where the same histological features were consistently
resolved. In all studies, pathologist readers were blinded to the ima-
ging method and final diagnosis for the cases from which specimens
were obtained. No statistical method was used to predetermine sam-
ple sizes. Image data was excluded only in cases where the 400x
magnification whole-slide scan was out of focus, dust particles were
present in the field of view, or the image patch contained only glass
slide/coverslip and not tissue.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper as a Source Data file. The
training, test, and validation data sets for the breast tissue andprostate
tissue staining models are available at https://doi.org/10.5281/zenodo.
7981075. Due to their large file size, the raw data generated during this
study are available for research purposes from the corresponding
authors on request, within three weeks. Source data are provided with
this paper.

Code availability
The code for CycleGAN originally implemented by Zhu et al. in
PyTorch52,55 is available at https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix. This model was trained for our application
with customized parameters as described in Methods. The pre-trained
breast and prostate CycleGAN virtual-to-true H&E generator networks
are available at https://doi.org/10.5281/zenodo.8115040. The data
processing and analysis described in Methods were implemented in
MATLAB scripts which are available from the authors upon request.
Quantitative analysis of nuclei was performed using the free, open-
source CellProfiler software. The system control and image recon-
struction software are available from the corresponding author upon
request. The requester is responsible for procuring all necessary
licenses for third party libraries and software development kits.

References
1. Orosco, R. K. et al. Positive surgicalmargins in the 10most common

solid cancers. Sci. Rep. 8, 1–9 (2018).

Article https://doi.org/10.1038/s41467-023-41574-2

Nature Communications |         (2023) 14:5967 14

https://doi.org/10.5281/zenodo.7981075
https://doi.org/10.5281/zenodo.7981075
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://doi.org/10.5281/zenodo.8115040


2. DeSantis, C. E. et al. Cancer treatment and survivorship statistics,
2014. CA: A Cancer J. Clin. 64, 252–271 (2014).

3. Cheng, L., Al-Kaisi, N. K., Liu, A. Y. & Gordon, N. H. The results of
intraoperative consultations in 181 ductal carcinomas in situ of the
breast. Cancer 80, 75–79 (1997).

4. Tsuboi, T. et al. Is intraoperative frozen section analysis an efficient
way to reduce positive surgical margins? Urology 66,
1287–1291 (2005).

5. Cendán, J. C., Coco, D. & Copeland III, E. M. Accuracy of intrao-
perative frozen-section analysis of breast cancer lumpectomy-bed
margins. J. Am. College Surg. 201, 194–198 (2005).

6. Lester, S. C. & Hicks, D. G. Diagnostic Pathology: Breast, E-Book
(Elsevier Health Sciences, 2021).

7. Namdar, Z. M. et al. How accurate is frozen section pathology
compared to permanent pathology in detecting involved margins
and lymph nodes in breast cancer?World J. Surg. Oncol. 19,
1–7 (2021).

8. Valdes, E. K., Boolbol, S. K., Cohen, J.-M. & Feldman, S. M. Intra-
operative touch preparation cytology; does it have a role in re-
excision lumpectomy? Ann. Surg. Oncol. 14, 1045–1050 (2007).

9. Hajireza, P., Shi, W., Bell, K., Paproski, R. J. & Zemp, R. J. Non-
interferometric photoacoustic remote sensingmicroscopy. Light 6,
e16278–e16278 (2017).

10. Reza, P. H., Bell, K., Shi, W., Shapiro, J. & Zemp, R. J. Deep non-
contact photoacoustic initial pressure imaging. Optica 5,
814–820 (2018).

11. Haven, N. J., Martell, M. T., Li, H., Hogan, J. D. & Zemp, R. J. Inves-
tigating mechanisms of laser pulse-induced reflectivity modula-
tions in photoacoustic remote sensingwith a 10million frames-per-
second camera. Sci. Rep. 13, 3751 (2023).

12. Haven, N. J., Bell, K. L., Kedarisetti, P., Lewis, J. D. & Zemp, R. J.
Ultraviolet photoacoustic remote sensing microscopy. Opt. Lett.
44, 3586–3589 (2019).

13. Abbasi, S. et al. All-optical reflection-mode microscopic histology
of unstained human tissues. Sci. Rep. 9, 1–11 (2019).

14. Haven, N. J., Kedarisetti, P., Restall, B. S. & Zemp, R. J. Reflective
objective-based ultraviolet photoacoustic remote sensing virtual
histopathology. Opt. Lett. 45, 535–538 (2020).

15. Restall, B. S. et al. Virtual hematoxylin and eosin histopathology
using simultaneous photoacoustic remote sensing and scattering
microscopy. Opt. Expr. 29, 13864–13875 (2021).

16. Restall, B. S. et al. Fast hybrid optomechanical scanning photo-
acoustic remote sensing microscopy for virtual histology. Biomed.
Opt. Expr. 13, 39–47 (2022).

17. Ecclestone, B., Dinakaran, D. & Reza, P. H. Single acquisition label-
free histology-like imaging with dual-contrast photoacoustic
remote sensing microscopy. J. Biomed. Opt. 26, 056007 (2021).

18. Bell, K. et al. Reflection-mode virtual histology using photoacoustic
remote sensing microscopy. Sci. Rep. 10, 1–13 (2020).

19. Kedarisetti, P. et al. F-mode ultraviolet photoacoustic remote sen-
sing for label-free virtual h&e histopathology using a single exci-
tation wavelength. Opt. Lett. 46, 3500–3503 (2021).

20. Haven, N. J. et al. Virtual histopathology with ultraviolet scattering
and photoacoustic remote sensing microscopy. Opt. Lett. 46,
5153–5156 (2021).

21. Cikaluk, B. D. et al. Rapid ultraviolet photoacoustic remote sensing
microscopy using voice-coil stage scanning. Opt. Expr. 31,
10136–10149 (2023).

22. Restall, B. S., Kedarisetti, P., Haven, N. J., Martell, M. T. & Zemp, R. J.
Multimodal 3d photoacoustic remote sensing and confocal fluor-
escence microscopy imaging. J. Biomed. Opt. 26,
096501–096501 (2021).

23. Glaser, A. K. et al. Light-sheet microscopy for slide-free non-
destructive pathology of large clinical specimens. Nat. Biomed.
Eng. 1, 1–10 (2017).

24. Patel, K. B. et al. High-speed light-sheet microscopy for the in-situ
acquisition of volumetric histological images of living tissue. Nat.
Biomed. Eng. 6, 569–583 (2022).

25. Fereidouni, F. et al. Microscopywith ultraviolet surface excitation
for rapid slide-free histology. Nat. Biomed. Eng. 1, 957–966
(2017).

26. Tao, Y. K. et al. Assessment of breast pathologies using nonlinear
microscopy. Proc. Natl. Acad. Sci. 111, 15304–15309 (2014).

27. Olson, E., Levene, M. J. & Torres, R. Multiphoton microscopy with
clearing for threedimensional histology of kidneybiopsies.Biomed.
Opt. Expr. 7, 3089–3096 (2016).

28. Ragazzi, M. et al. Fluorescence confocal microscopy for patholo-
gists. Mod. Pathol. 27, 460–471 (2014).

29. Bejnordi, B. E., Timofeeva, N., Otte-Höller, I., Karssemeijer, N. & van
der Laak, J. A. Quantitative analysis of stain variability in histology
slides and an algorithm for standardization. In Medical Imaging
2014: Digital Pathology, vol. 9041, 904108 (International Society for
Optics and Photonics, 2014).

30. Yoshitake, T. et al. Rapid histopathological imaging of skin and
breast cancer surgical specimens using immersion microscopy
with ultraviolet surface excitation. Sci. Rep. 8, 1–12 (2018).

31. Xie,W. et al. Microscopywith ultraviolet surface excitation forwide-
area pathology of breast surgical margins. J. Biomed. Opt. 24,
026501 (2019).

32. Sun, Y. et al. Real-time three-dimensional histology-like imaging by
label-free nonlinear opticalmicroscopy.Quant. ImagingMed. Surg.
10, 2177 (2020).

33. Zhang, Y. et al. High-throughput, label-free and slide-free histolo-
gical imaging by computational microscopy and unsupervised
learning. Adv. Sci. 9, 2102358 (2022).

34. Rivenson, Y. et al. Virtual histological staining of unlabelled tissue-
autofluorescence images via deep learning. Nat. Biomed. Eng. 3,
466–477 (2019).

35. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed
surgical specimens via fibre-laser-based stimulated raman scat-
tering microscopy. Nat. Biomed. Eng. 1, 1–13 (2017).

36. Hollon, T. C. et al. Near real-time intraoperative brain tumor diag-
nosis using stimulated raman histology and deep neural networks.
Nat. Med. 26, 52–58 (2020).

37. Soltani, S. et al. Prostate cancer histopathology using label-free
multispectral deep-uv microscopy quantifies phenotypes of tumor
aggressiveness and enables multiple diagnostic virtual stains. Sci.
Rep. 12, 9329 (2022).

38. Li, J. et al. Biopsy-free in vivo virtual histology of skin using deep
learning. Light 10, 1–22 (2021).

39. Winetraub, Y. et al. Oct2hist: Non-invasive virtual biopsy using
optical coherence tomography. Preprint at https://www.medrxiv.
org/content/10.1101/2021.03.31.21254733.abstract (2021).

40. Yao, D.-K., Maslov, K., Shung, K. K., Zhou, Q. & Wang, L. V. In vivo
label-free photoacoustic microscopy of cell nuclei by excitation of
DNA and RNA. Opt. Lett. 35, 4139–4141 (2010).

41. Wong, T. T. et al. Fast label-freemultilayered histology-like imaging
of human breast cancer by photoacoustic microscopy. Sci. Adv. 3,
e1602168 (2017).

42. Wong, T. T. et al. Label-free automated three-dimensional imaging
ofwhole organs bymicrotomy-assisted photoacousticmicroscopy.
Nat. Commun. 8, 1–8 (2017).

43. Imai, T. et al. High-throughput ultraviolet photoacoustic micro-
scopywithmultifocal excitation. J. Biomed.Opt.23, 036007 (2018).

44. Kim, H., Baik, J. W., Jeon, S., Kim, J. Y. & Kim, C. Paexm: label-free
hyper-resolution photoacoustic expansion microscopy. Opt. Lett.
45, 6755–6758 (2020).

45. Li, X., Kang, L., Zhang, Y. & Wong, T. T. High-speed label-free
ultraviolet photoacoustic microscopy for histology-like imaging of
unprocessed biological tissues. Opt. Lett. 45, 5401–5404 (2020).

Article https://doi.org/10.1038/s41467-023-41574-2

Nature Communications |         (2023) 14:5967 15

https://www.medrxiv.org/content/10.1101/2021.03.31.21254733.abstract
https://www.medrxiv.org/content/10.1101/2021.03.31.21254733.abstract


46. Kang, L., Li, X., Zhang, Y. & Wong, T. T. Deep learning enables
ultraviolet photoacoustic microscopy based histological imaging
with near real-time virtual staining. Photoacoustics 25,
100308 (2022).

47. Zhang, C., Zhang, Y. S., Yao, D.-K., Xia, Y. & Wang, L. V. Label-free
photoacoustic microscopy of cytochromes. J. Biomed. Opt. 18,
020504 (2013).

48. Cao, R. et al. Label-free intraoperative histology of bone tissue via
deep-learning-assisted ultraviolet photoacoustic microscopy. Nat.
Biomed. Eng. 7, 124–134 (2023).

49. Chen, Z., Yu, W., Wong, I. H. & Wong, T. T. Deep-learning-assisted
microscopy with ultraviolet surface excitation for rapid slide-free
histological imaging. Biomed. Opt. Expr. 12, 5920–5938 (2021).

50. Rivenson, Y. et al. Phasestain: the digital staining of label-free
quantitative phasemicroscopy images usingdeep learning. Light8,
1–11 (2019).

51. Giacomelli, M. G. et al. Virtual hematoxylin and eosin transillumi-
nation microscopy using epi-fluorescence imaging. PLoS One 11,
e0159337 (2016).

52. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on computer vision,
2223–2232 (2017).

53. Goodfellow, I. et al. Generative adversarial nets. Advances in neural
information processing systems 27 (2014).

54. Mirza, M. & Osindero, S. Conditional generative adversarial nets.
Preprint at https://arxiv.org/abs/1411.1784 (2014).

55. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 1125-
1134 (2017).

56. Boktor, M. et al. Virtual histological staining of label-free total
absorption photoacoustic remote sensing (ta-pars). Preprint at
https://arxiv.org/abs/2203.02584 (2022).

57. Carpenter, A. E. et al. Cellprofiler: image analysis software for iden-
tifying and quantifying cell phenotypes.Genome Biol. 7, 1–11 (2006).

58. Landis, J. R. & Koch, G. G. Themeasurement of observer agreement
for categorical data. Biometrics 33 159–174 (1977).

59. Mathur, S. C. et al. Development of functional requirements for
ex vivo pathology applications of in vivo microscopy systems: a
proposal from the in vivo microscopy committee of the college of
americanpathologists.Arch. Pathol. Lab.Med. 143, 1052–1057 (2019).

60. Yuan, Y. et al. Photoacoustic remote sensing elastography. Opt.
Lett. 48, 2321–2324 (2023).

61. Ma, L. & Fei, B. Comprehensive review of surgical microscopes:
technology development andmedical applications. J. Biomed. Opt.
26, 010901 (2021).

62. Ottolino-Perry, K. et al. Intraoperative fluorescence imaging with
aminolevulinic acid detects grossly occult breast cancer: a phase ii
randomized controlled trial. Breast Cancer Res. 23, 1–20 (2021).

63. Brachtel, E. F. et al. Spectrally encoded confocal microscopy for
diagnosing breast cancer in excision and margin specimens. Lab.
Investig. 96, 459–467 (2016).

64. Prieto, V. G. et al. Are en face frozen sections accurate for diag-
nosing margin status in melanocytic lesions? Am. J. Clin. Pathol.
120, 203–208 (2003).

65. Snider, L., Bell, K., Hajireza, P. & Zemp, R. J. Toward wide-field high-
speed photoacoustic remote sensing microscopy. In Photons Plus
Ultrasound: Imaging and Sensing 2018, vol. 10494, 143–150
(SPIE, 2018).

66. Wang, T. & Lin, Y. Cyclegan with better cycles. Preprint at https://
www.tongzhouwang.info/better_cycles/report.pdf (2018).

67. Li, X. & Plataniotis, K. N. Circular mixture modeling of color dis-
tribution for blind stain separation in pathology images. IEEE J.
Biomed. Health Inf. 21, 150–161 (2015).

68. Li, X. & Plataniotis, K. N. A complete color normalization approach to
histopathology images using color cues computed fromsaturation-
weighted statistics. IEEE Trans. Biomed. Eng. 62, 1862–1873 (2015).

69. Cohen, J. P., Luck, M. & Honari, S. Distribution matching losses can
hallucinate features in medical image translation. In International
conference on medical image computing and computer-assisted
intervention, 529–536 (Springer, 2018).

70. Mattes, D., Haynor, D. R., Vesselle, H., Lewellyn, T. K. & Eubank, W.
Nonrigid multimodality image registration. In Medical imaging
2001: image processing, vol. 4322, 1609–1620 (Spie, 2001).

71. Thirion, J.-P. Imagematching as a diffusion process: an analogywith
maxwell’s demons. Med. Image Anal. 2, 243–260 (1998).

72. Wang, Z., Lu, L. & Bovik, A. C. Video quality assessment based on
structural distortionmeasurement.Signal Process. ImageCommun.
19, 121–132 (2004).

Acknowledgements
The authors are grateful for assistance with histology preparations and
whole slide scanning from the Alberta Diabetes Institute HistoCore
facilities and Shalawny Miller. The peak detection circuit used was ori-
ginally designed by Logan Snider. The authors also thank Andrey Gor-
bunov for providing representative benign breast tissue samples. This
work received funding from the Canadian Institutes of Health Research
(PS 168936, R.J.Z.) and the Natural Sciences and Engineering Research
Council of Canada (2018-05788, R.J.Z.).

Author contributions
R.J.Z, and X.L. conceived the experiments and supervised the research.
M.T.M., N.J.M.H., and E.A.M. generated training data, and optimized and
validated the machine learning methods. N.J.M.H., M.T.M., B.S.R. built
the optical system and conducted the imaging experiments. M.T.M.,
N.J.M.H., B.S.R., and B.D.C. developed hardware and software methods
for scanning and image reconstruction. M.T.M., N.J.M.H., and R.J.Z.
developed the blinded study and analyzed data. R.M., B.A.A., N.G., S.S.,
and J.D. provided clinical guidance and participated in the blinded
studies. L.P. and N.G. assistedwith requisition of the breast and prostate
tissues. J.D., N.G., M.T.M., N.J.M.H., and R.J.Z. contributed to human
ethics approvals. M.T.M, N.J.M.H., and R.J.Z. prepared the manuscript.
All authors reviewed and edited the manuscript.

Competing interests
R.J.Z. is a founder and shareholder of illumiSonics Inc., which, however,
did not support this work. R.J.Z. is founder, shareholder and director of
CliniSonix Inc., which, however, did not support this work. R.J.Z. is a
Scientific Advisory Board member for FUJIFILM Visualsonics, which,
however, did not support this work. The remaining authors declare no
competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41574-2.

Correspondence and requests for materials should be addressed to
Roger J. Zemp.

Peer review information :Nature Communications thanks Ulysses Balis,
Terence Tsz Wai Wong and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-41574-2

Nature Communications |         (2023) 14:5967 16

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/2203.02584
https://www.tongzhouwang.info/better_cycles/report.pdf
https://www.tongzhouwang.info/better_cycles/report.pdf
https://doi.org/10.1038/s41467-023-41574-2
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41574-2

Nature Communications |         (2023) 14:5967 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep learning-enabled realistic virtual histology�with ultraviolet photoacoustic remote sensing microscopy
	Results
	Virtual staining of human breast and prostate tissue specimens
	Virtual staining of freshly-resected thick murine tissues
	Quantitative validation of virtual staining
	Evaluation of diagnostic concordance
	Blinded subjective survey of stain quality

	Discussion
	Methods
	Ethical statement
	Optical imaging system
	Data acquisition and processing
	Cycle-consistent generative adversarial network
	Model training and inference
	Tissue acquisition and preparation
	Analysis of image similarity and nuclear morphology metrics
	Evaluation of diagnostic concordance
	Blinded comparison of virtual histology and frozen section stain quality
	Statistics & reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




